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Correlations in meta-analyses 

 Usual main goal of a meta-analysis: Computing the mean correlation across 
studies (i.e. r) 

• Example: Is there some kind of dependence between personality 
constructs? 

 

 Issue 1: Correlation ≠ causation 

 

 Issue 2: r = 0 ≠ Lack of dependence 

• Crux of this presentation 

• r = 0 only means that there is no linear relationship 

• Risk of failing to identify nonlinear relationships, e.g. inverted-U 
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Nonlinear relationship: Example 1 

 Yerkes–Dodson law 

• Relationship between arousal and performance 

• Nonlinear relationship (inverted-U relationship) 

Diamond et al. (2007, p. 3) 
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Nonlinear relationship: Example 2 

 Relationship between Age and cognitive abilities 

• Non-monotonic relationship 

- Increase + decrease of cognitive abilities 

 

 

 

(Li et al., 2004, p. 158) 
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Nonlinear relationships in a meta-analysis 

 r can fail in meta-analyses when dealing with nonlinear relationships 

 

 What about other well-known effect sizes? 

• Spearman‘s rho, Kendall‘s tau etc. cannot detect non-monotonic 
relationships 

 

 

 Distance correlation () as a potential solution (Rizzo & Székely, 2016) 

• Different types of dependence can be assessed simultaneously 

• 𝑀𝑖𝑛 = 0, 𝑀𝑎𝑥  = 1 

- 0 means that there is no dependence 
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Assessing nonlinear relationships 

 

 Comparison of four different coefficients 

• Distance correlation, Pearson‘s ρ, Kendall‘s τ, and Spearman‘s ρ  

Linear relationship Inverted-U relationship 
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Distance correlation 

 Many applications of distance correlation  

• Exploratory data analysis (Székely & Rizzo, 2009) 

• Variable selection in regression models (Kong et al., 2015; Li et al., 2012; 
Yenigün & Rizzo, 2015) 

• Principal component analysis (Mishra, 2014) 

• Modelling autocorrelation in longitudinal studies (Edelmann et al., 2018; 
Zhou, 2012) 

• Measuring dependence between networks in brain imaging studies 
(Chen et al., 2019) 

 Potentially relevant in the meta-analytic context (Székely et al., 2007) 

• „Distance correlation can also be applied as an index of dependence; for 
example, in meta-analysis distance correlation would be a more 
generally applicable index than product-moment correlation ” (p. 2770) 
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 Goals of the present study 

• Testing the feasibility of using distance correlation in a meta-analysis 

• Comparing distance correlation to standard effect sizes 

 

 Computing distance correlation 

• R package energy  

• Conceptual similarity to Pearson correlation:                                     

Distance Correlation = 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑋 ∗𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑌
 

• It is based on distances between individual values  

- i.e. X = cognitive abilities: Person 1 vs Person 2; Person 1 vs Person 3 etc. 

- i.e. Y = age: Person 1 vs Person 2; Person 1 vs Person 3 etc. 

 

 

Current study 
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Computing distance correlation 

 For the Y variable b values are 
computed 

 

 

 

 

 

 

 Distances for the X variable: 

Distance Covariance 

Distance Variance 
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Current study 

 36 scenarios (4 x 3 x 3) 

• 4 different kinds of                                                                                          
dependence (see figure) 

• Number of samples in the                                                                                             
meta-analysis (k: 20, 50, 100) 

• Size of each sample                                                                                                         
(N: 50, 200, 1000) 

 

 For each sample the following effect sizes were computed: Kendall’s tau (τ), 
Spearman’s rho (ρ), Pearson correlation (r), distance correlation (), and 

unbiased distance correlation (𝑈) were computed  

 Next the mean effect sizes were computed (180 in total) 
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Current study 

 R packages: energy, bootstrap, metafor 

 

 

 

 Meta-analytic model: Random-effects model 

 

 

 Heterogeneity estimator: Restricted maximum likelihood (REML)  

- Good performance in simulation studies                                                         
(Langan et al., 2017; Veroniki et al., 2016) 
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Distance correlation in meta-analysis 

 Usually effect sizes are weighted (𝑤𝑖) in a meta-analysis 

• They depend on the sampling variance (𝑣𝑖) 

• Small samples  large variance  small weight 

 

 Sampling variance for distance correlation 

• Jackknife method has been recommended                                                          
(Székely & Rizzo, 2009) 

- Leave-one-out procedure 

- Compute distance correlation after                                                            
„deleting“ one pair of observation                                                                               
(i.e. data for one person) 

- Compare mean correlation across leave-one-out subsets to the 
correlation of each subset 

 

 

 

 

•  𝑤𝑖  = 
1

𝑣𝑖
 

• 𝑣𝑖=  sampling variance 

 

Image by HOerwin56 from Pixabay 

https://pixabay.com/users/HOerwin56-2108907/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2881117
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2881117
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Results (pattern A) 

 Data sets were simulated based on a 
true Pearson correlation (r) of .60 

 

 r performs best 

 

 τ understimates the dependence 

 

 Spearman‘s rho and distance 
correlations () perform similarly 

(slight underestimation) 

• Interestingly distance correlations 
perform worse in large samples 
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Results (pattern B) 

 τ, r, and ρ fail to identify an inverted-U 
relationship 

• Values close to 0 

 

 Only distance correlations () yield large 

values 
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Results (pattern C) 

 τ, r, and ρ fail to identify the               
non-monotonic relationship 

• Values close to 0 

 

 Only distance correlations () yield 

values greater than 0 

• Unbiased estimator yielded 
negative values for some small 
samples (N = 50) 
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Results (pattern D) 

 τ, r, and ρ fail to identify the               
non-monotonic relationship 

• Values close to 0 

 

 Only distance correlations () yield 

values greater than 0 

• Unbiased estimator yielded 
negative values for some small 
samples (N = 50) 
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Summary 

• Recommendation: Preliminary 
check 

- No dependence? Use r (software 
available: metafor etc.) 

- Dependence: Check scatter plots 
for each sample 

• If the relationship is linear – 
use r 

• Nonlinear or nonmonotonic 
relationships – use distance 
correlation 

 

 Only distance correlation was able to identify dependence across all 36 
scenarios 

 Use of distance correlation in a meta-analysis can be fruitful 
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Issues 

 Interpretation: Does a value of .01 imply dependence? 

• Statistical tests exist (Székely & Rizzo, 2009; Székely et al., 2007) 

- Pitfalls of p-value (Amrhein, Greenland, & McShane, 2019) 

 

 Unbiased estimator: Problems in small samples (negative values) 

• Common when dealing with unbiased statistics, i.e. 𝑎𝑑𝑗𝑅2 in multiple 
regression etc. (Rizzo & Székely, 2016; Székely & Rizzo, 2013) 

• How to deal with this issue in a meta-analysis?  

- Set negative values to zero?  

 Requires adjusting the jackknife technique – setting distance 
correlations to 0 

- Delete them from the meta-analysis? 
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Issues 

 Full data sets needed to compute distance correlation 

• It cannot be derived from summary statistics (M, SD, t, p etc.) 

• It cannot be derived from standard effect sizes (r, d, OR etc.) 

• Open Science to the rescue! 

- Willingness to share data is increasing 

- Many platforms available (osf, PsychArchives etc.) 

- Multi-lab studies (replications) 

- Peer Reviewers' Openness Initiative 

https://opennessinitiative.org/
https://opennessinitiative.org/
https://opennessinitiative.org/
https://opennessinitiative.org/
https://opennessinitiative.org/
https://opennessinitiative.org/
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Issues 

 The same distance correlation value can correspond to different patterns 
across samples (i.e. linear, quadratic) 

 Dealing with heterogeneity 

• Common heterogeneity statistics (𝐼2, Q, τ) may fail  

- Different patterns but the same distance correlation value  

• Failure of identifying moderators may lead to bad consequences, i.e. 

- Approval of interventions with side effects in certain groups 

- Rejection of promising interventions  

• Visual inspection of the data necessary 

• Changing the sign of distance correlation if plausible (i.e. U-relationship 
vs inverted-U relationship) 

• Subgroup analysis: Analyzing data sets with different patterns 
separately 
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Future research questions 

 Conducting meta-analyses based on real data 

 Benchmarks for interpreting  values 

 Applying distance correlation to three-level                                                    
meta-analytic models 

 Bayesian distance correlation 

 Comparing distance correlation to other new dependence measures 

• Maximal Information Coefficient (MIC), Total Information Coefficient 
(TIC), Heller Heller Gorfine measure (HHG) or Hoeffding’s D (de Siqueira 
Santos et al., 2014; Kinney & Atwal, 2014; Reshef et al. 2018; Speed, 
2011) 

• MIC and TIC seem to perform worse when dealing with linear patterns 
but are better when dealing with nonlinear patterns (Reshef et al., 
2018). 
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Appendix: Unbiased vs standard estimator 

 Unbiased estimator (Rizzo & Székely, 2016) 

 

 

 

 

 Standard estimator 

 

 

p. 33 
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Appendix: All results 

 


