Dynamically aggregating evidence in
community-augmented meta-analyses

Christina Bergmann

@chbergma

MAX PLANCK INSTITUTE
FOR PSYCHOLINGUISTICS

WWW.MPI.NL


mailto:christina.bergmann@mpi.nl

A notion of replication in meta-analyses

Pairs of studies in a meta-analysis live on a replication continuum
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Just in case: Replication distance matters
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Just in case: Replication distance matters

Close replications (black)

d=-0.22,se=0.06
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A notion of replication in meta-analyses

Groups of studies in a meta-analysis live in a replication space
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A notion of replication in meta-analyses

Groups of studies in a meta-analysis live in a replication space

Accurate (statistical) modeling

Original
study

-+ Determine effects of study
differences / commonalities on

/

\ \ replication distance




Use CAMASs to understand replication distance?




But first; What are CAMAS?



The classical meta-analysis

d  Few researchers » high workload
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The classical meta-analysis

d  Few researchers » high workload

d  Static, closed data

A New study = new meta-analysis?

A New moderator = new meta-analysis?
d Intransparent

A Selection

A Computation

A Analysis decisions

d Idiosyncratic format
1 Possible biases (see Tsuiji et al., submitted)




A proposal: Open and team up!

-+ Community-augmented meta-analyses (CAMAS)




Community-Augmented Meta-Analyses (CAMASs

Open repository + Classical meta-analysis

m PsychArchives

Disciplinary Repository for Psychological Science

PsychArchives is a disciplinary repository preserving a variety of digital research objects (DROs), with 21 different publication types (preprints, primary,
and secondary publications), research data, tests, preregistrations, multimedia and code. We provide easy and free access to DROs according to the
FAIR principles, which implies the commitment to ensure that research and research data are findable, accessible, interoperable, and reusable.
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PsychArchives in a nutshell

© Shared Digital Research Objects
(DRO)

- research outputs from the entire cycle of
psychological research are welcome,

©Citable and discoverable

- uploads are assigned a Digital Object
Identifier (DOI) to make them easily and
uniquely citable.

© Open licensing
- fostering re-use and open science.

O safe

- your research output is stored safely for
the future at a sustainable, publicly funded
infrastructure,

Quantifying Infants’ Statistical Word Segmentation: A Meta-Analysis
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Abstract analysis that examined natural specch word segmentation

Theories of language acquisition and perceptual learning
increasingly rely on statistical learning mechanisms.
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Development of infants’ segmentation of words from native
speech: a meta-analytic approach

Christina Bergmann and Alejandrina Cristia

Laboratoire de Seiences Cognitives et Psycholinguistigue (ENS, EHESS, CNRS), Département d"Etudes Cognitives, Ecole Normale

Supérieure, PSL Research University, Paris. France

Abstract

Infants start learning words, the building blocks of language, at least by 6 months. To do so. they must be able to extract the
feal form of words from running speech. A rich literature has investigated this process. 1ermed word segrentation.

We addressed the fundamental question of how infants of different ages segment words from their native language using a
meta-analytic approach. Based on previous popular theoretical and experimental work, we expected infants to display
Jamiliarity preferences early on. with a switch 1o novelty preferences as infants become more proficient at processing and
segnienting native speech. We alse considered the possibility that this switch may oceur at different points in time as a
function of infants’ wative language and 1wok into account the impact of various task- and stimuhas-related factors that might
affect difficulry. The combined results from 168 experiments reporting on data gathered from 3774 infants revealed a
persistent familiarity preference across all ages. There was no significant effect of additional faciors, inchiding native language
and experiment design. Further analyses revealed no sign of selective data collection or veporting. We conclude that models of
infant information processing that ave frequently cited in this domain may not, in fact, apply in the case of segmenting words
from native speech.




Community-Augmented Meta-Analyses (CAMAS)

+ + +

Open repository + Classical meta-analysis

Transparent
Searchable
Updatable

o File-drawer studies
o New results

Dynamic
o Adapt selection

+ Well-defined topic
+ Systematic synthesis
+ Detailed

o Design variables
o Moderators



CAMAs implemented

MetalLab

Early Language

How do children learn their native language?

k@
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1,649

Meta-analyses Effect sizes Participants

26,328

Cognitive Development

What is the nature of children's understanding?

155

Effect sizes

1,941

Participants

Meta-analyses

The metafor Package
A Meta-Analysis Package for R




CAMAs implemented Meta Lab
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Metalab: Making a researcher's life easier

Update Hypothesis
theory formulation

Analysis and Experiment

interpretation design

Data
collection



Scatter plot of effect sizes over age
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Scatter plot of effect sizes over age

Weighted linear model (Im) -
@ orticil
. . ® et
fos o °_ %
H
) 2 ° oo .
Coopert930  Cooper, R P & Asin, N R. Cooper & Asin (1950) 10.1111/,1467.8624,1930.002 yes &
Cooper19%0  Cooper, R P.& Aslin, . R. Cooper & Asin (1950) 10.1111/,1467.8624,1990.tb02 yes 5 0.0- ®
R 10.1111/.1467-8624.1994.t00C yes .'

10.1111/.1467-8624,1994 t00C yes

1111/1,1467-8624,1994550C yes s @

10.1111/.1467.8624,1994 t0C yes @ L)
101016501636383790037-0 yos o
10101650163638UINI0IT0 yos . e o

e

6

5 12
Mean Subject Age (Months)

d Few researchers Open Datasets . - ~tions

A Static, closed data

A New study = new MA?
[ New moderator = new MA? Metalab

d Intransparent metatab.stanford.edu

d  Selection
D CO m p u tati O n What is a meta-analysis?

[Combining the results of individual studies with statistical methods

Open Code

Can 8-month-old infants extract isolated word forms from natural speech?

d Analysis decisions | D e 1

i S The metafor Package
3 Idiosyncratic format AR

Design Choice Analyses M

1 Possible biases Tutorials

Introduction

\\\\\ et ﬁ\
na A 8
oaticipats 60 monch oryounger, 1 Main research question of this meta.a
2 .
Data available for each design choice variable 5 | TR
vethos
3
[coce |
s
' s Criterion_type
- ’ 1 Document type
! s 2 Patticipants
% 200} 3 2.1 Participants
* o] w | 3 Method

Dynamic Reports Standardized Templates



Improving meta-analyses

(R RS

Open
Dynamic

A  New study = expand MA
A New moderator = expand MA

Transparent

A Selection

A Computation

A Analysis decisions

Standardized format
Change/Check
selection

Scatter plot of effect sizes over age
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CAMAs: Tracking study differences
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CAMASs: Quantify the impact of study differences
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CAMASs in the times of
large-scale replication
projects



ManyBabies

Collaborate to

1) conduct high-powered conceptual replications of
key findings

2) understand development across ages and contexts
3) quantify cross-lab sources of variation

4) establish best practices

5) increase diversity in participants, laboratories, and

research questions



ManyBabies 1- Goals

> Test a key phenomenon




ManyBabies 1 - Goals

> Test a key phenomenon
> Quantify differences across labs




ManyBabies 1 - Goals

> Test a key phenomenon
> Quantify differences across labs
> Standardize where possible
& Investigate effects of systematic and incidental differences

-+ Most prominent: Method effects




Meta-analysis for planning ManyBabies 1

=> Exploit literature overview
=> Selecting efficient design and stimuli




Infant-Directed Speech Preference

Infant-Directed Speech (IDS): higher, slower, more variable in pitch,
preferred by infants over adult-directed speech
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Infant-Directed Speech Preference

Infant-Directed Speech (IDS): higher, slower, more variable in pitch,
preferred by infants over adult-directed speech

Theoretical importance

> Universal? Language Specific?
> Signal tailored for learning language?

Practical relevance

_ - i \./"
> Key recommendation for parents e\ } |,
> (Almost) All infant studies use IDS | ]




Infant-Directed Speech Preference: Meta-Analysis

Studies: 71 (from 23 papers)
Age: 0-18 months

Effect size: d =0.62, se = 0.1
Sample size: 20 (9-60)
Average power: 69%

Note: Updated from the paper, original
meta-analysis: Dunst, Gorman, & Hamby (2012)




Infant-Directed Speech Preference: Meta-Analysis

Studies: 71 (from 23 papers)
2 Age: 0-18 months

Effect size: d =0.62, se = 0.1
Sample size: 20 (9-60)
Average power: 69%

Effect Size

o

0 5 10 15
Megm Panicipant.Age{iianths) Note: Updated from the paper; original

meta-analysis: Dunst, Gorman, & Hamby (2012)




Infant-Directed Speech Preference: Meta-Analysis

Effect Size
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Studies: 71 (from 23 papers)
Age: 0-18 months

Effect size: d =0.62, se = 0.1
Sample size: 20 (9-60)
Average power: 69%

Note: Updated from the paper, original
meta-analysis: Dunst, Gorman, & Hamby (2012)



Selecting design and stimuli

- |dentify most "effective" way to test IDS preference

Note: Not a close replication




IDS preference - Design

e conditioning (n =5) >
i . ) test only (n = 33) >
‘e / " familiarization (n = 32)
go ) :‘ o ° o. \:\0\
* 5 :

Mean Participant Age (Months)

exposure_phase = conditioning == familiarization == test_only




IDS preference - Stimuli

Effect Size

0 5 10 15
Mean Participant Age (Months)

speech_type = Filtered == Naturalistic == Simulated == Synthesized

Stimulus effect (interaction
with age):

naturalistic (n = 20) >
simulated (n = 43)

Other options: filtered,
synthesized



Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)

Stimuli = naturalistic
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Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)
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Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)

Stimuli = naturalistic

=+ Subset meta-analysis /

Effect Size

10
Mean Participant Age (Months)
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Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)

Stimuli = naturalistic

=+ Subset meta-analysis /

New effect size: 0.66 (vs 0.62) 1

Effect Size
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Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)

Stimuli = naturalistic

=+ Subset meta-analysis /

New effect size: 0.66 (vs 0.62) 1

Effect Size

Note: Interaction with age positive

5 10
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Quantifying sources of variability in infancy research using the infant-directed
speech preference
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Abstract

Quantifying sources of variability in infancy research using the infant-directed speech The field of psychology has become increasingly concerned with issues related to
methodology and replicability. Infancy researchers face specific challenges related to
replicability: high-powered studies are difficult to conduct, testing conditions vary across labs,
and different labs have access to different infant populations, amongst other ...
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https://psyarxiv.com/s98ab/

Final Sample ManyBabies1

Number of Participating labs: 69 contributed data (67 in final sample)

Number of Countries: 17

Labs/city

Final Sample with Exclusions: 2329 participants | s

North American English: N =1066
Non-North American English: N =1263




Meta-Analyses versus Replication

* Meta-Analysis:
o Incidental variation and uncontrolled co-variation
m Stimuli
m Method
m Population (American / British / Canadian English; Cantonese; Japanese)




Meta-Analyses versus Replication

* Meta-Analysis:
o Incidental variation and uncontrolled co-variation
m Stimuli
m Method
m Population (American / British / Canadian English; Cantonese; Japanese)
* ManyBabies 1:
o Standardization (as much as possible)
m 1stimulus set

B 3 Methods = e -

e e

o More diverse population (16 languages) ’é‘v .
o New variable (nativeness) o




Meta-Analyses versus Replication
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Goals

1. Compare the main effect size to the meta-analysis
2. Consistent moderator effects - method?
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Visual comparison
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Predicting ManyBabies overall effect size

Bayesian approach:
Skeptic prior versus informed prior

Y Y

m=0, sd=0.3 m = 0.62, sd 01




Predicting ManyBabies overall effect size

Bayesian approach:
Skeptic prior versus informed prior
N[k N[k
m=0,sd=0.3 m = 0.62, sd 0.1

=+ No gain from informed prior




Meta-Analyses versus Replication: Main effect size

* Meta-Analysis:
o Incidental variation and uncontrolled co-variation
m Stimuli
m Method
m Population (American / British / Canadian English; Cantonese; Japanese)
* ManyBabies 1:
o Standardization (as much as possible)
m 1stimulus set

m 3Methods e s
o More diverse population (16 Ianguages?v v
o New variable (nativeness) o

.......
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Meta-Analyses versus Replication: Moderators

* Meta-Analysis:
o Incidental variation and uncontrolled co-variation
m  Stimuli
m Method (5, 2 dominant)
m Population (American / British / Canadian English; Cantonese; Japanese)
* ManyBabies 1:
o Standardization (as much as possible)
m 1stimulus set

m 3 Methods, evenly distributed @ = «woee i
o More diverse population (16 languages) ’ﬁ v
o New variable (nativeness) o

.......

yyyyyyyyyy




Predicting moderators: Method effect

Skeptic prior versus informed prior
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Skeptic prior versus informed prior
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Predicting moderators: Method effect

Skeptic prior versus informed prior

169
e
24 T .

1.01

-
L

Cohen's d

Cohen's d

o

————————————

Sl ‘
| L Ch wi

Centrall fixationCond. hleadtu n FIC

Centrallﬂxation Eye trzlacking HI-l’P
Methad Method




Predicting moderators: Method effect

Skeptic prior versus informed prior
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Summary: CAMAs and ManyBabies

Experiment planning:

=> Design
=>  Stimuli
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Summary: CAMAs and ManyBabies

Experiment planning:

=> Design
=>  Stimuli

Results:
=> Meta-analysis informative for moderators

Next steps:

=> Update meta-analysis (in progress)
=> Further dig into possible joint analyses
€ Open for participation!




Theory adjudication
though meta-analysis



Theories of language acquisition

Key characteristics

> Age as driving factor
> Universal stages




Theories of language acquisition

Universal speech perception

Language-specific speech perception

Sensory learning

Perception

T T 1
Production 0 1 2 3 4 5 6 7 8 9 10 1 12 Time

ge-specific speech prodi

Sensory-motor learning

Language-specific speech production

Universal speech production

Figure 1 | The universal language timeline of speech-perception and speech-production development. This figure shows
the changes that occur in speech perception and production in typically developing human infants during their first year of life.




Theory vs Reality

i 12 Time
T (months)




Theory vs Reality

Size of Productive Vocabulary

All Data (n = 2398)

300

200

100 A

=3

Age (months)

Quantile

i 12 Time
T (months)




A different way of conceptualizing

Prop. Children

Age




From point-estimates towards model comparison

Universal speech perception

Language-specific speech perception

Yy

Sensory learning

T
t

Perception

T T T T T 1
9 10 i 12 Time

1
Production 0 1 A _

Firsi words produced

ge-specific speech product

Sensory-motor learning -

Language-specific speech production

Universal speech production

Figure 1 | The universal language timeline of speech-perception and speech-production development. This figure shows
the changes that occur in speech perception and production in typically developing human infants during their first year of life.




From point-estimates towards model comparison

Universal speech perception

Language-specific speech perception

Sensory learning

Perception

1
Production 0 N




From point-estimates towards model comparison

Required:

% Clear (verbal) model predictions
«* Various skills on a common scale




Example: Sounds and words

2 different levels of processing

But: Knowing one helps with the other

ilen | ¢es batw tweenword 5




Example: Sounds and words

2 different levels of processing

But: Knowing one helps with the other - Which comes first?

ilen | ¢es batw tweenword 5




Theory 1. Sounds before words

A
s
- Age

>




Theory 2: Words before sounds

Skill




Theory 3: Parallel development

Skill




Preprocessing

Data quality check: Is the expected trajectory present?




Preprocessing

Data quality check: Is the expected trajectory present?

=+ Subset to studies with multiple age groups to control variation




Qualitative comparison

1.5 L]

Effect size Hedge's g

-1.01

0 25 5 75 10 12.5 15 17.5
Age in months

Dataset -~ Vowels-Native -~ Vowels-Nonnative - WordSeg

Bergmann, Cristia, & Tsuji (in prep/2017)



Qualitative comparison

8 ] Support for Theory 3:
parallel development

==

B}
g 091 -+ No clear developmental
o
3
5

0.5

-1.01

0 25 5 7.5 10 125 15 17.5
Age in months

Dataset -~ Vowels-Native -~ Vowels-Nonnative - WordSeg

Bergmann, Cristia, & Tsuji (in prep/2017)



Open questions

Divergence versus emergence?

Can we really compare studies that different?




Open questions

Divergence versus emergence?

Can we really compare studies that different?

Replication distance and method effects as
"noise"?

...or meaningful task effects?

-+ Prerequisite for useful model comparison




Summary



Why CAMAS?

Cohen's d

Central xaton _Eye tracking HPP
Method

Analysis and
interpretation

-10;

0 25 5 75 10 125 15 175
Age in months

Dataset - Vowels-Naiive - Vowels-Nonnative - WordSeg

Update
theory

Data
collection

Caoper1990  Cooper, R.P. & Asiin, N. R.
Cooper1990  Cooper, R P. & Asin, N.R.
Coopert994  Cooper, R P. & Asin. N.R
Coopert994  Cooper, R P. & Asin, N.R
Caoper1994  Cooper, R.P. & Asiin,N. R
Caoper1994  Cooper, R.P. & Aslin, N. R
Coopert997  Cooper, R P. Abraham, J.
Cooper1997  Cooper, R P. Abraham, J.
Caoper1997  Caoper, R. P Abraham, J..

Hypothesis

formulation

design

Cooper & Asin 1950)
Cooper & Asin 1950)
Cooper & Asfin (1994)
Coaper & Asin (1594)
Cooper & Astin (1934)
Cooper & Astin (1934)
Cooper et al. (1997)
Cooper et al. (1997)
Gooperetal. (1957)

Experiment

Effect Size

10.1111/.1467-8624,1990.t002 yes
10.1111/.1467-8624,1990.t002 yes
101111/.1467-8624,1994.t00C yes
101111/, 1467-8624,1394.th0C yes
10.1111/.1467-8624,1994.1b0C yes
10.1111/.1467-8624,1994.1b0C yes
10.1016/50163.6383(57)90037-0

yes

0 yes
10.1016/501636383(9T190037-0  yes

5 10
Mean Participant Age (Months)

exposure_phase == conditioning == familarization == test_only



CAMASs to understand replication in meta-analyses

Rich, dynamic data

-+ Determine effects of study
differences / commonalities on

Original
study / replication distance

U

S~




CAMASs to understand replication in meta-analyses

Rich, dynamic data

-+ Determine effects of study
differences / commonalities on

Original
study / replication distance

/
\ \ Leverage meaningful variation,

control "noise"

S~




CAMASs to understand replication in meta-analyses

Improve our models (statistical and cognitive)

Original
study

\

e
k\




Future directions

Integrate participant-level data ﬁ

-+ Multi-level approach experts welcome

OPEN DATA
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= Further increase engagement (see also yesterday's talk)




Future directions

Integrate participant-level data ﬁ

-+ Multi-level approach experts welcome

OPEN DATA

Improve educational tools
= Further increase engagement (see also yesterday's talk)

Facilitate data upload

-+ Automatic integration of new meta-analyses




Thank you




