
Dynamically aggregating evidence in 
community-augmented meta-analyses

Christina Bergmann
christina.bergmann@mpi.nl
@chbergma

 

mailto:christina.bergmann@mpi.nl


A notion of replication in meta-analyses

Original 
study Generalization

Exact 
replication

Sampling 
error only

Broad / Varied 
replication

Sampling + what was altered

Conceptual 
replication

Pairs of studies in a meta-analysis live on a replication continuum
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Black & Bergmann (in prep/2017)



Just in case: Replication distance matters

Close replications (black)

   d = -0.22, se = 0.06

All studies (grey)

   d = -0.07, se = 0.05

Black & Bergmann (in prep/2017)
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A notion of replication in meta-analyses

Original 
study

Accurate (statistical) modeling

→ Determine effects of study 
differences / commonalities on

replication distance

Groups of studies in a meta-analysis live in a replication space



Use CAMAs to understand replication distance?



But first: What are CAMAs?
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The classical meta-analysis

❏ Few researchers → high workload
❏ Static, closed data

❏ New study = new meta-analysis?
❏ New moderator = new meta-analysis?

❏ Intransparent 
❏ Selection
❏ Computation
❏ Analysis decisions

❏ Idiosyncratic format
❏ Possible biases (see Tsuji et al., submitted)



A proposal: Open and team up! 

→ Community-augmented meta-analyses (CAMAs)
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Community-Augmented Meta-Analyses (CAMAs)

Open repository + Classical meta-analysis

＋ Transparent
＋ Searchable
＋ Updatable

○ File-drawer studies
○ New results

＋ Dynamic
○ Adapt selection

＋ Well-defined topic
＋ Systematic synthesis
＋ Detailed 

○ Design variables
○ Moderators



CAMAs implemented



CAMAs implemented

Map: Francis Galton(Life time: 17 January 1911) [Public domain]

Michael C. Frank
Stanford

Molly L. Lewis 
Chicago/Wisc.

Alejandrina Cristia
ENS, Paris

Cécile Issard
ENS, Paris

Sho Tsuji
Tokyo

+ Team of 
Curators



MetaLab: Making a researcher's life easier

Hypothesis 
formulation

Update 
theory

Experiment 
design

Analysis and 
interpretation

Data 
collection



Tutorials

Improving meta-analyses

metalab.stanford.edu

Dynamic Reports Standardized Templates

Open Code

Open Datasets
Visualizations
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Improving meta-analyses

❏ Open 
❏ Dynamic

❏ New study = expand MA
❏ New moderator = expand MA

❏ Transparent 
❏ Selection
❏ Computation
❏ Analysis decisions

❏ Standardized format
❏ Change/Check                      

selection

✔

✔

✔

✔

✔ Tutorials

metalab.stanford.edu

Dynamic Reports Standardized Templates

Open Code

Open Datasets
Visualizations



CAMAs: Tracking study differences

1. Standardized
2. Expandable



CAMAs: Quantify the impact of study differences

Case study: Method

Across all meta-analyses 
on language development

Updated from Bergmann et al. (2018)



CAMAs in the times of 
large-scale replication 
projects



ManyBabies 

Collaborate to 

1) conduct high-powered conceptual replications of 
key findings

2) understand development across ages and contexts 
3) quantify cross-lab sources of variation 
4) establish best practices 
5) increase diversity in participants, laboratories, and 

research questions



ManyBabies 1 - Goals 

➢ Test a key phenomenon
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ManyBabies 1 - Goals 

➢ Test a key phenomenon
➢ Quantify differences across labs

➢ Standardize where possible
& Investigate effects of systematic and incidental differences

→ Most prominent: Method effects 



Meta-analysis for planning ManyBabies 1

➔ Exploit literature overview
➔ Selecting efficient design and stimuli
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Infant-Directed Speech Preference

Infant-Directed Speech (IDS): higher, slower, more variable in pitch, 
preferred by infants over adult-directed speech

Theoretical importance

➢ Universal? Language Specific?
➢ Signal tailored for learning language? 

Practical relevance

➢ Key recommendation for parents
➢ (Almost) All infant studies use IDS



Infant-Directed Speech Preference: Meta-Analysis

Studies: 71 (from 23 papers)
Age: 0-18 months
Effect size: d = 0.62, se = 0.1
Sample size: 20 (9-60)
Average power: 69%

Note: Updated from the paper, original 
meta-analysis: Dunst, Gorman, & Hamby (2012)
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Infant-Directed Speech Preference: Meta-Analysis

Studies: 71 (from 23 papers)
Age: 0-18 months
Effect size: d = 0.62, se = 0.1
Sample size: 20 (9-60)
Average power: 69%

Note: Updated from the paper, original 
meta-analysis: Dunst, Gorman, & Hamby (2012)



Selecting design and stimuli

→ Identify most "effective" way to test IDS preference

Note: Not a close replication



IDS preference - Design

conditioning (n = 5) > 
test only (n = 33) > 
familiarization (n = 32)



IDS preference - Stimuli

Stimulus effect (interaction 
with age):

naturalistic (n = 20) > 
simulated (n = 43)

Other options: filtered, 
synthesized
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Re-designing the optimal study: ManyBabies 1

Design = test only (no exposure phase)

Stimuli = naturalistic

→ Subset meta-analysis 

New effect size: 0.66 (vs 0.62)

Note: Interaction with age positive



Stage 2 Registered Report under review at 
Advances in Methods and Practices in 

Psychological Science
Stage 1 preprint: https://psyarxiv.com/s98ab/ 

https://psyarxiv.com/s98ab/


Final Sample ManyBabies1

Number of Participating labs: 69 contributed data (67 in final sample)

Number of Countries: 17 

Final Sample with Exclusions: 2329 participants

North American English:      N = 1066
Non-North American English: N = 1263
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Meta-Analyses versus Replication 

Map: Francis Galton(Life time: 17 January 1911) [Public domain]

Riccardo Fusaroli
Aarhus



Goals

1. Compare the main effect size to the meta-analysis
2. Consistent moderator effects - method? 



Visual comparison

Meta-analysis

d = 0.62, se = 0.1
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Visual comparison

Meta-analysis

d = 0.62, se = 0.1

ManyBabies 1

d = 0.36, se = 0.03
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Bayesian approach:

Skeptic prior versus informed prior

⇓                                ⇓

   m = 0, sd = 0.3 m = 0.62, sd 0.1

→ No gain from informed prior

Predicting ManyBabies overall effect size



Meta-Analyses versus Replication: Main effect size 

★ Meta-Analysis: 
○ Incidental variation and uncontrolled co-variation 

■ Stimuli
■ Method
■ Population (American / British / Canadian English; Cantonese; Japanese)

★ ManyBabies 1:
○ Standardization (as much as possible)

■ 1 stimulus set
■ 3 Methods

○ More diverse population (16 languages) 
○ New variable (nativeness)



Meta-Analyses versus Replication: Moderators 

★ Meta-Analysis: 
○ Incidental variation and uncontrolled co-variation 

■ Stimuli
■ Method (5, 2 dominant)
■ Population (American / British / Canadian English; Cantonese; Japanese)

★ ManyBabies 1:
○ Standardization (as much as possible)

■ 1 stimulus set
■ 3 Methods, evenly distributed

○ More diverse population (16 languages) 
○ New variable (nativeness)



Predicting moderators: Method effect
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⇓                                
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Predicting moderators: Method effect

Skeptic prior versus informed prior 

⇒
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Summary: CAMAs and ManyBabies

Experiment planning:

➔ Design
➔ Stimuli 

Results:

➔ Meta-analysis informative for moderators

Next steps:

➔ Update meta-analysis (in progress)
➔ Further dig into possible joint analyses

◆ Open for participation!



Theory adjudication 
though meta-analysis 



Theories of language acquisition

Key characteristics

➢ Age as driving factor
➢ Universal stages



Theories of language acquisition

Kuhl (2004). https://www.nature.com/articles/nrn1533



Theory vs Reality

Kuhl (2004). https://www.nature.com/articles/nrn1533



Theory vs Reality

Kuhl (2004). https://www.nature.com/articles/nrn1533wordbank.stanford.edu, Danish data 



A different way of conceptualizing

Age
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From point-estimates towards model comparison

Kuhl (2004). https://www.nature.com/articles/nrn1533



From point-estimates towards model comparison

Kuhl (2004). https://www.nature.com/articles/nrn1533



Required:

❖ Clear (verbal) model predictions
❖ Various skills on a common scale

From point-estimates towards model comparison



Example: Sounds and words

2 different levels of processing

But: Knowing one helps with the other



Example: Sounds and words

2 different levels of processing

But: Knowing one helps with the other - Which comes first?



Theory 1: Sounds before words

Age

Sk
ill



Theory 2: Words before sounds

Age

Sk
ill



Theory 3: Parallel development

Age

Sk
ill



Preprocessing

Data quality check: Is the expected trajectory present?



Preprocessing

Data quality check: Is the expected trajectory present?

→ Subset to studies with multiple age groups to control variation

Age



Qualitative comparison

Bergmann, Cristia, & Tsuji (in prep/2017)



Qualitative comparison 

Support for Theory 3: 
parallel development

→ No clear developmental 
order 

Bergmann, Cristia, & Tsuji (in prep/2017)
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Open questions

Divergence versus emergence?

Can we really compare studies that different?

Replication distance and method effects as 
"noise"?   

...or meaningful task effects?

→ Prerequisite for useful model comparison



Summary



Why CAMAs?

Update 
theory

Experiment 
design

Analysis and 
interpretation

Data 
collection

Hypothesis 
formulation
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Rich, dynamic data

CAMAs to understand replication in meta-analyses

Original 
study

→ Determine effects of study 
differences / commonalities on

replication distance

Leverage meaningful variation, 
control "noise"



Improve our models (statistical and cognitive)

CAMAs to understand replication in meta-analyses

Original 
study
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Future directions

Integrate participant-level data 

→ Multi-level approach experts welcome

Improve educational tools

→ Further increase engagement (see also yesterday's talk)

Facilitate data upload 

→ Automatic integration of new meta-analyses



Thank you


