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Multiple testing
l Suppose your garden has an abundant supply 

of bryony 
 A poisonous weed

l You discover that bryony is used for eight 
different homeopathic treatments
 ankle sprain, arthritis, backaches, painful breasts,

broken bones, bruising, constipation, and coughs

l You are a bit skeptical about 
homeopathic approaches, so you 
decide to run a study to see whether 
bryony actually treats these problems



Multiple testing problem
l For a given set of data, multiple tests potentially inflate the 

probability of making at least one Type I error

l If you use a criterion of α for each of k=8 tests, then (if each null is 
actually true) the probability of a non-significant outcome is

l The probability of 8 tests all tests being non-significant is 

l The probability of at least one test being significant is 

l If we use a 0.05 criterion, we have



Multiple testing problem
l If we just keep testing bryony for problems where it does not actually 

work, we will sometimes incorrectly conclude that it does work

l If we then recommend that treatment, we will not actually be helping 
them
 And (if the world is rational), your bryony business will fail



Bonferroni correction
l A common approach to dealing with the multiple testing 

problem is to adjust the criterion for significance

l We want an adjusted criterion, αc, such that

l Šidák (1967)

l To a very good approximation, this is almost the same as 
the Bonferroni correction



Bonferroni correction
l In our bryony example, we would use

l If the null is true for all (independent) tests, then the 
probability of generating at least one Type I error

l This kind of correction controls the Type I error rate as 
intended by taking into account the variety of relevant tests
 Your samples are less likely to show bryony works as a treatment



ANOVA
l Similar issues pop up in lots of analyses

l For example, suppose you run a 2x2 independent 
ANOVA with α=0.05 and you will make some kind of
conclusion if you find any of the following:
 A significant main effect for factor 1

 A significant main effect for factor 2

 A significant interaction

l What’s the probability you will make some kind of 
conclusion, even if all population means equal each 
other?



ANOVA
l I don’t know of an analytical solution, but you can run 

simulated experiments to discover that the probability of 
concluding some effect is 0.14

l In each simulation, you generate “data” by sampling from 
a normal distribution

l And then running an ANOVA on the data

Condition1A  <- rnorm(20, mean=0, sd=1)
Condition1B <- rnorm(20, mean=0, sd=1)
Condition2A  <- rnorm(20, mean=0, sd=1)
Condition2B  <- rnorm(20, mean=0, sd=1)



ANOVA
l For a given ANOVA, you simply check whether you find a 

significant:
 Main effect for first factor

 Main effect for second factor

 Interaction

 At least one test

l Repeat 10,000 times and see what proportion of tests 
produce significant outcomes

alpha =  0.05
Type I error rate for main effect (first factor)= 0.0533 
Type I error rate for main effect (second factor)= 0.0496 
Type I error rate for interaction= 0.0464 
------
Type I error rate for at least one test (main effect or interaction)=  0.1409 



ANOVA
l Applying Bonferroni correction means using

l Which controls the Type I error rate for concluding some
effect

alpha =  0.0166667
Type I error rate for main effect (rows)= 0.017 
Type I error rate for main effect (columns)= 0.0154 
Type I error rate for interaction= 0.0163 
------
Type I error rate for at least one test (main effect or interaction)=  0.0472 



ANOVA
l Bonferroni is a bit conservative

 The tests are not independent because they use the same data 
set

l With simulations, you could try different values of α until 
finding one that gives the desired Type I error for that 
design

alpha =  0.01725 
Type I error rate for main effect (first factor)= 0.0172 
Type I error rate for main effect (second factor)= 0.0159 
Type I error rate for interaction= 0.0175 
------
Type I error rate for at least one test (main effect or interaction)=  0.0497 



Correction cost
l If there is an effect, applying Bonferroni dramatically 

reduces experimental power

l Suppose one of the k=8 tests is based on a real effect
 μ0=0 and μa=1 with σ=2

 And use n=40 observations for a one-sample t-test

l When using  

l The power of this test is 0.61

l If you used α=0.05, the power would be 0.87



Conclusions matter
l With multiple tests, scientists need to protect against 

Type I error for at least one comparison

l The reasoning is that if a scientist finds even one 
significant result, they will conclude that there is support 
for an effect

l What if we turn it around?

l Sometimes scientists require multiple significant results 
before concluding support for an effect



Means and proportions
l Nairne, Thompson & Pandeirada (2007): Survival processing

 Thinking about a word in terms survival leads to better memory than 
thinking about the word in terms of moving

 Within subjects design

l Each subject provides a score for how many words are 
recalled in each condition

l Two (one-tailed) tests that are related to the same effect 
(survival vs. moving processing)
 Test for mean differences across conditions (within subjects t-test)

 Test the proportion of subjects that have a higher score for the 
survival than for the moving scenario (higher than 0.5?)



Means and proportions
l Suppose the null hypothesis is true

 No difference in population means for survival and moving processing

l With (50,000) simulations, we find that the probability of 
having both tests produce a significant result using the 
α=0.05 criterion is only 0.02282
 Very conservative!

l Bonferroni correction makes things worse, 0.01202 



Reverse correction
l To control the Type I error rate based on both tests, we 

should relax the significance criterion for individual tests

l Simulations show that using α=0.085 leads to a Type I 
error rate of 0.05058

l Where Type I error means that both tests produced 
significant results at the 0.085 level

l An extra constraint on the data must be harder to 
achieve



RT and accuracy
l There are situations where reaction time and accuracy are expected 

to go together

l As stimulus “strength” (e.g., contrast or coherency) increases, reaction 
time decreases and percent correct identification increases

l Palmer, Huk & Shadlen (2005)



RT and accuracy
l Suppose a scientist wants to investigate the “strength” of illusory 

contours (Francis & Wede, 2010)



RT and accuracy
l Suppose a scientist wants to investigate the “strength” of illusory 

contours

l Discriminate vertical from horizontal illusory rectangle

l Vary the strength of the illusory rectangle



RT and accuracy
l We can generate simulated data using a version of the diffusion 

model (rtdists, Singmann et al., 2018)

l We assume two stimulus “strengths”: strong and weak

l If the null is true, both conditions sample from a model with the same 
parameters

l To conclude an “effect” of stimulus 
strength, we require both
 Significant (one-tailed) decrease in RT for strong

compared to weak stimulus

 Significant (one-tailed) increase in accuracy for
strong compared to weak stimulus



RT and accuracy
l Suppose the null hypothesis is true

 No difference in populations for strong or weak stimuli

l With (50,000) simulations, we find that the probability of 
having both tests produce a significant result using the 
α=0.05 criterion is only 0.00212
 Very conservative!

l Bonferroni correction makes things worse, 0.0006



Reverse correction
l To control the Type I error rate based on both tests, we 

should relax the significance criterion for individual tests

l Simulations show that using α=0.21 leads to a Type I 
error rate of 0.04648

l Where Type I error means that both tests produced 
significant results at the 0.21 level

l An extra constraint on the data must be harder to 
achieve



Within and between
l Facial feedback hypothesis

l Controversy about replication studies
 No effect

 Different methods?

l Marsh, Rhoads & Ryan (2018)

l Within subjects design, between subjects 
ordering of condition

l Argued there is a facial feedback effect on 
the basis of two tests from the same data
 Significant within-subjects comparison of 

conditions

 Significant between-subjects comparison of 
conditions for 1st trial only (more similar to original 
study)



Within and between
l Suppose the null hypothesis is true

 No difference in populations for strong or weak stimuli

l With (50,000) simulations, we find that the probability of 
having both tests produce a significant result using the 
α=0.05 criterion is only 0.01952
 Very conservative!

l Bonferroni correction makes things worse, 0.00774



Reverse correction
l To control the Type I error rate based on both tests, we 

should relax the significance criterion for individual tests

l Simulations show that using α=0.103 leads to a Type I 
error rate of 0.04886

l Where Type I error means that both tests produced 
significant results at the 0.103 level

l An extra constraint on the data must be harder to 
achieve



Using reverse correction
l In every case, the two tests work together to draw a 

coherent conclusion

l If an “effect” is present for one test it must also logically 
be present for the other test (except for sampling 
variability)
 Difference of means across conditions and difference of 

proportion of subjects showing advantage for one condition

 Difference of RT and difference of accuracy

 Within and between subjects comparisons for the same effect

l This requirement prevents use of reverse correction in 
many situations



Don’t use reverse correction
l Nairne, Pandeirada & Thompson (2008): Survival 

processing is the best of a variety of memory 
techniques (independent samples)
 Must reject 5 hypothesis tests



Don’t use reverse correction
l As before, it is the case that if all the null hypotheses 

are true, the Type I error rate for all tests is very low: 
0.00156

l You can set α=0.285 to make the Type I error rate for 
this situation be approximately 0.05

l However, it is quite plausible that some null hypotheses 
are true and other null hypotheses are false

l If even only 1 null hypothesis is true, then the overall 
conclusion is an error

l Using the adjusted criterion, the Type I error rate could 
be as high as 0.285!



Don’t use reverse correction
l Examine enhanced cognition near the hands (Weidler & 

Abrams, 2014)
 Eriksen flanker task as a measure of cognitive function

l Two tests:
 Significant interaction

 Significant contrast for 
incongruent trials



Don’t use reverse correction
l If all population means are equal to each other, using 

α=0.05 for both the test of interaction and the contrast is 
going to have a quite small Type I error rate

l You could adjust α to be larger and establish a 0.05 
Type I error rate

l However, it could be that there is an interaction (thus, 
the test would have high power) but not the contrast of 
interest (or vice-versa)

l Your Type I error would be close to the adjusted α value



Replication
l One response to the replication “crisis” is a call for more 

replications
 Often to double-check a finding

l E.g. Chiang, Shivacharan, Wei, Gonzales-Reyes & Durand 
(2018): ephaptic coupling for neurotransmission in the brain

The review committee at The Journal of Physiology – in which the 
research has been published – insisted the experiments be completed 
again before agreeing to print the study.

Durand et al. dutifully complied, but sound pretty understanding of the 
cautiousness, all things considered, given the unprecedented weirdness 
of the observation they're reporting.



Replication
l One response to the replication “crisis” is a call for more 

replications

l Often to double-check a finding

l E.g. Nosek, Spies & Motyl (2013)

Participants from the political left, right, and center (N = 1,979) 
completed a perceptual judgment task in which words were presented in 
different shades of gray. Participants had to click along a gradient 
representing grays from near black to near white to select a shade that 
matched the shade of the word. We calculated accuracy: How close to 
the actual shade did participants get? The results were stunning. 
Moderates perceived the shades of gray more accurately than extremists 
on the left and right (p = .01). 

We conducted a direct replication while we prepared the manuscript. We 
ran 1,300 participants, giving us .995 power to detect an effect of the 
original effect size at α = .05. The effect vanished (p = .59).

Our immediate reaction was “why the #&@! did we do a direct 
replication?” Our failure to replicate does not make definitive the 
conclusion that the original effect is false, but it raises enough doubt to 
make reviewers recommend against publishing.



Multiple testing
l For these types of replications, there are multiple tests, 

with the requirement that both experiments must produce 
a significant result
 Non-significance in either experiment would force researchers to 

not conclude evidence for an effect

l This interpretation has dramatic impacts on the 
properties of the hypothesis tests



Type I error
l Occurs when a random sample of data produces a 

“significant” outcome even though the null hypothesis is true

l For many people, the point of hypothesis testing is to control 
the rate of Type I errors
 p<0.05

l Suppose I require a significant outcome for two independent 
samples: an original study and a replication

l If the null is true, then the probability of getting two significant 
outcomes is 0.05 x 0.05 = 0.0025

l So, requiring replication success is very stringent in terms of Type I 
error



Reverse Bonferroni
l Suppose you wanted the Type I error rate across two 

studies to be 0.05

l You could require that each independent study produces a 
significant outcome with a criterion of

l If either study produces a non-significant result, you do not 
conclude there is an effect

l With μ0=0, μa=1, and σ=2 with n=25, each test has 
power=0.89

l The probability of both tests producing a significant result 
is 0.89×0.89= 0.79

l Note, you would still do better running a single test with 
n=50 and α=0.05 (Power=0.93)



Reverse Bonferroni
l If you require k independent tests to produce a significant 

result in order to conclude that there is “an effect”, then to 
have the Type I error rate for that conclusion to be α set 
the criterion for each independent test to be



Power
l Consider one-sample t-tests with null and alternative 

populations having μ0=0 and μa=1 with σ=2

l If you use two smaller samples, n=25, and increase 
the criterion to α=0.05, the probability of a significant 
out come for each test is 0.670, but the probability of 
both tests being significant is 0.670×0.670 = 0.449 

l With n=50 and α=0.0025, the power is 0.636

 One test with a criterion of α=0.0025 has more power than 
requiring two significant tests each with a criterion of α=0.05

l Neyman-Pearson lemma



Conclusions
l Multiple testing for at least one significant outcome leads to 

an increase in Type I error
 Resolved by reducing the significance criterion

l Multiple testing for a set of outcomes leads to 
a decrease in Type I error
Resolved by increasing the significance criterion
 Requires test to address the same theoretical conclusion

l Multiple testing across replications behaves similarly
 Resolved by increasing criterion used for each test

 Oftentimes there are better choices

l Reversing Bonferroni
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