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Empirical Research
Hand Position Affects Performance on Multiplication Tasks
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Abstract

We investigated whether or not hand placement affects people’s ability to apply learned mathematical information in new and familiar
contexts. Participants learned a set of arithmetic facts presented one way (i.e., in a x b = ¢ format) and then were tested on those same
facts shown in either a novel format (b x a = __) in Experiment 1 or in the previously-learned format (a x b = __) in Experiment 2.
Throughout study and test, participants’ hands were either near to or far from the stimuli. Performance on the novel format was worse when
the hands were near compared to far, but performance on the previously-learned format did not depend on hand placement. Together,
results indicate that hand proximity impairs mathematical performance when performance depends on the abstracting of conceptual
information from sensory information. We conclude that hand placement may be involved in the application of knowledge.
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Recent pedagogical advances in science, technology, engineering, and mathematics (STEM) aim to enhance
student learning through hands on, interactive experiences (for recent reviews, see de Jong, Linn, & Zacharia,
2013; Freeman et al.,, 2014). Many instructional tools and techniques have been developed that seek to
foster conceptual knowledge through manual interactions with objects that are concrete representations of
to-be-learned concepts (e.g., Pouw, van Gog, & Paas, 2014). This practice has a long history in mathematics
education with both researchers and educators arguing for its utility (e.g., Bruner & Kenney, 1965; Montessori,
1912). Cognitive scientists have built on this tradition by attempting to identify the cases in which such manual
interactions with concrete objects can best be used in an educational setting (e.g., Laski, Jor’'dan, Daoust, &
Murray, 2015). Additionally, with the proliferation of mobile technologies there is now growing interest in the
development of virtual manipulatives that allow students to interact with computer generated images that can
be dynamically explored via mouse or hand movement to reveal new concepts and relationships (e.g., Moyer-
Packenham & Westenskow, 2013; Ottmar, Landy, Weitnauer, & Goldstone, 2015; Sarama & Clements, 2009).
An important task for psychologists, therefore, is to further clarify the degree to which, and circumstances under
which, interacting with learning materials may help or hinder learning.
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One recent meta-analysis of 66 studies suggests that virtual manipulatives can offer consistent benefits to
learning and student achievement across many areas of mathematics and across several grade levels (Moyer-
Packenham & Westenskow, 2013; see also Moyer-Packenham & Westenskow, 2016). These benefits have
been linked to several possible factors, but one important aspect of virtual manipulatives seems to be the
manner in which they focus and constrain attention toward the mathematical task at hand. By focusing attention
on the mathematical aspects of what a problem solver is manipulating, such manipulatives can draw attention
to important information while simultaneously preventing the problem solver from using the materials in less
educational ways. For example, children learning about place value using a set of base-ten materials on the
computer can more readily focus on how to manipulate multiple blocks to create new sets, given the ease with
multiple blocks can be manipulated at the same time. In contrast, when children work with physical materials,
they have the added distraction of needing to handle those multiple blocks individually and, thus, are more
likely to focus on the manipulations themselves instead of on the broader idea of how these manipulations are
changing place value (Sarama & Clements, 2009).

That said, benefits of virtual interactivity are not universal. Indeed, within many e-books and apps there are
“hotspots” wherein interacting with the materials can draw attention away from what is being learned (de Jong
& Bus, 2003; Takacs, Swart, & Bus, 2015). For example, pressing on an illustration that animates one of
the characters or triggers a sound effect in an e-book can draw attention away from the story being told.
The presence of these hotspots is, therefore, associated with lower levels of learning, possibly because they
distract children from the to-be-learned material (Takacs et al., 2015). This same idea applies to e-learning
more generally and not just interactions with e-books. In one review of 33 eye-tracking studies investigating
e-learning (predominately with undergraduate populations) it was suggested that interactivity can lead to an
unnecessary increase in cognitive load by forcing learners to balance their attention between what they are
interacting with and the text they are reading (Yang et al., 2018).

Although the effects of interactivity with electronic formats may vary, it is clear that at least one source of its
benefits and detriments is the control of attention. That is, the means by which interactivity influences attention
can determine how well a student learns the given information. One factor that may influence attention during
learning that has been overlooked when interpreting effects of interactivity is that of the placement of the hands.
When students use manipulatives or virtual manipulatives, they not only embody actions relevant to what they
are learning (e.g., grouping a set of two items from a pile of eight to “make %4 of 8”; Martin & Schwartz, 2005),
but also place their hands on or near the learning materials. How much of the observed effects can be attrib-
uted to this hand placement? Foreshadowing the current studies, we investigated the role of hand placement in
people’s learning and application of arithmetic facts. Based on the extant literature, there were good reasons to
suspect that hand placement would affect people’s performance in such a task, given the research highlighting
the importance of both attention in mathematical cognition, and the role of hand placement in influencing
attention. However, exactly how hand placement should be expected to influence performance was less clear.
To begin, we first provide a brief overview of how attention influences mathematical performance and then
move to summarizing the link between attention and hand placement.

Attention in Mathematical Task Performance

Research suggests that attention can influence learning and performance in STEM (see Cragg & Gilmore,
2014; Erickson, Thiessen, Godwin, Dickerson, & Fisher, 2015; Geary, 2013; Grant & Spivey, 2003; Samuels,
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Tournaki, Blackman, & Zilinski, 2016). It influences basic processing of numerical information, such as perform-
ance on measures of nonsymbolic numerical comparison (e.g., Fuhs & McNeil, 2013; Fuhs, Nesbitt, & O'Rear,
2018; Gilmore et al., 2013; Wilkey & Price, 2018), as well as the ability to quickly enumerate, or subitize,
small sets (e.g., Olivers & Watson, 2008; Railo, Koivisto, Revonsuo, & Hannula, 2008; Vetter, Butterworth,
& Bahrami, 2008). It is also important for higher-level calculation abilities, as children with higher levels of
attentional control are thought to more easily use their working memory to store information about the problem
they are currently solving (e.g., Swanson & Kim, 2007). Similarly, children with higher levels of attentional
control show higher levels of arithmetic fluency (e.g., Fuchs et al., 2006). That is, they solve a given arithmetic
problem faster than their peers with lower levels of attentional control, or they solve more problems in a set
amount of time. This fluency also affects learning. As children become more fluent in their arithmetical problem
solving attentional resources are freed that allow them to discover and test more advanced problem-solving
strategies (e.g., Shrager & Siegler, 1998; Siegler & Araya, 2005). This may explain, in part, why children with
lower levels of attentional control experience delays in advancing to more sophisticated addition strategies
(Geary, Hoard, Nugent, & Bailey, 2012).

Computational modeling shows how freeing attentional resources can support better arithmetic learning
(Shrager & Siegler, 1998; Siegler & Araya, 2005). Because attention exists as part of a cognitive system with
limited resources, children must free up the necessary resources to be able to attend to the entire problem they
are solving. Early on, a child might solve a simple addition problem (e.g., 2 + 4) by summing the two addends,
starting from one (e.g., holding up two fingers then four fingers and counting 1, 2, 3, 4, 5, 6). Over time, as
the child gains fluency with this procedure and fewer resources are needed to solve the problem; these extra
attentional resources in turn allow the child to test out new strategies (Shrager & Siegler, 1998). Eventually,
the child comes to realize that it is more efficient to solve such problems by beginning computations from the
larger addend (e.g., both 4 + 2 and 2 + 4 can quickly be solved by starting at 4 and adding 2; 4...5, 6). This
new strategy will become more prevalent over time given its increased efficiency. However, without gaining
procedural fluency, children would not have the necessary attentional resources to shift to the new strategy that
focuses first on the larger addend.

Eventually, children progress to the most efficient of arithmetic strategies—directly retrieving the answer from
memory without needing to perform any computations. Here, too, attention remains important. Those with
higher working memory capacity are thought to have more attentional resources available when faced with an
arithmetic problem, allowing them to retrieve the answer from memory more quickly and accurately. Indeed,
third and fourth grade students who can store more in their working memory are more likely to use retrieval
strategies when solving addition problems (e.g., Barrouillet & Lépine, 2005).

Attentional control also plays an important role in the learning of multiplication facts. When first introduced to
multiplication, learners must calculate the answer to each and every problem (e.g., 3 x4 =3+ 3 + 3 + 3).
However, over time, the associations between specific problems (e.g., 6 x 2) and their solutions (12) become
strong enough to allow the learner to simply retrieve the correct answer (e.g., Lemaire & Siegler, 1995). In
other words, with experience, learners progress from a more time-intensive, error prone strategy of calculating
the solution to a more accurate strategy of simply recalling the answer based on previous experience. By
third grade students are already using retrieval as a common strategy for solving multiplication problems (e.g.,
Koshmider & Ashcraft, 1991). However, even this retrieval is not perfect.
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During the process of retrieving the solution, representations for related problems can be activated (e.g.,
Campbell & Graham, 1985). Attentional control is thought to be key in allowing individuals to retrieve the correct
response from memory by inhibiting these related but incorrect responses (e.g., Cragg & Gilmore, 2014).
In other words, when viewing an arithmetic problem (6 x 3 = __ ), individuals will activate both the correct
representation but also related representations (6 x 4 = or 6 + 3 = ). In order to retrieve the correct
response the individual must inhibit the irrelevant representations and select the answer. This need to inhibit
related representations may also explain, at least in part, why children with learning disabilities struggle with
using retrieval strategies. Children with learning disabilities have lower levels of attentional control, which in turn
may explain why they are more likely to respond with incorrect responses from the same multiplication table
(viewing 3 x 4 and responding with the answer to 2 x 4; Barrouillet, Fayol, & Lathuliere, 1997). Across these
findings, it is clear that retrieval is a common strategy for solving arithmetic problems, but attention plays a key
role in allowing individuals to enact such a strategy.

In addition to the role of attention, the structure of students’ internally represented arithmetic facts also
influences the speed with which they solve multiplication problems. Adults are thought to store two related
multiplication facts in one representation (i.e., the two forms of a problem could be stored in a max x min
format). For example, both 4 x 8 and 8 x 4 could be solved by accessing the same internal representation
stored as 8 x 4. By storing each commutative pair within just one representation, the overall memory load of
these representations is reduced (Verguts & Fias, 2005). In other words, an understanding of the principle of
commutativity can be reflected in individuals’ use of one representation to solve two forms of a multiplication
problem. Such an understanding, however, does not mean that individuals can seamlessly access a represen-
tation no matter which way it is presented (i.e., solution times for 4 x 8 and 8 x 4 will differ). This is because
individuals will need to transform a given problem to reflect their internal representation. If an individual has
stored the fact in the form 8 x 4 and is asked to solve 4 x 8, they must first transform the problem to be able
to retrieve the solution (Verguts & Fias, 2005). Indeed, individuals solve commutative pairs at different rates
(e.g., Butterworth, Marchesini, & Girelli, 2003), though these differences in solution times do not mean that
these problems are not accessing the same representation, as children as young as eight are able transfer
knowledge from one learned multiplication math fact to its commutative pair (Baroody, 1999).

The summary above demonstrates how attention influences the ability to learn or process arithmetic strategies.
It also shows that attention plays a role in the retrieval of multiplication facts during problem solving. Of
particular relevance to the current study is the commutativity principle. In two experiments, college students
studied a set of multiplication facts (of the format a x b = ¢) and then were asked to either transfer their learning
to a novel format (Exp. 1; b x a=_ ) or the same format (Exp. 2; a x b =_ ). Recall, such transfer is possible
even in children (e.g., Baroody, 1999), but comes at a cost for response time (RT) (e.g., Butterworth et al.,
2003). Of interest here is whether hand placement near the material will enhance or hinder such RT. In the next
section, we motivate three competing hypotheses by drawing on the research on how hand placement may
influence attention more broadly.

Attention, Memory, and Hand Placement

The positioning of one’s hands while completing a variety of tasks can have profound impacts on performance
independent of any concomitant visual and physical demands that may be associated with hand manipulation
(see Abrams, Davoli, Du, Knapp, & Paull, 2008; Reed, Grubb, & Steele, 2006; Weidler & Abrams, 2013).
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A variety of cognitive explanations have therefore been devised and, although the research reviewed so far
should make it clear that attention is important for mathematics performance, exactly how hand placement may
influence attention in such tasks is unclear.

The enhanced attention hypothesis supposes that attentional mechanisms are enhanced near the hands. The
hypothesis stems, in part, from the fact that learning and memory are inextricably linked to attention (see
Brockmole, Davoli, & Cronin, 2012, for a review). According to the enhanced attention hypothesis, people ought
to perform better on a mathematics test when it is near their hands because, in many ways, they are better able
to attend to information near their hands. For instance, in attentional cuing tasks, people are faster to react to
dot-probes that happen to appear near their hand—even though they have no ostensible reason to prioritize
that space over other regions of the visual field, insofar as the task is concerned (Reed et al., 2006). In the
competition for attentional resources, the hands have an edge. The corollary to this, of course, is that whatever
falls beyond near-hand space ought to be at a (relative) disadvantage—on the basis of attention being a limited
resource, and there being less to go around. Using an Erikson-type flanker task, which measures how well
people can maintain their focus on a central stimulus while simultaneously trying to ignore visual distractions
in the immediate periphery, we found that participants were more successful (i.e., less distracted) if they had
their hands (but not other barriers) positioned between the central stimulus and the peripheral distractors
(Davoli & Brockmole, 2012). Taken together, these findings demonstrate that selective attention is intimately
tied to near-hand space, with a particularly relevant implication for education being that people can shape their
attentional window by how they position their hands.

On the other hand, the disrupted reading hypothesis argues that the processes that facilitate reading efficiency
are reduced when the to-be-read information is placed near the hands. This hypothesis is motivated by
research on the relationship between hand placement and performance on the Stroop color-word task (Davoli,
Du, Montana, Garverick, & Abrams, 2010). In that study, participants exhibited a reduced Stroop interference
effect when the stimuli were near to compared to far from their hands. These findings suggested that hand
proximity disrupted the relative automaticity with which words were read. It is also known—through prior
research using the counting Stroop paradigm (e.g., see 22222 but respond with how many digits there are, so
“5”; Muroi & Macleod, 2004)—that digits, like letters and words, are read relatively automatically. If words are
read less automatically near the hands, and digits are read relatively automatically like words are, then perhaps
digits would also be read less automatically near the hands. That is, the readable text of a multiplication
problem (like 17 x 5 = ) should be processed more slowly when it is near the hands, leading to longer RT.

The above hypotheses predict that hand proximity should either enhance or impair performance on symbolic
arithmetic problems. Although contradictory in their predictions, those hypotheses are unified by fact that they
do not take into account possible differences in performance across specific contexts or circumstances: They
respectively argue that hand proximity is beneficial and should be generally exploited, or that hand proximity is
detrimental and should be generally avoided. A third possibility, of course, is that the answer is more nuanced.
Under this view, whether hand proximity enhances or impairs (or does nothing to) performance depends on the
characteristics of the stimuli at study and test.

The primary evidence in support of the context-dependent view comes from research conducted in the domain
of visual learning. In one study (Davoli, Brockmole, & Goujon, 2012), participants viewed hundreds of images
of complex, vibrant geometric imagery, like fractals and kaleidoscopic patterns, and searched for a target letter
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embedded within each image. While the task itself did not explicitly call for learning, learning was nevertheless
possible. Over the course of the study, several of the geometric patterns repeated, and these repeated patterns
were always predictive of target location. Thus, by learning the relationship between patterns and target
locations, observers stood to decrease their search times. Importantly, in one variant of the study the patterns
maintained their original color scheme with each repetition, whereas in another variant they appeared in a
brand new color scheme each time. Learning the statistical association between pattern and target location
in spite of a changing color scheme required relatively flexible perceptual criteria—essentially, being able
to recognize an old pattern in new colors as being "something old" (i.e., previously experienced) and not
“something new.”

When the patterns were repeated in the exact same color scheme as before, hand proximity had no effect
on participants’ ability to learn the association between shape and target location. That is, learning was just
as good near the hands as it was farther away. However, when the repeated shapes appeared in a brand
new color scheme with each presentation, a striking reduction in participants’ ability to learn the shape-target
association near their hands was observed. Together, these results show that the effect of hand proximity
on visual learning was not universal but context-dependent. More specifically, the context in which hand
proximity impaired learning was the one that required participants to relax their criteria about what constituted
an “old” image. This implies that hand proximity impairs the ability to abstract information from, and recognize
valid transformations of, sensory data—giving rise to the impaired abstraction hypothesis. According to this
account, hand proximity ought to impair math performance insofar as performance depends on recognizing
valid transformations of previously learned information. While it may appear that the Davoli, Brockmole, and
Goujon (2012) study already challenges the enhanced attention and disrupted reading hypotheses, Davoli et
al. focused on the incidental learning of relatively meaningless visual patterns in a task that did not demand
learning to take place. As such, it is not clear that those findings would generalize to scenarios where more
meaningful materials are used in an explicit learning task, as in the current study, which focused on the visual
representation of mathematical concepts.

The Current Study

Like objects in the physical world, mathematics concepts are rarely bound to a single, unchanging sensory
representation. Consider how learning arithmetic includes learning to recognize that 7 x 12 = 84 and 12 x
7 = 84 describe the same mathematical fact (see Verguts & Fias, 2005 for a review of how such internal
representations could be stored). At all stages of mathematical development, conceptual fluency involves
learning which perceptual differences are to be tolerated across exemplars and which ought not to be. Far from
being trivial, these perceptual factors are being revealed to play a much larger role in mathematical learning
and performance than previously thought (see Kellman & Massey, 2013, for a review). In a particularly striking
demonstration of this relationship, algebra students who had been trained to recognize valid transformations
of algebraic equations exhibited dramatic improvements in their problem-solving speed, going from nearly 30
s per problem before training to 12 s per problem after training (Kellman, Massey, & Son, 2010). Thus, it is
not a strictly academic point that mathematics performance involves the abstraction of sensory information, and
our focus on this feature of mathematics in the present study is rooted in its theoretical as well as practical
relevance.
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To determine the effect hand placement has on mathematics performance, we adapted a paradigm that has
been used for studying learning and transfer of arithmetic facts (Chesney & McNeil, 2014). In our version,
undergraduate participants learned a set of multiplication facts presented one way (i.e., in a x b = ¢ format) and
then were tested on those same facts shown in either a novel format (b x a = __) in Experiment 1 or in the
previously-learned format (a x b = __) in Experiment 2. Some participants completed the task with their hands
near the information during study and test, and others completed the task with their hands farther away (see
Figure 1). It is important to note here that in this paradigm, undergraduates receive time to first study the set
of multiplication facts and then receive a practice test allowing them to attempt to answer the problem before
seeing the correct answer. Given this extended introduction and practice with these multiplication facts, the
current studies are meant to measure individuals’ ability to retrieve these facts from memory, rather than testing
individuals’ ability to perform the necessary computations.

Figure 1. The hands far (left) and hands near (right) postures.

Note. For display purposes, this figure shows the 17’s set onscreen with the microphone positioned on the table. During the
actual study, however, the microphone was not positioned until prior to the final test.

This paradigm allowed us to distinguish among our three hypotheses. If the enhanced attention hypothesis
is correct, then we should observe better performance near the hands on both test formats (Exps. 1 and 2),
because hand-proximity should better allow participants to focus attention on the task. If the disrupted reading
hypothesis is correct, then we should observe worse performance near the hands on both test formats (Exps.
1 and 2), because hand-proximity should reduce the relative automaticity with which the stimuli in the task
would be read. If the impaired abstraction hypothesis is correct, then we should observe worse performance
near the hands on the novel format (Exp. 1), and no difference in performance between the postures on the
previously-learned format (Exp. 2), because hand-proximity should impair the abstraction of conceptual infor-
mation from sensory information, thus making it difficult to recognize valid transformations of previously-learned
multiplication facts.
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Experiment 1

In Experiment 1, participants learned a set of mathematical facts based on multiples of 17. At study, these facts
were presented in a x b = ¢ format (e.g., 17 x 5 = 85). At test, participants had to solve these same problems
inbxa=__ format (e.g., 5 x 17 = ). This structural switch in format from study to test constituted a valid
transformation of the same mathematical concept despite changes to the sensory information.

Method

Participants

Our target number of participants was 72 (36 per posture). This required our recruiting 75 participants total, as
data from three had to be excluded due to noncompliance with instructions. Participants were undergraduates
at the University of Notre Dame, were experimentally naive, and participated in exchange for course credit. All
participants provided informed consent, and the study was approved by the institutional review board at the
University of Notre Dame.

Apparatus and Display

Testing was done on a desktop computer in a sound-attenuated testing room. Stimulus presentation and data
collection were controlled by Experiment Builder software (SR Research). All stimuli were presented on a
22-inch LCD computer monitor in black font against a white background. Participants’ vocal responses (see
below) were collected via microphone, and an integrated voice key trigger in Experiment Builder was used to
detect the onset of the voiced response. Each response was recorded to a .wav file.

Task

The main objective of the task was for participants to learn 10 math facts based on the 17’s multiplication table
from 1 to 10 (henceforth, the 17's set). The task consisted of three main phases: a study phase, a practice test,
and a final test.

During the study phase, participants were given 5 minutes to study a table that contained the 17's multiplication
set. All facts were displayed on the same screen, and each fact appeared in a x b = ¢ format. Participants were
instructed to study these facts for a subsequent test.

The practice test presented the 17's set one problem at a time in random order, six times total (i.e., six blocks
of 10). Each problem appeared in a x b = __ format (i.e., without its answer). After 5 seconds, the full math
fact appeared (i.e., a x b = ¢) and remained onscreen for another 2 seconds. The purpose of this phase
was for participants to practice generating the correct answer to each problem on their own in preparation for
the upcoming test. To that end, participants were instructed to speak their answers aloud during this phase—
ideally, prior to the correct answer appearing onscreen. Data were not collected during this phase, however.
The correct answer was always shown after each problem so that participants could check their accuracy in
real time.

The final test presented the 17's set one problem at a time in random order, three times total (i.e., three blocks
of 10). Each problem appeared in b x a =___ format, and participants had a maximum of 10 seconds to respond
with their answer. Participants spoke their responses into the microphone. A blank screen replaced the problem
immediately upon response (i.e., through triggering the voice key) or once the time limit was reached. Unlike
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the practice test, the correct answer was never shown during the final test. The next problem appeared 2
seconds after the onset of the blank screen.

Procedure

After providing informed consent, participants were brought into the testing room and seated at the computer.
Participants then read through a set of instructions that described the three phases of the task (see above) as
well as how to use the microphone to respond. In particular, it was emphasized that participants should speak
directly into the microphone, loudly and clearly, while also avoiding filled pauses and other extraneous noises.

Next, the experimenter positioned participants into their assigned hand posture. Participants in the hands far
posture rested their hands in their laps, while participants in the hands near posture positioned their hands at
either side of the monitor (Figure 1). Participants were instructed to maintain their hand posture throughout the
three phases of the task, and participants’ hands were monitored via video camera to ensure compliance with
those instructions.

Once participants were in their assigned posture and ready to proceed, the experimenter left the room and the
study phase began. After 5 minutes of study, the practice test began, with an onscreen reminder to participants
that they should speak their answers aloud during this phase. Following the practice test, participants were
given the opportunity to take a break, during which they were free to move from their assigned posture. After
this, the experimenter came into the room and positioned the microphone at a set location on the table directly
in front of participants. Participants were reminded how to respond using the microphone, readopted their hand
posture, and were left by the experimenter to complete the final test.

Design

Block (1, 2, or 3) refers to the first, second, or third set of 10 problems during the final test. All participants
completed all three testing blocks. Hand posture (hands near or hands far) was manipulated between-subjects
and assigned on an alternating basis. Together, these yielded a 3 (Block: 1, 2, or 3) x 2 (hand posture: hands
near or hands far) mixed-factorial design.

Dependent Variables

Our primary variable of interest was RT, measured in milliseconds. RT was defined as the time between the
appearance of a test problem and the onset of a vocal response, and it was measured for each problem of the
final test (i.e., 30 problems in all). We also scored the accuracy of each response on the final test by going back
through the individual .wav files and comparing the recorded response against the correct answer. In order for
a response to be scored as accurate, it had to be the correct answer and delivered all at once. Responses
with pauses or stalls in the middle (e.g., “Onnnnnnne......... nineteen” to the problem 7 x 17 = __ ) were not
considered accurate, as such behaviors indicated that participants had begun their response prior to having
accessed the answer, which would invalidate their RT. If a response contained multiple answers, only the first
one was considered. So, for instance, a response of “83—no, 85!” to the problem 5 x 17 = would not be
scored as accurate.

Results

The data for Experiment 1 are included in the supplementary materials. Trials that did not meet the criteria for
an accurate response (see above) were excluded from further analysis (3.8%). Correct trials with RT = 6,000
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ms (1.3%) were considered inattention errors and were also excluded from analysis. Thus, the overall accuracy
rate for Experiment 1 was 95.1%.

Figure 2 shows the mean RTs at each block for each hand posture. A 3 (Block: 1, 2, or 3) x 2 (hand
posture: hands near or hands far) mixed-model analysis of variance (ANOVA) confirmed that RT decreased
with block, F(2, 140) = 27.1, p < .001, ‘1123 = .279. The more times participants saw a problem, the faster they
were to respond with the answer, indicating that participants gained fluency with the math facts with repeated
testing. Importantly, the ANOVA also confirmed that responses were slower overall in the hands-near condition
compared to the hands-far condition, F(1, 70) = 4.39, p = .04, 71123 = .059. Hand posture and block did not
interact, F(2, 140) = 1.88, p = .16, n, = .026, indicating that the relative cost of the hands-near condition to RT
remained stable across testing (Block 1: 14.03% cost; Block 2: 13.81% cost; Block 3: 9.53% cost).

2300 -
2200
2100
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1900 4
1800 +4

1700 +4

RESPONSE TIME (MS)

1600 +

1500 4

1400 +4

1300 -

Block 1 Block 2 Block 3

TESTING BLOCK

Figure 2. Mean response times at each block in the hands-far (blue) and hands-near (red) postures in Experiment 1.

Note. Error bars show the standard error of the mean.

Table 1 (left) shows the mean number of problems solved correctly per block for each hand posture.

Table 1

Descriptive Statistics for the Number of Problems Solved Correctly for Experiments 1 and 2

Experiment 1 Experiment 2
Hands Far Hands Near Hands Far Hands Near
Block M SD M SD M SD M SD
1 9.28 0.88 9.47 0.84 9.33 0.86 9.19 1.17
2 9.61 0.69 9.61 0.73 9.75 0.44 9.50 0.97
3 9.53 0.65 9.56 0.73 9.81 0.47 9.56 0.77

Accuracy data were submitted to a 3 (Block: 1, 2, or 3) x 2 (hand posture: hands near or hands far) mixed-mod-
el ANOVA. In general, accuracy differed from block to block, increasing from Block 1 to 2 and decreasing
slightly from Block 2 to 3, but this effect was not statistically significant, F(2, 140) = 2.92, p = .06, .040. Critically,

Journal of Numerical Cognition
2020, Vol. 6(1), 1-21

GOLD
https://doi.org/10.5964/jnc.v6i1.211 B PsychOpen


https://www.psychopen.eu/

Davoli, O’'Rear, McAulay et al. 11

accuracy did not differ across hand postures, F(1, 70) < 1, and hand posture and block did not interact, F(2,
140) < 1. On the whole, these findings confirm that the differences observed in RTs (above) are not attributable
to condition-specific speed-accuracy tradeoffs.

Discussion

The main finding from Experiment 1 was that participants who completed the study with their hands near the
stimuli performed worse than those whose hands were farther away, as revealed through differences in RT.
These data do not support the enhanced attention hypothesis, which had predicted that performance should
have been better near the hands. Instead, these results provide tentative support for both the disrupted reading
hypothesis and the impaired abstraction hypothesis, both of which had predicted that performance should have
been worse near the hands—although, for different reasons. Thus, it is not clear from the Experiment 1 results
alone whether performance suffered near the hands because the relative automaticity with which the digits
were read was reduced or because the ability to abstract conceptual information from sensory information,
and thus recognize valid transformations of learned concepts, was impaired. In Experiment 2 we collected
additional data to help distinguish between these two possibilities.

Experiment 2

In Experiment 1, the sensory information changed from study to test such that performance depended on
participants’ ability to apply their knowledge of previously-learned math facts to new instances (i.e., valid trans-
formations). Critically, the disrupted reading hypothesis predicts worse performance (i.e., slowed responses)
near the hands regardless of whether the sensory information at test was the same as or different from what
was learned during study. This is based on our understanding that digits will be read with relative automaticity,
even if they have been seen before. Indeed, we know this from the Stroop task. If prior exposure to readable
sensory information was enough to reduce the relative automaticity with which that information would be read
on any subsequent appearance, then incongruent stimuli in the Stroop task (e.g., WHITE in the color-word
paradigm; 22222 in the counting paradigm) would only cause interference the first time they were shown; but
this is known to not be the case. Meanwhile, the impaired abstraction hypothesis predicts worse performance
near the hands only when the sensory information changes from study to test, but not when it stays the same.
This is because the latter does not require the participant to engage in any further conceptual abstraction of the
sensory information at test; they merely need to the match a test item to a previously stored instance.

In order to distinguish those possibilities, then, we modified our mathematical learning paradigm from Experi-
ment 1 so that performance no longer hinged on abstraction of sensory information. In terms of design, the only
difference between Experiments 1 and 2 was the format of the test problems relative to what was studied. At
study, the math facts were again presented in a x b = ¢ format. At test, participants had to solve these problems
ina x b=__ format—that is, the same format in which the facts had been learned. Under these conditions,
the disrupted reading hypothesis predicts that performance should still be worse when the hands are near
compared to far, while the impaired abstraction hypothesis predicts that performance should not differ between
postures.
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Method

Participants

Our target number of participants was again 72 (36 per posture). This required our recruiting 74 new partici-
pants total, as data from two had to be excluded due to noncompliance with instructions. Participants were
undergraduates at the University of Notre Dame, were experimentally naive, and participated in exchange
for course credit. All participants provided informed consent, and the study was approved by the institutional
review board at the University of Notre Dame.

All other details of the method were identical to Experiment 1, with one exception: The problems during the final
test appeared in a x b=_ format.

Results

The data for Experiment 2 are included in the supplementary materials. Our analysis of the Experiment 2
data was identical to that of Experiment 1 unless otherwise stated. Trials that did not meet the criteria for an
accurate response (see above) were excluded from further analysis (3.3%). Correct trials with RT = 6,000 ms
(1.4%) were considered inattention errors and were also excluded from analysis. Thus, the overall accuracy
rate for Experiment 1 was 95.3%.

Mean RTs are shown in Figure 3. An ANOVA confirmed that RT decreased with block, F(2, 140) = 11.1, p
< .001, nf) = .137, suggesting that, as in Experiment 1, participants gained fluency with the math facts with
repeated testing. Critically, however, and unlike in Experiment 1, RT did not differ between hand postures, F(1,
70) < 1. In fact, responses were numerically faster in the hands-near posture than in the hands-far posture
(though not statistically so), reflecting an apparent reversal of what was found in Experiment 1 (we statistically
evaluate the differences between Experiments 1 and 2 below). Hand posture and block did not interact, F(2,
140) < 1.
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Figure 3. Mean response times at each block in the hands-far (blue) and hands-near (red) postures in Experiment 2. Error
bars show the standard error of the mean to facilitate comparison between groups.
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Mean accuracy data are shown in Table 1 (right). Accuracy data were submitted to an ANOVA. The ANOVA
revealed a main effect of block, F(2, 140) = 5.06, p < .01, n; = .067. In general, accuracy increased from Block
1 to 2 to 3. Importantly, as in Experiment 1, accuracy did not differ across hand postures, F(1, 70) = 2.91,
p=.092, nf) =.040, and hand posture and block did not interact, F(2, 140) < 1.

Between-Experiment Analysis

In order to more directly compare the critical findings of Experiments 1 and 2, we conducted a 3 (Block: 1, 2,
or 3) x 2 (hand posture: hands-near or hands-far) x 2 (Experiment: 1 or 2) mixed-model ANOVA on RT. The
ANOVA showed that RT decreased with block, F(2, 280) = 35.3, p < .001, ‘1;2; = .201, as would be expected
based on the earlier results. RTs were faster in Experiment 2 than in Experiment 1, F(1, 140) = 14.3, p < .001,
qf) = .093, indicating that participants performed better when tested on items in a previously-learned format
compared to a novel format. There was no main effect of hand posture, F(1, 140) = 1.28, p = .260, nf) = .009.
Most importantly, hand posture interacted with experiment, F(1, 140) = 5.07, p = .026, ‘112) = .035. Planned
pairwise comparisons were conducted to clarify the nature of the interaction. Independent samples t-tests
showed that, for the hands-near condition, RT was significantly slower in Experiment 1 than in Experiment 2,
{(70) = 4.07, p < .001, while for the hands-far condition, RTs did not differ between experiments, #(70) = 1.14,
p = .26. The significant difference for the hands-near effect between the experiments remains significant when
using the Bonferroni correction (.05 divided by the two follow-up tests = .025). Overall, these analyses confirm
on a statistical level that performance depended on the interaction between hand position and the stimulus
characteristics of the task. No other interactions (i.e., those involving block) were significant, Fs < 1.75, ps
>.18, n, = .013.

Accuracy data were also submitted to a between-experiment ANOVA. As would be expected based on the
earlier results, accuracy generally increased with block, F(2, 280) = 12.0, p < .001, nf) = .079. No other main
effects or interactions were significant, Fs < 1.88, ps > .17, ﬂf) <.014.

Discussion

The critical finding from Experiment 2 was that we did not find evidence that RT differed between the hands-
near and hands-far postures. These data do not support the disrupted reading hypothesis, which predicted
that performance should have been worse near the hands in this experiment—just as it was in Experiment
1—due to a reduction in the relative automaticity with which stimuli would be read. On the other hand, these
data support the impaired abstraction hypothesis, which predicted that the hands-near and hands-far postures
would yield similar RTs in this experiment, because here—unlike in Experiment 1—the stimuli at test did not
require participants to engage in any further conceptual abstraction of sensory information. We elaborate on
these findings below in the General Discussion.

General Discussion

In the present study we examined the role of hand placement in math performance. Participants learned a
set of math facts presented one way (a x b = ¢) and then were tested on those same facts in either a novel
format (b x a =__) in Experiment 1 or in the previously-learned format (a x b = __) in Experiment 2. Our main
finding was that hand proximity impaired performance at test when the format changed from study to test, but
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we did not find evidence of the same impairment when the format stayed the same. From these results, we
can conclude that hand proximity does not seem to universally enhance or impair mathematics performance;
instead, hand proximity impairs mathematics performance under testing conditions that rely on the abstraction
of common conceptual information from valid transformations of sensory information.

Before discussing the theoretical implications of our findings, it is important that we address a potential alterna-
tive explanation—namely, that it was simply more difficult to respond in the hands-near posture, perhaps owing
to the unnaturalness of that posture compared to having the hands in the lap. Based on that explanation, the
slowing we observed near the hands in Experiment 1 would have had nothing to do with differences in how
people perceive and thus learn information near or far from their hands, but rather would have been an artifact
of our methodology. However, two aspects of our data are incompatible with that alternative. First, RTs did
not differ between hand postures in Experiment 2. Although this may have been because it was so easy for
individuals to transfer their learned multiplication facts to the same format that they studied (further discussed
below), responses were numerically faster near the hands. If merely adopting the hands-near posture had
made responding more difficult, then we should have observed slower responses in that posture in Experiment
2, as well. Second, if the hands-near posture had made it more difficult to respond, then we perhaps should
have seen concomitant reductions in accuracy in that posture. However, error rates did not differ between the
postures in either experiment. We thus think that our results reflect actual differences in visual processing near
to versus far from the hands.

Could factors other than hand placement account for our findings? From a historical perspective, it seems
unlikely. Across the field’s 10+ years of activity, research has routinely and repeatedly addressed—and ruled
out—potential confounds that come along with manipulations of hand placement. Careful experimentation has
demonstrated that near-hand effects cannot be explained by concomitant changes in hand visibility, visual
feedback, tactile feedback, arm posture, postural comfort, response modality, response characteristics (e.g.,
direction of the response when pushing buttons), whether or not the hands are occupied, and numerous
other factors (for representative examples, see Abrams et al., 2008; Reed et al., 2006; Weidler & Abrams,
2013). Moreover, near-hand effects have been reported by researchers from around the world using a host of
behavioral, neuropsychological, and electrophysiological techniques (e.g., see Tseng & Davoli, 2015). Based
on this burgeoning research literature, we think it within reason to conclude that our effects are based on the
changes in visual processing that accompany changes in hand placement.

How does the present study build on our theoretical understanding of hand-altered visual processing? The
context-dependent nature of our main finding perhaps holds a clue. Recall that we did not find evidence that
hand proximity disrupted the application of mathematical knowledge when abstraction of sensory information
was not required, but we did when abstraction was required. That asymmetry could be interpreted as a form of
inflexibility, a resistance to engage in alternate (or, perhaps, subsequent) forms of analysis, and it is remarkably
similar to other forms of apparent inflexibility near the hands. For instance, people take longer to initiate
switches between global and local scopes of analysis of objects near their hands—a finding that suggests
a sluggish form of volitional attention (Davoli, Brockmole, Du, & Abrams, 2012). Likewise, near their hands,
people are slower to shift their attention from one object to another across space (as in visual search) and
across time (as in rapid serial visual presentation)—effects which, collectively, are thought to reflect delayed
disengagement of attention (Abrams et al., 2008; Davoli & Abrams, 2009; Vatterott & Vecera, 2013). Taking
those findings together with the present study, it appears as though hand proximity may engage a mode
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of visual processing that “locks in” to the sensory information at hand, while having the hands farther away
enables a more flexible mode of processing. Indeed, another way to view the current findings is that the
delayed responding in Experiment 1 was the result of individuals being “locked in” on the unfamiliar format,
which needed to be transformed to fit the representation that had been studied. In other words, having hands
near the material made it harder for individuals to re-organize a given problem (e.g., 3 x 17) to fit their abstract
representation for the math fact (e.g., 17 x 3). Since such a shift of attention is not necessary in the familiar test
condition, having hands near the material did not influence performance.

It is worth noting at this point that the null findings in Experiment 2 may also reflect an interaction between
generally increased attention near the hands as well as a disrupted reading for materials near the hand. That
is, the factors behind the enhanced attention hypothesis and the disrupted reading hypothesis may not be
all-or-nothing, but rather are relative effects that are both influencing performance at a given time. If this is
the case then the null result may reflect a wash between the negative influence of disruptive reading with the
positive influence of enhanced attention. That being said, future research will need to investigate this effect
more closely, as it is unclear whether this is truly a null effect or if we were underpowered in the current
study to find this effect. The smaller difference between conditions in Experiment 2 may reflect the fact that
individuals were nearing their capacity for their speed in retrieving the multiplication facts, making it harder to
detect any advantages that placing hands near the material may bring. Future research can begin to get at this
by using more complex problems, thereby increasing the overall time it generally takes individuals to process
and retrieve the relevant solution.

On the one hand, our findings are in line with prior research showing that hand placement affects other forms of
visual learning (e.g., recognizing patterns in complex geometric imagery; Davoli, Brockmole, & Goujon, 2012).
On the other hand, these results are counterintuitive when it comes to expectations about the role that the
hands ought to play in STEM education, particularly with respect to so-called “hands-on learning” techniques.
In short, hands-on learning is an interactive pedagogical tool that aims to enhance student learning through
first-hand, multisensory experiences. While hands-on learning aims to build students’ conceptual understanding
by increasing their physical engagement with to-be-learned material, it is clear from the present study that stu-
dents’ ability to apply their conceptual knowledge in novel circumstances may be better served by keeping their
hands farther away.' From a translational perspective, then, the present line of research on hand placement
opens the door for new inquiries into how broadly—or how literally—a hands-on approach ought to be applied
in STEM education. This is not to say that the current study is immediately applicable to findings on interactive
learning more broadly. Rather, the current studies provide important findings about one aspect of such learning,
hand placement, that is often overlooked. With the rise of mobile technology that brings learning closer to the
hands, such effects should not be ignored. Future research will need to take into consideration not only how
manipulating or interacting with the learning materials may influence learning, but also how the proximity to the
hands influences learning.

It is important to acknowledge a limitation of our study, namely, that we cannot be sure whether the effects
of hand placement occurred during study, during test, or during both study and test. In other words, did
hand placement affect learning, performance, or both? Because our measures occurred during the test phase,
our data reflect only the extent to which participants were able to apply learned information during the test.
Future research should address the questions of whether and how hand placement affects learning versus
performance by systematically varying hand placement at study and at test.
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It is also important to acknowledge that the current paradigm served only as a test of the influence of hand
placement on individuals’ ability to retrieve recently learned multiplication facts in different formats, and not a
measure of mathematical processing (or learning) more broadly. This is not to say that the current findings do
not have applications for mathematical education; the current results show how hand placement can influence
the efficiency of the most commonly used solution strategy, retrieval (e.g., Lemaire & Siegler, 1995). Future
research will need to elucidate just how these findings might transfer to the classroom. One area that may be
particularly relevant involves the use of computers in learning. Multiplication fact learning is often accomplished
using flashcards and with paper-and-pencil exercises. Both of these activities, however, require the learner to
study material while it is near to the hands. Computers, however, allow the learner to view and manipulate
information further from the hands. Of course, applications of these findings could be directed to means of
teaching that overcome the cognitive constraints associated with hand placement rather than interventions that
modify the learner’s body. Studies that replicate and manipulate our findings using realistic classroom scenarios
would increase the ecological validity of these effects.

Although attention is involved in many areas of mathematical cognition (Cragg & Gilmore, 2014; Geary, 2013),
how the findings translate to these areas remains to be seen. For example, how hand placement may influence
computation, as opposed to retrieval, may be different. If a given calculation would benefit from using a
previously learned strategy in a new context (e.g., decomposition, or breaking a more complex problem down
into simpler problems; Siegler, 1987), hand placement may hinder performance by impairing the ability to apply
this strategy. However, if the strategy must be applied in a familiar context hand placement may have no effect,
or it could even enhance performance (given the numerical advantage seen in Experiment 2).

The notion that hand placement can have differential effects on mathematics performance serves as an impor-
tant reminder of the complex relationship between cognitive functioning, on the one hand, and performance
on higher-level cognitive tasks, on the other hand. What is cognitively advantageous for one task may be
disadvantageous for another. As one example, high working memory capacity has been shown to benefit
analytic problem solving but impair creative problem solving (Wiley & Jarosz, 2012). As another example,
dyslexia has been associated with better detection of visual anomalies in complex perceptual scenes (Schneps,
Brockmole, Sonnert, & Pomplun, 2012; Schneps, Rose, & Fischer, 2007). While the “double-edged sword” of
cognition may not be lost on cognitive psychologists, it is frequently overlooked in the culture of education. As
body-based approaches to STEM education begin to gain traction with students, teachers, and policymakers, it
will be critical to ensure that their application is not “one size fits all.” Our vision for the future of action-based
approaches to learning and performance is based on the idea of finding the right match between one’s
actions/postures and the demands of the learning context. With this in mind, learners may better achieve
desired outcomes by teaching them to be mindful and strategic about how and when they engage their bodies.

Notes

i) While it is certainly true that not all techniques that fall under the umbrella of “hands-on learning” involve the overt use of
the hands, many do (see Kontra, Lyons, Fischer, & Beilock, 2015, for a recent example involving learning of physics
concepts). By the same token, there are many ways in which students use their hands during learning that would not be
considered “hands-on learning” in the conventional sense (e.g., a student who reads from a hard copy instead of a desktop
computer). The key point we wish to make here is that hand placement is a critical factor for any learning scenario in which
a meaningful spatial relationship can be established between the hands and learning materials, regardless of whether that
scenario involves “hands-on learning” as it is conventionally defined in pedagogy.
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