Sicily / Italy COVID-19 Snapshot Monitoring (COSMO Sicily / Italy): Monitoring knowledge, risk perceptions, preventive behaviours, and public trust in the current coronavirus outbreak in Sicily / Italy Sondaggio sull'atteggiamento dei cittadini Siciliani e la loro conoscenza, la percezione del rischio, i comportamenti preventivi riguardo alla pandemia / emergenza Covid-19. # Sicily / Italy protocol: Behavioural insights for COVID-19 #### Research team: Dr. Sami BASHA¹, Dr. Basma SALAMEH², Dr. Walid BASHA³ - 1. American University of Sicily / Italy - 2. Faculty of nursing, Arab American University Jenin / Palestine - 3. Faculty of Medicine, Al Najah University Nablus / Palestine ### Corresponding author: Dr. Sami BASHA, American University of Sicily / Italy - email: president@aussr.it ### Flexibility and adaptation As the COVID-19 pandemic evolves and the epidemiological and response situation rapidly changes, the study must be continuously updated so that the questions asked reflect the situation and provide the necessary information to shape effective and appropriate outbreak response measures and next steps. ### Aims and objectives of the study The study will be initiated with the overall aim to inform their COVID-19 outbreak response measures, including policies, interventions and communications. The underlying objectives are: - To monitor variables that are critical for behaviour change in the population to avoid transmission of COVID-19, including risk perceptions, trust, use of information sources, knowledge as well as barriers and drivers to recommended behaviours – allowing adjustment of measures aiming to change behaviours. - Document changes over time in these factors to understand the effect of measures taken. - Monitor possible issues related to misinformation and stigma as the emerge to allow early response. - Identify causal relations between variables to assess and define the most effective and cost-effective response. - Explore the relationship of psychological variables (e.g. fear, worry, distance) with the evolution of the pandemic and epidemiological situation. - Identify gaps between perceived and actual knowledge. - Evaluate the effectiveness of pandemic response measures, and the acceptance and effectiveness of policies and restrictions implemented. - Via sharing of anonymous data in an open access repository, continuously learn from other countries as the situation evolves. - Contribute to post-outbreak evaluation, thereby contributing to the continued regional/global efforts to better understand causal relations and effective mechanisms of crisis response. ### Research questions The focus of the research is to inform effective and appropriate outbreak response interventions, policies and messages. Overall, research questions relate to - The levels of and changes in risk perceptions, knowledge, used and trusted sources of information, confidence in crisis management, correct knowledge about and uptake of preparedness and protective behaviours, at each data collection point. - How changes in risk perceptions relate to characteristics of the outbreak and other psychological variables such as knowledge, affect and misinformation. - Whether participants report that they are aware of specific outbreak response measures and whether being aware of them influences risk perceptions. - Whether risk perceptions are positively related to preparedness and protective behaviours and which other factors are relevant correlates of preparedness and protective behaviours (e.g. knowledge, misinformation, trust). - Knowledge and misinformation about preparedness and preventive measures and whether the level of knowledge is related to certain sources of information. - The availability of serial, cross-sectional data that allows testing these assumptions and explorations. Note that the cross-sectional design will not allow the assessment of actual causal relations and will only be snapshots of a current state of the public perceptions and psychological crisis response. If additional research capacity is available, the data can be triangulated with data on media reporting, imported or confirmed cases, etc.: The relationship between psychological variables and characteristics of the outbreak situation (i.e. how closely the perceived risk mirrors reported cases, relative import risk, media reports) will be explored. Whether it is possible to identify the emergence of certain misinformation as a correlate of risk perceptions will be explored. #### Study methods An online electronic survey was implemented and available for participants to respond only one time. Data will be collected in 15 minutes web link allowed only for Sicilian adults with 18 years and older. Data collection will start on April 26th, 2020 and remains online for 15 days. To ensure that the sample is representative of Sicilian populations and to allow for analyses of comparisons between subgroups of interests, each wave will consist of 1000 participants. In case of unexpected developments or new outbreak response measures implemented, the time frame between the data collections may change. ### Variables A standard questionnaire has been developed and is available here: http://dx.doi.org/10.23668/psycharchives.2782, reflecting the below variables. Note that variables will change over time as the COVID-19 epidemiology, situation and response measures evolve. Overview of variables (measured variables, details: see questionnaire) - Demographics (Age, Gender, district size, education) - Knowledge about the novel coronavirus and COVID-19 - Individual feeling of preparedness and perceived self-efficacy to avoid an infection with the coronavirus - Perceived and actual knowledge about effective preventive measures to avoid infection with the coronavirus - Uptake of preventive measures to avoid infection with COVID-19 - Risk perceptions regarding the disease (probability, susceptibility, severity) - Affective measures (feeling of closeness, novelty, threat, fear, and worry regarding the disease) (*) - Perception of the outbreak as a media-hype - Trust and frequency of use of regarding different information channels - Frequency of information search on COVID-19 - Trust in health authorities, government institutions, media and other relevant stakeholders (*) - Primary source of official health information - Perceptions and acceptance of policies to control the outbreak - Panic buying behaviour ### Data collection and analysis Data will be collected through a 15 minutes web link survey. The questionnaires are translated into Italian. Participants should take part in the survey voluntarily The first fielding period started at April 26th, and will go through for 15 days. An automated data analysis website (password protected) has been established by WHO allowing any country fast access to the results. Commented code for data analysis and website are available. ### Institutional Review Board agreements, ethical standards met and safety monitoring. The study and handling of the data should follow all national required data protection standards. In general, data should be collected anonymously, with no collection of names, phone numbers, email addresses or other information, which can identify participants or link participants to data. Also, participants should provide informed consent before starting the questionnaire. Text on this is included in the questionnaire. The research contains negligible risks as there is no more foreseeable risk of harm or discomfort other than potential inconvenience during participation. The study does not include deception and participants will be debriefed at the end of the survey. The study also involves only non-identifiable data about human beings. #### Ethical approval Ethical committee Approval (IRB) IRCCS - Comitato Etico IRCCS Sicilia WHO Regional Office for Europe approval for the study protocol and questionnaire is being sought. #### Sample To obtain a high level of congruence between the distribution of the demographics in the sample and the population (regarding age, gender and living area), a sample size of n = 1000 per wave is recommended. Each data collection with n = 1000 participants is suggested as a quota sample, matching the general population in the country in terms of age, gender and state/district. ### Tests Analyses are integrated within the platform of the survey itself. As all analyses are exploratory and may change based upon requirements of the situation. The data analysis script uses means of descriptive data presentation, regression analyses and correlation analyses. Misinformation is collected as text fields and should be screened, summarized and offered to experts and those responsible for the crisis communication (e.g. to be debunked and inserted in FAQ lists). Only completed data sets will be considered in the analysis. Missing values will be treated as missing values and not be imputed. ### Scientific review and validation of tools Due to the urgency of the need for data, and the rapidly evolving situation (requiring constant adaptations of the tools used), the protocol and questionnaire have been reviewed and validated based on an ad hoc approach. The documents were originally prepared by Professor Betsch at the University of Erfurt, Germany, and subsequently reviewed by the COSMO group (See WHO guidance document). This group represents leading global experts in behavioural insights research for health and in developing and validating survey tools similar to the current. In addition, following two rounds of data collection in Germany, two scientists (Prof. Robert Böhm, University of Copenhagen, Denmark, and Britta Renner, University of Konstanz, Germany) reviewed the data and how it was presented. This review cannot be shared as due to the urgency of the situation it was done via comments on PDF snapshots of the website where the data was presented. Lessons learned from the implementation in two rounds in Germany have led to continuous adjustments of the questionnaire. To ensure national validation of the survey in Italian language, the questionnaire was tested by 4 academics, and 15 friends from the various national universities. We asked one hundred people to answer the survey and give us feedback, and then modifications were done accordingly. The same validation took in consideration the time length for the filling process. ### Limitations of the study The urgency of the situation incurs some limitations to the study, including limited opportunities for scientific review and validation, as described above. In addition, using online panels limits the participation of certain important population groups, including the elderly (a risk group for COVID-19) and disadvantaged population groups such vulnerable groups. ## Background: Review of relevant literature Models of crisis and emergency risk communication (5) suggest that is crucial to understand the risk perception of the population and the sources of information that they trust to enable effective communication and framing key messages. Messaging should be evidence-based and respond to misinformation and induce rational, adaptive and protective behaviour (6). However, little is known about the complex interplay of changing epidemiology, media attention, pandemic control measures, risk perception and public health behaviour (7). A study conducted during the influenza A(H1N1)pdm09 pandemic in 2009/2010 shows an "asynchronicity between media curves and epidemiological curves (...); media attention for influenza A H1N1 in Europe declined long before the epidemic reached its peak, and public risk perceptions and behaviours may have followed media logic, rather than epidemiological logic" (7). Thus, how people perceive the risk is not necessarily related to the actual risk. This perceived risk, nevertheless, influences protective behaviours (8). Yet, uncertainty about the situation and perceived exaggeration were associated with a reduced likeliness to implement the recommended protective behaviours during the 2009/10 pandemic (9). During the flu pandemic, a perceived inconsistency in recommendations was identified as a critical issue for non-compliance. Exaggeration of risks often happens on social media, where especially highly emotional and often false information are shared (10). While a serial cross-sectional study involving over 13,000 participants during the 2009/2010 pandemic (11) showed that the internet was significantly less used as a source of information than traditional media, this may well have changed over the last decade. For example, the number of monthly Twitter users multiplied by ten from 30 million in 2009 to 330 million in 2019 (12) and Twitter seems to be seen as an alert tool in times of a crisis and a gateway for information (13). Thus, knowledge acquired during the last pandemic is only of limited value to guide crisis responses in the current outbreak. The coronavirus is new, there is no vaccine or known effective treatment, case fatality rates are still uncertain. Psychologically, this means high uncertainty regarding the likelihood of catching the disease, its potential severity and ability to take control over the process by preventive measure. These perceptions are thus likely to be updated based on changes in epidemiology, media reports, information and misinformation. As media and communication measures can influence these variables (7)(11) and as these are relevant for preparedness and protective behaviour (5)(14), COSMO aims at monitoring these variables during the current COVID-19 pandemic and to feed them into the communication process during the crisis. COSMO also aims at reliably assess changes and shifts of risk perceptions and to identify the drivers and situations that are related to these shifts. How closely is risk perception related to actual risk? Further, it is important to understand the dynamics of risk perceptions, fears, misinformation and protective behaviours, understand which of the protective measures are known and which information is lacking. Based on this information it is possible to react to misinformation or suddenly increasing risk perceptions and panics. ### References - 1. Uscher-Pines L, Omer SB, Barnett DJ, Burke TA, Balicer RD. Priority setting for pandemic influenza: an analysis of national preparedness plans. *PLoS Med* 2006; **3**: 436. - 2. WHO Europe. (2017). Vaccination and trust—How concerns arise and the role of communication in mitigating crises. - 3. Glik, D. C. (2007). Risk communication for public health emergencies. Annual Review of Public Health, 28, 33–54. https://doi.org/10.1146/annurev.publhealth.28.021406.144123 - 4. World Health Organization. (2017). Communicating risk in public health emergencies: A WHO guideline for emergency risk communication (ERC) policy and practice. World Health Organization. - 5. Reynolds, B., & W. Seeger, M. (2005). Crisis and Emergency Risk Communication as an Integrative Model. Journal of Health Communication, 10(1), 43–55. https://doi.org/10.1080/10810730590904571 - 6. Rasmussen, S. A., & Goodman, R. A. (2018). The CDC Field Epidemiology Manual. Oxford University Press. - 7. Reintjes R, Das E, Klemm C, Richardus JH, Keßler V, Ahmad A. "Pandemic Public Health Paradox": Time Series Analysis of the 2009/10 Influenza A / H1N1 Epidemiology, Media Attention, Risk Perception and Public Reactions in 5 European Countries. PLOS ONE 2016; 11: e0151258. - 8. Van der Pligt J. Risk perception and self-protective behavior. European Psychologist 1996; 1: 34–43. - 9. Rubin, G. J., Amlot, R., Page, L., & Wessely, S. (2009). Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: Cross sectional telephone survey. BMJ, 339(jul02 3), b2651–b2651. https://doi.org/10.1136/bmj.b2651 - 10. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559 - 11. Walter, D., Böhmer, M. M., Reiter, S., Krause, G., & Wichmann, O. (2012). Risk perception and informationseeking behaviour during the 2009/10 influenza A(H1N1)pdm09 pandemic in Germany. Eurosurveillance, 17(13), 20131. - 12. Statista. (2019). Number of monthly active Twitter users worldwide from 1st quarter 2010 to 1st quarter 2019. - 13. Eriksson, M., & Olsson, E.-K. (2016). Facebook and Twitter in Crisis Communication: A Comparative Study of - 14. Carpenter, C. J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication, 25(8), 661–669. https://doi.org/10.1080/10410236.2010.521906 - 15. Betsch C, Bach Habersaat K, Deshevoi S, et al. Sample study protocol for adapting and/or translating the 5C scale to assess the psychological antecedents of vaccination. BMJ Open 2020;0:e034869. doi:10.1136/bmjopen-2019-034869. - 16. Betsch C, Wieler L, Habersaat K, and the COSMO consortium (submitted). Rapid, flexible, cost-effective monitoring tool for behavioural insights related to COVID-19 across countries.