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Abstract
We investigated the use of the subtraction by addition strategy, an important mental calculation strategy in children with different levels of
mathematics achievement. In doing so we relied on Siegler’s cognitive psychological model of strategy change (Lemaire & Siegler, 1995),
which defines strategy competencies in terms of four parameters (strategy repertoire, distribution, efficiency and selection), and the
choice/no-choice method (Siegler & Lemaire, 1997), which is essentially characterized by offering items in two types of conditions (choice
and no-choice). Participants were 63 11-12-year-olds with varied mathematics achievement levels. They solved multi-digit subtraction
problems in the number domain up to 1,000 in one choice condition (choice between direct subtraction or subtraction by addition on each
item) and two no-choice conditions (obligatory use of either direct subtraction or subtraction by addition on all items). We distinguished
between two types of subtraction problems: problems with a small versus large difference between minuend and subtrahend. Although
mathematics instruction only focused on applying direct subtraction, most children reported using subtraction by addition in the choice
condition. Subtraction by addition was applied frequently and efficiently, particularly on small-difference problems. Children flexibly fitted
their strategy choices to both numerical item characteristics and individual strategy speed characteristics. There were no differences in
strategy use between the different mathematical achievement groups. These findings add to our theoretical understanding of children’s
strategy acquisition and challenge current mathematics instruction practices that focus on direct subtraction for children of all levels of
mathematics achievement.
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Cumulative evidence indicates that children and adults rely on a rich diversity of mental calculation strategies to
solve elementary arithmetic tasks (e.g., Campbell, 1999, 2008; LeFevre, Bisanz, et al., 1996; LeFevre,
Sadesky, & Bisanz, 1996). In the domain of multi-digit subtraction, adults have shown to apply two different
types of mental calculation strategies: direct subtraction and subtraction by addition (Peters, De Smedt,
Torbeyns, Ghesquière, & Verschaffel, 2010; Torbeyns, Ghesquière, & Verschaffel, 2009). Direct subtraction
strategies are characterized by the use of a subtraction operation to solve a problem: The subtrahend is taken
away from the minuend (e.g., solving 82 - 67 = __ via 82 - 60 - 7 = 22 - 7 = 15). By contrast, subtraction by
addition strategies involve the use of the addition operation to answer the problem: The difference between the
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minuend and the subtrahend is computed by adding on from the subtrahend up to the minuend (e.g., answering
82 - 67 = __ via 67 + 3 = 70 and 70 + 12 = 82, so the answer is 3 + 12 or 15). Subtraction by addition is
assumed to be highly efficient on subtraction problems with a small difference between minuend and
subtrahend, such as 81 - 79, given the small number and relative ease of the steps in the solution process
(Blöte, Klein, & Beishuizen, 2000; Peters et al., 2010; Selter, 2001; Torbeyns et al., 2009).

On the other hand, previous studies have revealed that children hardly report the subtraction by addition
strategy on multi-digit subtraction problems (Blöte, Van der Burg, & Klein, 2001; De Smedt, Torbeyns,
Stassens, Ghesquière, & Verschaffel, 2010; Heinze, Marschick, & Lipowsky, 2009; Selter, 2001; Selter,
Prediger, Nührenbörger, & Hussmann, 2012; Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009a, 2009b;
but see Peltenburg, van den Heuvel-Panhuizen, & Robitzsch, 2012 for an exception). One important difference
between these adult and child studies involves the research methods used. Whereas the adult studies applied
the choice/no-choice method (Siegler & Lemaire, 1997), the children’s data were collected in an experimental
setting wherein they simply were invited to solve the subtraction problems with the strategy of their choice.
Taking into account this important methodological difference between the adult and child studies, the present
study investigates the subtraction by addition strategy in children with the choice/no-choice method (Siegler &
Lemaire, 1997). Compared to the previous studies with children, we additionally included a comparison of
mathematically low to mathematically high achievers’ use of the direct subtraction and subtraction by addition
strategy in the domain of multi-digit subtraction up to 1,000.

Studying People’s Strategy Competencies

The theoretical and methodological framework of R. S. Siegler (Lemaire & Siegler, 1995; Siegler & Lemaire,
1997) significantly contributed to the study of strategy choice and change processes (Siegler, 2003; Torbeyns,
Arnaud, Lemaire, & Verschaffel, 2004; Verschaffel, Greer, & De Corte, 2007). In their model of strategy change,
Lemaire and Siegler (1995) distinguish four parameters of strategy competencies: (1) strategy repertoire,
defined as the different types of strategies people use to solve arithmetic tasks; (2) strategy distribution,
referring to the frequency with which each of these strategies is applied; (3) strategy efficiency, defined as the
accuracy and speed of strategy execution; and (4) strategy selection, referring to the flexibility of strategy
choices. Lemaire and Siegler defined strategy flexibility based on individual strategy efficiency competencies:
selecting the strategy that most quickly brings one to an accurate answer to the problem. According to their
model, the development of strategy competencies involves changes in the four parameters. Changes in the
strategy repertoire can occur from explicit teaching, but people can also invent new strategies based on
increasing practice and (consequently) fluent mastery of available strategies, which allows them to devote
attentional resources to looking for shortcuts and to developing alternatives (Shrager & Siegler, 1998).

Siegler and Lemaire (1997) have proposed the choice/no-choice method to empirically investigate people’s
strategy competencies. This method requires assessing participants in two different types of conditions: a
choice condition where they are allowed to choose the strategy for each problem, and two or more no-choice
conditions where they are forced to solve all problems with a given strategy. The no-choice conditions make it
impossible to select strategies based on problem and/or individual characteristics, resulting in unbiased
efficiency data for the strategies involved in the study. Moreover, the choice/no-choice method allows one to
analyse the flexibility of participants’ strategy choices based on their individual strategy efficiency competencies
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by comparing their strategy choices in the choice condition with their individual strategy efficiency data
collected in the no-choice conditions.

Multi-Digit Subtraction Strategies

Since the end of the previous century, the acquisition of various strategies, which can be applied efficiently and
flexibly on different types of mathematical tasks, has become a major goal of primary mathematics education
worldwide (Baroody & Dowker, 2003; Kilpatrick, Swafford, & Findell, 2001; Verschaffel, Greer, & De Corte,
2007). According to the adherents of the worldwide reform movement, teaching for strategy variety and
flexibility serves as a major stepping stone towards the insightful acquisition of these strategies and continued
flexibility in children’s mathematical thoughts and practices. Striving for strategy variety and flexibility is present,
for instance, in reform-oriented mathematics curricula in the U.S. (e.g., National Council of Teachers of
Mathematics, 2003; Parrish, 2014) and in various European countries (e.g., van Zanten & van den Heuvel-
Panhuizen, in press; Wittmann & Müller, 2007), including Flanders (Belgium), where the present study was
conducted (Vlaams Ministerie van Onderwijs en Vorming, 2010). This international striving for strategy variety
and flexibility also applies to the domain of multi-digit subtraction. To solve multi-digit subtraction problems,
children can apply diverse strategies. These strategies can be classified in two different but complementary
ways (see Peltenburg et al., 2012; Torbeyns, Ghesquière, et al., 2009): on the basis of the manipulation of the
numbers in the problem (the number perspective) or on the basis of the model of the operation being selected
(the operation perspective).

The first classification, the number perspective, relates to the distinction among three types of strategies:
decomposition, sequential and varying strategies (cf. Beishuizen, 1993; Blöte et al., 2000, 2001; Selter, 1998,
2001; Verschaffel et al., 2007). Decomposition strategies involve decomposing both minuend and subtrahend
along their decimal structure (decomposing both integers into hundreds, tens, and units) and subtracting them
separately (e.g., solving 628- 313 = __ via 600 - 300 = 300, 20 – 10 = 10, 8 – 3 = 5; so the answer is 300 + 10
+ 5 = 315). Sequential strategies start the calculation process with the un-split minuend and then the hundreds,
tens and units of the subtrahend are handled sequentially (e.g., solving 628 - 313 = __ via 628 - 300 = 328,
328 - 10 = 318, 318 - 3 = 315). Varying strategies involve the flexible adaptation of the numbers in the problem
on the basis of one’s understanding of number relations and/or the properties of the arithmetic operations. A
well-known example of this latter type of strategies is the compensation strategy, which can be applied on
problems with the subtrahend ending on the digit 8 or 9 (e.g., solving 628 - 399 = __ via 628 - (400 - 1) = 228 +
1 = 229).

The second classification of multi-digit subtraction strategies, the operation perspective, is based on the model
of the operation that underlies the solution process. This classification distinguishes two major types of
strategies: direct subtraction and subtraction by additioni As indicated by the names of the strategies and as
outlined above, direct subtraction strategies are characterized by the straightforward use of the subtraction
operation to solve subtraction problems: they involve the direct subtraction of the subtrahend from the minuend
(e.g., solving 628 - 313 = __ via 628 - 300 = 328, 328 - 10 = 318, 318 - 3 = 315). By contrast, subtraction by
addition is characterized by the use of the complementary addition operation to solve a given subtraction
problem: subtraction by addition strategies require to determine how much should be added to the subtrahend
to arrive at the minuend (e.g., solving 628 - 313 = __ via 313 + 87 = 400, 400 + 200 = 600, 600 + 28 = 628, so
the answer is 87 + 200 + 28 or 315). Whereas the direct subtraction strategy fits nicely with the operational
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model of subtraction as “taking away”, subtraction by addition corresponds with the “bridging the difference”
model of subtraction (Selter et al., 2012). As argued in Peltenburg et al. (2012), both direct subtraction and
subtraction by addition strategies can by executed in different ways - by means of a decomposition, sequential
or varying strategy. The present study focuses on the second kind of classification, namely children’s use of
direct subtraction versus subtraction by addition strategies.

Previous Studies on Direct Subtraction Versus Subtraction by Addition Use

Following a choice design, with subtraction problems offered in only one choice condition, previous
investigations on children’s direct subtraction versus subtraction by addition strategy use revealed that children
hardly report using the latter strategy to solve multi-digit subtraction problems (Selter, 2001; Selter et al., 2012;
Torbeyns, De Smedt, et al., 2009a, 2009b). Moreover, intervention studies indicate that even after explicit
instruction in subtraction by addition, direct subtraction remains children’s preferred strategy in the domain of
multi-digit subtraction (Blöte et al., 2000, 2001; De Smedt et al., 2010; Heinze et al., 2009; Selter, 2001; Selter
et al., 2012; Torbeyns, De Smedt, et al., 2009a, 2009b). As stated above, these results sharply contrast with the
results from adult studies that systematically revealed the frequent, efficient and flexible application of
subtraction by addition on multi-digit subtraction problems (Verschaffel, Torbeyns, De Smedt, Peters, &
Ghesquière, 2010).

Following a choice/no-choice design, Torbeyns, Ghesquière, et al. (2009) and Torbeyns, De Smedt, Peters,
Ghesquière, and Verschaffel (2011) empirically addressed adults’ strategy use on multi-digit subtraction
problems. In three subsequent studies, Torbeyns et al. (2009, 2011) offered adults different types of multi-digit
subtraction problems with numbers up to 1,000 in one choice and two no-choice conditions. In the choice
condition, participants had to choose between direct subtraction and subtraction by addition. In the two no-
choice conditions, all subtraction problems had to be answered via direct subtraction and subtraction by
addition, respectively. Torbeyns et al. constructed two types of subtraction problems based on the difference
between minuend and subtrahend: subtraction problems with an extremely small difference (a three-digit
minuend, a three-digit subtrahend and a two-digit difference; e.g., 713 - 695 = 18) and subtraction problems
with an extremely large difference (a three-digit minuend, a two-digit subtrahend and a three-digit difference;
e.g., 613 - 67 = 546). The verbal strategy reports from the choice condition revealed that the majority of the
participants applied the subtraction by addition strategy at least once. Moreover, they used this strategy more
frequently than the direct subtraction strategy. Surprisingly, in the no-choice conditions subtraction by addition
was executed faster and more accurately than direct subtraction, not only on small-difference subtraction
problems (for which subtraction by addition is assumed to be the most efficient) but also on large-difference
subtraction problems (for which direct subtraction is expected to be the most efficient). Finally, participants
flexibly fitted their strategy choices to both the numerical characteristics of the items and to their individual
strategy performance characteristics. In the choice condition, small-difference subtraction problems were most
frequently solved via subtraction by addition, and adults applied subtraction by addition more when it was the
most efficient strategy for them.

The Present Study

Against the background of the above-mentioned findings in adults, we aimed to analyse children’s use of the
direct subtraction versus subtraction by addition strategy relying on the same theoretical framework and
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research method. As outlined above, previous investigations on children’s direct subtraction versus subtraction
by addition strategy use (Blöte et al., 2001; De Smedt et al., 2010; Heinze et al., 2009; Peltenburg et al., 2012;
Selter, 2001; Selter et al., 2012; Torbeyns, De Smedt, et al., 2009a, 2009b) are limited by an important
methodological weakness. These studies followed a simple choice design, constraining the findings on strategy
efficiency and flexibility. Because children were only tested in a choice condition, it is not clear whether their
highly infrequent verbally reported use of subtraction by addition was due the absence of this strategy in their
strategy repertoire or due to weak mastery of this strategy as compared to the well-trained direct subtraction
strategy. To address this methodological weakness, we applied a choice/no-choice design and analysed
children’s subtraction by addition strategy use to solve multi-digit subtraction problems along the four
parameters of Lemaire and Siegler’s (1995) model of strategy change. We also investigated the use of
subtraction by addition as a function of children’s mathematical achievement level. In doing so, we aimed to
increase both our theoretical understanding of multi-digit subtraction strategy acquisition in children with various
levels of mathematical achievement and the potential educational relevance of our work.

Using the four parameters of the model of strategy change, we formulated the following research questions
(RQ).

RQ1: Do primary school children verbally report subtraction by addition on subtractions up to 1,000 in
the choice condition (= strategy repertoire)?

RQ2: How frequently do they apply subtraction by addition on subtractions up to 1,000 in the choice
condition (= strategy distribution)?

RQ3: How accurately and quickly do they apply subtraction by addition compared to direct subtraction
on subtractions up to 1,000 in the no-choice conditions, in general and on the different types of
subtractions (= strategy efficiency)?

RQ4: Do they fit their strategy use to the numerical characteristics of the subtraction problems and/or to
their individual strategy efficiency competencies (= strategy selection)?

RQ5: To what extent do the answers to these first four research questions differ between children of
varying mathematical achievement levels?

Method

Participants

Participants were 68 sixth-graders from two primary schools in Flanders (Belgium) (Mage = 11y8m [SD = 4m];
29 boys). We selected two primary schools located in two different provinces in Flanders. We invited all sixth-
graders from these randomly selected schools to participate to the study. We chose sixth grade for two
reasons. First, in contrast to younger learners, sixth-graders had sufficient mastery of multi-digit addition and
subtraction to apply the untaught subtraction by addition strategy after only a brief demonstration. Second, in
contrast to older learners, sixth-graders still frequently practice multi-digit subtraction during their mathematics
lessons.
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We analysed children’s mathematics instruction history via scrutinized textbook analyses and structured
teacher interviews. These revealed that all children had received instruction on multi-digit subtraction problems
from 2nd grade on. In line with typical mathematics practices in Flanders, instruction focused on mental
calculation through direct subtraction, and more specifically on the sequential direct subtraction strategy. After
sufficient practice of this sequential direct subtraction strategy, children received instruction on other direct
subtraction strategies, including varying strategies such as compensation. However, as is typically the case in
Flanders (Torbeyns, De Smedt, et al., 2009a, 2009b), none of the children had received explicit instruction in
the subtraction by addition strategy.

We assessed children’s general mathematical achievement level with a standardized mathematical
achievement test, addressing all domains of the mathematics curriculum in sixth grade (Deloof, 2005). Based
on these test scores, children were divided into four mathematical achievement groups: (1) low achievers (Pc <
16), (2) below-average achievers (Pc 16-50), (3) above-average achievers (Pc 51-84), and (4) high achievers
(Pc > 84). Low and high mathematics achievement were defined as performing 1 standard deviation below or
above the population average (which in a normal distribution correspond to the 16th [low] and 84th [high]
percentiles). As elaborated in the Procedures section, the data of five participants (two low achievers, two
above-average achievers, one high achiever) had to be discarded. The final sample consisted of 63
participants (Table 1). These achievement groups differed significantly in their mean percentile scores on the
mathematics achievement test (Deloof, 2005), F(3, 59) = 298.7, p < .01, BF10 = 9.8 x 1031.

Table 1

Number of Boys/Girls and Mathematics Achievement Percentile Score per Mathematical Achievement Group (n = 63)

n Mathematics Achievement Percentile Score

Achievement Group Boys Girls Mean Standard Deviation

Low 2 6 8.25 5.20
Below-average 9 6 38.33 9.94
Above-average 9 9 66.94 9.10
High 8 14 93.59 5.21

Materials

Children were offered three parallel series of 13 multi-digit subtraction problems up to 1,000. In line with
Torbeyns et al. (2011) we distinguished two types of subtraction problems (with five subtraction problems each):
(1) small-difference subtraction problems (SD), defined as subtraction problems with a small difference
between minuend and subtrahend: a three-digit minuend, a three-digit subtrahend and a two-digit difference
(e.g., 614 - 596 = 18); (2) large-difference subtraction problems (LD), characterized by a large difference
between minuend and subtrahend: a three-digit minuend, a two-digit subtrahend and a three-digit difference
(e.g., 734 - 47 = 687). We included three buffer items consisting of a three-digit minuend, a three-digit
subtrahend and a three-digit difference that was about half of the minuend (e.g., 634 - 278 = 356). These buffer
items were not assumed to specifically stimulate either direct subtraction or subtraction by addition strategy
use.

All subtraction problems required crossing-over both tens and units. To dissuade children from using
computation strategies that differ from the requested direct subtraction and subtraction by addition strategy
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(see below, conditions), we did not include subtraction problems with unit values of 0, 5 or 9. To match the
difficulty of the three series of subtraction problems, we equated the mean sizes of the minuends and
subtrahends as well as the mean sizes of the differences across the series.

In each of the three series subtraction problems were ordered based on three criteria: (1) unpredictable order of
the different types of problems; (2) no repetition of problem type on two consecutive trials; (3) the answer to
each subtraction problem could not easily be derived from the previous one. We created two orders per series,
with order 2 being the reverse of order 1.

Conditions

Children were interviewed individually in one choice and two no-choice conditions. In the choice condition, they
could choose between direct subtraction and subtraction by addition on each problem. In the experimental
instructions, animations (a boy and a girl) were used to explain the strategies and steps that were allowed. To
allow valid comparisons of children’s direct subtraction versus subtraction by addition strategy competencies,
children had to apply one specific sequential variant of direct subtraction and subtraction by addition (and were
thus not allowed to use a rich variety of decomposition, sequential and varying direct subtraction versus
subtraction by addition strategies). The solution steps were visible on the screen, and the experimenter
explained what the boy and girl did to solve the example problem. In line with the adults studies of Torbeyns et
al. (2009, 2011) the direct subtraction example applied the sequential direct subtraction strategy as taught in
children’s classrooms, characterized by sequentially taking away the hundreds, tens and units of the
subtrahend from the minuend. Also in line with the adult studies of Torbeyns et al. (2009, 2011) the figure
representing subtraction by addition used the complementary addition operation and first added from the
subtrahend up to the next hundred, next up to the hundreds of the minuend and then up to the minuend, and in
the last step all intermediate results were added to get the answer. Children were instructed to solve each
problem with one of these two strategies.

In the no-choice direct subtraction condition, children had to solve all subtraction problems with the (sequential)
direct subtraction strategy. We forced them to use this strategy via the experimental instruction. Likewise, in the
no-choice subtraction by addition condition, all subtraction problems had to be answered via subtraction by
addition. The mandatory use of subtraction by addition was again enhanced via the experimental instruction.

Procedure

All children were tested individually in a quiet room at their school. They all solved the three parallel series of
problems in a within-subject design with different sessions on different days, and at least one day in between
two sessions. All conditions were offered on a laptop computer. In each condition, children were told the
strategy/strategies they were allowed to use by using the above-mentioned boy/girl figure(s). Afterwards, they
were asked to solve one practice item for all allowed strategies. They were not allowed to use pen and paper.
They had to verbally report their solution steps immediately after solving each subtraction problem to make
sure that they understood the strategy/strategies. Next, a series of 13 trials (10 experimental items and 3 buffer
items) was presented. Each trial started with an asterisk that appeared for 1000 ms in the centre of the screen,
followed by the item presented in the same position. The characters were 2 × 2 cm large, black, separated by
adjacent spaces and presented against a white background. The item remained on the screen until the child
uttered the answer. Time started to run when the item appeared and ended when the experimenter pushed the
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spacebar of an external keyboard. Next, the experimenter entered the child’s answer and the child was asked
to verbally report his/her calculation steps. After this the next trial was initiated. No feedback was given. All
conditions were audio-taped to allow a reliable analysis of the verbal strategy reports.

As recommended by Siegler and Lemaire (1997), all children started with the choice condition and continued
with the no-choice conditions (within-subjects design). The order of the no-choice conditions was
counterbalanced across children. Children were randomly assigned to one order of no-choice conditions. In
each condition, children were instructed to solve all subtraction problems as accurately and as fast as possible
and to verbally report the applied calculation steps immediately after solving each subtraction problem.

Analysis

Only the accuracy, speed and verbal report data on the 2040 SD and LD subtraction problems (10 items in 3
conditions for 68 participants) were included in the dataset. Before starting analyses we excluded 64 trials
(3.14%) due to technical problems during data collection. Next, we coded all verbal strategy reports to check
whether children only applied the strategy/strategies they were allowed to use. Children’s verbal reports were
coded as (a) direct subtraction, including all solutions in which the child sequentially took away the hundreds,
tens and units of the subtrahend from the minuend; (b) subtraction by addition, including all reports in which the
child used the complementary addition operation to solve the subtraction problem by first adding up from the
subtrahend to the next hundred, then up to the hundreds of the minuend, then up to the minuend and finally
computed the sum of all these intermediate results; or (c) other, consisting of all reports that could not be
classified as direct subtraction or subtraction by addition as defined above and of all unclear strategy reports.
Two researchers independently scored 10% of the strategy reports in the different conditions. They agreed on
85.38% of the trials and the interrater reliability was sufficient (Cohen’s κ = .75). Trials with no agreement were
reconsidered and in this second round consensus was found on all trials. No items had to be removed due to
not following instructions (using direct subtraction in the no-choice subtraction by addition condition or vice
versa). All 66 strategy reports classified as other strategies were removed from the dataset (3.30%). Finally, we
controlled for whether participants (in all three conditions) had at least 2 out of 5 SD and LD subtraction
problems remaining in the dataset. Five participants (two low achievers, two above-average achievers, one
high achiever) for which this was not the case were removed from further analyses. The final dataset thus
consisted of data of 63 participants (1829 items, 89.66% of the initial dataset).

The current dataset was analysed by using both frequentist and Bayesian statistics with JASP software
(version 0.8.1.2), using the default JASP settings. We applied repeated measures ANOVA with Tukey-Kramer
adjustments for post-hoc comparisons. In addition to these classic statistical analyses, we calculated Bayes
Factors (BF), which quantified the evidence in the data for the alternative hypothesis (H1) of a given effect
compared to the evidence for the null hypothesis (H0): BF10. If BF10 is larger than 1, the data contains more
evidence for H1 than for H0. If BF10 is between 1 and 0, the data contains more evidence for H0. The size of the
BF indicates the evidential strength for a given hypothesis, or stated differently, how many times more likely one
hypothesis is than the other. We used Jeffrey’s interpretation of BF, as clarified by Andraszewicz et al. (2015,
Table 1). The BF can range from no evidence (close to 1) to decisive evidence (distant from 1, i.e., > 100 for H1

and < 1/100 for H0).
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Results

Preliminary analyses involved the evaluation of order effects of the two no-choice conditions. Repeated
measures ANOVAs revealed that there was no effect of order on the strategy distribution (F(1,61) = 0.284,
p = .596), strategy efficiency (accuracy: F(1,55) = 0.006, p = .937; speed: F(1,55) = 2.553, p =.116) or strategy
selection (F(1,55) = 3.397, p = .071). All BF10 values were below 1, indicating that the H0 of no order effect was
more likely (strategy distribution: BF10 = 0.204; strategy efficiency: accuracy: BF10 = 0.273, speed: BF10 =
0.606; strategy selection: BF10 = 0.543). This all indicated that the order of the no-choice conditions did not
affect task performance. We grouped the data of both orders of no-choice conditions for further analyses. We
present the results along the four parameters of the model of strategy change and investigate for each
parameter how it was moderated by mathematics achievement level.

Strategy Repertoire and Distribution

In the choice condition, subtraction by addition was used at least once by most children. Only 9 children (14%)
never used subtraction by addition; 17 children (27%) used it all the time; and 37 children (59%) used both
direct subtraction and subtraction by addition. We observed no differences in strategy repertoire between the
four achievement groups (Fisher’s Exact p = .43), indicating that in all groups the vast majority of children
reported the use of subtraction by addition at least once. Turning to strategy distribution, children more often
applied subtraction by addition (M = 60%) than direct subtraction (M = 40%) to answer the subtraction problems
in the choice condition, t(62) = -2.08, p = .04, partial η2 = .065. The analysis of the BF, however, indicated that
this should be interpreted with caution as the evidence for this difference was only anecdotal (BF10 = 1.030).

Strategy Efficiency

We analysed differences in the accuracy and speed (on both correctly and incorrectly answered items) of
strategy execution between the no-choice conditions by means of repeated measurements ANOVA, with
condition (no-choice direct subtraction vs. no-choice subtraction by addition) and problem type (SD vs. LD) as
within-subject factors and mathematical achievement group (low, below-average, above-average, high) as a
between subjects factor. Tables 2 and 3 present the accuracy and speed (on both correctly and incorrectly
answered items) of strategy execution in the two no-choice conditions per subtraction type and achievement
group.

Table 2

Accuracy (Percentage Correct) of Strategy Execution in the No-Choice Conditions per Subtraction Type and Achievement Group (Least
Squares Means; SE)

Achievement Group

No-Choice Direct Subtraction No-Choice Subtraction by Addition

SD LD SD LD

M SE M SE M SD M SD

Low 55.62 .10 75.83 .10 95.00 .06 71.87 .10
Below-average 82.33 .07 75.67 .07 96.00 .05 80.78 .07
Above-average 87.22 .07 70.83 .07 93.33 .04 73.33 .07
High 84.55 .06 71.59 .06 89.09 .04 75.45 .06
All 77.43 .04 73.48 .04 93.36 .02 75.36 .04

Torbeyns, Peters, De Smedt et al. 223

Journal of Numerical Cognition
2018, Vol. 4(1), 215–234
doi:10.5964/jnc.v4i1.77

https://www.psychopen.eu/


Focusing on strategy accuracy, a main effect of condition was found, F(1, 59) = 9.31, p < .01, partial η2 = .136,
BF10 = 4.040. Subtraction problems were more accurately solved when subtraction by addition had to be used
(M = 84% correct) compared to direct subtraction (M = 75% correct). We also observed a very strong effect of
problem type, F(1, 59) = 15.91, p < .001, partial η2 = .212, BF10 = 8414.022, with SD subtraction problems (M =
85% correct) being more accurately answered compared to LD subtraction problems (M = 74% correct). There
was a condition × problem type interaction, F(1, 59) = 10.55, p < .01, partial η2 = .152, but the analysis of the
BF indicated that this should be interpreted with caution as BF10 = 0.273.

There was no main effect of mathematical achievement group, F(3, 59) = 0.37, p = .77, partial η2 = .019. The
BF10 was equal to 0.110, which indicates substantial evidence for H0 of no difference between the achievement
groups. There was a condition × problem type × mathematical achievement group interaction, F(3, 59) = 3.74,
p = .02, partial η2 = .160, but the analysis of the BF indicated that this interaction should be interpreted with
great caution as BF10 = 0.067.

Turning to strategy speed, we also found a main effect of condition, F(1, 59) = 21.13, p < .01, partial η2 = .264,
BF10 = 365.314. This indicates decisive evidence that subtraction problems were solved faster in the no-choice
subtraction by addition condition (M = 14.15s) compared to the no-choice direct subtraction condition (M =
18.66s). There was an effect of problem type as well, F(1, 59) = 119.74, p < .01, partial η2 = .670, BF10 = 8.750
x 1013. This provides decisive evidence that SD subtraction problems (M = 12.15s) were solved faster than LD
subtraction problems (M = 20.66s). We also observed an effect of the condition × problem type interaction, F(1,
59) = 60.54, p < .01, partial η2 = .506, BF10 = 73239.045. As shown in Table 3, SD subtraction problems were
solved faster than LD subtraction problems in both the no-choice subtraction by addition condition (p < .01,
partial η2 = .723, BF10 = 7996.836) and the no-choice direct subtraction condition (p < .01, partial η2 = .213,
BF10 = 168.493). On the other hand, there was no difference in the LD subtraction problems in the two no-
choice conditions (p = .99, partial η2 = .000, BF10 = 0.245), whereas SD subtraction problems were solved
faster in the no-choice subtraction by addition condition compared to the no-choice direct subtraction condition
(p < .01, partial η2 = .487, BF10 = 2.091 x 108).

Table 3

Speed (Seconds) of Strategy Execution in the No-Choice Conditions per Subtraction Type and Achievement Group (Least Squares Means;
SE)

Achievement Group

No-Choice Direct Subtraction No-Choice Subtraction by Addition

SD LD SD LD

M SD M SD M SD M SD

Low 21.11 3.21 23.43 3.21 8.03 2.09 25.39 3.29
Below-average 17.12 2.35 24.41 2.35 7.58 1.53 21.13 2.40
Above-average 15.25 2.14 18.07 2.14 6.95 1.40 20.43 2.19
High 13.47 1.94 16.41 1.94 7.73 1.26 15.99 1.98
All 16.74 1.23 20.58 1.23 7.57 .80 20.73 1.26

We found no differences in speed in the no-choice conditions between the four mathematical achievement
groups, F(3, 59) = 2.11, p = .11, partial η2 = .097. An analysis of the BF indicated that this evidence was only
anecdotal (BF10 = 0.554). There was an effect of the condition × problem type × mathematical achievement
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group interaction, F(3, 59) = 3.07, p = .03, partial η2 = .135. The analysis of the BF, however, indicated that this
finding should be interpreted with great caution (BF10 = 0.221).

Strategy Selection

In line with Torbeyns et al. (2011), we analysed children’s strategy flexibility in two different ways. We first
investigated whether children fitted their strategy choices to the numerical characteristics of the subtraction
problems via a repeated measurements ANOVA with problem type (SD vs. LD) as within-subject factor,
mathematical achievement group (low, below-average, above-average, high) as a between subjects factor and
subtraction by addition frequency in the choice condition as the dependent variable.

There was an effect of problem type, F(1, 59) = 41.34, p < .01, partial η2 = .412, BF10 = 2.907 x 107. Children
more frequently selected subtraction by addition on SD subtraction problems (M = 3.73) compared to LD
subtraction problems (M = 1.72) and thus flexibly fitted their strategy choices to the numerical characteristics of
the items. No main effect of achievement group was found, F(3, 59) = 0.39, p = .76, partial η2 = .019, BF10 =
0.104 nor an interaction between achievement group and problem type, F(3, 59) = 0.34, p = .80, partial η2

= .017, BF10 = 0.066. The BFs indicated that there was substantial evidence for the hypothesis of no difference
between the achievement groups (H0). This suggests that the achievement groups did not differ in their flexible
application of subtraction by addition on the different problem types.

Second, we analysed whether children took into account their individual strategy efficiency competencies
during the strategy selection process by correlating subjects’ frequency of subtraction by addition in the choice
condition with the accuracy and speed differences between the no-choice direct subtraction and no-choice
subtraction by addition conditions. The correlation between children’s subtraction by addition strategy
frequency in the choice condition and the accuracy differences between the no-choice conditions was not
significant, r(63) = .00, p = .99, BF10 = 0.157. These results indicate that children did not take into account their
individual strategy accuracy characteristics during strategy selection. By contrast, they flexibly fitted their
strategy choices to their individual strategy speed competencies, r(63) = -.55, p < .01, BF10 = 6622.335: The
larger the speed difference between the no-choice subtraction by addition and the no-choice direct subtraction
condition in favor of subtraction by addition, the more frequently children reported subtraction by addition in the
choice condition. An ANCOVA on the accuracy and speed differences between the no-choice conditions, with
the frequency of subtraction by addition in the choice condition and mathematical achievement group as
predictor variables, indicated no differences between the four achievement groups. In line with the correlation
analysis, we observed no effect of the frequency of subtraction by addition on the accuracy differences, F(1,
55) = 0.00, p = .95, BF10 = 0.257. We neither found an effect of mathematical achievement group, F(3, 55) =
0.45, p = .72, BF10 = 0.210. Although we observed an effect of the frequency of subtraction by addition on the
speed differences, F(1, 55) = 20.04, p < .01, BF10 = 4943.223, there was no effect of mathematical
achievement group, F(3, 55) = 0.71, p = .55, BF10 = 0.227. In all, both frequentist and Bayesian analyses
indicated that there were no effects of mathematical achievement level on the children’s strategy selection.

Conclusion and Discussion

Previous research with Lemaire and Siegler’s (1995) model of strategy change and Siegler and Lemaire’s
(1997) choice/no-choice method revealed that adults frequently, efficiently and flexibly apply subtraction by
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addition on symbolically presented multi-digit subtraction problems (Torbeyns et al., 2009, 2011). However, in
most countries current mathematics instruction strongly emphasizes direct subtraction (Haylock & Cockburn,
2003; Peltenburg et al., 2012; Selter et al., 2012; Torbeyns, De Smedt, et al., 2009a). The present study applied
Siegler and Lemaire’s theoretical and methodological tools to investigate the occurrence, frequency, efficiency
and flexibility of using the subtraction by addition strategy in upper primary school children on subtraction
problems in the number domain up to 1,000. To increase both our theoretical understanding of strategy
acquisition in children of varying mathematical achievement levels and the potential educational implications of
our study, we compared the various parameters of subtraction by addition strategy use among children along
the broad continuum of mathematical achievement.

In contrast to previous studies on children’s use of the subtraction by addition strategy, which followed a simple
choice design (Blöte et al., 2000, 2001; De Smedt et al., 2010; Heinze et al., 2009; Selter, 2001; Torbeyns, De
Smedt, et al., 2009a, 2009b), the present study not only revealed that the subtraction by addition strategy
belongs to the strategy repertoire of primary school children, but also that they apply it frequently, efficiently and
flexibly. Moreover, we observed hardly any differences among children of varying mathematical achievement
levels, indicating that even below-average to low achievers, after a short explanation and demonstration of the
subtraction by addition strategy, demonstrate mastery of the subtraction by addition strategy and are able to
apply it frequently, efficiently and flexibly on multi-digit subtraction problems. These findings extend current
insights into primary school children’s strategies for doing symbolic multi-digit subtraction and challenge current
primary mathematics instruction that strongly focuses on the routine mastery of direct subtraction.

Reporting Subtraction by Addition Strategy Use

In contrast with the strong instructional focus on direct subtraction and with the findings from previous studies
with children (Blöte et al., 2000, 2001; De Smedt et al., 2010; Heinze et al., 2009; Selter, 2001; Torbeyns, De
Smedt, et al., 2009a, 2009b), the vast majority of children in the present study reported the subtraction by
addition strategy in the choice condition (= RQ1). A first possible explanation for this remarkable finding refers
to the age of the children. Whereas previous studies with children reported on 2nd- to 4th-graders, we included
6th-graders. They all had practiced multi-digit subtraction problem solving for more than three years, as
evidenced by our textbook analyses and teacher interviews, and (thus) presumably mastered the explicitly
taught direct subtraction strategy sufficiently well to be able to invent other strategies, including the subtraction
by addition strategy (Shrager & Siegler, 1998). So, the availability of the subtraction by addition strategy in our
sample’s strategy repertoire might be due to children’s greater experience with multi-digit subtraction problems
and consequently their greater capacities to invent alternative strategies. Future studies - conducted along the
same theoretical and methodological framework as the present one - in younger children at the start of multi-
digit subtraction instruction are needed to evaluate this hypothesis. A second explanation for the availability of
subtraction by addition in most children’s strategy repertoire deals with the experimental design. Contrasting
previous studies with children, we explicitly mentioned the subtraction by addition strategy as a possible
strategy to solve multi-digit subtraction problems at the onset of the interview. As children might have serious
difficulties in verbally reporting an untaught arithmetic strategy (e.g., Peters, De Smedt, Torbeyns, Ghesquière,
& Verschaffel, 2012, 2013), the demonstration and articulation of this strategy by the experimenter at the
beginning of the choice session might have helped children to (adequately) verbally report their subtraction by
addition strategy use. Moreover, the explicit communication of subtraction by addition as a possible alternative
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strategy might have established a socio-mathematical norm that stimulated children to report an available but
not explicitly taught strategy (Yackel & Cobb, 1996).

Frequency, Efficiency and Flexibility of Subtraction by Addition

Our study demonstrated not only that the subtraction by addition strategy was part of children’s strategy
repertoire, but also that they applied the untaught subtraction by addition strategy frequently and efficiently
(= RQ2 and RQ3). Children solved multi-digit subtraction problems surprisingly efficiently via subtraction by
addition. Despite the highly frequent practice of direct subtraction in children’s classrooms, they were slower in
executing this strategy compared to the untaught subtraction by addition strategy in the no-choice conditions.
Moreover, they did not only answer small-difference subtraction problems but also large-difference subtraction
problems faster via subtraction by addition than via direct subtraction. This finding challenges current
mathematics instruction, which capitalizes on the routine mastery of direct subtraction and pleas for more
instructional attention to subtraction by addition as alternative - and maybe even more obvious - strategy in this
domain (cf. Peltenburg et al., 2012; Selter et al., 2012). As this study is the first to analyse children’s accuracy
and speed of direct subtraction versus subtraction by addition execution on multi-digit subtraction problems
following a choice/no-choice method, future studies are needed to replicate and refine our findings also in
younger age groups, before such drastic changes in current mathematics instruction can be advised. Moreover,
referring to the two-dimensional scheme for classifying multi-digit subtraction strategies introduced at the
beginning of this article (see Peltenburg et al., 2012; Torbeyns, Ghesquière, et al., 2009), our study involved
only one type of direct subtraction and subtraction by addition strategy, namely the sequential type and more
specifically the specific version of the sequential direct subtraction strategy that is currently taught as the
default strategy for doing multi-digit subtraction in Flemish classrooms and its most appropriate counterpart for
doing sequential subtraction by addition. Future studies are required to explore the superior efficiency of
subtraction by addition over direct subtraction for other general and specific types of direct subtraction and
subtraction by addition too (Peltenburg et al., 2012).

In addition to these further descriptive studies on the superior efficiency of subtraction by addition compared to
direct subtraction, it is also of utmost interest to systematically investigate the reasons for these observed
differences in efficiency. As a first explanation, we refer to the intrinsic difficulty of the underlying addition and
subtraction processes. It can be argued that the process of adding a number to a given number is inherently
easier than the process of taking away a similar number from a given number. Although it is difficult to provide
direct evidence for this claim, there are several elements from various sources in support of it (see also
Torbeyns et al., 2011). First, from a mathematical perspective, the additive operation is fundamental for the
development of the natural numbers, the most basic number system (Kilpatrick et al., 2001). Natural numbers
are constructed on the basis of the principle of recurrence, which means that every natural number is
constructed on the basis of the previous number as the successor of n (Burrill, 1967; Dedekind, 1963; Ifrah,
1985; Mainzer, 1995). In other words, the system of natural numbers is created and defined in an additive
order, almost automatically leading to the priority of addition to subtraction. Second, there is ample evidence in
the psychological literature on early mathematics for young children’s earlier mastery of and better performance
on counting up compared to counting down, which can be considered as important precursors of the processes
of adding and subtracting, respectively (Fuson, 1986, 1992; Verschaffel et al., 2007). Third, many psychological
studies have shown that addition facts are acquired quicker and solved more efficiently than the corresponding
subtraction facts (Campbell & Xue, 2001) and that many people solve single-digit subtraction facts by relying on
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the complementary addition fact (Campbell, 2008). Fourth, the priority of addition to subtraction is also reflected
in children’s curricula, textbooks and teacher practices for elementary arithmetic. Worldwide, mathematics
teachers first teach their pupils how to add numbers and only afterwards - after sufficient practice and mastery
of the addition operation - teach how to subtract (Kilpatrick et al., 2001). The earlier and more intensive practice
of the addition operation in the classroom may further contribute to addition being more familiar and easier than
subtraction.

A second explanation for the efficiency of subtraction by addition that requires further research attention relates
to the number of carry and borrow operations that had to be performed when using subtraction by addition or
direct subtraction in the present study. Cognitive psychological studies revealed that the number of trades
influences the accuracy and speed of responding in complex addition and subtraction (Ashcraft & Kirk, 2001;
Geary, Frensch, & Wiley, 1993; Imbo, Vandierendonck, & De Rammelaere, 2007; Imbo, Vandierendonck, &
Vergauwe, 2007): Performance becomes slower and less accurate as more carry or borrow operations need to
be performed, which might be explained in terms of the demands these operations put on people’s working
memory. In the present study, all subtraction problems required two crossing-overs. So, when using the direct
subtraction strategy, children inevitably had to execute two borrow operations: They had to borrow both from
the hundreds and the tens. By contrast, with the variant of subtraction by addition used in the present study, no
carry operations were needed. The inclusion of different types of subtraction problems, including subtraction
problems without crossing-overs such as 628 – 313 = __ can help to address this second explanation in future
studies on the topic.

All children also flexibly fitted their strategy choices to both numerical characteristics of the subtraction
problems and to their individual strategy speed competencies (= RQ4). This suggests that they were also able
to demonstrate some flexibility in their use of the subtraction by addition strategy, despite the absence of any
instructional attention to it. This finding complements previous results on strategy flexibility in single-digit
addition and subtraction, evidencing more flexible strategy choices with increasing experience in the domain
(Siegler, 1996, 2000). Moreover, it significantly adds to our understanding of the structures and mechanisms
underlying children’s strategy choices on multi-digit subtraction problems using an extended definition of
strategy flexibility as fitting strategies not only to the numerical characteristics of items (Blöte et al., 2000, 2001;
De Smedt et al., 2010; Heinze et al., 2009; Peters et al., 2012, 2013; Selter, 2001; Torbeyns, De Smedt, et al.,
2009a, 2009b), but also to individual strategy efficiency competencies (Verschaffel, Luwel, Torbeyns, & Van
Dooren, 2009).

Comparing Children of Varying Mathematical Achievement Level

The present study revealed that both mathematically higher achieving children and their lower achieving peers
frequently, efficiently and flexibly applied the untaught subtraction by addition strategy to solve multi-digit
subtraction problems (RQ5). Just like their above-average and high achieving peers, low and below-average
achievers solved multi-digit subtraction problems frequently and efficiently via subtraction by addition.
Moreover, even the lower achieving children flexibly fitted their strategy choices to both numerical
characteristics and individual strategy competencies. This is in sharp contrast with the assumption that the
acquisition of strategy flexibility is most difficult for the lower achieving children (Geary, 2003; National
Mathematics Advisory Panel, 2008; Verschaffel et al., in press).
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The results of the present study are in line with previous findings on low achievers’ subtraction by addition
strategy use (Peltenburg et al., 2012; Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 2014). They
also complement and extend these findings by using a choice/no-choice method that systematically addresses
this strategy’s occurrence, frequency and efficiency and by applying a more complex definition of strategy
flexibility as fitting strategy choices to both item and strategy performance characteristics. Together with these
earlier findings, our results indicate that with sufficient practice in and mastery of multi-digit subtraction problem
solving, even low achieving children seem able to efficiently and flexibly use alternative strategies. These
findings support the feasibility and value of teaching for strategy variety and flexibility in children of all
achievement levels (Baroody, 2003; Kilpatrick et al., 2001; Verschaffel et al., 2007; Verschaffel et al., in press).
However, as none of the children participating in the present study were known in the school as being classified
as having a mathematics learning disability, it is a challenge for future research to investigate the occurrence,
frequency, efficiency and flexibility of subtraction by addition versus direct subtraction using a choice/no-choice
design in this group as well: children with mathematical disabilities. As the present study only included children
with ample experience in the domain of multi-digit subtraction (see also above), it is important that future
studies also address the strategy competencies of children of varying mathematical achievement levels at the
start of instruction. The comparison of the occurrence, frequency, efficiency and flexibility of subtraction by
addition versus direct subtraction across achievement groups at both the start and the end of multi-digit
subtraction instruction will help to understand the feasibility of strategy variety and flexibility in children of all
achievement levels along the whole instructional cycle.

Educational Implications

Combining theoretical and methodological tools from cognitive psychology and insights from mathematics
education research, the findings of the present study raise questions about the adequacy of current mental
multi-digit subtraction instruction with its strong focus on direct subtraction. Despite the strong instructional
effort for mastering direct subtraction and the intensive practice of this strategy in classrooms, children
answered multi-digit subtraction problems more efficiently with the untaught subtraction by addition strategy
than with the explicitly taught and intensively practiced direct subtraction strategy. Moreover, and in line with the
adult studies of Torbeyns et al. (2009, 2011), subtraction by addition proved to be highly efficient not only on
small-difference but also on large-difference subtraction problems. As outlined above, future studies are
needed to further analyse the efficiency of subtraction by addition in younger age groups and children with
mathematical difficulties and on all types of multi-digit subtraction problems.

In addition to ascertaining studies, we need intervention studies wherein new instructional approaches to the
introduction and development of the subtraction by addition strategy are designed, implemented and tested. In
this respect, one should be aware that the categorisation of multi-digit subtraction strategies on the basis of
their underlying operation (differentiating between direct subtraction and subtraction by addition) might be less
intuitive for children - especially for the younger and lower achieving ones - than their categorisation in terms of
the concrete solution steps involved in the solution process (differentiating between decomposition, sequential
and varying strategies). However, the mathematics education literature already contains several appealing
proposals for introducing the former classification to children, such as the inclusion of clear external models to
represent the different strategies including the empty number line. These proposals and models might serve as
promising didactic tools to foster children’s understanding of the differences between and value of the different
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strategies (e.g., Beishuizen, 1997; Müller, Selter, & Wittmann, 2012) and, consequently, stimulate the
acquisition of strategy variety and flexibility as major aims of primary mathematics education.

Notes

i) It should be noted here that the operation perspective distinguishes also a third type of strategy, namely indirect
subtraction. In case of indirect subtraction, one finds the solution by determining how much has to be decreased or
subtracted from the minuend to get the subtrahend (e.g., solving 628 – 313 = __ via 628 - ? = 313) (De Corte & Verschaffel,
1987).
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