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Abstract
Three experiments were conducted in which adults practiced complex multiplication problems (e.g., 4 x 17). In Experiments 1 and 2, after
practice participants completed a number-matching task in which two digits (cues) were followed by a single digit (probe) and had to determine
whether the probe matched either of the cues. In simple arithmetic (e.g., 4 x 3), when the probe is the product of the cues (12), participants
are slower/more error prone when determining whether there is a match. Results of Experiment 1 extended this effect to complex multiplication.
In Experiment 2, participants practiced problems with the larger operand first (e.g., 17 x 4) or with the smaller operand first (e.g., 4 x 17). The
number-matching interference effect from Experiment 1 was replicated, and was equal across the two groups whether cues were presented
in their practiced or non-practiced order. Experiment 3 was conducted to determine if two additional simple multiplication effects, consistency
and relatedness, could be documented for complex multiplication. After practice, in a verification task (4 x 13 = 56?) it was found that when
presented answers shared a digit with the decade digit of the correct answer (consistency) or were a correct answer to another practiced
problem (relatedness), participants rejected answers more slowly and/or less accurately. Together, findings from the three experiments support
arithmetic models that posit that commuted pairs are not represented in long-term memory independently and that posit representations of
two-digit multiplication answers are decomposed into decades and units during arithmetic processing.
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After extensive practice with single-digit arithmetic problems (e.g., 8 x 6), adults mostly change from using delib-
erate and resource-demanding problem-solving strategies to retrieving answers for those problems directly from
long-term memory (e.g., Geary, 1996; Imbo & Vandierendonck, 2008; LeFevre et al., 1996). Many techniques
have been used to document arithmetic strategy use; until recently, the most common one has been the use of
verbal reports from participants after they solve each problem (e.g., Kirk & Ashcraft, 2001; LeFevre et al., 1996).
These studies have helped to uncover the locus of several important effects in basic arithmetic problem solving
that have had a profound impact on the development of models of arithmetic processing; an example of one of
those effects is the problem size effect, which is evidenced by an increase in error rates and response times as
the sums/products of problems increase.

Criticisms of the verbal report technique have been raised, however, calling into question their validity (Kirk &
Ashcraft, 2001). As a result, new techniques for determining when problem solving involves retrieval from long-
term memory versus strategy use, such as the operand recognition paradigm (Thevenot, Fanget, & Fayol, 2007),
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have been developed. For example, Thevenot et al. (2007) had participants solve addition problems in one con-
dition and compare the magnitude of two numbers in another condition. After each trial in both conditions, partic-
ipants were asked to identify if a third number was one of the original addends from the addition problem or one
of the numbers from the comparison task. The argument is that if participants are using strategies to solve problems,
the added cognitive resources needed and the interference caused by transitory results (e.g., solving 5 + 6 by
first arriving at the transitory result of 5 + 5 = 10) will lead to a decay of the initial problem in memory. Therefore,
when strategies are used to solve the arithmetic problem, the number presented after the addition problem should
be verified/rejected as matching an addend more slowly than the number presented after the comparison task.
This was found to be true for both large and medium problems in Thevenot et al.’s (2007) study suggesting that
non-retrieval strategies are used when solving these categories of problems. The validity and promise of the
operand recognition paradigm for determining arithmetic solution procedures has been extended to additional
operations and samples, including children (Fanget, Thevenot, Castel, & Fayol, 2015; Thevenot, Castel, Fanget,
& Fayol, 2010).

Another technique to determine whether participants are solving problems via retrieval from long-term memory
uses tasks for which fact retrieval is irrelevant. For example, LeFevre, Bisanz, and Mrkonjic (1988) had undergrad-
uates engage in a number-matching task. Participants were shown number pairs (e.g., “3” and “4”, called the cue)
followed by a single number (the probe). On certain trials the probe was not the sum of the number pair in the
cue (e.g., “8”), and on other (sum) trials, the probe was the correct sum of the cue (i.e., “7”). The participants were
asked simply to press a button to indicate whether the probe matched either of the cue numbers; therefore, adding
the cue numbers was irrelevant to completing the task. What was being tested, however, was whether answers
to arithmetic problems were automatically retrieved from long-term memory in arithmetically-skilled participants.
If answers were being automatically retrieved, participants’ ability to reject the probe as a match to one of the
cues should have been interfered with, leading to slower response times and increased errors. This is exactly
what LeFevre et al. (1988) found, and it occurred whether or not an addition sign was included between numbers
in the cue.

Since this seminal investigation that supported the obligatory activation of addition facts, subsequent studies have
examined the obligatory activation of answers to other operations (e.g., De Brauwer, 2007; Thibodeau, LeFevre,
& Bisanz, 1996), the role of working memory in automatic retrieval of arithmetic facts (Rusconi, Galfano, Speriani,
& Umiltà, 2004), the extension of the obligatory activation to related problems’ answers (7 x 6 activates 42 and
48; Galfano, Rusconi, & Umiltà, 2003), and have examined the electrophysiological markers of task-irrelevant
retrieval in simple multiplication (Galfano, Mazza, Angrilli, & Umiltà, 2004; Galfano, Penolazzi, Vervaeck, Angrilli,
& Umiltà, 2009).

For example, Galfano et al. (2003) tested whether problem answers plus answers to nearby problems that shared
an operand (e.g., 7 x 6 and 8 x 6) were automatically activated in a number-matching task. To do this, they pre-
sented cues to participants (e.g., “7” and “6”) followed by probes that were incorrect answers to nearby related-
problems’ answers (e.g., “48”—representing the correct answer to 8 x 6), and incorrect answers to unrelated
problems (“45”—the correct answer to 9 x 5). Across the six experiments, participants were significantly slower
at rejecting the near-neighbor probes than the unrelated probes, which suggests that the obligatory activation
from the operands of a problem extend both to the correct answers and nearby incorrect answers. Results of the
number-matching studies outlined above have added to the evidence supporting theories that simple arithmetic
problems and answers are stored in associative networks in long-term memory (Ashcraft, 1992; Campbell, 1995).
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When two numbers in a multiplication problem are presented, those numbers are activated, and activation spreads
in an obligatory fashion through the network to number nodes that represent the correct product, and to a lesser
extent, spread to adjacent nodes that represent correct answers to neighboring problems. It appears that
spreading activation in the network is bidirectional, as several experiments have shown that presentation of
numbers that are correct answers to multiplication problems automatically activate the operands of those problems
(Rusconi, Galfano, Rebonato, & Umiltá, 2006).

While there has been a proliferation of research examining simple arithmetic processing, the research examining
complex arithmetic processing is relatively sparse. Much of this research has focused on examining working
memory involvement (e.g., Imbo & LeFevre, 2010; Tronsky, 2005), strategies used by typical (skilled adults) and
atypical (e.g., math precocious/disabled students, calculating prodigies) populations (e.g., Geary, Hoard, Byrd-
Craven, & DeSoto, 2004; Hoard, Geary, Byrd-Craven, & Nugent, 2008; Pesenti, Seron, Samson, & Duroux, 1999),
and brain areas recruited during the learning and processing of complex arithmetic problems (e.g., Grabner,
Rütsche, Ruff, & Hauser, 2015; Ischebeck, Zamarian, Egger, Schocke, & Delazer, 2007). To date, there have not
been any investigations of complex arithmetic processing using a number-matching task. Therefore, the goal of
the first experiment is to establish that the obligatory activation of problem answers extends from simple to complex
arithmetic.

Experiment 1

In this first experiment, participants were asked to practice solving a small subset of complex multiplication problems
that had one multi-digit operand between 14 and 19 and one single-digit operand between 3 and 6. After practice,
participants completed a number-matching task modeled after that used by Galfano et al. (2004). The hypothesis
for Experiment 1 is that after practice, interference in the number-matching task will be demonstrated by slower
response times and higher error rates for probes that are products of the cues compared to probes that are unre-
lated to the cues. This will be indicative of the obligatory activation of the product of the cue numbers, which has
been documented in the simple arithmetic experiments outlined above.

Method
Participants

Twenty-one undergraduates (16 female, 5 male) from a small Northeastern college in the USA participated and
received extra credit toward their psychology classes; their mean age was 19.4 years. All had normal or corrected-
to-normal vision. Three participants did not have English as their first language, and one reported a diagnosed
math disability. Patterns of results did not differ when these four participants’ data were removed from analyses,
so their data were retained in the analyses that are reported.

The computer tasks described below were administered using the SuperLab Pro experiment software (version
4.5) with responses made either verbally into a microphone (complex multiplication practice) or via a response-
box button press (number-matching task). Stimuli in all tasks were displayed on a computer monitor in black
Tahoma Regular 36-point font against a white background. Double-digit numbers were a width of approximately
12 mm and single-digit numbers a width of approximately 6 mm; both were 10 mm in height. Participants viewed
these stimuli at a distance of approximately 60 centimeters from the computer monitor.
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Complex multiplication practice stimuli — Five complex multiplication problems (16 x 3, 18 x 3, 17 x 4, 19 x
4, and 14 x 6) and their commuted pairs were presented on a computer screen for participants to solve mentally.
In total, the multiplication problems covered a width of approximately 4.5 cm on the screen. These problems were
presented in blocks of ten (each problem and its commuted pair), and within each of the blocks, problems were
presented in a random order.

Number matching stimuli — As noted above, the stimuli for this task were (mostly) modeled after those that
have been used in number matching tasks examining the automatic activation of simple multiplication answers
(e.g., Galfano et al., 2004; Rusconi et al., 2004). Recall that the number-matching task involves the presentation
of two cue numbers followed by a probe number, and participants determine whether the probe number matches
one of the cue numbers. As in recent investigations using this task, the cue numbers were presented without a
multiplication sign between them (e.g., Galfano et al., 2009). They were separated by three spaces, which made
them approximately 3 cm wide. Half of the stimuli included a probe number that did not match either of the cue
numbers, and half of the stimuli included a probe that matched one of the cues. The specific stimuli for Experiment
1 are in Appendix A and are described below.

There were two main categories of stimuli constructed for this task, non-matching stimuli and matching stimuli.
Within the non-matching stimuli were three categories of stimuli including product, unrelated, and filler stimuli.
The non-matching product stimuli included probes that were the correct answers to the product of the cues (e.g.,
cues: “16” and “3”; probe: “48”). Non-matching unrelated stimuli included probes that were not the correct answers
to the product of the cues (e.g., cues: “16” and “3”; probe: “52”). The non-matching filler stimuli included double-
digit and single-digit cues followed by a non-matching double-digit probe (e.g., cues: “67” and “8”; probe: “58”).
These items were included so that non-matching item cues were not only the operands of the practiced problems
and so there were items with double-digit cues beyond the teen numbers.

The non-matching unrelated items were constructed using several criteria to ensure that the hypothesis, interference
from product probes stems from automatic activation of correct answers by the cues, could be tested without
confounds stemming from the nature of the probe items.

First, the odd-even (parity) status between probes in the product and unrelated trials were matched—in fact, all
probes were even numbers; previous research has shown that different processing strategies may be used during
the processing of arithmetic verification problems when parity of the proposed answer does not match the parity
of the correct answer (e.g., Lemaire & Fayol, 1995). Next, each probe in the product and neutral conditions appeared
the same number of times. Third, most of the unrelated probes were not multiples of either of the cue numbers
in a trial with the exception of “72” for the “14” and “6” cue and “92” for the “19” and “4” cue. Even though both of
these probes are multiples of the single digit number in each trial, minimal interference, if any, should occur given
that it is unlikely that participants would have strong activation of “72” or “92;” it is improbable that participants
had the corresponding problems (6 x 12 and 23 x 4) strongly associated with the aforementioned probes. Also,
the average magnitude of the probes in the production trials (66) was very close to the average magnitude of the
probes in the unrelated trials (64); this is important because it rules out the possibility that participants would respond
more slowly to product trials because the magnitude differences between cues and probes were smaller than for
unrelated trials (e.g., Dehaene & Akhavein, 1995; van Opstal & Verguts, 2011). Finally, the number of partial
matches between cues and probes (e.g., cue: “18” and “3”; probe: “58”; the ones digit matches) was minimized
to reduce the potential interference from that structural variable—only the product trial with a cue of “14” and “6”
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and a probe of “84” involved a partial match (although there is evidence that partial matches may not influence
response time data in the context of this task—see Galfano et al., 2003)

The other category of items in the number-matching task was the matching stimuli. These stimuli also included
three sub-categories: probe-balancing stimuli, cue-balancing stimuli, and filler stimuli. Thematching probe-balancing
stimuli included the same probes as the non-matching product stimuli, but all double-digit probes matched the
double-digit number in the cue (e.g., cues: “48” and “3”; probe: “48”). Matching cue-balancing stimuli were when
the same cues as the non-matching product trials were used, and cues were followed by probes that matched
the single-digit number in the cue (e.g., cues: “16” and “3”; probe: “3”). Lastly, the matching-filler stimuli were in-
cluded to balance the number of matching and non-matching trials; each contained a double-digit number and
single digit number as a cue, and the probes matched the double-digit number in the cue (e.g., cues: “67” and
“8”; probe: “67”).

In total, 60 trials of stimuli (cues and probe), ten in each of the six different categories described above, were in-
cluded. Half of the items in each category had cues with the larger number on the left, and half had cues with the
larger number on the right. Fourteen blocks with 30 trials in each block were administered for a total of 420 trials;
within each block, trials were presented in a random order, half of the trials were matching and half were non-
matching, and half of the trials from each of the categories were those with the larger cue number on the left.

Procedure

Participants signed up for two separate appointments that were not to be more than one week apart. During the
first appointment, participants practiced solving the complex multiplication problems for 60 minutes, and during
the second appointment they practiced the problems for an additional 15 minutes before completing the number
matching task that took approximately 25 to 30 minutes.

Before data collection began for the complex multiplication practice task, a research assistant read a set of instruc-
tions that described the problem-solving strategy participants were to use. This procedure involved multiplying
the single digit operand by the tens digit of the double-digit operand, multiplying the single digit by the ones digit
of the double-digit operand, and then adding together the partial products to arrive at an answer. For example, to
solve the problem 18 x 3, participants would use the following steps: 10 x 3 = 30; 3 x 8 = 24; 30 + 24 = 54; the
name “tens strategy” was used to identify this procedure. After the instructions, participants completed a set of
five warm-up problems that were different from the practice problems so that they could become accustomed to
the use of the tens strategy, could become familiar with voicing answers into the microphone, and could ask
questions about the procedure. During the data collection phase of the task, the multiplication problems remained
on the screen until the microphone was tripped by participants’ vocalization of an answer. Once the problem had
disappeared, the word “STRATEGY” was displayed for 1500 milliseconds (ms); participants responded “Yes” if
they had used the “tens strategy,” or “No” if they had simply remembered the answer (retrieved the answer from
long-termmemory). A research assistant recorded participants’ answers and strategy use for each problem. Once
the 1500 ms time limit had expired, a white screen was presented for 1000 ms followed by the next practice
problem. After completing two blocks of problems (20 in total), participants were offered the opportunity to take a
short break to help reduce visual and attentional fatigue. Once 60 minutes had elapsed, participants were released
from the session.
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As noted, during the first 15 minutes of their second appointment, participants solved the practice problems before
completing the number-matching task. A research assistant read instructions that explained the nature of the
number-matching task and instructed participants to respond as quickly and accurately as possible. Responses
were made using the index fingers of each hand with roughly half of the participants’ randomly assigned to use
the left key to indicate the probe matched one of the cues, and the other half to use the right key to indicate a
match. A set of 35 warm-up trials (different from those used in the data collection portion of the task) were com-
pleted so participants could get accustomed to the speed of presentation of stimuli and become familiar with the
appropriate key to press for matching versus non-matching trials.

The sequence and timing of events during number-matching trials was as follows (see Appendix B for a visual
representation of this). Each trial began with the presentation of a fixation stimulus (#) in the middle of the screen
for 400 ms to orient the participant. This was followed by the presentation of the cue numbers (e.g., “18” and “3”)
for 80 ms and then four pound signs (####) for 40 ms as a masking stimulus. Next, for 140 ms a white screen
appeared as an inter-stimulus interval (ISI). Thus, the stimulus onset asynchrony (SOA) was 260 ms, which is
similar to the moderate-length SOAs that have been used in other experiments involving the number-matching
task (Galfano et al., 2003, 2004). Due to the short practice duration, activation of complex problem answers most
likely will be slower compared to activation of simple problem answers that have been studied previously; using
the moderate-length SOA will make it more likely that potential interference effects will be captured. Finally, a
probe number (e.g., 54) was presented for 2500 ms or until participants made a response. After participants had
determined whether the probe number matched either of the cue numbers, they pressed the appropriate button
on the response pad, and then another white screen appeared for 1000 ms before the next trial began. Stimuli
were presented in a unique random order for each participant. Upon completion of the number-matching task,
participants were debriefed, allowed to ask any questions, and were thanked for their participation before being
released from the experiment.

Results and Discussion
It should be noted that conventional null-hypothesis significance testing (NHST) was conducted throughout the
manuscript; however, since many researchers have noted the shortcomings of NHST, Bayesian analyses also
were conducted (using the freeware MorePower 6.0 for ANOVA; Campbell & Thompson, 2012) and the resulting
Bayes factors (BFs) reported. A lengthy exposition of the benefits of using Bayesian analyses is beyond the scope
of this article, but a core benefit is that it enables one to determine the relative likelihood that the data fit the alter-
native hypothesis or the null hypothesis using the observed data, rather than simply rejecting or accepting the
null hypothesis using hypothetical data (the sampling distribution) as is done in NHST. For comprehensive expla-
nations of the benefits of Bayesian analyses and how to conduct them one can consult Jarosz & Wiley (2014);
Masson (2011); Wagenmakers (2007); and/or Wagenmakers, Morey, & Lee (2016).

To document the problem-solving skill development over the course of the practice sessions in all three experiments
median RT data, accuracy rates, and reported use of retrieval was averaged across the first 20, middle 20, and
final 20 problems participants solved; please refer to Table 1 for a summary of these data. Experimenter error
and equipment failure (computer and microphone) led to some loss of information in each experiment, but all sets
of data are based on at least 70% of the participants in each sample. A series of one-factor ANOVAs was conducted
on the RT, accuracy, and use of retrieval data from all three experiments. These analyses support the significant
skill development of each sample; across practice, latencies decreased significantly, Fs > 30.36, p < .001, η2ps
> .56, BF10s > 100, while proportion of problems solved correctly increased, Fs > 4.68, p < .05, η

2
ps > .20, BF10s
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> 2.06, as did reported use of retrieval, Fs > 6.12, p < .01, η2ps > .42, BF10s > 8.09. The average final problem-
solving latencies across the experiments (2760, 2239, and 2380 ms) were in line with previous complex multipli-
cation practice investigations (Grabner et al., 2009; Ischebeck, Zamarian, Schocke, & Delazer, 2009).

Turning to the number-matching task, only product and unrelated trials were analyzed, as they were the critical
trials needed to test the hypothesis that product probes would automatically activate the correct product of the
cues; this analysis procedure follows previous investigations of this type (e.g., Galfano et al., 2009; LeFevre et
al., 1988; Rusconi et al., 2006; Thibodeau et al., 1996). In .2% of the trials participants did not make a response
before the 2500 ms cut-off (equal for both the product and unrelated trials). Only correct response RTs were an-
alyzed, and to reduce the influence of outliers, data trimming procedures developed by Van Selst and Jolicoeur
(1994) used in a previous number-matching experiment (Galfano et al., 2004) were employed within participants,
separately for each probe-type condition. These procedures were implemented using routines in the statistical
package R (R Development Core Team, 2012) and involve the use of a moving criterion for determining the
standard deviations used to trim the data. That is, the standard deviations used to calculate cut-off points are
determined by the size of the sample of RTs in each condition and therefore are not biased, as they can be when
researchers (somewhat arbitrarily) choose them. Three different methods were offered by Van Selst and Joli-
coeur—modified recursive, non-recursive, and hybrid approaches (see their article for an in-depth explanation of
each). Given that the modified recursive and non-recursive methods tend to result in divergent trends, the RT
analyses across the three experiments were run after using the hybrid trimming method, as it is an average of
the other two methods. Analyses were conducted after employing the recursive and non-recursive trimming
methods as well, but results of those are mentioned only when they conflict with the hybrid-related findings.

The hybrid trimming procedure resulted in the removal of 3.3% of the product probe and 3.0% of the unrelated
probe RTs. Data then were averaged by participant by probe type and submitted to a one-tailed correlated t-test.
The analysis indicated that the 19 ms slower response time associated with the product probes (M = 532 ms; SD
= 101) versus unrelated probes (M = 513 ms; SD = 100.0) was significant, t(20) = 3.54, p < .001, Cohen’s d = .19,
BF10 = 36.1. The Bayes factor indicates that the data were 36.1 times more likely to occur under the model including
an effect of probe type than one without it.

A second one-tailed correlated t-test was run on the accuracy data. It revealed that the proportion of correct re-
sponses for the product probes (M = .98; SD = .03) was significantly smaller than for the unrelated probes (M =
.99; SD = .02), t(20) = 2.48, p < .05, Cohen’s d = .37, BF10 = 1.63. Review of the Q-Q plots from the analysis
showed the residuals deviated from a normal distribution. As such a non-parametric test, the Wilcoxon signed-
ranks test, was performed and confirmed that participants’ accuracy for the product probe trials was significantly
poorer than for the unrelated probe trials, Z = 2.02, p < .05.

Finally, recall that two cues in the number-matching task (“14” and “6”) and (“6” and “14”) occurred with a product
probe (“84”) that had a partial match to one of the cue numbers—the number “4” in the ones place of the two-
digit cue and in the two-digit probe, match. Both RT and accuracy analyses were re-run after excluding RT and
error data related to trials with the aforementioned cues and after using the hybrid process to trim RTs. The sig-
nificant effects from the initial analyses were unchanged; participants completed product-probe trials 21 ms more
slowly than unrelated-probe trials, t(20) = 3.81, p < .05, Cohen’s d = .20, BF10 = 67.2, and 1% less accurately,
t(20) = 1.82, p < .05, Cohen’s d = .37, BF10 = 1.09; Z = 1.76, p < .05 (Wilcoxon signed-ranks test). These results
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Table 1

Mean Practice Task Response Times, Accuracies, and Self-Reported Use of Retrieval

Final 20 ProblemsMiddle 20 ProblemsInitial 20 Problems

Response Time
2760 (1195)4214 (1837)8488 (2977)Experiment 1
2239 (1137)3057 (1940)8597 (3753)Experiment 2
2380 (978.6)3092 (1310)8075 (4957)Experiment 3

Accuracy
.94 (.12).88 (.13).75 (.25)Experiment 1
.96 (.08).93 (.11).77 (.24)Experiment 2
.99 (.02).97 (.06).83 (.29)Experiment 3

Retrieval Use
.59 (.45).51 (.41).16 (.33)Experiment 1
.81 (.31).71 (.37).11 (.19)Experiment 2
.94 (.20).78 (.38).22 (.35)Experiment 3

Note. Response times are in milliseconds and accuracies are proportion correct. Standard deviations are in parentheses.

lend support to the findings of Galfano et al. (2003) that partial matches in the number-matching task most likely
do not contribute to the interference effect.

In summary, the results of the first experiment show that after a little over an hour of practicing complex multipli-
cation problems, participants demonstrated an interference effect during a number-matching task that suggests
retrieving the answers to the complex multiplication problems was obligatory. It is especially compelling because
multiplication of the cue numbers is irrelevant to what participants were instructed to do in the task. This finding
mirrors both the nature and size of the interference effects that have been documented in recent investigations
of simple multiplication. The effects in the present experiment were a 19 ms slowing and a 1% error rate increase,
and are similar to those found in other studies, which have ranged from 18 to 67 ms (many have been between
18 and 25 ms) and from 2% to 4% errors (Galfano et al., 2004; Galfano et al., 2009; Rusconi et al., 2004; Thibodeau
et al., 1996). Comparing the effect sizes (Cohen’s d) yields similar results across these studies as well—.19 in
the present study compared to .14 to .26 (my calculations) in previous experiments.

Experiment 2

Given the findings from Experiment 1 that parallel effects from simple multiplication, the purpose of the second
experiment was twofold. First, it was to replicate the number-matching interference effect from Experiment 1 with
a new sample. Second, it was to use complex multiplication practice and the number-matching task to investi-
gate/evaluate existing models of arithmetic. One model of howmultiplication facts are stored in long-termmemory
is the Identical Elements (IE) Model (Rickard, 2005). In this model, number triplets (e.g., 3, 8, 24) exist for multi-
plication and division, and these triplets are stored as three distinct units: 3 x 8 ↔ 24, 24 ÷ 8 → 3, and 24 ÷ 3 →
8. Because the present investigation involves multiplication, the first set of triplets is the most relevant. Rickard
claims that multiplication problems and their commuted pairs are not stored in long-term memory as separate
entities but instead as one unit. In other words, 8 x 3 = 24 and 3 x 8 = 24 are stored in the same representation.
Also, at least for multiplication, there is bidirectional activation that spreads to the answer when the operands are
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presented and that spreads to operands when an answer is presented (24 activates 3 x 8/8 x 3 and 4 x 6/6 x 4;
Rickard, 2005; Rusconi et al., 2006).

Some predictions of the IE model related to multiplication problem-answer representations are that RT changes
from practicing a particular operand order should transfer to the reverse operand order, and transfer should result
regardless of the format in which problems are practiced (e.g., 8 x 3, eight x three, or auditory presentation of 8
x 3). For example, Rickard, Healy, and Bourne (1994) had participants extensively practice multiplication (e.g.,
___ = 9 x 6) problems in one operand order and then after practice tested them on both the practiced and non-
practiced operand orders. They found that participants demonstrated significantly faster RTs as a result of practice
for the non-practiced problem order, but these were still 80 ms slower than for the practiced order. Subsequent
experiments replicated this transfer effect and demonstrated that the RT difference between operand orders after
practice was likely due to perceptual factors—visual processing of the practiced operand order led to a perceptual
speed advantage over the commuted pair at post-practice (Rickard & Bourne, 1996). Neuropsychological evidence
also supports the IE model; after brain damage, participants’ impaired/spared multiplication abilities are strongly
correlated across commuted pairs—if a participant cannot retrieve the answer to 8 x 3, most likely s/he will not
be able to retrieve the answer to 3 x 8 (Hittmair-Delazer, Semenza, & Denes, 1994; McCloskey, Aliminosa, &
Sokol, 1991).

In contrast, there are researchers who propose that multiplication problems’ commuted pairs are represented in-
dependently. In these models, problems and answers are typically characterized as being part of a network with
the physical format of the problem (8 x 3 vs. eight x three) influencing not just perceptual processes, but central
cognitive processes as well. For example, in Campbell’s encoding complex model (Campbell, 1994, 1995), the
physical format of the problem is posited to have an impact on calculation processes (among others), such as the
probability of using memory retrieval or strategy-based procedures to arrive at an answer (e.g., Campbell & Alberts,
2009). Most important for the present discussion and the rationale for Experiment 2 is that in these models,
problems are represented independently both in larger operand first and smaller operand first forms (e.g., Ashcraft,
1992; Campbell, 1995).

To evaluate further the models of arithmetic processing just described, Experiment 2 used a design that included
complex multiplication practice and a number-matching task. Participants again were tasked with practicing a
small subset of complex multiplication problems before completing a related number-matching task. The one dif-
ference from Experiment 1 to Experiment 2 was the use of two practice conditions. Participants in one condition
practiced only complex multiplication problems that had the larger operand first (e.g., 17 x 4—L x s problems),
and in the other condition participants practiced the same problems that had the smaller operand first (e.g., 4 x
17—s x L problems). In the subsequent number-matching task, participants were shown cues in both orders (“17”
and “4”, and “4” and “17”). The different arithmetic representation models outlined above lead to different predictions
about the interference that will result in the number-matching task. The IE model predicts that in both practice
conditions, a single problem-answer representation will be strengthened for each practiced problem. Therefore,
the interference effect observed in Experiment 1 should occur for participants in both practice conditions equally
on the L x s and s x L probes in the number-matching task. Independent operand representation models (e.g.,
Campbell, 1995) predict that there will be a three-way interaction of practice condition, presentation order (cue
type), and probe type—number-matching task interference will be greater when the order of the numbers in the
probe match the operand order that was practiced.
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Method
Participants

Sixty-four undergraduates from a small Northeastern college in the USA volunteered to participate in the experiment.
Four participants did not attend their second appointment leaving a total of 60 participants (47 females and 13
males) with a mean age of 21.7 years (range was 18 to 48 years) who received extra credit toward their psychol-
ogy classes for completing the experiment. All had normal or corrected-to-normal vision. Five participants did not
have English as their first language, and none reported a diagnosed math disability or attention deficit disorder.
Patterns of results did not differ when removing the five participants’ data, so their data were retained in the
analyses below. The apparatus and computer tasks were the same as in Experiment 1, although there were minor
differences in stimuli used in Experiment 2, and those are explained below.

Complex multiplication practice stimuli — The same complex multiplication problems from Experiment 1 were
used with the exception of the problems 14 x 6 and 6 x 14, which were replaced by the problems 15 x 6 and 6 x
15. This was done so that none of the non-matching product trials in the number-matching task would have a
probe that was a partial match to either of the cue digits. Problems were presented in blocks of five, and within
each of the blocks, they were presented in a random order.

Number matching stimuli — The stimuli for this task were the same as in Experiment 1 except for the product,
probe-balancing, and cue-balancing trials related to the two practice problems that were replaced (see Appendix
C for the full set of stimuli).

Procedure

Participants signed up for two appointments that were not more than one week apart. After signing the consent
form, participants were assigned randomly either to the condition in which practice problems were presented
larger operand first (L x s condition) or smaller operand first (s x L condition). During this first appointment, partic-
ipants practiced solving the complex multiplication problems for 60 minutes, and during the second appointment
practiced the problems for 15 minutes before completing the number-matching task that took approximately 25
minutes. The remaining procedures for the experiment and within the experimental tasks (e.g., sequence of
stimuli in number-matching task) were identical to Experiment 1.

Results and Discussion
Once again, only product and unrelated trials were analyzed because they were the critical trials needed to test
the hypotheses. Due to computer issues, 11 participants did not complete the full number-matching task, which
would have resulted in 35 trials per condition, but each of these participants had at least 22 trials per condition
and therefore remained in the data analysis. Overall, in 1.0% of the trials participants did not make a response
before the 2500 ms cut-off—1.2% for the s x L product condition, .8% for the s x L unrelated condition, .8% for
the L x s product condition, and 1.1% for the L x s unrelated condition. The hybrid trimming procedure was used
again resulting in the removal of 3.5% of RTs in the s x L product, 2.7% in the s x L unrelated, 3.0% in the L x s
product, and 2.9% in the L x s unrelated condition. The means of those trimmed RTs then were submitted to a 2
(Practice Type: s x L vs. L x s) x 2 (Cue Type: s x L vs. L x s) x 2 (Probe Type: product vs. unrelated) ANOVA
with repeated measures on the last two factors. For a summary of the means and standard deviations related to
the ANOVA analyses, please see Table 2.
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Table 2

Mean Number-Matching Task Response Times and Accuracies by Practice Set and Cue Type

L x s UnrelatedL x s Products x L Unrelateds x L ProductPractice

RTs
s x L (113)559(110)571(106)551(98.6)554
L x s (116)566(150)602(142)562(126)578

Accuracies
s x L (.09).97(.09).95(.08).97(.11).95
L x s (.09).95(.09).94(.08).96(.10).94

Note. Response times are in milliseconds and accuracies are proportion correct. Standard deviations are in parentheses.

The 20 millisecond difference in number-matching RTs between the s x L and L x s practice conditions resulted
in a non-significant main effect of practice type, F(1, 58) = .34, p > .05, η2p < .01, BF10 = .16. There was a main
effect of cue type, F(1, 58) = 5.30, p < .05, η2p = .08, BF10 = 1.78; s x L cues (M = 561; SD = 116) were solved 13
ms faster than L x s cues (M = 574; SD = 120). Also, the main effect of probe type was significant, F(1, 58) =
11.83, p < .001, η2p = .17, BF10 = 33.9, as product-probe trials (M = 576; SD = 118) were solved 17 ms slower
than unrelated-probe trials (M = 559; SD = 116); the Bayes factor indicates that the data were 33.9 times more
likely to occur under the model including an effect of probe type than one without it, which was almost the same
magnitude for the probe effect in Experiment 1 (BF10 = 36.1). The two-way interactions were not significant, Fs <
3.70, ps > .05, η2ps < .07, BF10s < .82, and the three-way interaction was not significant either, F(1, 58) = .45, p
> .05, η2p < .01, BF10 = .16. The last Bayes factor indicates that the data were 6.14 times more likely to occur
under a model that does not include a practice x cue type x probe type interaction than one that does. It should
be noted that analysis of the data after using the modified recursive trimming procedure yielded an additional
significant effect—the probe type x practice interaction, F(1, 58) = 4.94, p < .05, η2p = .08, BF10 = 1.51. According
to the Bayes factor, however, this is considered to be weak/anecdotal evidence for the effect (Jarosz & Wiley,
2014).

Separate follow-up 2 x 2 ANOVAs for each practice group resulted in null effects for cue type for both groups, Fs
< 3.22, ps > .05, η2ps < .10, BF10s < .34. The probe-type effect was significant for the L x s practice group, as they
were 26 ms slower responding to the product versus unrelated trials, F(1, 26) = 9.27, p < .01, η2p = .26, BF10 =
10.3, but it was not significant (8 ms slower) for the s x L practice group, F(1, 32) = 1.92, p > .05, η2p = .06, BF10
= .63. Neither of the cue x probe type interactions was significant, Fs < 1.66, ps > .05, η2ps < .07, BF10s < .30.

Due to experimenter error, one participant’s accuracy data were lost resulting in one fewer degree of freedom in
the analysis below. Accuracy on the number-matching task was, in general, high across participants. The mean
accuracy data were submitted to the same 2 x 2 x 2 ANOVA that the RT data were. Neither the main effects of
practice nor cue type were significant, Fs < .28, ps > .05, η2ps < .01, BF10s < .15, but there was a main effect of
probe type, F(1, 57) = 12.58, p < .01, η2p = .18, BF10 = 9.71; proportion of correct responses for the product probes
(M = .94; SD = .07) was smaller than for the unrelated probes (M = .96; SD = .08). None of the interaction effects
were significant, Fs < .49, ps > .05, η2ps < .01, BF10s < .19. As in Experiment 1, however, the ANOVA residuals
were not normally distributed, so multiple Wilcoxon sign-rank tests were also performed to examine the between
participant effects and Mann-Whitney U tests to examine the between participant and mixed effects. The results

Journal of Numerical Cognition
2016, Vol. 2(2), 140–165
doi:10.5964/jnc.v2i2.22

Obligatory Activation of Complex Multiplication 150

http://www.psychopen.eu/


exactly mirrored the ANOVA findings as the effect of probe type was significant, Z = 3.22, p < .001, and no other
main or interaction effects reached significance, Zs < .81, ps > .05.

Separate follow-up 2 x 2 ANOVAs for each practice group indicated that a probe-type error effect was found for
the L x s practice group (1% more errors for product versus unrelated probes), F(1, 31) = 4.80, p < .05, η2p = .13,
BF10 = 1.77, as well as for the s x L practice group (2% more errors for product versus unrelated probes), F(1,
26) = 8.91, p < .01, η2p = .26, BF10 = 10.3. There were no significant differences for either group related to the
cue type main effect, Fs < .04, ps > .05, η2ps < .01, BF10s < .20, or related to the probe type x cue type interaction,
Fs < 1.28, ps > .05, η2ps < .04, BF10s < .34. Again, Wilcoxon sign-rank tests were performed and matched the
ANOVA results; a main effect of probe type was found for both the s x L practice group, Zs = 2.34, ps < .01, and
the L x s practice group, Z = 2.17, p < .05, and the cue type main effect and interaction effect were not significant
for either practice group, Zs < .72, ps > .05.

In summary, the first finding of note is that the interference effect shown both in longer RTs (driven by the L x s
group) and higher error rates (driven by both practice groups) for product vs. unrelated trials was replicated in
Experiment 2. Partial eta squared values suggest that these effects were of moderate size, as they explained
17% of the within subject variance for RTs (in separate group analyses, 26% for L x s and 8% for s x L groups)
and 18% of the within subject variance for accuracy (13% for L x s and 26% for s x L groups). In addition, results
of the Bayesian analyses showed that the likelihood of the effects were very high; the Bayes factors indicated
strong/very strong evidence for the effect of probe type on number-matching RT and substantial/strong evidence
for the effect of probe type on number-matching accuracy (according to language used to report Bayes analyses
that is outlined in Jarosz & Wiley, 2014).

The second finding of note concerns the prediction related to the independent vs. IE models of arithmetic fact
representation. Recall that if the independent model of arithmetic fact representation were true, there would be a
three-way interaction effect in the number-matching task where the probe type effect for the L x s practice group
would be present (or at least, larger) for the L x s cue trials and not present (or at least, smaller) for the s x L trials,
and the reverse would be true for the s x L practice group. This interaction effect did not materialize; in fact, the
resulting Bayes factors from the interaction analyses ranged between .14 and .30 (specifically, .14 for both three-
way interactions), which corresponds to the null model being from 3.37 to 7.14 times more likely to occur under
a model that does not include the interaction effects than one that does. This is positive/substantial evidence for
the null hypothesis (Jarosz &Wiley, 2014). Instead, the data fit what one would expect given the Identical Elements
model, which states that the same representation is accessed/strengthened regardless of the operand order that
is being practiced. This would lead to equal interference effects that do not depend on whether the order of the
cue matches the order of the operands in the practiced multiplication problems.

Experiment 3

The focus of Experiment 3 was to extend to complex multiplication another set of effects that have been documented
in recent investigations of simple multiplication. According to the Interacting Neighbors (IN) Model of single-digit
multiplication, how many “neighbors” an arithmetic problem has will have an impact on the speed and accuracy
with which people can retrieve its answer (e.g., Domahs et al., 2007; Verguts & Fias, 2005a). This is analogous
to effects identified in word reading where words that have many neighbors with similar spellings but that are
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pronounced differently (e.g., wear, pearl, and hear) are read more slowly and incorrectly than words that do not
have neighbors that are pronounced differently (past, fast, last, etc.). It has already been established in simple
multiplication that when a problem’s operands (6 x 3) are presented, the correct answer to the problem (18) and
correct answers to adjacent problems (12 and 24) are also activated (Galfano et al., 2003). This demonstrates
the relatedness effect—when a problem is presented (6 x 3), problem nodes in a semantic field are activated to
varying degrees. Those problems with an operand match that also have a second operand that differs by one or
two units (e.g., 7 x 3 and 7 x 4) are activated more strongly, while those that share an operand and have a second
operand more than two units away (e.g., 4 x 3) or those that do not match either operand (e.g., 8 x 5) are activated
weakly.

Other activation spreads in the semantic field as well. For example, the problem 6 x 3 activates the 1-node in a
decade field because there is a “1” in the decade of the correct answer. Similarly, the 8-node in the ones field is
activated because there is an “8” in the ones place of the correct answer. In light of this activation of the different
numerical components of answers, the IN model predicts that problems that have the most neighbors that activate
the decade and unit numbers that are in the correct answer, the faster the correct answer will be retrieved. To
demonstrate with the 6 x 3 example, because its answer shares the decade digit with the answers 12 and 15,
and because 6 x 3 will activate nearby problems 6 x 2, 4 x 3, and 5 x 3, the 1-node for the decade part of the answer
will be activated highly. A problem such as 9 x 7 won’t have the same degree of facilitation as 6 x 3 because only
one problem has an answer in the same decade (64) and will only be activated weakly by 9 x 7 because the
problem with that answer, 8 x 8, does not share an operand with 9 x 7. When neighboring problems share decades
and/or unit numbers of their answer (e.g., 6 x 3 = 18 and 6 x 2 = 12), they are said to be “consistent;” when they
do not (e.g., 6 x 3 = 18 and 6 x 4 = 24), they are termed “inconsistent.”

Recent studies using connectionist modeling (Verguts & Fias, 2005b), production tasks in which participants ver-
balize answers (Domahs, Delazer, & Nuerk, 2006; Verguts & Fias, 2005a), and verification tasks in which partici-
pants decide whether a given answer is correct (Domahs et al., 2007), all have produced evidence in support of
the IN model’s predictions about relatedness and consistency effects. For example, Domahs et al. (2007) gave
participants simple multiplication problems to verify (8 x 4 = 36?) while simultaneously recording ERP data. In
addition to verifying correct answers (8 x 4 = 32), participants had to reject answers that were related and consistent
(8 x 4 = 36), related and inconsistent (8 x 4 = 28), unrelated and consistent (8 x 4 = 38), or unrelated and incon-
sistent (8 x 4 = 26). The behavioral results indicated that across the SOAs that were used, related answers were
rejected 100 ms more slowly than unrelated answers, and inconsistent answers were rejected 23 ms more slowly
than consistent answers. Analysis of the error rates across conditions yielded the same pattern.

Given the review of the IN model and findings concerning relatedness and consistency effects, the purpose of
Experiment 3 was to determine if the findings would extend to complex multiplication problems. To test this, par-
ticipants who were not involved in the previous two experiments were asked to practice a new set of complex
multiplication problems. Subsequently, a verification task was administered in which incorrect answers varied in
their consistency and relatedness. The hypothesis is RTs and error rates will increase in a post-practice verification
task when the answers to be verified are consistent and/or related.
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Method
Participants

Forty undergraduates from a Northeastern college in the USA signed up for the experiment. Four of them did not
return for their second appointment, leaving 36 participants (25 females and 11 males) with a mean age of 20.3
years who completed the experiment and received extra credit toward their psychology class. All participants had
normal or corrected to normal vision. Three participants reported English was their second language, one participant
reported a diagnosed attention disorder, and none of the participants indicated that they had a diagnosed math
disability. As in the previous two experiments, data analysis including or deleting the four participants’ data resulted
in the same pattern of results, so their data were retained in the analyses below. The apparatus was the same
as was used in Experiments 1 and 2.

Complexmultiplication practice stimuli — A new set of six complex multiplication problems and their commuted
pairs was constructed so that both relatedness and consistency could be varied systematically in the multiplication
verification task described below (see Appendix D for the practice stimuli). Problems were presented in blocks of
12, and within each of the blocks, they were selected at random for presentation.

Complex multiplication verification stimuli — These stimuli were constructed to control many confounding
variables, largely following how Domahs et al. (2007) created their verification stimuli. Six sets of items were
composed, and each set was used twice, once for a problem and a second time for its commuted pair. Each set
included a correct answer and four incorrect answers, called lures—a consistent related lure, an inconsistent re-
lated lure, a consistent unrelated lure, and an inconsistent unrelated lure. Using the problem 4 x 14 as an example,
a consistent-related lure was a correct answer to a near-neighbor practice problem that contained the same
decade digit (e.g., 52, the correct answer to 4 x 13); an inconsistent-related lure was a correct answer to a near-
neighbor practice problem whose decade digit did not match (e.g., 60, the correct answer to 4 x 15). A consistent-
unrelated lure was a presented answer that was not an answer to a practiced problem but did share the decade
digit (e.g., 58), while an inconsistent-unrelated lure was not an answer to a practiced problem and did not share
the decade digit (e.g., 62). In each block, the correct answer appeared four times, and each type of lure appeared
once; this balanced the number of correct and incorrect trials.

Because incorrect answers can be rejected without actually calculating a correct answer when odd-even (parity)
status of problem and answer do not match and/or the split (distance from the correct answer) of the answer to
be verified is large, these variables were controlled (e.g., Lemaire & Fayol, 1995). As all of the problems in the
experiment contained the even single digit “4,” to preserve parity, all incorrect answers were even. On average,
the splits were kept relatively equal in magnitude; for related lures the average split was 5.3 and for unrelated
lures was 5.8, while for consistent lures it was 4.8 and for inconsistent lures was 6.3.

As much as possible, lures did not contain digits that matched in congruent positions with the problem (e.g., 8 x
4 = 34). The only exception to this was the problems 4 x 18 and 18 x 4; for these, there was a match for both the
related inconsistent (68) and unrelated consistent (78) lures. Because interference due to this match is uncommon
when the first operand matches a number in the answer, minimal additional interference from the problem 18 x
4 to reject either of the lures should occur (e.g., Campbell, 1997). Also, given that the match occurs for both a
related and an unrelated answer, and for a consistent and inconsistent answer, any potential added interference
is balanced across the four answer categories.
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Procedure

The sign-up and length/scheduling of practice were the same as in Experiments 1 and 2. After practice, participants
completed the complex multiplication verification task that took approximately 25 minutes. Procedures in the
practice task were the same as in Experiment 1, including the instructions, completion of warm-up problems that
were different from those in the data-collection portion of the task, the use of the STRATEGY screen, and the
timing and sequencing of the stimuli.

For the verification task, participants were instructed to use their two index fingers to make the button-press re-
sponses to indicate an incorrect or correct answer. Participants were randomly assigned to use the left or right
button to indicate a “correct” answer and the other button to indicate an “incorrect” answer. The task began with
a set of instructions that a research assistant read aloud while a participant read them silently. Participants ran
through a set of 36 warm-up problems to get accustomed to the verification task and the correct use of the two
response buttons. The sequence and timing of the stimuli in each of the trials almost exactly mirrored those used
in the long-SOA condition in Domahs et al. (2007)— see Appendix E for a visual representation of the sequence
and timing of events. This was selected because Domahs et al. found significant effects for both relatedness and
consistency at this SOA. First, an “X” was presented in the center of the computer screen for 300 ms to orient a
participant’s attention, which was followed immediately by a white screen for 200 ms. Next, the operands of the
multiplication problem, without the multiplication sign between them, were presented for 100 ms, and then a white
screen was presented for 450 ms, yielding an SOA of 550 ms. Finally, an answer was presented and remained
on the screen until the participant had pressed a button on the response pad to verify the answer or until 2500
ms had elapsed. Another 1000 ms blank screen appeared before the beginning of the next trial.

A total of 384 trials were presented. Of these, 192 were correct trials, and 192 were incorrect trials, the latter of
which were divided evenly into 48 trials of each of the incorrect answer types. This meant that each problem and
its commuted pair were presented 16 times with their correct answer and four times with each of the different
types of lures. These 384 trials were separated into eight blocks; during each block, 24 correct trials (two repetitions
of each commuted pair) and 24 incorrect trials (one of the commuted pairs from each lure category) were presented.
After each block, participants were offered a break to ensure that visual/attentional fatigue would not compromise
performance. Once the verification task was completed, the research assistant debriefed each participant before
releasing him/her from the experiment.

Results and Discussion
Response times to correct trials and error rate data were collected from participants in the verification task. In
3.0% of the trials, participants did not make a response before the 2500 ms cut-off. The no-response rate was
2.7% for correct answers as well as consistent related and inconsistent related lures; 4.0% for consistent unrelated
lures; and 3.2% for inconsistent unrelated lures. As a result the hybrid RT trimming procedure, 1.9% of correct
answer, and 2.0% of consistent related, 1.7% of inconsistent related, 2.0% of consistent unrelated, and 2.1% of
inconsistent unrelated lure RTs were removed. Four participants were excluded from the data analysis below
because their combined error and no-response rates were very high (43%, 47%, 51%, and 61%), suggesting that
they were simply guessing when verifying answers.

A 2 x 2 repeated-measures ANOVA was conducted with relatedness (related vs. unrelated) and consistency
(consistent vs. inconsistent) as factors. For the descriptive statistics related to this analysis, refer to Table 3. The
main effect for relatedness was significant, as related lures were rejected 61 ms slower than unrelated lures, F(1,
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31) = 16.36, p < .001, η2p = .35, BF10 > 150. In contrast, the 27 ms longer RTs for rejecting consistent compared
to inconsistent lures was not significant, F(1, 31) = 2.73, p > .05, η2p = .08, BF10 = .68. The difference between
responses to the consistent versus inconsistent lures was 12 ms longer for related versus unrelated lures, but
this interaction effect was not significant, F(1, 31) = .24 p > .05, η2p < .01, BF10 = .20.

Table 3

Mean Multiplication Verification Response Times and Accuracies by Lure (Answer) Type

Unrelated
Inconsistent

Unrelated
Consistent

Related
Inconsistent

Related
ConsistentCorrect

Response Time (182)871(174)891(161)926(194)958(167)820
Accuracy (.10).92(.12).89(.14).88(.13).81(.09).89
Note. Response times are in milliseconds and accuracies are proportion correct. Standard deviations are in parentheses.

A second 2 x 2 ANOVA with the same factors was conducted on the accuracy data. Both of the main effects were
significant. Error rates were 6% higher for related than for unrelated lures, F(1, 31) = 29.98, p < .001, η2p = .49,
BF10 > 150, and were 5% higher for consistent compared to inconsistent lures, F(1, 31) = 49.10, p < .001, η2p =
.61, BF10 > 150. Additionally, the error rate for consistent versus inconsistent lures was 3% higher for related
compared to unrelated lures, which was significant, F(1, 31) = 4.18, p < .05, η2p = .12, BF10 = 1.34. Once again,
due to non-normally distributed residuals, Wilcoxon sign-rank tests were also conducted on the accuracy data
yielding significant effects of relatedness, Z = 4.20, p < .001, and consistency, Z = 4.47, p < .001; the interaction
effect, however, did not materialize, Z = 1.32, p > .05. The lack of an interaction effect in the non-parametric
analysis isn’t much at odds with the ANOVA finding, as the Bayes factor of 1.34 for the interaction effect corresponds
to an anecdotal/weak effect (Jarosz & Wiley, 2014).

In summary, as predicted, after complex multiplication practice, participants were slower and more error prone
when rejecting lures that were the correct answer to another practiced problem (related), and were more error
prone when the lures shared the decade number with the correct answer to the problem (consistent). The sizes
of the effects were fairly large, as the variance accounted for according to partial eta squares were 35% (relatedness
effect for RTs), 49% (relatedness effect for accuracies), and 61% (consistency effect for accuracies). These effects,
given that the Bayes factors were greater than 150, can be characterized as very strong/decisive (Jarosz & Wiley,
2014). The magnitudes of these effects were in line with those documented at the longer SOA in Domahs et al.’s
(2007) study of simple multiplication, which used a similar methodology—relatedness effect 61 ms (this study)
versus 74 ms (Domahs et al.) and consistency effect 27 ms (this study) versus 30 ms (Domahs et al.); unfortu-
nately accuracy was not reported by Domahs et al. by lure type and cannot be compared. Taken together, these
findings further support the Interacting Neighbors Model that posits that representations of two-digit number answers
are decomposed into decades and units during arithmetic processing.

General Discussion

Recall that the purpose of the experiments was twofold. The first was to document that the obligatory activation
of arithmetic answers extends from simple to complex multiplication problems. Both Experiments 1 and 2
demonstrated that this activation does extend to participants who, through recent practice, have become skilled
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at complex multiplication problem solving. As noted previously, in these two experiments, this obligatory activation
was indexed using a number-matching task which does not require multiplication processing. Results showed
after roughly 75 minutes of practice on a subset of problems that product probe-trial RTs/error rates were signifi-
cantly longer/larger than unrelated probe-trial RTs/error rates.

The second goal of the set of experiments was to show that complex multiplication could be used to evaluate
existing models of arithmetic fact representations. In Experiment 2, this was achieved by having participants
practice the same subset of complex arithmetic problems with two practice groups employed—one that only saw
problems with the smaller operand first (s x L) and the other that only saw problems with the larger operand first
(L x s). The number-matching task was used again to determine whether the practice groups showed different
levels of interference when the cues presented matched, versus did not match, their practiced order. The probe
interference effects across the different cue types (s x L, L x s) did not differ as a function of practice group—in
other words, no three-way interactions were found, and Bayes factors provided positive evidence for the null hy-
pothesis. These findings support single-representation models of arithmetic that predict that practice of either
problem order should strengthen the same single representation (Rickard, 2005; Rickard & Bourne, 1996). An
additional interesting possibility to explore in future research is the role, if any, that perceptual factors play as
Rickard and Bourne (1996) did. For example, how would changing the perceptual factors of practice (e.g., problems
are presented in word format) and/or of the cue/probe format (e.g., one or both are presented in word format) affect
the interference/practice effects just described? Only LeFevre et al. (1988) examined format change in a number-
matching task, and it was only comparing the probe in digit versus word format, which resulted in null effects.

Turning to Experiment 3, in a multiplication verification task that followed complex multiplication practice, participants
were slower and/or more error prone when they had to reject incorrect answers that shared the decade digit of
the correct answer (consistency effect) or were a correct answer to a different practiced problem (relatedness effect).
The replication of these effects for complex multiplication problems supports the IN Model of arithmetic that multi-
digit numbers, in particular answers to multiplication problems, are processed in a decomposed (decade and units
digits separately), rather than holistic fashion (Verguts & Fias, 2005a).

As mentioned previously, probe type, consistency, and relatedness effects across the three experiments were
very similar to those found in simple multiplication investigations. This is particularly noteworthy given that in the
present investigations the number of presentations of the complex problems was limited and occurred over a
short time frame, while adults have encountered simple multiplication problems much more extensively and over
a very long period of time. Recall that a medium-length SOA was used in the number-matching tasks, and the
one used in the arithmetic verification task in Experiment 3 matched the longer SOA in Domahs et al. (2007). So
it may be that the aforementioned effects occur only at middle/long SOAs with samples who have had few problem
exposures and the practice has been massed rather than gradual. In fact, there is some evidence from the simple
arithmetic literature that more-skilled participants show significant number-matching interference at shorter SOAs
but not longer ones and that the reverse is true for less-skilled participants (LeFevre, Kulak, & Bisanz, 1991); also,
the size of the effect may be dependent on participant skill and SOA as well, as the participants in Domahs et al.
(2007) showed larger relatedness effects and smaller consistency effects at the longer SOA, the latter effect
probably indicating that consistency effects follow a slower time course. It would be interesting to conduct a longi-
tudinal practice study to test how the above effects interact with SOA for complex multiplication problems as
practice parameters (number of problem exposures and overall practice time-frame) are varied.
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Give the findings of the three experiments, follow-up experiments using complex multiplication practice and
number-matching could be used to further our understanding of how arithmetic problems and their answers are
represented in long-termmemory. For example, recently there has been a proliferation of preferred-representation
models of arithmetic (a different type of single-representation model). These suggest that addition and multiplication
problemsmay have a more privileged addend/operand order representation in long-termmemory that corresponds
to speed and error rate differences in solving problems presented in the preferred versus less-preferred operand
order (e.g., Didino, Lombardi, & Vespignani, 2014; Zhou, Zhao, Chaunsheng, & Zhou, 2012).

For example, a recent set of experiments showed that Italian adults solved L x s problems faster than s x L problems
but only when at least one of the operands was smaller than five; when both were larger than five, s x L problems
were solved faster (Didino et al., 2014). This was explained to have occurred as a combined result of strategy
use and learning order. A very common strategy used when first solving multiplication problems is repeated addition
(3 x 7 is 7 + 7 + 7 = 21). When at least one number is smaller than five, this is a fairly efficient strategy to use
because at most, one needs only to add four numbers. When the problem is presented in the s x L format, it is
reversed to the L x s format so that a person may execute the repeated addition strategy efficiently. Because the
repeated addition strategy overall is much less efficient for solving problems that have both operands greater than
five (minimally, one repeatedly has to add a large number six times), this strategy is not used, and what dominates
which operand order is stored most strongly in long-termmemory is one’s learning history. Problems are presented
in the s x L format first in Italy, so that is the preferred representation for problems with both operands larger than
five.

There are two issues that cloud the results and related causal explanations of Didino et al. (2014). First, they ad-
ministered a strategy assessment task in their experiments and found that the use of non-retrieval strategies was
over 45%. The strategy data also indicated that retrieval was used more frequently for small (both operands less
than five) and medium problems (one operand less than five) when presented in the s x L order versus the L x s
order, and the opposite was true for the large problems (both operands larger than five). The assumption that the
solution procedures used for each problem in the strategy assessment (no time pressure) would be used for the
same problems in the chronometric condition (speeded responding) is debatable (Campbell & Austen, 2002).
Even if the assumption is valid, however, the RT differences could be due to differences in non-retrieval strategy
use for s x L versus L x s problems rather than differences in speed of accessing the answers from long-term
memory; Didino et al. did note this possibility in the discussion of their results.

A second issue is the repeated addition strategy and learning order explanations offered by Didino et al. (2014)
to explain the interaction between operand order and problem size; they are intriguing, but they would be more
compelling if they were evaluated experimentally. Both of the aforementioned issues could be addressed using
a design similar to what was used in Experiment 2 of the present investigation. In a future experiment, both
strategy use and order of learning problems could be varied. Groups of participants could be assigned to practice
a subset of complex multiplication problems using different strategies, and problems also could be introduced in
different orders (e.g., one group practices s x L problems first, the other practices L x s problems first); this would
enable experimenters to determine the effects that both strategy use and learning order has on the subsequent
representation of problems and answers in long-term memory. After practice, both arithmetic production and
verification tasks could be administered along with a number-matching task. Using the number-matching task
would provide a pure measure of the automatic retrieval activation of the different operand orders—no assumptions
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or measurement of strategy use would need to be made. Results using the number-matching task also could be
compared to those found in the production and verification tasks to see if they converge.

In conclusion, the set of experiments conducted here have shown that the use of a complex multiplication practice
design along with number-matching tasks have extended several well documented effects from the simple multi-
plication literature. Designing future experiments that employ complex arithmetic practice as a component should
assist researchers in evaluating models of arithmetic processing. Practice experiments using pseudo number-
arithmetic tasks have been conducted previously to evaluate arithmetic models (alphaplication such as “I, E = p,”
e.g., Graham & Campbell, 1992; diamond arithmetic, e.g., Whalen, 1997), and while these tasks share some im-
portant structural and conceptual features with number-arithmetic, they diverge in important ways as well. Given
that most individuals have had little experience mentally solving complex problems, use of designs involving
complex multiplication practice enables researchers to control variables that can’t be controlled in simple arithmetic
studies such as strategy use, problem presentation order, and problem type (e.g., low vs. high neighborhood
density) while avoiding the drawbacks of using pseudo number-arithmetic tasks.
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Appendices

Appendix A

Table A.1

Number Matching Task Stimuli Used in Experiment 1

Non-matching

Product
6 144 194 173 183 1614 619 417 418 316 3Cue
84766854488476685448Probe

Unrelated
6 144 194 173 183 1614 619 417 418 316 3Cue
72589246527258924652Probe

Fillers
3 728 547 239 348 6772 354 823 734 967 8Cue
82364668588236466858Probe

Matching

Probe-balancing
6 844 764 683 543 4884 676 468 454 348 3Cue
84766854488476685448Probe

Cue-balancing
6 144 194 173 183 1614 619 417 418 316 3Cue
6443364433Probe

Fillers
6 389 463 626 987 8638 646 962 398 686 7Cue
38466298863846629886Probe
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Appendix B

Figure B.1. Sequence of events in the number-matching task used in both Experiments 1 and 2.
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Appendix C

Table C.1

Number Matching Task Stimuli Used in Experiment 2

Non-matching

Product
6 154 194 173 183 1615 619 417 418 316 3Cue
90766854489076685448Probe

Unrelated
6 154 194 173 183 1615 619 417 418 316 3Cue
72589246527258924652Probe

Fillers
3 728 547 239 348 6772 354 823 734 967 8Cue
82364668588236466858Probe

Matching

Probe-balancing
6 904 764 683 543 4890 676 468 454 348 3Cue
90766854489076685448Probe

Cue-balancing
6 154 194 173 183 1615 619 417 418 316 3Cue
6443364433Probe

Fillers
6 389 463 626 987 8638 646 962 398 686 7Cue
38466298863846629886Probe

Appendix D

Table D.1

Verification Task Stimuli Used in Experiment 3

Proposed Answer
Practiced
Problems Unrelated-inconsistentUnrelated-consistentRelated-inconsistentRelated-consistentCorrect Product

485860565213 x 4 and 4 x 13
625060525614 x 4 and 4 x 14
486656686015 x 4 and 4 x 15
806672606817 x 4 and 4 x 17
667868767218 x 4 and 4 x 18
807868727619 x 4 and 4 x 19
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Figure E.1. Sequence of events in the verification task used in Experiment 3.
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