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Abstract 
The project BUGWRIGHT2 is an interdisciplinary collaborative project co-funded by the 

European Union’s Horizon 2020 research and innovation programme under Grant Agreement 

No. 871260. The project aims to propel the digital-maritime revolution by developing an 

adaptable autonomous robotic solution for vessel-structure inspection and maintenance.  

From a psychological point of view, the implementation of autonomous robots in the work 

context changes work tasks, roles, and responsibilities from an all-human to a human-robot 

team setting. Therefore, concepts of psychological team research, humane work design, and 

technology acceptance need to be considered to realize the full potential of robotic solutions 

in the maritime sector. 

This e-book intends to spotlight 14 psychological topics identified as essential for the 

acceptance of an autonomous robotic solution developed within the BUGWRIGHT2 project 

through literature research and expert interviews. Each psychological topic is presented in a 

factsheet that summarizes the scientific input, provides appropriate literature 

recommendations, and concludes with recommendations for the BUGWRIGHT2 project. The 

factsheets are valuable for any researcher or practitioner interested or involved in 

implementing robotic solutions in a work environment.
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Introduction 

The EU project BUGWRIGHT2 (Horizon 2020) Autonomous Robotic Inspection and Maintenance 

on Ship Hulls and Storage Tanks is an interdisciplinary EU research and innovation project that 

aims to develop an adaptable autonomous robotic solution for the inspection and 

maintenance of ship hulls and storage tanks. BUGWRIGHT2 intends to combine heterogeneous 

robotic technologies (in air, underwater, above water), virtual reality (VR), and augmented 

reality (AR), to contribute to revolutionizing ship inspections and maintenance.1  

Transforming a currently mainly manual process including dry-dock, scaffolding, or human 

divers into a future robotic-supported process has far-reaching positive impacts regarding 

human safety (e.g., reduced risk of diving accidents or scaffolding collapses), the environment 

(e.g., reduced fuel consumption and pollution of the seas), and economy (e.g., reduced dry-

dock times that result in lower inspection costs and more time-effective shipping).2 

From a work psychology point of view, however, the implementation of adaptable autonomous 

robots also leads to fundamental changes of the underlying work process, roles, and 

responsibilities: The workflow as well as the related and required competencies change as 

single tasks become obsolete while new tasks might be relevant elsewhere. The team 

composition shifts from all-human teams to a human-robot team setting. The interaction 

between humans and robots might be supported by VR and AR. Responsibilities and liabilities 

have to be redefined for routines and emergencies. These changes bring psychological 

opportunities, but also risks and challenges. To reveal the full potential of human-robot 

interaction and minimize potential risks, psychologically successful human-robot collaboration 

requires the optimal interplay and calibration of human, technical, and organizational 

subsystems involved in a given work task (Karltun et al., 2017).  

As (semi-)autonomous operations of inspection technologies relate to self-government and 

self-directed behavior of a robotic solution (O'Neill et al., 2020), the humans involved depend 

on the robot’s performance, provided data, and decisions (e.g., the robotic system signals no 

critical damage on the outer ship hull). This interdependency, among others, requires well-

calibrated trust in the robotic solution (i.e., avoidance of mistrust and overtrust), reasonable 

cognitive load, high situation awareness, and user acceptance. This guarantees short-term and 

long-term well-being of humans involved, in the sense of humane work design.  

This e-book spotlights 14 psychological topics relevant to the success of human-robot teams 

in the field that relate to the human, technology, and organizational subsystem of human-

robot teams. Reviewing psychological literature on the topics of human-robot teams (e.g., You 

& Robert, 2017), humane work design (e.g., Klonek & Parker, 2021), and technology acceptance 

(e.g., Bröhl et al., 2019; Venkatesh et al., 2016) the following factsheets provide a concise 

summary of the scientific state-of-the-art including the theoretical background and empirical 

relations. Furthermore, concrete recommendations for the BUGWRIGHT2 project are derived 

regarding the monitoring and promotion of these critical psychological factors.  

 

                                                
1 Official project page: www.bugwright2.eu  
2 Taken from the Description of the Action, Annex 1 to the Grant Agreement 871260.  

http://www.bugwright2.eu/
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At a glance, this e-book presents how agent transparency and explainable artificial intelligence 

(XAI) contribute to increasing robot trust and acceptance. In addition, we focus on concepts 

closely related to human attention, such as situation awareness, that reflect the knowledge of 

the current circumstances or cognitive load, a concept rooted in learning science that can also 

be applied to problem-solving within human-robot team tasks. Two factsheets deal with 

phenomena in the context of virtual environments, namely cybersickness and immersion and 

presence. Different methods to measure task performance and key concepts of technology 

acceptance are also reviewed. Regarding cognitive-motivational factors, two factsheets focus 

on the topic of trust in human-robot teams. The impact of competence self-perceptions in 

human-robot teams is reviewed in the factsheet on self-efficacy which describes one’s self-

perceived confidence to succeed in a situation or task. The relevance of human attitudes in 

human-robot teams and possible methods of attitude change are presented. Regarding 

humane work design, we present the concept of smart work design as a valuable framework to 

analyze and evaluate human-robot work settings. Furthermore, we outline the critical role of 

basic human needs satisfaction in human-robot teams. The factsheets are presented in 

alphabetical order. 
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Factsheet 1: Acceptance of Human-Robot Interaction 
Keywords Technology acceptance; human-robot interaction; human-robot collaboration 

At a Glance Well-established models of technology acceptance systematize technology-, person-, and context-

related factors that determine the acceptance and use of robot technology in the field. The 

perceived usefulness and ease of human-robot interaction (HRI) are key determinants of future 

robot use. 

Scientific Input  

Theoretical 

Background 

Multiple models of technology acceptance exist. The models systematize different types of user 

evaluations which cause a behavioral intention to use a system or actual use behavior of a system 

(Venkatesh et al., 2003). Rooted in the acceptance of information systems, technology acceptance 

models have been continuously extended (see Venkatesh et al., 2016) and transferred to HRI (Bröhl 

et al., 2019).  

Empirical Relations  Behavioral Intention (BI) describes the intention to use or to recommend a system to others. BI is 

a widely used proxy for actual system use (Venkatesh et al., 2003). The perceived usefulness and 

ease of use of a robot system are key determinants of BI and, thus, robot use (see Figure 1). 

Manifold antecedents impact the perceived usefulness of HRI but also have a direct effect on BI. 

These more traditional technology acceptance factors include the output quality, the robot’s 

relevance for the given work task, or existing behavioral norms (e.g., support of robot use). Person-

related factors like self-efficacy (i.e., confidence to accomplish HRI), robot anxiety, and affinity or 

control perceptions impact “human decision-making processes” (Bröhl et al., 2019, p. 710) and thus 

the perceived ease of use as anchor variables. The two-sidedness of robots in the field both as an 

opportunity (e.g., to support humans) and a threat (e.g., fear of job loss, see Smids et al., 2019) 

further requests to include ELSI factors in models of HRI acceptance (Bröhl et al., 2019). ELSI stands 

for ethical, legal, and social implications (Bröhl et al., 2019). Researchers also integrated the topic 

of trust into technology acceptance (e.g., Belanche et al., 2012) and embedded core variables of 

technology acceptance against the background of basic human needs (e.g., Fathali & Okada, 2018).  

Behavioral 
Intention

Perceived 
Usefulness

Perceived 
Ease of Use

Adjustment 
(e.g., ethical, legal, 
social implications, 

and safety)

Anchor
(e.g., self-efficacy, robot 

anxiety and affinity, 
perception of control)

Antecedents
(e.g., output quality, 

job relevance, 
subjective norm)

Use Behavior

 

Figure 1. Model of human-robot interaction acceptance (modified, based on Bröhl et al., 2019). 

Recommendations for BUGWRIGHT2 

Measurement,  

Promotion, 

Intervention, 

Etc. 

Qualitative interviews supported the relevance of manifold acceptance factors within the specific 

application case of BUGWRIGHT2. Regarding person-related anchor variables, human perception 

of control and competence (i.e., self-efficacy) turned out to be particularly important within 

BUGWRIGHT2. Another factor vital for the acceptance of remote inspection technologies is trust. 

To measure individual factors of HRI acceptance, well-established self-rating scales provide 

starting points for customized evaluation (see recommended literature).  

Recommended 

Literature 

Bröhl, C., Nelles, J., Brandl, C., Mertens, A., & Nitsch, V. (2019). Human–robot collaboration 

acceptance model: Development and comparison for Germany, Japan, China and the USA. 

International Journal of Social Robotics, 11(5), 709–726. https://doi.org/10.1007/s12369-019-

00593-0  

Venkatesh, V., Thong, J., & Xu, X. (2016). Unified theory of acceptance and use of technology: A 

synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–

376. https://doi.org/10.17705/1jais.00428  

https://doi.org/10.1007/s12369-019-00593-0
https://doi.org/10.1007/s12369-019-00593-0
https://doi.org/10.17705/1jais.00428
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Factsheet 2: Agent Transparency in a Human-Robot Context 

Keywords Human-robot interaction; transparency; interface design; autonomy 

At a Glance In a human-robot team, transparency of the actions, plans, and reasoning process of an 

autonomous robot helps the human to better understand the robot, which in turn leads to higher 

trust and overall performance in human-robot teams. 

Scientific Input  

Definition and 

Theoretical 

Background 

Interactions between robots or autonomous agents and humans will get more complex as systems 

increase in their autonomy (Lyons, 2013). Therefore, the necessity increases for the human operator 

to accurately understand the agent´s actions, reasoning process, and projections in the actual 

situation. Making this information accessible to the user is a concept known as agent transparency 

(Selkowitz, 2017). Agent transparency can be defined as the “quality of an interface pertaining to 

its abilities to afford an operator’s comprehension about an intelligent agent’s intention, 

performance, future plans, and reasoning process” (Chen et al., 2014). According to the Situation 

Awareness-Based Agent Transparency model, there are three levels of information an agent needs 

to convey to maintain a transparent interaction with the human: the agent’s current status/actions 

(level 1), the agent’s reasoning process behind the actions (level 2) and the agent’s 

projections/predictions (level 3). The purpose of transparency is to facilitate interaction in a human-

robot team. 

Empirical Relations  Results from several studies suggest that high agent transparency is associated with increased 

operator performance, trust, situation awareness, perceived usability, and understanding of the 

agent (e.g., Chen et al., 2016; Harbers et al., 2011; Mercado et al., 2016). In contrast, low agent 

transparency results in decreased performance and higher human complacency (Mercado et al., 

2016; Wright et al., 2016). O’Neill et al. (2020) pointed out that transparency plays an interactive 

role in the effects of an agent’s reliability, as human operators showed higher trust and 

performance when they were aware of the lower reliability (higher transparency) of the agent. 

However, it is important to consider the type and amount of information to provide agent 

transparency. For example, Wright et al. (2016) found that information transparency in the form of 

projected outcomes and uncertainty information has hindered operator performance. Selkowitz et 

al. (2016) indicated that providing the operator with information in the high transparency condition 

improved the operator’s situation awareness more than in the very high transparency condition. 

Thus, the highest transparency level did not always produce the best outcome (Bhaskara, 2017). In 

summary, the general trends of results suggest that transparency has a positive impact on various 

outcome variables (e.g., Bhaskara, 2017; O’Neill et al., 2020). However, this does not seem to be a 

linear relationship as too much transparency can have a negative impact on performance 

(Bhaskara, 2017). To sum up, the concepts of performance (see Factsheet 9), situation awareness 

(see Factsheet 12), and agent transparency are closely related to each other. 

Recommendations for BUGWRIGHT2 

Interface Design 

 

Agent transparency is an important variable for interface design. Implementing information about 

the agent’s actions, reasoning process, and projections in the user interface supports the operator’s 

ability to develop an accurate understanding of the environment and the autonomous agent. In 

addition, the perceived usability increases with higher levels of transparency (Chen et al., 2016). In 

contrast, a poorly designed display could conceal the meaning behind the information and render 

the information useless (Selkowitz et al., 2017). 

Recommended 

Literature 

Lyons, J. B. (2013). Being transparent about transparency: A model for human-robot interaction. 

2013 AAAI Spring Symposium Series 

Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., & Procci, K. (2016). Intelligent agent 

transparency in human–agent teaming for Multi-UxV management. Human factors, 58(3), 

401-415. https://doi.org/10.1177/0018720815621206 

  

https://doi.org/10.1177/0018720815621206


Psychological Factors in Human-Robot Teams  

9 
 

References 

Bhaskara, A. (2017). The operationalisation of agent transparency and evidence for its impact 

on key human-autonomy teaming variables. 

Chen, J. Y., Barnes, M. J., Selkowitz, A. R., Stowers, K., Lakhmani, S. G., & Kasdaglis, N. (2016). 

Human-Autonomy Teaming and Agent Transparency. In J. Nichols, J. Mahmud, J. 

O'Donovan, C. Conati, & M. Zancanaro (Eds.), Companion Publication of the 21st 

International Conference on Intelligent User Interfaces (pp. 28–31). ACM. 

https://doi.org/10.1145/2876456.2879479  

Chen, J. Y., Procci, K., Boyce, M., Wright, J., Garcia, A., & Barnes, M. (2014). Situation awareness-

based agent transparency. Technical Report: ARL-TR-6905, Aberdeen Providing 

Ground. https://doi.org/10.1117/12.2263194 

Harbers, M., Bradshaw, J. M., Johnson, M., Feltovich, P., van den Bosch, K., & Meyer, J.‑J. (2011). 

Explanation and coordination in human-agent teams: A study in the BW4T Testbed. In 

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent 

Technology (pp. 17–20). IEEE. https://doi.org/10.1109/WI-IAT.2011.83  

Lyons, J. B. (2013). Being transparent about transparency: A model for human-robot interaction. 

2013 AAAI Spring Symposium Series. 

Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., & Procci, K. (2016). Intelligent 

agent transparency in human–agent teaming for Multi-UxV management. Human 

Factors: The Journal of the Human Factors and Ergonomics Society, 58(3), 401-415. 

https://doi.org/10.1177/0018720815621206 

O’Neill, T., McNeese, N., Barron, A., & Schelble, B. (2020). Human–autonomy teaming: A review 

and analysis of the empirical literature. Human Factors. 

https://doi.org/10.1177/0018720820960865 

Selkowitz, A. R., Lakhmani, S. G., Larios, C. N., & Chen, J. Y. (2016). Agent transparency and the 

autonomous squad member. Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting, 60(1), 1319-1323. https://doi.org/10.1177/1541931213601305 

Selkowitz, A. R., Larios, C. A., Lakhmani, S. G., & Chen, J. Y. (2017). Displaying Information to 

Support Transparency for Autonomous Platforms. In P. Savage-Knepshield & J. Chen 

(Eds.), Advances in Intelligent Systems and Computing. Advances in Human Factors in 

Robots and Unmanned Systems (Vol. 499, pp. 161–173). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-41959-6_14  

Wright, J. L., Chen, J. Y., Barnes, M. J., & Hancock, P. A. (2016). Agent reasoning transparency’s 

effect on operator workload. Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting, 60(1), 249-253. https://doi.org/10.1177/1541931213601057 

https://doi.org/10.1145/2876456.2879479
https://doi.org/10.1117/12.2263194
https://doi.org/10.1109/WI-IAT.2011.83
https://doi.org/10.1177/0018720815621206
https://doi.org/10.1177/0018720820960865
https://doi.org/10.1177/1541931213601305
https://doi.org/10.1007/978-3-319-41959-6_14
https://doi.org/10.1177/1541931213601057


Psychological Factors in Human-Robot Teams  

10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factsheet 3: Artificial Intelligence – Human-centered and Explainable



Psychological Factors in Human-Robot Teams  

11 
 

Factsheet 3: Artificial Intelligence – Human-centered and Explainable 

Keywords Explainable artificial intelligence; artificial intelligence; trustworthiness; machine learning; deep 

learning; human-centered AI 

At a Glance Explainable Artificial Intelligence (XAI) aims at making the results of AI and its inner working 

intelligible for humans (i.e., mental model of AI). Especially post-hoc explanations of the AI (e.g., 

machine learning) are vital in complex systems to increase system trust and acceptance. 

Scientific Input  

Definition and 

Systematization 

Research on XAI contributes to human-centered AI, aiming to make it easier for future generations 

to understand, trust in, and manage AI (Adadi & Berrada, 2018) and, thus, optimize the perceived 

interaction, safety, fairness, and informativity, among others, when interacting with an AI system. 

Research on XAI aims to make the results of AI systems more intelligible for humans (Adadi & 

Berrada, 2018) and to make their inner workings clearer (Barredo Arrieta et al., 2020) by explaining 

them. These explanations can be broadly classified into intrinsic (i.e., by AI design) or post-hoc (i.e., 

afterward) methods of XAI. In BUGWRIGHT2, especially post-hoc methods are vital. In such a 

complex system, explainability does not fully result from the AI design (e.g., if the model is too 

complex) but is provided after AI use. Post-hoc methods are diverse and based on features, 

examples, rules, concepts, and strategies underlying machine learning (Molnar, 2019). 

Empirical Relations  Accurate mental models (i.e., mental representation of knowledge) are vital for well-calibrated trust 

(i.e., not too high, or too low). XAI helps to establish accurate mental models of AI, as humans tend 

to erroneously transfer mental models of human functioning to the functioning of AI (e.g., emotion 

detection). Here, empirical research shows that XAI (e.g., visualizing the area on which an AI 

decision is based) can diminish this misleading tendency (Heimerl et al., 2020). Further, research 

by Mertes et al. (2020) indicates that different example-based explanations (i.e., counterfactuals) 

positively influence trust, satisfaction, and accurate decision-making. Weitz et al. (2019; 2020) show 

that the more human an AI seems, the more trustworthy it is perceived. 

Recommendations for BUGWRIGHT2 

1. Provide Post-

Hoc Explanations  

2. Verify the 

Mental Models 

Existing research on XAI is young but clearly points out two things: 

1) 1. Explanations will influence end-users perceptions and attitudes towards the BUGWRIGHT2 

system: Especially regarding autonomous detection of corrosion and excessive biofouling but also 

regarding automated mission planning, post-hoc explanations of the AI system help increase 

system trust and acceptance by the end-users. Here, multiple methods already exist (see Adadi & 

Berrada, 2018).  

2. Not every explanation is a helpful explanation: XAI should help to establish accurate mental 

models. Ask end-users what they think about the AI functioning, the decision-making process, and 

the results. Verifying the accuracy of AI mental models helps to establish a well-calibrated level of 

trust and to avoid counteracting effects of overtrust or mistrust. 

Recommended 

Literature 

Weitz, K., Schiller, D., Schlagowski, R., Huber, T., & André, E. (2019). "Do you trust me?" Increasing 

user-trust by integrating virtual agents in explainable AI interaction design. Proceedings of 

the 19th ACM International Conference on Intelligent Virtual Agents (pp. 7-9). 

https://doi.org/10.1145/3308532.3329441 

Weitz, K., Schiller, D., Schlagowski, R., Huber, T., & André, E. (2020). “Let me explain!”: Exploring the 

potential of virtual agents in explainable AI interaction design. Journal on Multimodal User 

Interfaces, 1-12. https://doi.org/10.1007/s12193-020-00332-0 

 

https://doi.org/10.1145/3308532.3329441
https://doi.org/10.1007/s12193-020-00332-0
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Factsheet 4: Attitudes towards Remote Inspection Technologies (RIT) 

Keywords Attitudes towards robots; robot affinity; interest; remote inspection technologies 

At a Glance A positive attitude towards robots is vital for effective human-robot teamwork. Therefore, 

cognitive, affective, and conative components of attitudes are relevant and can be measured via 

self-reports. Direct experience, imagined interaction, and knowledge transfer are methods to 

influence attitudes. 

Scientific Input  

Definition  An attitude describes a person’s relative endurance of subjective positive or negative tendency 

towards an attitude object (e.g., new technology, robot; cf., Eagly & Chaiken, 1993).  

Theoretical 

Background:  

ABC-model  

Drawing on the three-component model of attitudes by Rosenberg and colleagues (1960), 

attitudes comprise a cognitive (i.e., knowledge), an affective (i.e., emotional), and a conative (i.e., 

behavioral) component. The three components are interrelated. 

Empirical Relations  Attitudes play a central role in models of technology acceptance stating that attitudes cause a 

behavioral intention (see Venkatesh et al., 2003). Attitudes, therefore, are used to predict consumer 

and user behavior, even though routines or other situational influences can prevent that a behavior 

intention leads to actual behavior (Sheeran, 2002). Qualitative research shows that techno-related 

attitudes are diverse, ranging from enthusiasm to skepticism (Kerschner & Ehlers, 2016). Attitudes 

toward robots as person-related user characteristics impact trust in service robots (Miller et al., 

2021). Trust is an essential core requirement for effective human-robot interaction. 

Recommendations for BUGWRIGHT2 

Attitude 

Assessment 

Attitudes become observable through the definition and measurement of indicators. To measure 

attitude towards robots or RITs, multiple indicators can exist. Apart from psychophysiological 

indicators (e.g., pulse rate) or observable features (e.g., facial expressions, gestures), in practical 

applications, subjective experiences (e.g., self-rating questionnaires) are mainly used to measure 

attitudes. Here, validated measures exist to quantify an individual’s tendency regarding technology 

interaction (e.g., Franke et al., 2019), attitudes towards robots (e.g., Carpinella et al., 2017; Ninomiya 

et al., 2015; Nomura et al., 2008; Robert, 2021) or technophobia (e.g., Khasawneh, 2018; Sinkovics 

et al., 2002).  

Methods of 

Attitude Change 

Multiple evidence-based methods of attitude change exist that can be transferred to the context 

of HRI, and specifically RITs:  

User participation = The involvement of users in the robot design process lowers robot anxiety and 

increases positive robot attitude (Reich-Stiebert et al., 2019) 

Imagined context = The imagination of a first positive interaction with RITs. Thoughts and 

associations during the imagination are documented on a worksheet. 

Context dependence = Reflection on RITs in different work tasks. Open discussion on human-robot 

interaction and RITs in each task (e.g., What constitutes HRI in this domain?, What 

features/strengths/weaknesses do RITs have in this task?) 

Knowledge transfer and persuasion = Communication of empirical evidence on the topic of HRI 

and RITs, the effects of robot implementation on work processes and job profiles, and the impact 

on economy, safety, environment. Realistic information on robot abilities but also uniquely human 

abilities.  

Recommended 

Literature 

Reich-Stiebert, N., Eyssel, F., & Hohnemann, C. (2019). Involve the user! Changing attitudes toward 

robots by user participation in a robot prototyping process. Computers in Human Behavior, 

91, 290–296. https://doi.org/10.1016/j.chb.2018.09.041  

Robert, L. P. (2021, July). A measurement of attitude toward working with robots (AWRO): A 

compare and contrast study of AWRO with negative attitude toward robots (NARS). 

International Conference on Human-Computer Interaction, 12763, 288-299. Springer. 

https://doi.org/10.1007/978-3-030-78465-2_22 
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Factsheet 5: Basic Human Needs in Human-Robot Interaction 

Keywords Self-determination theory; basic human needs; human-robot interaction 

At a Glance Robots at work can be perceived as an opportunity versus an offense for the fulfillment of basic 

human needs. Robots should be designed to support the need for competence, autonomy, 

relatedness, physical safety, and status. 

Scientific Input  

Definition and 

Theoretical 

Background 

According to the Self-Determination Theory (SDT, Deci & Ryan, 2000), there are three basic human 

needs (i.e., need for competence, relatedness, and autonomy) that are universal (i.e., everybody 

has them) and innate (i.e., not learned). Further, in the context of human-robot interaction, the 

need for physical safety (Pervez & Ryu, 2008) and status are important (Smids et al., 2019). Human 

needs “specify psychological nutriments that are essential for ongoing psychological growth, 

integrity, and well-being” (Deci & Ryan, 2000, p. 229). Their satisfaction is crucial for technology 

acceptance and use because people seek interaction that supports need satisfaction. 

Basic Human 

Needs and HRI 

Team behavior (i.e., supervisory or colleague) influences need satisfaction (Deci et al., 2017; Rynek 

et al., 2021). In hybrid teams consisting of humans and robots, robot behavior and features 

influence human need satisfaction and, thus, technology acceptance as well as human health.  

Need for 

Competence: 

Desire to feel 

effective and 

experience 

masterful behavior  

Competence self-perceptions (“I can”) impact technology use, performance, and well-being 

(Brosnan, 1998; Igbaria & Iivari, 1995; Marsh et al., 2017). Training and user experience serve as 

central sources of positive competence self-perceptions. In addition, the robot’s interaction style 

influences the user’s subjective perception of competence. Zafari et al. (2019) showed that robots 

giving individual feedback to the user (e.g., encouraging, praising) results in higher human 

competence self-perception than robots using another interaction style (i.e., task-oriented, see 

Factsheet 11 on self-efficacy). 

Need for 

Relatedness: Desire 

to be connected to 

others 

Smids et al. (2019) showed that robots at work can be both an opportunity and an offense to the 

need for relatedness depending on the work task and robot type. If robots substitute repetitive 

tasks, the need for relatedness can be supported as additional time is left for interpersonal contact 

with other colleagues. In addition, robot interaction itself can be perceived as socially interactive. 

If robots replace valued co-workers, the need for relatedness can be frustrated.  

Need for 

Autonomy: Desire 

to self-initiate and 

self-regulate one’s 

own behavior 

The robot’s level of autonomy influences the operator’s robot control strategies (Zhou et al., 2019). 

In the context of robotic decision-support, a trade-off between robot automation and user control 

exists (Rühr et al., 2019). If high robot autonomy takes decision-making power away from human 

end-users, the need for autonomy might be frustrated (Smids et al., 2019).  

Need for Physical 

Safety: Desire to 

maintain physical 

health 

Health (mental and physical) is considered the most basic human need that will be pursued by all 

individuals before any other need (Doyal & Gough, 1984). Consequently, the implementation of 

robots at work should sufficiently reduce existing safety risks, without creating new safety risks. 

Need for Status: 

Desire to be valued 

by others 

Employment gives people social and economic status (Super, 1980). Introducing robots at work 

changes job profiles and roles. To maintain or improve the perceived status, robots should not 

take over the tasks that are high in social recognition. Instead, new evolving job roles (i.e., robot 

supervision, robot calibration) should expand skills and lead to higher social recognition (Smids et 

al., 2019). 

Recommendations for BUGWRIGHT2 

ROOS: Robots as 

an Opportunity or 

an Offense to the 

Self 

For BUGWRIGHT2 a need-based approach for evaluating the human-robot interaction is helpful. 

In work analyses, current need-thwarting elements of the hull inspection process can be identified 

and optimized in the future automated work environment. Tracking basic human needs satisfaction 

may lead to high compliance and acceptance of new technology. Especially satisfaction of the 

needs for physical safety and autonomy are critical factors for the social acceptance of 

BUGWRIGHT2. 

Recommended 

Literature 

Smids, J., Nyholm, S., & Berkers, H. (2019). Robots in the workplace: A threat to—or opportunity 

for—meaningful work? Philosophy & Technology, 33, 503–522. 
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Factsheet 6: Cognitive Load (Theory) and Workload 

Keywords Cognitive load; mental load; working memory 

At a Glance Cognitive Load is originally understood as the amount of resources from the working memory 

needed to complete a learning task. This can also be applied to problem-solving. The demand of 

working memory resources can be induced by different aspects such as task material, 

circumstances, and information processing (Sweller, 1988). 

Scientific Input  

Definition Cognitive Load is understood as the number of resources from the working memory needed to 

achieve task completion.  

Theoretical 

Background 

Cognitive Load consists of the main components: intrinsic load, extraneous load and germane load 

(Sweller, 2010). According to Sweller (2011), they fulfill the following functions: 

Intrinsic load means the resources required because of the immanent level of difficulty found in 

the material that is to be worked on (e.g., the degrees of freedom and thereby induced complexity 

in remote controlling a robotic system). 

Extraneous load means the resources required because of the way information is presented to the 

subject or the actions that need to be taken to assess critical information for task completion (e.g., 

using a 3D representation for displaying positional data versus a numerical representation). 

Germane load means the resources that are required to process and construct patterns and sort 

the perceived information into categories, which enables a person to transfer knowledge to the 

long-term memory or draw conclusions from perceived information. 

In the context of BUGWRIGHT2, it is not necessary to measure each component individually. It is 

rather needed to get an overall picture of the worker’s workload. The construct (mental) workload 

can be understood as the result of cognitive load factors and individual characteristics (Galy, 2012). 

Empirical Relations  Mental Workload is the measured variable when it comes to assessing the cognitive demand that 

a worker experiences during a task. It is related to performance, fatigue (Fan & Smith, 2017), and 

worker satisfaction (Khandan et al., 2012). Moreover, it has been found that the use of AI 

technologies, as in the BUGWRIGHT2 project, can significantly reduce workload (Buettner, 2013). 

Furthermore, there are attempts to integrate the real-time measurement of workload at work by 

physiological measures (Ramakrishnan et al., 2021) as well as by subjective measures (Mach et al., 

2019). This aims to enable a possible artificial intelligence system to consider the “co-worker’s” 

mental load and adapt its behavior to their level.  

Recommendations for BUGWRIGHT2 

Measurement  

 

Cognitive Load measurement is primarily conducted by using means to assess the mental effort, 

which includes performance, physiological, and questionnaire measurements (Miller, 2001). 

Questionnaires: 

 NASA-TLX: 6 items + optional rating procedure (Hart, 2006; Sharek, 2011)  

 SWAT: 9 items (Luximon & Goonetilleke, 2001; Rubio et al., 2004) 

Physiological measures: 

 Heart rate 

 Heart rate variability 

 Blood pressure 

 Pupil dilatation 

 Electroencephalogram (EEG) 

Performance measures: 

 Primary task performance 

 Secondary task performance 

Recommended 

Literature 

Plass, J. L., Moreno, R., & Brünken, R. (Eds.). (2010). Cognitive load theory. Cambridge University 

Press. https://doi.org/10.1017/CBO9780511844744  
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Factsheet 7: Cybersickness – Feeling moved without being moved 

Keywords Cybersickness; virtual reality; motion sickness 

At a Glance A person might feel symptoms of sickness when they are moving in a virtual reality scene and not 

moving in reality. Because many people are affected by it, research has developed design 

guidelines to mitigate cybersickness. 

Scientific Input  

Definition  Users of virtual reality, in which they seem to be moving in the virtual environment while remaining 

physically motionless, may experience cybersickness (Davis et al., 2014). 

Theoretical 

Background 

Since virtual reality’s debut, cybersickness has been an issue. Nausea, disorientation, headaches, 

perspiration, and eye strain are just some of the symptoms that might accompany cybersickness. 

The exact origin of cybersickness is unknown and the physiological reactions that accompany it 

are also unspecified. Poison hypothesis, postural instability theory, and sensory conflict theory are 

the three most popular ideas for what causes cybersickness (Davis et al., 2014). It is estimated that 

more than 60% of first-time users of early VR headsets (i.e., from 1994-2010) experienced negative 

symptoms. Among these negative symptoms, motion sickness was predominant, dependent on 

criteria, equipment, and others. Approximately 5% did not experience any negative symptoms 

while other 5% quit earlier (Stanney et al., 2020). 

Empirical Relations  In the BUGWRIGHT2 context, the most relevant finding might be that cybersickness correlates 

negatively with cognitive performance (Kim et al., 2005; Mittelstaedt et al., 2019; Nelson et al., 2000; 

Stanney et al., 2002). This suggests that the performance of affected VR users suffers from 

increased cybersickness. Moreover, cybersickness has severe negative effects on the user’s 

wellbeing (van der Spek et al., 2010). In a very thorough literature review, Weech et al. (2019) 

conclude that cybersickness might be inversely correlated to presence. 

Recommendations for BUGWRIGHT2 

Measurement, 

Promotion, 

Intervention,  

Etc. 

While cybersickness is a phenomenon quite specific to virtual reality, it should not be ignored in 

the scope of BUGWRIGHT2. As soon as any user interface integrates the slightest use of virtual 

reality, this becomes a very relevant topic. Therefore, a collection of measurement and mitigation 

techniques can be found below.  

Measurement. Cybersickness can be subjectively measured by validated scales such as the 

Simulator Sickness Questionnaire, Nausea Profile, or Research and Brand’s susceptibility survey 

(Davis et al., 2014). 

Intensification. Cybersickness is intensified by lag, flicker, and wrong calibration. 

Participants with strong control in a virtual environment are shown to be less sensitive to 

cybersickness and can better predict future movements. 

Longer virtual reality exposure results in more bouts of cybersickness and symptom intensity, 

demanding longer adaptation times (Davis et al., 2014). 

Stanney et al. (2020) recommend the following techniques to mitigate cybersickness: 

 Minimize or remove motion parallax signals during first VR/AR exposure to allow consumers 

to adapt to the VR/AR experience. Motion parallax = Objects moving at a constant speed 

across the visual field appear to move further within one frame when closer to the user. 

 Stepwise increase of the motion parallax cues over time. 

 If a user becomes irritated, reduce the motion parallax cues once more. 

 Include options to reduce the amount of needed head movement/motion parallax. 

 Use teleportation (note: can increase disorientation and hinder spatial awareness). 

 Include concordant motion (e.g., motion-base to reduce visual-vestibular conflicts). 

 Request viewers to actively align their head/body with the virtual motion. 

 To minimize visual scene motion, limit or delay forward speed and acceleration. 

Recommended 

Literature 
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Factsheet 8: Immersion and Presence in Human-Robot Interaction 

Keywords Immersion; presence; virtual reality; augmented reality 

At a Glance A person feels immersion when they are involved in and shift their attention towards the goals of 

virtual reality (VR) or augmented reality (AR). They feel like they are in the virtual world. Content 

and environment as well as technical factors influence immersion. 

Scientific Input  

Definition  Immersion is a state of deep mental involvement in which the subject may experience 

disassociation from the awareness of the physical world due to a shift in their attentional state 

(Agrawal et al., 2020). 

Theoretical 

Background 

  

Agrawal et al. (2020) state that immersion can be divided into two different notions of the concept: 

psychological and perceptual immersion. Psychological immersion is understood as a user’s 

psychological state when they are involved, absorbed, engaged, or engrossed. The attention is 

shifted towards the virtual world and its goals. Perceptual immersion is the state of being 

surrounded or experiencing multisensory stimulation whilst blocking/overpowering stimuli from 

the real environment. This sight aligns with what Slater (2009) describes. However, Agrawal’s (2020) 

psychological immersion is very similar to a very broadly known concept called presence. Thus, in 

the following, we use the term immersion interchangeably with perceptual immersion and the term 

presence with psychological immersion. For BUGWRIGHT2, both concepts are relevant.  

Empirical Relations  Immersion in the context of BUGWRIGHT2 should be understood as a variable that gives insight 

into how rich the channels are that a user interface uses for delivering information about the data 

collected by the robot system. For example, a VR interface where the user can travel around the 

whole ship and have a look at every detail should be considered as more immersive than a desktop 

interface (Slater et al., 2010). However, it is not always necessary or helpful to provide the highest 

possible amount of immersion but rather to find the most appropriate level for the specific use 

case (Bowman & McMahan, 2007). Therefore, immersion is part of a set of variables that measure 

the quality of the user interface in terms of enabling the user to conduct appropriate analytics on 

the collected data. As the perception of it is determined by the degree of immersion a system 

provides (Agrawal et al., 2020), presence is an important subjective variable to gain insight into 

how the user perceives the use of an immersive system. As a higher degree of presence is 

associated with a higher level of trust (Salanitri et al., 2016), it is also an essential variable in human-

robot teams. 

Recommendations for BUGWRIGHT2 

Measurement, 

Promotion, 

Intervention,  

Etc. 

Presence as the subjective construct can be measured by these techniques: 

 Independent Television Commission Sense of Presence Inventory (ITC-SOPI) (Lessiter et al., 

2001) – 44 items 

 Measurement, Effects, Conditions Spatial Presence Questionnaire (MEC-SPQ) (Vorderer et al., 

2004) – 32-64 item versions, 8 subscales 

 The Secondary Task Reaction Time (STRT) to assess non-mediated world attention 

 Eye-tracking can be used to investigate attentional attributes 

According to Bowman and McMahan (2007), the following elements have an impact on immersion 

from a technological standpoint regarding virtual reality applications: 

 Field of view (FOV) – the size of the visual field that can be viewed instantaneously 

 Field of regard (FOR) – total size of the visual field surrounding the user 

 Display size and display resolution 

 Stereoscopy – display of different images to each eye to provide an additional depth cue 

 Head-based rendering – the display of images based on the physical position and orientation 

of the user’s head (produced by head tracking) 

 Realism of lighting 

 Framerate (e.g., FPS) and refresh rate (e.g., Hz) 

Recommended 

Literature 
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Factsheet 9: Measuring Task Performance in Human-Robot Teams 

Keywords Task performance; human-computer interaction 

At a Glance There are several ways to measure task performance in work-related tasks. Popular options are the 

degree of correctness (e.g., error rate, false positives) or time (e.g., time on task, reaction time). 

While usually, either correctness or time is chosen for task performance measurement, a speed-

accuracy trade-off must be considered. Performance measures need to fulfill the quality criteria of 

psychometric measurement (i.e., validity, reliability). 

Scientific Input  

Definition  Human performance is the accomplishment of a task by a human operator or by a team of human 

operators (Gawron, 2019). Or, in more generalized terms, performance is the accomplishment of a 

task by a human operator or a team of two or more operators where team members can be human 

or robots (i.e., hybrid teams).  

Theoretical 

Background 

  

Performance measurement is crucial in deciding whether a human is good at conducting a task or 

not. However, due to the use of robotic agents in BUGWRIGHT2, it is necessary to not only focus 

on human performance but also on robot performance and the performance of the system (Kaupp 

& Makarenko, 2008). For example, automated robot path planning has been shown to increase 

system performance (Lewis et al., 2011). Human performance is closely related to mental load and 

other individual factors (Szalma & Teo, 2010). 

Recommendations for BUGWRIGHT2 

Measurement, 

Promotion, 

Intervention,  

Etc. 

According to Gawron (2019), human performance metrics may be divided into six categories, of 

which the three most relevant to BUGWRIGHT2 are listed below: 

Accuracy is the first category. Measures of accuracy include a correctness score, number of correct 

answers, percentage of correct answers, percentage of correct detections, and probability of 

correct detections section. Errors can also be used to measure accuracy. Error measures include 

absolute errors, average range scores, deviations, error rate, false alarm rate, number of errors, 

percentage of errors, and root mean square error. 

Time is the second category of human performance indicators. Measures of time assume that tasks 

have a well-defined beginning and end so that the duration of task performance can be measured. 

Measures in this category include dichotic listening, detection time, glance duration, marking 

speed, movement time, reaction time, reading speed, search time, task load, and time to complete.  

Team performance measurements are the third category. While Gawron (2019) only relates this to 

humans-only teams, in BUGWRIGHT2 this gains more relevance for hybrid teams consisting of 

humans and robots. Generally, team performance measurements can be understood as a 

combination of the aforementioned measures applied to team members, whereas Harriott and 

Adams (2013) try modeling human performance to estimate the overall system’s performance 

when the robotic parameters are known.  

Possible performance metrics for human-robot teams are listed in more detail in Steinfeld et al. 

(2006). They are distinguished into task metrics (e.g., Novak et al., 2012), perception, management, 

manipulation, and robot performance. Most of the metrics for human performance can be 

categorized like this. However, the authors introduce important categories for measuring robot 

performance: Self-awareness (e.g., To which extent is the robot capable of identifying its own 

situation and potential obstacles or similar nearby and when to invoke human intervention?), 

human awareness (e.g., Is the robot able to understand human ways of interaction?, Can the robot 

system adapt to changes in human behavior if necessary?), and autonomy. 

Recommended 

Literature 
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Factsheet 10: Promoting Appropriate Trust in HRI through Design 

Keywords Trust promotion; design; human-robot interaction; multi-robot-systems 

At a Glance Interface design impacts trust in human-robot interaction (HRI). Trust in HRI is influenced by various 

variables such as high usability, adaptive levels of autonomy (LoA), polite communication, accurate 

and comprehensive feedback, or explanations of the robot’s reliability and functionality. It is 

important to aim at calibrated trust levels and to avoid mistrust or overtrust.  

Scientific Input  

Short 

Introduction 

Robot factors are more important for trust in HRI than human factors (Hancock et al., 2011). For 

trustworthy HRI, based on Hoff and Bashir (2015), five design features are vital that are focussed on 

in the following sections. See Factsheet 14 for a general overview of the concept of trust in HRI.  

1/5  

Appearance 

Increasing the humanness of robotic agents, for example, including a picture of an expert in the 

interface, might foster trust (de Visser et al., 2018; Pak et al., 2012). Also, keeping the age and gender 

of the robotic agent close to the human operator might help to build trust in HRI (Bass et al., 2013; 

Pak et al., 2014). However, anthropomorphic design can also have negative effects on trust as 

emotional relations can lead to a miscalibration of trust (Culley & Madhavan, 2013; Lee & See, 2004).  

2/5  

Ease of Use 

Increased usability through higher visual clarity, among others (e.g., better traceability of results), 

goes along with increased trust (Atoyan et al., 2006). Wang et al. (2011) found trust-promoting 

effects of higher salience of automated feedback (Hoff & Bashir, 2015). 

3/5 

Communication 

Style 

A polite way of communication that is non-interruptive and patient is trustworthy (Parasuraman & 

Miller, 2004; Spain & Madhavan, 2009). Regarding the type of communication, research is 

heterogeneous. Lee and See (2002) argue for the advantages of speech-based interfaces. Here, 

subtle auditory cues like inflection, sighs, and pauses can signal uncertainty, which makes use of 

people’s ability to understand emotional hints. Other researchers prefer text-based communication 

(Gong, 2008; Lee, 2008).  

4/5  

Transparency/ 

Feedback 

Accuracy. Accurate feedback on the robotic agent’s reliability and functionality (e.g., explanations for 

failures) fosters appropriately high trust (Dadashi et al., 2013; Dzindolet et al., 2003; Gao & Lee, 2006; 

Wang et al., 2009) and task performance (Bagheri & Jamieson, 2004; Bean et al., 2011). Timing: 

Explanations of robot behaviors ahead of time (“feedforward”) are crucial for keeping steady trust in 

case of automation failures (Desai et al., 2013; Haspiel et al., 2018). Form of explanation: 

Comprehensive visualizations that include symbolic and haptic representations of the robot’s 

internal decisions were experienced as trustworthy (Edmonds et al., 2019). Semantic symbols like 

smileys led to more drastic trust changes (in both directions) than non-semantic symbols (Desai et 

al., 2013). Small intentional failures of the automation (“adaptive failure”) could recalibrate the 

human’s trust to a lower, more appropriate level in case of overreliance (Chen et al., 2020). “Trust 

Repair Actions” by the robot, like offering apologies, suggesting different solutions, giving 

explanations, and privacy guarantees might help in case of lack of reliance (de Visser et al., 2018). 

5/5 Level of 

Control  

Trust in HRI is higher with mixed LoA compared to fully autonomous systems and swarms (Huao, 

2019; Verberne et al., 2012). However, time delays in “mixed” situations (e.g., the system is waiting 

for the human to react, Verberne et al., 2012) can be detrimental in time-critical situations. Adaptive 

automation switches between different LoAs to fit different situations and different users with their 

own preferences or characteristics (Thropp, 2006).  

Recommendations for BUGWRIGHT2 

Measurement, 

Promotion, 

Intervention, 

Etc. 

For a trustworthy robotic system we recommend to a) focus on the mechanical robot appearance, 

though anthropomorphic appearance might not be relevant in the marine sector, b) ensure high 

usability (i.e., high visual clarity, high salience of feedback), c) use polite text-based communication 

(i.e., non-interruptive, patient), d) include comprehensive and graphic (non-semantic) explanations 

of robots’ functionality and reliability, as well as warnings ahead of time when (and why) failures 

seem likely, and e) choose mixed or adaptive LoA appropriate for the specific situation. 

Recommended 
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Factsheet 11: Self-Efficacy in the Context of Human-Robot Interaction 
Keywords Self-efficacy; human-robot interaction; competence belief; technology acceptance; human factor; 

performance expectancy; effort expectancy 

At a Glance Self-efficacy (SE) describes the perceived confidence to successfully master a specific situation or 

task. SE related to robots and the use of technology influences its use motivation, evaluation, and 

perseverance when interacting with them. To foster SE, four central factors act as starting points 

for SE interventions including mastery experiences.  

Scientific Input  

Definition SE describes one’s self-perceived confidence to succeed in a situation or task. SE is domain-specific, 

meaning that people do not have one overarching SE, but rather SE is a complex set of self-beliefs 

related to SE in different areas of functioning (Marsh et al., 2017) such as the use of information 

and communication technology (ICT, e.g., Brosnan, 1998) and robotics (e.g., Rosenthal-von der 

Pütten & Bock, 2018). SE does not equal efficacy, as people might possess all necessary abilities to 

succeed in a situation but do not believe that they might be able to do so. Thus, SE is a substantial 

predictor of use motivation and behavior (Bandura, 2006).  

Technology 

Acceptance and SE 

SE is integrated into widely used models of the acceptance and use of technology (for more 

information, see Venkatesh et al., 2016). Here, the research focus was on SE related to computers. 

Recent research provides evidence for the role of SE in robot acceptance and human-robot 

interaction (HRI), as well (Bröhl et al., 2019). SE predicts performance expectancy (i.e., perceived 

usefulness) and effort expectancy (i.e., perceived ease of use). Performance and effort expectancy, 

in turn, are two key determinants of future use behavior or recommendation behavior. In general, 

high SE results in more positive robot evaluation (Rosenthal-von der Pütten & Bock, 2018). 

However, existing research is promising but limited as SE in robotics is a new research field, mostly 

focused on single service robotics (e.g., in the health sector) not on robotics in industry and 

production, or robotic swarms (Savela et al., 2018). 

Development of SE SE is learned and, thus, changes by experiences people make. Four central factors influence SE 

(Bandura, 1977, 2006). Most importantly, mastery experience; the more you gain experience in a 

specific situation and manage to be successful, the more likely you will expect to be successful 

again in a similar challenge. If direct experience is not possible, it is also feasible to promote SE by 

experiencing someone else’s mastery of the situation, called vicarious experience. Reading a 

factsheet about robots leads to higher SE in elderly people than interaction with the robot itself 

(Zafari et al., 2019). The third factor is social persuasion. Direct encouragement or discouragement 

from others influences SE. Thereby, social persuasion can come from other people but also from 

the robotic agent itself. Zafari et al. (2019) showed that in the context of social interaction, 

interacting with a robot that gives person-oriented feedback (praising, encouraging) was 

associated with higher SE and a less frustrating experience while interacting with a task-oriented 

robot was not. Lastly, experiencing physiological symptoms like heart racing or sweating before a 

challenging situation can further decrease SE in people that believe these symptoms to be signs 

of their low ability. 

Recommendations for BUGWRIGHT2 

Measurement and 

Promotion 

 

To reach a high robot acceptance, high SE of employees (e.g., surveyor) directly in contact with the 

remote inspection technologies (RITs) is crucial. When tracking SE, different SE domains are to be 

considered, such as operating the robot and monitoring the inspection. Promoting SE, a 

consideration of all four sources of SE identified by Bandura (1977) is necessary. Tutorials and 

training sessions (mastery experiences), praise and encouragement, as well as instructions and 

explanations (by an instructor or the robot itself), and demonstration or modeling (vicarious 

experience) help to guarantee high SE related to the new robotic system.  

Recommended 

Literature 

Rosenthal-von der Pütten, A. M., & Bock, N. (2018). Development and validation of the self-efficacy 

in human-robot-interaction scale (SE-HRI). ACM Transactions on Human-Robot Interaction, 

7(3), 1–30. https://doi.org/10.1145/3139352 
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Factsheet 12: Situation awareness – Knowing what’s going on 

Keywords Situation awareness; decision making 

At a Glance Situation Awareness (SA) reflects the knowledge about the current circumstances a person is in. 

More precisely, it reflects the portion from this knowledge that is relevant for conducting the task 

that the individual is performing. SA has been identified as a crucial but still elusive foundation for 

successful decision-making in a variety of fields. It has been determined that lack of SA is one of 

the key causes of human error-caused incidents (Endsley et al., 2003; Nullmeyer et al. 2005). 

Scientific Input  

Definition SA has been studied from three different angles: SA states, SA systems, and SA processes. SA states 

refer to a person’s genuine understanding of the situation. It is the distribution of SA in teams and 

between objects within the environment and the exchange of SA between system parts that are 

referred to as SA systems in this context. SA processes refer to the updating of SA states, as well 

as to what leads to the moment-to-moment change of SA in real-time (Endsley et al., 2003; 

Lundberg, 2015). 

Theoretical 

Background 

SA first occurred in the technical literature in 1983 while explaining the benefits of a prototype 

touch-screen navigation display (Biferno & Stanley, 1983). Integrated “vertical-situation” and 

“horizontal-situation” displays were created for commercial aircrafts in the early 1980s to replace 

numerous electro-mechanical instruments. The situation displays integrated information from 

several instruments allowing for more efficient access to important flying data, enhancing SA, and 

decreasing pilot workload. Individuals and teams must be able to perform well in their 

environment; therefore, SA has a wide range of applications. As a result, SA has been used in 

different fields of work and is being included in several different research settings. 

Recommendations for BUGWRIGHT2 

Variety of 

Measurements 

 

As SA is especially relevant for coordination at the hull during the inspection and for interacting 

with any robotic system appropriately, it is relevant to BUGWRIGHT2 to control for the SA of 

workers involved in the inspection. Three method categories for measurement are described 

below. 

Objective measures. By comparing an individual’s perceptions of a situation or environment to 

some “ground truth” reality, objective measurements directly assess SA. Objective measures in 

particular take data from the subject about his or her perception of the situation and compare it 

to what is happening to assess the accuracy of their SA at any given time. As a result, this sort of 

assessment offers a direct measure of SA and eliminates the need for operators or observers to 

make situational knowledge judgments based on limited data. Objective measures can be 

collected in one of three ways: in real-time as the task is done (Jones & Endsley, 2000), during a 

task interruption (Endsley, 1995), or after the work has been finished with a post-test.  

Subjective Measures. Ask people to rate their own or others’ SA on a scale, e.g., the participant 

situation awareness questionnaire (PSAQ, Strater et al., 2001) or the situation awareness rating 

method (SART, Taylor, 2017). Experienced observers can make subjective estimates of an 

individual’s SA (e.g., peers, commanders, or trained external experts). Because the observer has 

more information about the real state of the environment than the operator, these observer 

evaluations may be superior to SA self-ratings (i.e., trained observers may have more complete 

knowledge of the situation).  

Performance and behavioral measures. As better performance suggests better SA, performance 

metrics “infer” SA from the result (i.e., task performance outcomes). Quantity of output or 

productivity level, time to complete the job or respond to an event, and correctness of the answer 

or, conversely, the number of errors made are all common performance indicators. The major 

benefit of performance measurements is that they can be gathered objectively and without 

interfering with job execution.  

Recommended 

Literature 

Gawron, V. J. (2019). Human performance and situation awareness measures. CRC Press. 
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Factsheet 13: SMART Work via SMART Work Design 
Keywords SMART work; work design; motivational work; work characteristics 

At a Glance SMART work refers to a concept for designing meaningful and motivating work, characterized by 

five key work characteristics (i.e., stimulation, mastery, agency, relations, tolerable demands) that 

positively influence individuals’ commitment, creativity, engagement, performance, and 

innovation. 

Scientific Input  

Definition and 

Theoretical 

Background 

Work design refers to “the content and organization of one’s work tasks, activities, relationships, 

and responsibilities” (Parker, 2014, p. 662). From a psychological perspective, work should be 

designed to enable learning and development, facilitate well-being and health, and cope with 

ambidexterity (e.g., simultaneously achieving control and flexibility, Parker, 2014). Decades of 

research on work design identified characteristics that impact employees’ motivation, well-being, 

and performance (e.g., Hackman & Oldham, 1976; Parker et al., 2017). The SMART approach unifies 

this literature into a simple model, focusing on five core work features. The acronym SMART stands 

for work that involves stimulation, mastery, agency, relations, and tolerable demands (see Klonek 

& Parker, 2021; Parker et al., 2017). 

Stimulating 

Mastery 

Agency 

Relational 

Tolerable demands 

 

(see Klonek & 

Parker, 2021; Parker, 

2014; Parker et al., 

2017) 

Stimulating. SMART jobs enable the use of an adequate skill variety in a wide range of tasks (task 

variety) and request to think outside the box (problem-solving demands). Stimulating work leads 

to more creativity and innovation.  

Mastery. SMART jobs provide individuals with realistic information about the given task and roles 

(i.e., role clarity). They include (performance-related) feedback. Task identity is high, allowing task 

completion from the beginning to the end. Mastery experiences cultivate self-efficacy (see 

Factsheet 11). 

Agency. SMART jobs are characterized by high autonomy and the decision-making of the 

individuals involved. This includes, among others, control over scheduling (e.g., when to 

accomplish the task) and work methods (e.g., how to accomplish the task). Low agency 

corresponds with high risks for mental health issues. 

Relational. SMART jobs feature social support (i.e., from colleagues or supervisors). The work tasks 

are purposeful in relation to others and society (task significance). Individuals perceive to be valued 

for what they do (social worth). Relational work boosts commitment to the organization. 

Tolerable demands. SMART jobs request moderate and manageable levels of time pressure and 

workload but also regarding emotional demands. Inconsistency of feedback and conflicting task-

related information are low (low role conflict). Tolerable demands are crucial to reducing 

involuntary absence through (mental or physical) illness (Schaufeli et al., 2009). 

Recommendations for BUGWRIGHT2 

Evaluating Work 

Features 

The implementation of automated robotics in hull inspections will lead to massive changes in the 

work processes, qualitative changes in team interactions, and the transformation of job profiles 

and roles. The SMART work design approach offers a helpful and simple framework to evaluate 

work features that have a well-established impact on employees’ motivation, well-being, and 

performance. The five SMART dimensions and their subdimensions may act as a guideline for a 

structured discussion on the future automated work environment because subjective perceptions 

are valid measures of job characteristics (see Parker, 2014) in addition to international criteria of 

functional or dysfunctional work design (see DIN EN ISO 9241-2).  

Recommended 

Literature 

Parker, S. K. (2014). Beyond motivation: Job and work design for development, health, 

ambidexterity, and more. Annual Review of Psychology, 65, 661-691. 

https://doi.org/10.1146/annurev-psych-010213-115208 

Parker, S. K., Morgeson, F. P., & Johns, G. (2017). One hundred years of work design research: 

Looking back and looking forward. Journal of applied psychology, 102(3), 403. 

https://doi.org/10.1037/apl0000106 

  

https://doi.org/10.1146/annurev-psych-010213-115208
https://doi.org/10.1037/apl0000106


Psychological Factors in Human-Robot Teams  

43 
 

References 

Hackman, J. R., & Oldham, G. R. (1976). Motivation through the design of work: Test of a theory. 

Organizational Behavior and Human Performance, 16(2), 250–279. 

https://doi.org/10.1016/0030-5073(76)90016-7 

Klonek, F., & Parker, S. K. (2021). Designing smart teamwork: How work design can boost 

performance in virtual teams. Organizational Dynamics, 50(1), 100841. 

 https://doi.org/10.1016/j.orgdyn.2021.100841 

Parker, S. K. (2014). Beyond motivation: Job and work design for development, health, 

ambidexterity, and more. Annual Review of Psychology, 65(1), 661–691. 

https://doi.org/10.1146/annurev-psych-010213-115208 

Parker, S. K., Morgeson, F. P., & Johns, G. (2017). One hundred years of work design research: 

Looking back and looking forward. The Journal of Applied Psychology, 102(3), 403–420. 

https://doi.org/10.1037/apl0000106 

Schaufeli, W. B., Bakker, A. B., & van Rhenen, W. (2009). How changes in job demands and 

resources predict burnout, work engagement, and sickness absenteeism. Journal of 

Organizational Behavior, 30(7), 893–917. https://doi.org/10.1002/job.595

https://doi.org/10.1016/0030-5073(76)90016-7
https://doi.org/10.1016/j.orgdyn.2021.100841
https://doi.org/10.1146/annurev-psych-010213-115208
https://doi.org/10.1037/apl0000106
https://doi.org/10.1002/job.595


Psychological Factors in Human-Robot Teams  

44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factsheet 14: Trust in Automation in a Multi-Robot System   



Psychological Factors in Human-Robot Teams  

45 
 

Factsheet 14: Trust in Automation in a Multi-Robot System 
Keywords Trust; human-robot interaction; multi-robot systems 

At a Glance Trust in automation is an important key factor to ensure technology acceptance and good human-

robot team (HRT) performance. Trust in automation is influenced by the reliability, explainability, 

as well as design of robots, which results in important implications for robot and system design. 

Scientific Input  

Definition and 

Theoretical 

Background 

Trust in automation is defined as “the attitude that an agent will help achieve an individual’s goals 

in a situation characterized by uncertainty and vulnerability“ (Lee & See, 2004, p. 51). This describes, 

on the one hand, a person’s tendency to trust robots, and on the other hand the willingness to 

accept some vulnerability and risk by trusting them with certain actions (Lee & See, 2004). This 

trust depends on the performance, the understanding of the inner workings, and the purpose of 

the automated system (Lee & Moray, 1992). Hoff and Bashier (2015) introduced a trust model 

which includes three layers of trust that are each influenced by different factors: dispositional trust 

(i.e., the personal enduring tendency to trust), context-dependent situational trust, and learned 

trust, which is based on past experiences with a specific system.  

Empirical Relations  Trust in automation is important for technology acceptance and use (Meeßen et al., 2020), 

especially in circumstances where the adaption of the technology is not voluntary (Schauffel & 

Ellwart, 2021). Trust also increases HRT performance (You & Robert, 2019) and is a precondition of 

beneficial effects of using automated systems like higher well-being as well as better decision 

quality (Hertel et al., 2019). It is important to note though that too much trust in automation can 

be as bad as too little trust in automation. Instead, we should aim for a realistic, well-calibrated 

amount of trust appropriate to the robot’s capabilities to avoid misuse or disuse of the automation 

(Ososky et al., 2013). What influences trust in automation? A meta-analysis found that the 

operator’s emotive states (e.g., attitudes) are highly relevant for trust (Schaefer et al., 2016). 

Another meta-analysis by Hancock et al. (2011), however, concludes that other factors are more 

important for HRT. Here, environmental factors (e.g., team collaboration) but above all the robot’s 

performance and attributes like type, size, or behavior have the biggest influence on trust in 

automation. Robots’ reliability is most crucial (Hancock et al., 2011), as especially robot failures in 

early phases of human-robot interaction lower trust (Desai et al, 2013). When using multi-robot 

systems and robot swarms, the level of autonomy (LoA) has a big impact on trust dynamics since 

LoA influences how easily humans can evaluate the robot’s reliability (Lee & Moray, 1992). For 

example, only a high LoA reliability can foster trust because humans are only able to actively 

“evaluate” robots’ performance in this condition. Further, in supervisory tasks the physical swarm 

characteristics (i.e., coherence and concentration) tend to be even more important for human-

swarm trust than robot performance (i.e., number of targets found, Huao, 2019).  

Recommendations for BUGWRIGHT2 

Measurement, 

Promotion, 

Intervention, 

Etc. 

Trust in automation is measured in several ways in existing research. For BUGWRIGHT2, we 

recommend using questionnaires that rate the predictability, reliability, and faith in the robot (Muir, 

1990), or to measure the dispositional trust of operators (Edmonds et al., 2019). Another trust 

indicator to measure situational trust is to examine when the human operator takes back the 

control from the automated system as an indicator for the lack of trust (Chen et al., 2020). To 

promote appropriate trust (i.e., calibrated and balanced: “not too low nor too high”), one could 

design the robot to monitor human trust and include intentional failures in case of human 

overreliance (Chen et al., 2020).  

Further, specific explanations of robot behavior before the automated system starts acting (Haspiel, 

2018) promote trust (see Edmonds et al., 2019 for details). For further design recommendations 

(e.g., feedback, interface), see Factsheet 10 and Factsheet 13. 

Recommended 

Literature 

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human 

Factors, 46(1), 50-80. https://doi.org/10.1518/hfes.46.1.50_30392 
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Conclusion 
The implementation of adaptable autonomous robotic solutions changes the world of work 

from all-human teams to human-robot teams. This change can be perceived as an opportunity 

for the humans involved, for example, when robotic solutions increase human safety and 

reduce human workload. However, robots at work can also be a threat if roles and 

responsibilities are ambiguous, new safety risks occur, or trust in the robotic system is 

miscalibrated (e.g., overtrust). In this e-book, we spotlighted central psychological factors for 

the success of human-robot teams from a scientific and practical perspective. The factsheets 

provide insights into psychological concepts about human-robot teams. Concrete 

recommendations provide starting points to design robotic solutions to be an opportunity, not 

a threat for humans involved. We hope this e-book is helpful not only for the BUGWRIGHT2 

project but also for any interested reader dealing with the implementation of robotic solutions 

in interdisciplinary work contexts.
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