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Abstract 

Since the replication crisis, standardization has assumed even greater importance in 

psychological science and neuroscience. Many widely used methods are therefore being 

reconsidered and the degrees of freedom these methods provide to researchers are discussed as 

a potential source of inconsistencies across studies. With the aim of addressing these 

subjectivity problems, we have been working for some time on standardizing EEG analysis in 

order to achieve an automated and standardized processing pipeline based on the suggested 

semi-automated analysis proposed by Delorme and Makeig. In this work, two scripts are now 

presented and explained, each containing 9 steps to perform a basic, informed ERP and 

frequency-domain analyses, including data export to statistical programs and visual 

representations of the results for validation of the results. The open-source software EEGlab in 

MATLAB is used as the data handling platform, but also included are scripts based on the code 

provided by Mike Cohen (2014). We hope that this (pre-) processing chain may offer a 

standardized way of analyzing data, and one that clearly explains and openly shows how the 

processing impacts the data, especially for beginners and newcomers in EEG-analysis. The need 

for standardization and replication is clearly important, yet it is equally important to look 

carefully into the details rather than blindly following a set of prescribed procedures. Here, we 

provide this tool to the community to enhance the understanding and capability of EEG-

analysis, as part of one small and very basic step to enhancing rich, comprehensive and reliable 

methods for neuro-scientific research. 

  



An open-source EEG processing standardization 

2 
 

EPOS: EEG Processing Open-source Standardization  

The electroencephalogram (EEG) is one of the most important tools in both applied and clinical 

neurophysiology as it offers a high temporal resolution and a high safety due to its non-invasive 

application (Cohen, 2017b). The central properties of this measurement instrument for electrical 

activity, first described by Berger (1929), are frequency (oscillations per time period) and 

amplitude (maximum value of an oscillation during one period). Years later and despite many 

technical developments of the systems and the existing software for subsequent processing, 

there are still major problems in the replicability of findings in EEG research due to 

methodological variations across laboratories (Bishop, 2007). However, the problem is not 

limited to EEG research. Recently an article was published which shows how much flexibility 

in preprocessing affects the results of MRI research (Botvinik-Nezer et al., 2020), which has 

major implications for scientific conclusions. 

The EEG signal is strongly affected by sources of interference, which are caused by the 

application of the electrodes (e.g., electrode displacement), the experiment itself (e.g., flickering 

frequencies) or by the activity of the participants, partly in interaction with the previous factors 

(e.g., eye-movements or muscle activity). These unwanted signals can be much larger than the 

actual signal of interest and therefore massively interfere with the measurement of 

electrophysiological correlates of neural activation if the artefacts are not corrected (e.g., 

Cuevas, Cannon, Yoo, & Fox, 2014). The resulting corrections and the further processing of 

this data raises obstacles to replicability. The replication crisis in psychophysiology was 

addressed by Larson and Moser (2017) in a special issue entitled "Rigor and Replication: 

Towards Improved Best Practices in Psychophysiological Research" in the International 

Journal of Psychophysiology. Included are, among other things, contributions on general 

improvement of rigor (Baldwin, 2017), reliability analysis of ERPs (Clayson & Miller, 2017), 
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replication of time-frequency data (Cohen, 2017a) or sample size calculation for 

electrophysiology (Larson & Carbine, 2017).  

In current EEG research, there are high degrees of freedom for the researchers in terms of 

analysis but also in terms of reporting in publications, which leads to an increase in the false 

positive rate of research findings (Simmons, Nelson, & Simonsohn, 2011). Several sets of 

guidelines for data consistency and replicability have been published (Keil et al., 2014; Picton 

et al., 2000; Pivik et al., 1993), but tools for ensuring consistent processing are still needed (for 

the most recent approach, see Debnath et al., 2020). For EEG data, this means a flexible choice 

of time-window, frequency band, filtering specifications, electrodes, reference, measurement, 

artifact rejection, and outlier exclusion. Most researchers use different filters, references, and 

criteria for artefact removal prior to the actual analysis for a variety of (good) reasons. 

Nevertheless, this process is by no means standardized, making it almost impossible to combine 

data sets from different data sources for analysis without preprocessing them jointly. 

Consequently, Keil et al. (2014) pointed out that standardization and automation in the 

processing of electrophysiological data will be indispensable.  

To preprocess EEG data, various pipelines have been developed in the recent past to address 

the growing need for standardization. The PREP pipeline (Bigdely-Shamlo, Mullen, Kothe, Su, 

& Robbins, 2015) provides a standardized method to remove line-noise (Mullen, 2012) and an 

average referencing to detect and interpolate noisy channels. However, PREP focuses only on 

experiment-related artifacts and not on individual artifacts like eye-blinks. The Harvard 

automated preprocessing pipeline (HAPPE; Gabard-Durnam, Mendez Leal, Wilkinson, & 

Levin, 2018) adds an independent component analysis (ICA) and uses a Multiple Artifact 

Rejection Algorithm (MARA; Winkler, Haufe, & Tangermann, 2011) to correct artifacts. But, 

according to the authors, this pipeline is not suitable for the analysis of event-related potentials. 

The Computational Testing for Automated Preprocessing (CTAP; Cowley, Korpela, & 
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Torniainen, 2017) toolbox has a similar approach to HAPPE, but allows the user to compare 

the outcomes of different preprocessing pipelines. Moreover, the Batch 

Electroencephalography Automated Processing Platform (Levin, Méndez Leal, Gabard-

Durnam, & O’Leary, 2018) was created, which aims to simplify and standardize the replication 

of existing studies through a collection of preprocessing pipelines applied to new data sets. In 

addition, Automagic (Pedroni, Bahreini, & Langer, 2019) was introduced, a wrapper toolbox 

that combines common preprocessing methods. Automagic uses the PREP pipeline per default 

and adds further processing steps afterwards. The automatic pre-processing pipeline (APP; da 

Cruz, Chicherov, Herzog, & Figueiredo, 2018) for large datasets proved to be an efficient and 

reliable method for both resting state and evoked EEG, which was tested for both clinical and 

healthy participants. Finally, the Maryland analysis of developmental EEG (MADE) pipeline 

was recently published (Debnath et al., 2020). This pipeline focuses on the standardized and 

automatic preprocessing of data from pediatric populations using EEGLAB. 

However, most of the previous mentioned pipelines focus on some specific concepts and parts 

of the pre-processing, while our approach tries to orient on the principles provided by Delorme 

and Makeig as they advised to preprocess the data up to 2019 

(https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts). However, where Makeig and 

Delorme suggested semi-automatic detections or visual detections of the data, we tried to 

implement standardized selection criteria based on statistical outlier detection or algorithm and 

machine-learning based artifact selection (e.g., MARA, Winkler et al., 2011) and therefore 

come to replicable and standardized (pre-)processing results. Hereby, we provide examples, but 

other replicable usable software solutions (such as neural networks for IC detection in specific 

research tasks) could also be used, as long as other researchers may openly access and use the 

respective solutions and therefore the relevant knowledge. The aim of this paper is therefore to 

present a script for an EEG processing open-source standardization (EPOS), that may help to 
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come to openly communicated analyses that can be replicated by other researchers as all 

relevant information is given and can be reproduced. We do not want to focus on individual 

processing steps, but rather offer a standardization of the entire process after data collection up 

to the extraction of the final data for analysis. Except for the screening of complete data sets, 

no intervention based on subjective non-documented or non-replicable decisions of individuals  

in the artifact cleaning will be performed, but only replicable and standardized criteria may be 

chosen. There are very early findings suggesting that algorithmic approaches exceed individual 

valuation standards, so that actuarial approaches, once validated, should be preferred over 

subjective judgements (e.g., Dawes, Faust, & Meehl, 1989). In a meta-analysis, Grove, Zald, 

Lebow, Snitz, and Nelson (2000) were even able to show that the mechanical prediction or 

more accurately statistically defined prediction criteria performed significantly better than the 

clinical prediction in 33% to 47% of the studies examined, while the clinical prediction was 

more accurate in only 6% to 16% of the studies examined. Additionally, subjective standards 

vary inter-individually as well as intra-individually, while an algorithm has a replicable 

performance. Hence, we provide a (pre)-processing pipeline that is based on mechanical and 

reproducible criteria in order to avoid subjective variability. 

We provide scripts for data export for statistical analysis in other software as well as for the 

visualization (ERPs, time-frequency plots, topographical maps) of electrophysiological data, to 

control for plausibility of the standardized solutions in EEG-analyzes. In the following, we will 

first present the proposed standard preprocessing pipeline for EEGLab (Delorme & Makeig, 

2004) that was provided up to 2019 on 

https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts and then present and justify our 

changes and extensions. This pipeline is not to be seen as the new method for all applications 

that can simply be thrown at any type of data, but it is a suggestion for a standardized analysis, 

that may be used in several cases of data-(pre)-processing. Some suggestions seem to be 
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debatable at first glance (e.g., filtering after a first “segmentation” and not before, maybe 

causing edge artifacts or filtering with 1 Hz if interested in low frequency bands). However, if 

you read into the suggestions in detail, one might discover that some assumed problems are not 

given if followed the suggestions in principle (e.g., taking long first data segments in order to 

avoid filtering the entire dataset or extracting unfiltered data ICs in case of interest in low 

frequency bands). 

Preprocessing according to EEGLab 

A summary of the previously proposed preprocessing steps is: 

Rejection based on independent data components: 

1) Visually reject unsuitable (e.g. paroxysmal) portions of the continuous data.  

2) Separate the data into suitable short data epochs.  

3) Perform ICA on these epochs to derive their independent components.  

4) Perform semi-automated and visual-inspection based rejection of data epochs on the derived 

components.  

5) Visually inspect and select data epochs for rejection.  

6) Reject the selected data epochs.  

7) Perform ICA a second time on the pruned collection of short data epochs  

8) Inspect and reject the components. Note that components should NOT be rejected before the 

second ICA, but after. 
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Figure 1: Schematic representation of the preprocessing steps as recommended by the EPOS 
pipeline. 

Preprocessing according to EPOS 

As mentioned above, we tried to replace subjective un-replicable influences with standardized 

approaches. 

For this purpose, the preprocessing pipeline proposed here will need the following software 

toolboxes: EEGLAB (Delorme & Makeig, 2004), ADJUST (Mognon, Jovicich, Bruzzone, & 



An open-source EEG processing standardization 

8 
 

Buiatti, 2011), MARA (Winkler et al., 2011), SASICA (Chaumon, Bishop, & Busch, 2015) and 

the CSD Toolbox (Kayser, 2009; Kayser & Tenke, 2006a; Kayser & Tenke, 2006b) or the CSD 

transformation provided by Cohen (2014). All these packages run on MATLAB (MATLAB, 

2011), but some attempts are done to convert these packages to Octave (Eaton, 2002), an open 

source version of MATLAB. 

First, we would like to point out that a good and standardized preprocessing can be worth a lot, 

but clean EEG data recording is essential (“garbage in → garbage out”). Therefore, the first 

step that is never mentioned but which is absolutely essential is to take your time with the data 

acquisition and apply the EEG caps/electrodes responsibly and with care.  

The new (pre-)processing “chain” that is proposed based on the previous mentioned chain, as 

illustrated in Table 1: 

1. Statistically detect and interpolate channels of low quality. 

2. Separate the data into suitable data epochs. 

3. High-pass filtering. 

4. First independent component analysis. 

5. Detection and deletion of bad segments based on z-value detection on ICs 

6. Second independent component analysis. 

7. Automatic inspection and rejection of the components using ADJUST and MARA with 

SASICA. 

8. Re-reference (to current source density (CSD)). 
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Table 1. Comparison of the individual steps in the preprocessing pipelines according to 
EEGLab and EPOS. 

EEGLab EPOS 

Visually reject unsuitable portions of the 
continuous data.  

Statistically detect and interpolate channels of 
low quality. 

Separate the data into suitable short data 
epochs.  

Separate the data into suitable data epochs. 

Perform ICA on these epochs  High-pass filtering 

Semi-automated and visual inspection-based 
rejection of data epochs on the derived 
components.  

Perform first ICA 

Visually inspect and select data epochs for 
rejection.  

Detection and deletion of bad segments based 
on z-value detection on ICs 

Reject the selected data epochs.  Second ICA 
Second ICA  Automatic inspection and rejection of the 

components using ADJUST and MARA with 
SASICA 

Inspect and reject the components.  Re-reference (to CSD) 

 

 

Figure 2: Raw data example (not too good data). 
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Step 1: Statistically detect and interpolate channels of low quality 

This step is based on the raw data (see example in Figure 2) and detects and excludes channels 

with a very low signal to noise ratio. These channels will be interpolated and therefore will not 

contribute with their signal to the signal that will be processed further. Before a detection of the 

“bad” channels can be done, only the relevant channels have to be selected, Channels that are 

to be ignored for the following processing steps are for example, heart electrodes or skin 

conductance measurements, that may be (in-)directly related to brain waves but not of the same 

structure as the EEG signal. After selecting the EEG electrodes, the online reference should be 

added back to the data so that this electrode can also be used for further analyses or interpolated 

in the case of too much noise in this channel. As a reference system is required while also 

retaining the online reference as a channel, we use average reference to further process the data. 

The average reverence is very useful, if one has a sufficient amount of electrodes that cover the 

scalp fields sufficiently(Junghöfer, Elbert, Tucker, & Braun, 1999). If this is not given, one 

might introduce a bias based on the electrode distribution to the data. If other electrodes are 

being used as offline reference, one loses the electrode for interpretation in the data. Therefore, 

we would not recommend this approach, but if not possible otherwise, also other reference 

electrodes (for example linked mastoids) can be used right away here, losing the respective 

electrodes. In later steps we also may change from the present reference to the CSD reference, 

but we may not use this reference for automatic IC detections based on MARA and ADJUST, 

as they are not trained with these spatially filtered parameters and therefore come to very wrong 

conclusions. Hence, average reference provides us with the opportunity to assess the quality of 

the online reference channel along with artifacts only based on this channel, although the 

average reference may not be a generally preferable reference and can be altered at later stages. 

Hence as the first preprocessing step the “bad” channels are detected and interpolated using 

statistical criteria. We use a detection based on z-values. The probability, kurtosis and spectrum 

are detected according to the outlier criterion z > 3.29 (Tabachnick & Fidell, 2007, p. 73). For 
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the spectrum we use as frequency range 1 to 125 as suggested by Makeig and Delorme 

(https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts). The interpolation of the bad 

channels is done instead of a mere exclusion because of the irregularities of the matrices that 

would be introduced into the data structure and that would interact with later pre-processing 

and processing steps. Of course, the information of the interpolated channel is lost, but the 

structure of the data can be retained (see example in Figure 3).  

The EPOS uses the EEGLAB pop_select function to select the channels, which are to be ignored 

for the preprocessing. The function pop_chanedit makes space for the online reference, which 

will be added back to the data. Using pop_reref the data is re-referenced to the average of all 

electrodes. The included channels for re-referencing depend on the montage and have to be 

adjusted in our script. Finally, the EEGLAB function pop_rejchan performs the detection of 

distorted channels according to the statistical criteria and pop_interp interpolates the resulting 

channels of poor data quality.  

 

Figure 3: Interpolated data channels. 
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Step 2: Separate the data into suitable data epochs 

The next step is to slice the data into suitable "first" data epochs which will later be segmented 

into the “real” segments but should be rather long as their purpose is to be the database for the 

ICA. Hence, a long segment might be beneficial. The length of a segment should also be chosen 

depending on the homogeneity of a trial. It is important to choose the data epochs as long as 

possible, since the following ICA provides a better solution for longer data periods. At the same 

time, the segments should be as short as possible, since the ICA solution leads to noisier and 

more unspecific ICs for different tasks, leading to a less sensitive z-value based artifact 

detection. In summary, the signal needs to be long enough to obtain a reliable measure and short 

enough to account for the rather non-stationary nature of EEG signals (Korats, Le Cam, Ranta, 

& Hamid, 2012). Therefore, we recommend either to segment the whole trial (if the trial is long 

enough and not too many different phases are present, or the trials are short and homogeneous) 

or to segment parts of an experiment. The segments in this phase may have a length of 8-20 

(e.g., Möcks & Gasser, 1984) seconds, depending on the data quality and the task. Please keep 

in mind that a time window for the baseline correction is also necessary and should be included 

(x seconds before the marker/event of interest). For frequency analysis, more space is needed 

on both sides of a segment, since “edge effects” (i.e., distortions or transient effects resulting 

from a time-window larger than the time window for which data are available) can occur (e.g., 

Debener et al., 2005; Herrmann, Grigutsch, & Busch, 2005; Roach & Mathalon, 2008). The 

same applies to filters, which can also lead to edge effects. In order to avoid these artifacts later, 

we would recommend adding 1 second of “buffer time” on the segments on each side, as we 

will apply a 1 Hz filter in the next step. As the 1 Hz filter may produce “filter rippling” up to 

one second, this should avoid the artifact in the relevant data parts. In homogeneous data, 

overlapping segments can easily be used, although one has to take into account that this might 

also alter the data. An example for the segmented data can be seen in Figure 4. 
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We use the EEGLAB function pop_epoch to slice the data into segments of a suitable length, 

depending on the experiment and its trial duration. 

 

Figure 4: First segmentation. The marked segments are visual aids to evaluate later steps. 

Step 3: High-pass filtering 

As a third step we apply a 1 Hz high pass filter to the data. This is done to get a more stable 

ICA solution as no low frequency shift is present (Winkler, Debener, Müller, & Tangermann, 

2015). Furthermore, after extensive testing of the influence of different filters on the 

performance of MARA (Winkler et al., 2011), we found that MARA works best with only the 

1 Hz filter. A 2 Hz filter, for example, will not correct side eye movements as good as if it was 

filtered with 1 Hz and data filtered to the power spectrum between 2 and 39 Hz (as 

recommended in the MARA manual) will not correct muscular activation as well as it is done 

without the 39 Hz filter. At this point we would also like to remind that every filter changes the 

data, although the filtering at this point is only used to get a better basis for the ICA and artifact 

rejection based on the automatic artifact IC detection of MARA (Winkler et al., 2011) and 

ADJUST (Mognon et al., 2011). As previously stated, there might occur edge artifacts (filter 
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rippling). These artifacts are very prone to occur in short data epochs, as they are on the edges 

of the filtered data. Because of this problem, one normally recommends filtering unsegmented 

continuous data, instead of “segmented” data. However, as the “segmentation” we performed 

in step 2 is basically a selection of a large continuous data part with sufficient edges for the 

occurring filtering artifacts, instead of only the shortest data part of interest, one may start the 

filtering at this step, getting a quicker and more efficient filtering process, because only parts 

of the data need to be filtered and not the entire dataset. Also as mentioned above we 

recommended 1 second data “buffers” on the large data “segments” in order to avoid filter 

rippling in the relevant parts of the data with a 1 Hz high-pass filter. Additionally, one has to 

keep also in mind, that filters only attenuate the frequency bands they are designed to work on 

and are not built for a complete dampening of the respective frequency responses. This may 

result in residual artifacts of very large frequency artifacts, if the dampening curve is applied 

with an inappropriate filter order (i.e., a very large muscular artifact will have effects even after 

the filtering). To reiterate the different filter types that may be applied: Notch (deletes the target 

frequency, e.g., 50 Hz (AC in Europe)), low-pass/high-cut (all frequencies below the target 

frequency will be attenuated), high-pass/low-cut (all frequencies above the target frequency 

will be attenuated) and bandpass (combines low-pass plus high-pass). It is important to note, 

that some research interests are in the frequency band below 1 Hz and therefore usually apply 

much lower high-pass filters (for example .001 Hz if interested in slow waves). However, as 

there is the opportunity to write the IC solutions back to the unfiltered data, one may use the 1 

Hz filtering at this point still, in order to get a good performance of the MARA algorithm.  

In the EPOS pipeline, we apply the EEGLAB function pop_eegfiltnew, for which the toolbox 

firfilt (Andreas Widmann) is required. Depending on the data segments, the filter order for the 

1 Hz low-pass filter must be adjusted in the script. An example for filtered data can be seen in 

Figure 5. 
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Figure 5: Filtered data. 

Step 4: First independent component analysis 

In the next step we apply an independent component analysis to the data. The ICA is a statistical 

linear decomposition of the signal into independent components, each of which contributes as 

much specific information as possible to the data (Makeig, Debener, Onton, & Delorme, 2004). 

Thus, each electrode provides data that is assigned to a source/sensor. The ICA decomposes the 

linearly mixed sources at the sensor level into independent components (Bell & Sejnowski, 

1995) and we get as many components as there are sources (i.e., 64 independent components 

with 64 electrodes) . As a result, ICA separates the actual electronic brain signal from non-brain 

artifacts such as eye movements or muscle activity. The ICA is a so-called "blind" separation 

technique and therefore does not guarantee meaningful results (e.g., Jung et al., 2000). Not 

every extracted component is equally plausible and depends strongly on the data quality and 

the specific ICA algorithm used. Depending on the interpolation, however, less information is 

obtained for each interpolated channel. ICs can be independent as well as dependent on each 

other, since components included in a source vector can be either correlated or uncorrelated 
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(Kim, Eltoft, & Lee, 2006). The resulting ICs also have a time course and a frequency 

distribution as channels have. But as the topographical order of the channels is dissolved a new 

topographical projection is provided for each IC. Based on these features, artifact detection can 

be performed, either only using parts of this information (time course, topography, frequency 

response) or all together. In step 5, we will only use parts of the information neglecting the 

topography of the ICs to select artifact segments, while in step 7, the automatized machine 

learning and criteria-based algorithms are using all information in order to select artifact ICs.  

To perform the ICA, we use the command pop_runica in EEGLAB (Delorme & Makeig, 2004; 

Makeig et al., 2004). 

Step 5: Detection and deletion of bad segments based on z-value detection on ICs 

Now the bad segments are selected and deleted based on a z-value detection on the ICs. As in 

the first step, the criterion of z > 3.29 for the probability and kurtosis is applied on the channel 

basis. The reason for this step is to increase the data quality to be able to clean up artifacts even 

better with the following second ICA. On global level we used a very high z-value threshold of 

z = 20 to only correct for very huge artifacts and to prevent the overcorrection of different signal 

components. This approach was recommended by Delorme & Makeig, (Delorme & Makeig, 

2004) that was provided up to 2019 on 

https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts because of the higher sensitivity to 

“extraordinary” not regularly appearing artifacts (e.g., singular hiccup) than a merely channel 

z-value based artifact detection.  

The EEGLAB command pop_jointprob was used to reject the probability and pop_rejkurt for 

the kurtosis. The selected segments were removed using pop_rejepoch. An example for a 

rejection of segments can be seen in Figure 6.  
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Figure 6: Bad segments excluded.  

Step 6: Second independent component analysis 

This second ICA is now performed on the data cleaned for poor segments. This step is only 

performed if at least one bad segment was detected and rejected. The goal is to achieve a better 

signal-to-noise-ratio by identifying artifact driven components containing no relevant signal. 

These artifact components will be deleted to compute signal that only consist of non-artifact 

data or that is at least less artifact polluted. Therefore, once again a signal decomposition is 

performed leading to the previously mentioned information in the ICs. After the ICA we select 

the ICs that represent signal and those that represent noise. Again, we use the EEGLAB function 

pop_runica. 

Step 7: Automatic inspection and rejection of the components using ADJUST and MARA 

with SASICA 

In the seventh step, the resulting components are automatically inspected and rejected using 

ADJUST (Automatic EEG artifact Detection based on the Joint Use of Spatial and Temporal 

features; Mognon et al., 2011) and MARA (Winkler et al., 2011) with SASICA (Chaumon et 
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al., 2015). SASICA serves as EEGLAB plugin, which contains various artifact correction 

algorithms from different researchers (e.g., Fully Automated Statistical Thresholding for EEG 

artifact Rejection (FASTER), Nolan, Whelan, & Reilly, 2010, ADJUST, and MARA). 

ADJUST uses algorithms based on temporal and spatial filters to identify mainly (but not 

exclusively) artifacts caused by eye movements. These include blinks, horizontal and vertical 

eye movements, but also generic discontinuities. The algorithm uses an expectation-

maximization-based approach to automatically detect the threshold of spatio-temporal 

properties of different artifact types and classify them accordingly (Wu et al., 2018). MARA 

combines different measures to automatically classify ICs as artifacts via a linear machine 

learning algorithm. In summary, two spatial, one temporal and three spectral features provide 

the measures for the best classification results. These different classification components are 

described in detail in the original paper. MARA is not designed to detect a specific artifact type, 

but rather is variable to detect eye artifacts, muscle artifacts, the heartbeat, or loose electrodes. 

Regarding MARA, we have already set the reference to average and filtered the data with 1 Hz. 

MARA has shown to perform well in the automatic classification of artifacts (85 - 91% 

accuracy compared to experienced raters, Winkler et al., 2014; Winkler et al., 2011). Although 

trained and experienced EEG researchers may have an even better ability to distinguish signal 

from artifact components, automatic artifact correction algorithms have an increased reliability 

of artifact removal exceeding the human raters. 

After we have configured the specific options (i.e., ADJUST or MARA marked it bad) in the 

script, we perform the automatic removal of the ICs with the EEGLAB command 

eeg_SASISCA. Using the marking of an artifact by ADJUST or MARA is a very conservative 

approach because it rejects as many ICs as possible. However, as ADJUST and MARA are 

selectively strong for certain artifacts (e.g. ADJUST is rather strong in detecting heart-beat 

related shifting artifacts that MARA tends to miss while MARA is more sensitive in detecting 
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very noisy components) the selected method leads to less artifact prone data, yet being a very 

strict approach concerning mixed components. We also provide code that writes the ICA 

solution back to the unfiltered EEG data. Therefore, we project the ICA solution that is based 

on the automatic selection by MARA onto the original data without including the necessary 

preprocessing steps to achieve them. This leads to dropping the preprocessing artifacts that were 

introduced to gain an optimal performance of the standardized preprocessing. Hence we gain a 

projected solution of the ICA, which might not be the identical solution that we would have 

gotten with an ICA on the raw data, but that is a projection of the optimally prepared data matrix 

for automatic IC selection on the raw data matrix. Please keep in mind, that we only recommend 

these packages because they are openly available and provide replicable results. The respective 

setting of these software packages might not fit your need in detail and we highly encourage 

you to still use other replicable solutions that may select your ICs for you (for instance also a 

trained neural network for IC detection, mirroring expert opinions for specific tasks, 

(Rodrigues, Ziebell, Müller, & Hewig, 2020b)), as long as you provide these solutions and the 

important needed information to understand the procedure to other researchers and therefore 

guarantee the replicability of your analyses. Examples for the IC cleaned data can be seen in 

Figure 7 and Figure 8, for the projected unfiltered data and the filtered data solution.  

In some (pre-)processing routines (mostly ERP routines), at this point or at the processing step 

2 below, there is an additional segmentation in very small data segments and an additional 

artifact selection is performed after the IC cleaning procedure. We chose to not include it here 

in this script because of the previous step 5, but if needed in your data, please inform the reader 

what segmentation steps have been taken and which statistical selection criteria has been used. 

Please avoid selection “by hand”.  
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Figure 7: Data after second ICA and IC cleaning, reprojected on the original, unfiltered data. 

 

Figure 8: Data after second ICA and IC cleaning, filtered data solution. 

Step 8: Transform via Re-reference or Current Source Density (CSD) 

Finally, we re-reference our data in the last step of the preprocessing. The selection of reference 

or montage is paramount to being able to visualize effects of interest, and the choice may be 
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determined, in part, based on the standard of practice in a given research domain and the specific 

question of interest.  To the extent that spatially-specific effects are important, the current 

source density (CSD) transformation is preferred and suggested by us (for a comparison of 

different reference schemes concerning alpha-band activity and frontal-asymmetry, see 

Hagemann (2004). Nevertheless, one may also choose another reference like linked mastoids 

or other reference schemes that are suitable and common in the respective field of EEG 

research. CSD provides an estimation of relative current at a point on the scalp surface as a 

function of the surrounding points. The distances are weighted with the relative activity on the 

electrode: The surface is estimated as a sphere, the signal differences to the adjacent are 

measured and the weighting of each difference is performed for each distance. Thus, a reference 

without reference is obtained and any electrode can be used. This results in a spatial filter that 

sharpens the topography of the (in)activation. There are two readily-available possibilities for 

doing this, either the CSD toolbox from Kayser (Kayser, 2009; Kayser & Tenke, 2006a; Kayser 

& Tenke, 2006b) or the laplacian_perrinX function provided by Cohen (2014), based on the 

approach of Perrin, Pernier, Bertrand, and Echallier (1989; 1990).  We perform this step at this 

rather late point in the preprocessing chain, because an average reference is favorable for ICA 

and component classification using MARA and ADJUST (steps 4 and 5), since all the 

algorithms of MARA and ADJUST have not been trained with CSD transformed data and their 

selection accuracy concerning artifacts is not good if CSD data is used. Also, with average 

reference, ICA scalp topographies have a zero-total potential (i.e., red and blue are balanced). 

If no average reference is chosen, some IC scalp topographies could be completely red or blue, 

leading to visually odd topographies that are hard to interpret. 

In this step, either the code provided by Kayser (Kayser, 2009; Kayser & Tenke, 2006a; Kayser 

& Tenke, 2006b) or the laplacian_perrinX function from Cohen (2014) is used. These two tools 

provide comparable results, although the latter is substantially faster in execution; nonetheless,  
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we highly recommend visiting the website provided by Kayser 

(http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/tutorial.html) in order to 

get more information about how CSD transformation is implemented and what it does  

Alternatively, any other reference can be used with the command pop_reref (e.g., linked 

mastoids). Examples of the unfiltered and filtered solutions for CSD and linked mastoid 

reference can be seen in Figure 9, Figure 10, Figure 11 and Figure 12. 

 

Figure 9: Unfiltered  CSD transformed data solution. 
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Figure 10: Filtered CSD transformed data solution. 

 

Figure 11: Unfiltered linked mastoid referenced data solution. 
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Figure 12: Filtered linked mastoid referenced data solution. 

Processing according to EPOS 

After the pre-processing of the EEG data has been completed at this point in a standardized and 

automated procedure, we will describe the further processing of the data in the following steps 

(see Figure 2). For this purpose, nine steps are performed, some of which are optional, 

depending on the experiment, data set and personal preferences. The MATLAB addons 

boundedline (Kearney, 2020) and export_fig (Altman, 2020) are required for creating graphics 

and exporting data. Also, the wavelet function based on the code provided by Cohen (2014) 

and edited by John J.B. Allen and Johannes Rodrigues is required to analyze time frequency 

results. To perform single trial analyses for frequencies later, an adjustment was made to the 

frequency extraction functions of Cohen (2014). Otherwise these functions were implemented 

as described by Cohen (2014).  

1. Segment the data for analysis 

2. Drop the cases that are not present (for example in free choice paradigms) 

3. Automatic peak detection in a given time-window in EEG signal 
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4. Compute and visualize event-related potentials 

5. Topographical maps (Topoplots) in the time-domain 

6. Automatic peak detection in a given time window in frequency responses 

7. Topographical maps for frequency responses  

8. Time-frequency plot for a specific electrode in a broad frequency window 

9. Export the data to statistical software 
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Figure 13 Schematic representation of the processing steps as recommended by the EPOS 
pipeline. 
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Step 1: Segment the data for analysis 

The goal of this step is to create a 4-dimensional matrix for the signal and each frequency for 

data analysis and to generate a 5-dimensional matrix for single trial analysis (of course, other 

dimensions in addition to the following dimensions can be generated). Depending on the size 

of the matrix, however, generating this matrix can lead to memory problems. A solution for this 

is to create only one matrix at a time or to resample the data during pre-processing as a very 

first step. To avoid estimated values based on interpolation, we advise resampling only to a new 

sampling rate that is a divisor of the previous one. Also, it is necessary to use anti-aliasing filters 

prior to resampling to avoid the introduction of aliased frequencies. To perform the resampling, 

there is for example the functions pop_resample. Generally, we would recommend recording 

the data only with the required sampling rate for all the planned frequency analysis and filtering 

(normally 250 Hz is sufficient) instead of the highest available recording frequency, to avoid 

resampling. Higher sampling rates, in unique cases, may help to overcome very specific data 

corruption problems, but normally they just take recording resources as well as lead to down-

sampling of the data later, which could be avoided if sampled in a lower frequency right away. 

At this point the data can be segmented again according to the relevant markers for the 

respective task to allow smaller segments to be extracted from the existing epochs if desired. 

As the first “segmentation” in the preprocessing was made with the intend to capture segments 

that are very fitting for IC decomposition and artifact detection and therefore might be overly 

long for a frequency response of interest or an event related potential, a second segmentation 

can be performed, now with the goal of getting a fitting epoch for data analysis. These markers 

must be selected, for which a separate segmentation script is recommended. An example of 

such a segmentation script is also provided along with the (pre-)processing chain. In this script, 

the variable "casearray" contains all relevant condition triggers for this experiment, grouped by 

condition. As mentioned above, in some processing pipelines (mostly ERP related) there is a 
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second bad segment detection step at this point (see Step 5 pre-processing). Feel free to execute 

this step if needed, but we did not include it here or in the scripts. Please also mention this step 

if in detail, if you decide to include it here. As a next step, the baseline correction is calculated 

manually and not with the pop_rmbase function from EEGLAB. The reason for this is that we 

have encountered problems with the round function in different MATLAB versions, which does 

not (or did not) work properly with some EEGLAB versions, leading to wrong baseline 

applications. Therefore, we avoid such compatibility issues by manual calculation. Next, the 

frequencies of interest are defined. We assume that only specific time-frequency windows and 

ERP components will be analyzed in a hypothesis-driven fashion for the particular research 

question (of course, other frequency bands and ERP components can be considered for 

exploratory purposes). If desired, a filter with specific characteristics can be applied to the data 

depending on the ERP of interest. Finally, the user decides whether to look at single-trial data. 

We recommend using multilevel models for such a single-trial analysis. We also recommend 

using frequency bands instead of pure ERP-related data, since they have a higher reliability in 

single trial EEG analyses compared to similar single trial ERPs (e.g., see Rodrigues, Liesner, 

Reutter, Mussel, & Hewig, 2020a). 

Step 2: Drop conditions that are not present 

This step is short and simple. We recommend excluding those conditions (to reduce the amount 

of data) that are not contained in the data set but were present in the segmentation file. This is 

especially relevant for free choice paradigms, as some participants may have chosen not to act 

in a specific manner. Therefore, these cases can be dropped from the segmentation file for this 

person. 

Step 3: Automatic peak detection in a given time-window in EEG signal 

In this step, a peak is searched for in a time window of interest at an electrode position of interest 

via the averaged signal or the average over distinct conditions, leading to averages over trials 
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in the respective condition instead of a total average. Please note, that the peak is not taken as 

a single value, but a time window is defined around the peak in order to avoid biases due to 

peak latency or artifacts and therefore capitalization on noise (see Luck, 2005). You will later 

be able to visualize and export and analyze the average of the trials in a condition or even the 

single trial values of the data if you intend to perform single-trial analysis, if you also 

preprocessed the single trial matrices (see e.g., Rodrigues et al., 2020a for an example of both 

approaches). The corresponding parameters (search window, electrode) depend on the ERP of 

interest. For this purpose, search a priori in the literature for the recommendations but critically 

evaluate guidelines and research propositions (e.g., it should be questioned whether the FRN is 

considered only at Fz, as is often the case in the literature, although FCz is also available and 

the respective topography also indicates that the component is rather mid-fronto-central than 

only limited to frontal regions. Hence a “standard” might be questioned by an informed 

decision. This “standard” however was partly built in times where the electrode position FCz 

was not available due to few electrodes. In must current setups the electrode position FCz is 

often available and can also be used as in many studies the topography of the FRN and the 

midfrontal theta reaction has its´ peak on FCz).  

Step 4: Compute and visualize event-related potentials 

In this part of the script we offer the possibility to generate different forms of ERP graphs. First 

of all, an ERP can be plotted as is traditionally plotted in older manuscripts, which only consists 

of one waveform per condition (see Figure 14 upper panel). Next, we offer ERPs with shaded 

error lines (Kearney, 2020), which in addition to the course of the ERP also provide information 

about the precision of the estimate of the mean value (ERP). In this step, between errorlines 

(between standard error) are added to the figure (see Figure 14 middle panel). Alternatively, we 

provide code to add the mean within error lines (mean within standard error, being mean within 

standard errors of the differences of relevant conditions) to the figure (see Figure 14 middle 
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panel). For the latter, it is important that the researcher is aware that meaningful conditions 

should be taken, or meaningful clusters of conditions should be calculated (only a short example 

in the script, but simply use the “nanmean” command). 
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Figure 14: Comparison of the three different ERP plot options. 

 

Step 5: Topographical maps (Topoplots) in the time-domain 

In the next step we provide code to create topographic maps. We include the option to generate 

a topoplot for a time window of interest (peak-window) for ERP (see Figure 15), but also to 

create an animated graphics interchange format (GIF). This GIF depicts different time intervals 

to show the dynamic changes in the topography and to verify the selected time-window of 

interest as correct for the corresponding electrodes. Hence, you are able to validate your choice 

if time window as well as your choice of electrode of interest. 

 

Figure 15: Topographical plot of ERP. 

Step 6: Automatic peak detection in a given time window in frequency band 

We are using morlet wavelets to perform time frequency decomposition. Our processing 

approach assumes the user has an a priori frequency band of interest and that the analysis 

focusses on said frequency band to avoid capitalization on chance findings. 

Similar to the peak-detection in ERPs, the peak is searched for in the time-window of interest 

at the electrode of interest for the frequency band of interest. The corresponding parameters can 
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be set in the same way as those used for the ERPs. Again, check the evidence in the literature 

and remain critical (e.g., it should be questioned whether the peak of midfrontal theta is 

considered only at Fz, as is often the case in the literature, although FCz is also available and 

the respective topography also indicates that the component is rather a mid-fronto-central 

frequency response). Depending on the task, it might be useful to look at the average of all 

conditions (as pointed out by Cohen, 2014) or at the peak in certain conditions that differ from 

others, which, however, biases the chance to find significance. The attached script contains 

examples, but they must be adapted for different experiments.  

Step 7: Topographical maps for frequency responses 

This step is identical to step 5, both the topographic maps for the peak-window of the frequency 

response and a GIF for the time course are implemented in the script. Here you may validate 

your choice of electrode of interest and time window (see Figure 16).  

 

Figure 16: Topographical plot of frequency of interest, here example theta frequency and 
display of raw power. 

Step 8: Time-frequency plot for a specific electrode in a broad frequency window 

In the last step of the graphical illustration of electrophysiological data, we implemented code 

for the creation of time-frequency plots. For this time-frequency plot we use the plot function 
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based on the code provided by Cohen (2014) and edited by John J.B. Allen and Johannes 

Rodrigues (see Figure 17). It provides either a log transformed power output, a raw data output 

or the recommended dB change to baseline output that corrects for the power law that affects 

the display of different frequency bands together. The result is a time-frequency plot, which not 

only shows the frequency response limited to the desired functional frequency but can also 

display larger frequency windows in order to not only validate your selection of the electrode 

of interest and time window, but also your frequency of interest. As a recommendation, we 

suggest the spectral range of 1-30 Hz if you are not particularly interested in gamma 

frequencies. We also recommend using the dB to baseline change setting as mentioned above.  

 

Figure 17: Time-frequency plot on the electrode of interest in the frequency spectrum 1-30 Hz. 

But concerning the gamma frequency band, we are rather cautious in interpretation and try to 

avoid it as there is evidence that microsaccades (e.g., Dimigen, Valsecchi, Sommer, & Kliegl, 
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2009; but also Hipp & Siegel, 2013) and electrical muscular activity (e.g., Whitham et al., 2007) 

may drive these frequency spectrum responses. 

Step 9: Export the data to statistical software 

In the last step of the processing "chain", we offer code for exporting the EEG data into different 

statistical programs using the Excel xlsx or the MATLAB mat data formats. We support the 

export into the long format (i.e., each row represents a data-point in a specific condition 

combination per participant, with columns indicating the data as well as the conditions and the 

participants, resulting in multiple rows per participant) for the mean signals/frequencies. This 

format is for example required by many R (R Core Team, 2020) packages to calculate analysis 

of variance or multilevel analysis. SPSS (IBM, Armonk, NY) also requires long formatted data 

if a multilevel analysis should be performed. Furthermore, we offer the export into the wide 

format (i.e., all responses of a participant are in one row and each column represents the 

condition combination of the relevant data variable) for the mean signals/frequencies, which is 

used for example by Jamovi (The jamovi project, 2020) or in SPSS (IBM, Armonk, NY) to 

calculate analysis of variance. Finally, we also offer the export of single-trial signal/frequency 

data in long format, which is required by R or SPSS to calculate multilevel mixed models. 

Note concerning single-trial analysis 

In this (pre-) processing chain, the opportunity of processing single trial data is provided 

although it is not the default option, but rather commented out to be used if activated. This was 

done to have some decent management over the necessary resources when using the processing 

pipeline the first time. Nevertheless, we want to encourage further exploration of your data and 

encourage the analysis of single-trial EEG responses because of the interesting time dynamics 

that may happen in your data that are mostly hidden if you just look at the mean responses over 

all trials. These trial-level responses may provide information about learning, boredom as well 

as surprise and fatigue. They are very helpful in understanding the data and its implications in 
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a better and maybe more precise way than just looking at the means. Also, inter-individual 

differences may hide in the variance of the responses, showing persons that are rather prone to 

be bored or similar reactions concerning the mentioned variables.  Exploratory data analysis 

has an important role, but it is of course important to let it be guided by your hypotheses and 

for you to state explicitly what you had been looking for that motivated the exploration.  

Note concerning missing interesting analyses in this chain 

In this (pre-) processing chain, only a few analyses are provided and many interesting analyses 

like evoked and induced frequency responses (David, Kilner, & Friston, 2006; Galambos, 1992; 

Tallon-Baudry & Bertrand, 1999), cross-frequency coupling (e.g., with phase-amplitude 

coupling, Canolty & Knight, 2010), frequency phase distributions (e.g., Busch, Dubois, & 

VanRullen, 2009) and deeper source analysis with LORETA (Pascual-Marqui, Michel, & 

Lehmann, 1994; Pascual-Marqui, 1999) or similar algorithms are not included. Also, PCA 

based ERP peak detection (e.g., Dien, 2010; Kayser & Tenke, 2003) is not included. But why 

did we not include all these interesting and fancy methods? One reason was that we aimed to 

establish a very basic pre-processing chain, i.e., a standardized beginning on which anyone may 

build on. This chain can hopefully also be used by novices who try to get in touch with EEG 

and get inspired by the analyses they see to understand and get to know their data based on 

hypotheses, but also based on exploratory validation of established criteria. Of course, we also 

like to encourage you to explore your data in other and newer ways, but please keep in mind 

that a standardized result for hypothesis testing should be the first step, after which the data 

exploration follows. Another reason for not including some of the techniques mentioned above 

was the concern of introducing methods that are not that easy to understand and that may just 

be used as a “black box” without trying to think about them and to validate the results. After 

having seen many “odd” topographies, frequency response patterns and ERPs with questionable 

time-windows, we wanted to provide a standardized script that everyone is able to understand 
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and is able to validate their results quite quickly. Nevertheless, all suggestions that have been 

made in these scripts should also be seen with caution, as they may not be the perfect matching 

decisions for your specific data. The idea that is behind this standardized approach is to provide 

researchers with a decent starting point of a standardized approach, that can be modified and 

adjusted to their need, as long as they report their changes in order to get to replicable and 

transparent analyses.  

Conclusion 

We presented a standardized, automated open-source processing pipeline for EEG data. In times 

where replicability and standardization are becoming more and more important to increase the 

robustness of research results, the pipelines necessary to fulfill this requirement are still not 

overly present, especially in the psychophysiological research domain. Therefore, we have 

presented a suggestion of a pipeline for (pre-)processing of EEG data as well as for detecting 

and graphically illustrating measured values, as a way to check the integrity of the processing 

results. We hope that the scripts included here will provide a basis to easily understand and 

replicate the analysis of future studies, as well as encourage people to explore their data and 

validate their results. In addition, an open and replicable pipeline may ensure that data sets from 

different sources could be transferred more easily into a joint analysis. The presented pipeline 

is not limited to ERP or frequency analysis but offers necessary code for both analyses and even 

single trial analysis. Nevertheless, it should still be mentioned, that this pipeline is merely a 

suggestion and may be adjusted to the respective needs of the data and paradigm. With this tool 

to get started with EEG data processing, one might hopefully develop a standardized and 

inspired way into analyzing the data and present valuable results to the scientific community. 



An open-source EEG processing standardization 

37 
 

Acknowledgements 

The authors want to thank Prof. Patrick Mussel, Prof. Mike X Cohen, Prof. Edmund Wascher, 

the Wintersymposium Montafon and the training award from the Society of 

Psychophysiological Research.   



An open-source EEG processing standardization 

38 
 

References 

Altman, Y. (2020). export_fig (https://www.github.com/altmany/export_fig). GitHub.  

Baldwin, S. A. (2017). Improving the rigor of psychophysiology research. International 

Journal of Psychophysiology, 111, 5-16. https://doi.org/10.1016/j.ijpsycho.2016.04.006 

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind 

separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. 

https://doi.org/10.1162/neco.1995.7.6.1129 

Berger, H. (1929). Über das Elektrenkephalogramm des Menschen [On the 

electroencephalogram in humans]. Archiv für psychiatrie und nervenkrankheiten, 87(1), 

527-570. https://doi.org/10.1007/BF01797193.  

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., & Robbins, K. A. (2015). The PREP 

pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in 

Neuroinformatics, 9, 16. https://doi.org/10.3389/fninf.2015.00016 

Bishop, D. V. (2007). Using mismatch negativity to study central auditory processing in 

developmental language and literacy impairments: where are we, and where should we 

be going? Psychological Bulletin, 133(4), 651-672. https://doi.org/10.1037/0033-

2909.133.4.651 

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., . 

. . Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by 

many teams. Nature, 1-7. https://doi.org/10.1038/s41586-020-2314-9 

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations 

predicts visual perception. Journal of Neuroscience, 29(24), 7869-7876. 

https://doi.org/10.1523/JNEUROSCI.0113-09.2009  

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends 

in Cognitive Sciences, 14(11), 506-515. https://doi.org/10.1016/j.tics.2010.09.001 

Chaumon, M., Bishop, D. V., & Busch, N. A. (2015). A practical guide to the selection of 

independent components of the electroencephalogram for artifact correction. Journal of 

Neuroscience Methods, 250, 47-63. https://doi.org/10.1016/j.jneumeth.2015.02.025 

Clayson, P. E., & Miller, G. A. (2017). ERP Reliability Analysis (ERA) Toolbox: An open-

source toolbox for analyzing the reliability of event-related brain potentials. 

International Journal of Psychophysiology, 111, 68-79. 

https://doi.org/10.1016/j.ijpsycho.2016.10.012 

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, 

Massachusetts, London, England: MIT press. 



An open-source EEG processing standardization 

39 
 

Cohen, M. X. (2017a). Rigor and replication in time-frequency analyses of cognitive 

electrophysiology data. International Journal of Psychophysiology, 111, 80-87. 

https://doi.org/10.1016/j.ijpsycho.2016.02.001 

Cohen, M. X. (2017b). Where Does EEG Come From and What Does It Mean? Trends in 

Neurosciences, 40(4), 208-218. https://doi.org/10.1016/j.tins.2017.02.004 

Cowley, B. U., Korpela, J., & Torniainen, J. (2017). Computational testing for automated 

preprocessing: a Matlab toolbox to enable large scale electroencephalography data 

processing. PeerJ Computer Science, 3, e108. https://doi.org/10.7717/peerj-cs.108 

Cuevas, K., Cannon, E. N., Yoo, K., & Fox, N. A. (2014). The infant EEG mu rhythm: 

methodological considerations and best practices. Developmental Review, 34(1), 26-43. 

https://doi.org/10.1016/j.dr.2013.12.001 

da Cruz, J. R., Chicherov, V., Herzog, M. H., & Figueiredo, P. (2018). An automatic pre-

processing pipeline for EEG analysis (APP) based on robust statistics. Clinical 

Neurophysiology, 129(7), 1427-1437. https://doi.org/10.1016/j.clinph.2018.04.600 

David, O., Kilner, J. M., & Friston, K. J. (2006). Mechanisms of evoked and induced responses 

in MEG/EEG. Neuroimage, 31(4), 1580-1591. 

https://doi.org/10.1016/j.neuroimage.2006.02.034 

Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 

243(4899), 1668-1674. https://doi.org/10.1126/science.2648573 

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). 

Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic 

resonance imaging identifies the dynamics of performance monitoring. Journal of 

Neuroscience, 25(50), 11730-11737. https://doi.org/10.1523/JNEUROSCI.3286-

05.2005  

Debnath, R., Buzzell, G. A., Morales, S., Bowers, M. E., Leach, S. C., & Fox, N. A. (2020). 

The Maryland analysis of developmental EEG (MADE) pipeline. Psychophysiology, 

57(6), e13580. https://doi.org/10.1111/psyp.13580 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. Journal of 

Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

Dien, J. (2010). The ERP PCA Toolkit: an open source program for advanced statistical analysis 

of event-related potential data. Journal of Neuroscience Methods, 187(1), 138-145. 

https://doi.org/10.1016/j.jneumeth.2009.12.009 



An open-source EEG processing standardization 

40 
 

Dimigen, O., Valsecchi, M., Sommer, W., & Kliegl, R. (2009). Human microsaccade-related 

visual brain responses. Journal of Neuroscience, 29(39), 12321-12331. 

https://doi.org/10.1523/JNEUROSCI.0911-09.2009 

Eaton, J. W. (2002). GNU Octave Manual. Network Theory Limited. Retrieved from 

http://www.octave.org 

Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The 

Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): 

Standardized Processing Software for Developmental and High-Artifact Data. Frontiers 

in Neuroscience, 12, 97. https://doi.org/10.3389/fnins.2018.00097 

Galambos, R. (1992). A comparison of certain gamma band (40-Hz) brain rhythms in cat and 

man. In E. Başar & T. H. Bullock (Eds.), Induced rhythms in the brain. Boston, MA: 

Birkhäuser. 

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus 

mechanical prediction: a meta-analysis. Psychological Assessment, 12(1), 19-30. 

https://doi.org/10.1037/1040-3590.12.1.19 

Hagemann, D. (2004). Individual differences in anterior EEG asymmetry: methodological 

problems and solutions. Biological Psychology, 67(1), 157-182. 

https://doi.org/https://doi.org/10.1016/j.biopsycho.2004.03.006 

Herrmann, C., Grigutsch, M., & Busch, N. (2005). Event-related potentials: a methods 

handbook. Todd Handy (Ed.), 229-259.  

Hipp, J. F., & Siegel, M. (2013). Dissociating neuronal gamma-band activity from cranial and 

ocular muscle activity in EEG. Frontiers in Human Neuroscience, 7, 338. 

https://doi.org/10.3389/fnhum.2013.00338 

Jung, T. P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, 

T. J. (2000). Removing electroencephalographic artifacts by blind source separation. 

Psychophysiology, 37(2), 163-178. https://doi.org/10.1111/1469-8986.3720163 

Junghöfer, M., Elbert, T., Tucker, D. M., & Braun, C. (1999). The polar average reference 

effect: A bias in estimating the head surface integral in EEG recording. Clinical 

Neurophysiology, 110(6), 1149-1155. https://doi.org/10.1016/S1388-2457(99)00044-9 

Kayser, J. (2009). Current source density (CSD) interpolation using spherical splines-CSD 

Toolbox (Version 1.1). New York State Psychiatric Institute: Division of Cognitive 

Neuroscience.  

Kayser, J., & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component 

identification and measurement: theoretical rationale and empirical evaluation. Clinical 



An open-source EEG processing standardization 

41 
 

Neurophysiology, 114(12), 2307-2325. https://doi.org/10.1016/S1388-2457(03)00241-

4 

Kayser, J., & Tenke, C. E. (2006a). Principal components analysis of Laplacian waveforms as 

a generic method for identifying ERP generator patterns: I. Evaluation with auditory 

oddball tasks. . Clinical Neurophysiology, 117(2), 348-368. 

https://doi.org/10.1016/j.clinph 

Kayser, J., & Tenke, C. E. (2006b). Principal components analysis of Laplacian waveforms as 

a generic method for identifying ERP generator patterns: II. Adequacy of low-density 

estimates. Clinical Neurophysiology, 117(2), 369-380. 

https://doi.org/10.1016/j.clinph.2005.08.033 

Kearney, K. (2020). boundedline.m (https://www.github.com/kakearney/boundedline-pkg). 

GitHub.  

Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., . . . Yee, C. 

M. (2014). Committee report: publication guidelines and recommendations for studies 

using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 

1-21. https://doi.org/10.1111/psyp.12147 

Kim, T., Eltoft, T., & Lee, T.-W. (2006). Independent vector analysis: An extension of ICA to 

multivariate components. Paper presented at the International conference on 

independent component analysis and signal separation. 

Korats, G., Le Cam, S., Ranta, R., & Hamid, M. (2012). Applying ICA in EEG: choice of the 

window length and of the decorrelation method. Paper presented at the International 

Joint Conference on Biomedical Engineering Systems and Technologies. 

Larson, M. J., & Carbine, K. A. (2017). Sample size calculations in human electrophysiology 

(EEG and ERP) studies: A systematic review and recommendations for increased rigor. 

International Journal of Psychophysiology, 111, 33-41. 

https://doi.org/10.1016/j.ijpsycho.2016.06.015 

Levin, A. R., Méndez Leal, A. S., Gabard-Durnam, L. J., & O’Leary, H. M. (2018). BEAPP: 

the batch electroencephalography automated processing platform. Frontiers in 

Neuroscience, 12, 513. https://doi.org/10.3389/fnins.2018.00513 

Luck, S. (2005). An introduction to the event-related potential technique. In. Cambridge, 

Massachusetts, London, England: MIT Press. 

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain 

dynamics. Trends in Cognitive Sciences, 8(5), 204-210. 

https://doi.org/10.1016/j.tics.2004.03.008 



An open-source EEG processing standardization 

42 
 

MATLAB. (2011). Natick, Massachusetts: The MathWorks Inc. 

Möcks, J., & Gasser, T. (1984). How to select epochs of the EEG at rest for quantitative 

analysis. Electroencephalography and Clinical Neurophysiology, 58(1), 89-92. 

https://doi.org/10.1016/0013-4694(84)90205-0 

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG 

artifact detector based on the joint use of spatial and temporal features. 

Psychophysiology, 48(2), 229-240. https://doi.org/10.1111/j.1469-8986.2010.01061.x 

Mullen, T. (2012). CleanLine EEGLAB plugin. San Diego, CA: Neuroimaging Informatics 

Toolsand Resources Clearinghouse (NITRC).  

Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical 

thresholding for EEG artifact rejection. Journal of Neuroscience Methods, 192(1), 152-

162. https://doi.org/10.1016/j.jneumeth.2010.07.015 

Pascual-Marqui, R., Michel, C. M., & Lehmann, D. (1994). Low-resolution electromagnetic 

tomography–a new method for localizing electrical activity in the brain. International 

Journal of Psychophysiology, 18, 49-65.  

Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. 

International Journal of Bioelectromagnetism, 1(1), 75-86.  

Pedroni, A., Bahreini, A., & Langer, N. (2019). Automagic: Standardized preprocessing of big 

EEG data. Neuroimage, 200, 460-473. 

https://doi.org/10.1016/j.neuroimage.2019.06.046 

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. (1989). Spherical splines for scalp potential 

and current density mapping. Electroencephalography and Clinical Neurophysiology, 

72(2), 184-187. https://doi.org/10.1016/0013-4694(89)90180-6 

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. (1990). Corrigenda EEG 02274. 

Electroencephalography and Clinical Neurophysiology, 76, 565–566.  

Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., . . . Taylor, M. J. 

(2000). Guidelines for using human event-related potentials to study cognition: 

Recording standards and publication criteria. Psychophysiology, 37(2), 127-152. 

https://doi.org/10.1111/1469-8986.3720127 

Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). 

Guidelines for the recording and quantitative analysis of electroencephalographic 

activity in research contexts. Psychophysiology, 30(6), 547-558. 

https://doi.org/10.1111/j.1469-8986.1993.tb02081.x 



An open-source EEG processing standardization 

43 
 

R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R 

Foundation for Statistical Computing.  

Roach, B. J., & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an 

overview of measures and an analysis of early gamma band phase locking in 

schizophrenia. Schizophrenia Bulletin, 34(5), 907-926. 

https://doi.org/10.1093/schbul/sbn093 

Rodrigues, J., Liesner, M., Reutter, M., Mussel, P., & Hewig, J. (2020a). It's costly punishment, 

not altruistic: Low midfrontal theta and state anger predict punishment. 

Psychophysiology, e13557. https://doi.org/10.1111/psyp.13557 

Rodrigues, J., Ziebell, P., Müller, M., & Hewig, J. (2020b). Tell me what I told you Mini-Me: 

Constructing and providing two layer feedforward networks for classification of 

continuous data in (and) a virtual T-maze. Manuscript submitted for publication.  

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: 

Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as 

Significant. Psychological Science, 22(11), 1359–1366. 

https://doi.org/10.1177/0956797611417632 

Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics (Vol. 5). Boston, MA: 

Pearson. 

Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role 

in object representation. Trends in Cognitive Sciences, 3(4), 151-162. 

https://doi.org/10.1016/s1364-6613(99)01299-1 

The jamovi project. (2020). jamovi [Computer Software]. Retrieved from 

https://www.jamovi.org.  

Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., . . . 

Willoughby, J. O. (2007). Scalp electrical recording during paralysis: quantitative 

evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical 

Neurophysiology, 118(8), 1877-1888. https://doi.org/10.1016/j.clinph.2007.04.027 

Winkler, I., Brandl, S., Horn, F., Waldburger, E., Allefeld, C., & Tangermann, M. (2014). 

Robust artifactual independent component classification for BCI practitioners. Journal 

of Neural Engineering, 11(3), 035013. https://doi.org/10.1088/1741-2560/11/3/035013 

Winkler, I., Debener, S., Müller, K.-R., & Tangermann, M. (2015). On the influence of high-

pass filtering on ICA-based artifact reduction in EEG-ERP. Paper presented at the 2015 

37th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC). 



An open-source EEG processing standardization 

44 
 

Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic classification of artifactual ICA-

components for artifact removal in EEG signals. Behavioral and Brain Functions, 7(1), 

30. https://doi.org/10.1186/1744-9081-7-30 

Wu, W., Keller, C. J., Rogasch, N. C., Longwell, P., Shpigel, E., Rolle, C. E., & Etkin, A. 

(2018). ARTIST: A fully automated artifact rejection algorithm for single‐pulse TMS‐

EEG data. Human Brain Mapping, 39(4), 1607-1625. 

https://doi.org/10.1002/hbm.23938 

 


