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“In biology, it is the long-standing practice to append the name of
the first describer to the name of a species, a custom which greatly
agitated Darwin since, as he saw it, this put “a premium on hasty
and careless work” as the “species mongers” among naturalists try
to achieve an easy immortality by “miserably describing a species in
two or three lines.”

(Merton, 1957, p. 644)
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‘ Score 0

Which color is the most common?




Large Effect Medium Effect Small Effect



260 students from Arizona State University (130 M / 130 F).
85 - 999% Statistical Power to detect effects.

Participants fully informed of payoff structure and told that their earnings depend
on their performance.

Tile-sequences deterministic.









Experiment lasts 20 minutes.
Players can reveal 1 tile every 1 second.

+] for correct guesses.

-1 for incorrect guesses.



‘ Score 1

Which color is the most common?




‘ Score 1

Which color is the most common?




Correct! You gained 1 point.

Please wait for the next problem




‘ Score 2

Which color is the most common?







Experiment lasts as long as it takes players to complete

the same grids as their opponent.
Players can reveal 1 tile every 1 second.
+1 for correct guesses.

-1 for incorrect guesses.

0 points when scooped.



‘ Score 1

Which color is the most common?




‘ Score 1

Which color is the most common?




Correct. However your competitor already solved
the problem, so you did not gain any points.

Please wait for the next problem




‘ Score 1

Which color is the most common?




Hypothesis 1:

Competition will cause players to guess with less
information and be less accurate
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What if players can potentially improve research
efficiency by increasing effort?






‘ Score 0

Solve this math problem to unlock the grid

1+3+1 ’_ﬂ

Which color is the most common?




‘ Score 0

Problem solved! Click on a tile.

Which color is the most common?




‘ Score 0

Solve this math problem to unlock the grid

4+1+7 rﬂ

Which color is the most common?




Hypothesis 2:

When players can potentially increase research efficiency
by adjusting effort (i.e. arithmetic-problem solving
speed), competition will cause players to increase effort.



Hypothesis 3:

Competition x Effort Interaction: competition will have
smaller effects on tiles revealed in the Effort conditions
compared to the No-Effort conditions.
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Model Comparison: Arithmetic Problems

EFFORT: TIME TOQO ALCCURATELY S0LVE AN ARITHMETIC PROBLEM

WAIC dWAIC weight SE
Effort_C 78912.99 0.0 0.6 506.26
Effort_Intercept_Only 78913.79 0.8 0.4 506.25

Bayes Factors: Comp vs. No Comp

BIC Max N (20098 Observations) BFO1 = 142
BIC Min N (130 Observations) BFO1 = 11 @
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Model Comparison: Tiles Revealed

TILES REVEALED

WAIC dWAIC weight SE
Tiles_E_C 69826.83 0.00 U.55 331.08
Tiles_C 69828.53 1.69 0.24 331.20
Tiles_E_C_EC 69828.74 1.91 0.21 331.06

Bayes Factors: Interaction vs. No Interaction

BIC Max N (14073 Observations) BFO1 = 119
BIC Min N (260 Observations) BFO1 = 16 @



Model Comparison: Accuracy

ALCURALY
WAIC dWAIC weight SE
Accuracy C 14646.12 0.00 0.49 114.96
Accuracy E C 14647.03 0.91 0.31 114.98
Tiles_E_C_EC 14647.89 1.77 0.20 115.02

Bayes Factors: Interaction vs. No Interaction

BIC Max N (14073 Observations) BFO1 = 119
BIC Min N (260 Observations) BFO1 = 16 @



Takeaways:

Competition for novel results causes players to make
guesses using less information and have reduced
accuracy.

When players can potentially beat competitors by
increasing effort, players do not increase effort but still
reduce sample size*.



Large Effect Medium Effect Small Effect



Tiles revealed as a function of effect size
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Accuracy as a function of effect size
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Sensitivity Checks

Tiles Revealed Accuracy: Log Odds of Correct Guess

Time (seconds) to Accurately Solve One Arithmetic Problem
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Limitations

o Lacks multi-sided strategic interaction.
o Effort null-effect generalizable?

o Models science as gathering
information on independent, well-
defined problems.
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Affordances and Inferences

o Proof of concept that rewarding
novelty can incentivize people to
acquire less information on research
problems.

o Simple paradigm that can be used to

test Metascientific hypotheses.



“Interventions to change the current system should not be
accepted without proper scrutiny, even when they are
reasonable and well intended.”

OPEN a ACCESS Freely available anline @PLOS | MEDRICINE

How to Make More Published Research True

John P. A. loannidis'-2*%#




Where innovation starts
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Time: 20 minutes
Points: +1, -1

Tiles: 1 second

Time: As long as necessary

Points: +1, -1
(if not scooped)

Tiles: 1 second

Time: 20 minutes
Points: +1, -1

Tiles: depends on effort

Time: As long as necessary

Points: +1, -1
(if not scooped)

Tiles: depends on effort



Number of Tiles Revealed by Player in Competition Treatment

Expected Tiles Revealed: Competition
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BIC Approximation: Bayes Factors (Wagenmakers, 2007)

tion: Prgic(D | H;) = exp[—BIC(H;)/2]. In the case of two
models, H, and H,, the Bayes factor is defined as the ratio
of the prior predictive probabilities; hence, the BIC ap-
proximation of the Bayes factor 1s given by

BEF =~ PI‘BIC(D ‘ HU)

o PrBIC(D | Hl)

= exp(ABIC,,/2).  (10)

where ABIC,, = BIC(H,) — BIC(H,). For instance, if



Models used for Bayes Factors

Time to accurately solve one arithmetic problem

Model 0: Imer(ElapsedTime MathSolved ~ n_major.s + (1|ID_Player), data = d.math.agg.f,
REML=FALSE)

Model 1: Imer(ElapsedTime_MathSolved ~ Competition + n_major.s + (1|ID_Player), data =
d.math.agg.f. REML=FALSE)

Max N = 20098 observations. Min N = 130 observations.

BIC Max N. BFo1 =142

BIC Min N. BFo1-=11

Model 0: Imer(ElapsedTime_MathSolved ~ Sex + n_major.s + Guess_Number.s +
(1|ID Player), data = d.math.agg.f, REML=FALSE)

Model 1: mer(ElapsedTime MathSolved ~ Sex + Competition + n_major.s + Guess_Number.s
+ (1|/ID_Plaver), data = dmath.agg.f. REMIL=FALSE)

Max N = 20098 observations. Min N = 130 observations.

BIC Max N. BFp1 =142

BIC Min N. BFp1=11



Models used for Bayes Factors

Tiles revealed

Model 0: Imer(TilesRevealed ~ Competition + n_major.s + (1|ID_Plaver), data = d. math.agg.
REML=FALSE)

Model 1: Imer(TilesRevealed ~ Competition*Effort + n_major.s + (1|/ID Player), data =
d.conf.agg.f, REML=FALSE)

Max N = 14073 observations. Min N = 260 observations.

BIC Max N. BF¢1-44

BIC Min N. BFo1 =6

Model 0: Imer(TilesRevealed ~ Sex*Effort + Competition + Effort + n_major.s
+Guess_Number.s + (1|ID Player), data = d.conf.agg.f, REML=FALSE)

Model 1: Imer(TilesRevealed ~ Sex*Effort + Competition*Effort + n_major.s +Guess_Number.s
+ (1|ID Player), data = d.conf.age.f. REML=FALSE)

Max N = 14073 observations. Min N = 260 observations.

BIC Max N. BFo1=118

BIC Min N. BF1=16



Models used for Bayes Factors

Accuracy
Model 0: glmer(Correct Guess ~ Competition + Effort + n_major.s + (1|/ID_Player), data =

d.conf.age.f, family = binomial)

Model 1: glmer(Correct Guess ~ Competition*Effort + n_major.s + (1|ID_Player), data =
d.conf.age.f, family = binomial)

Max N = 14073 observations. Min N = 260 observations.

BIC Max N. BF1=118

BIC Min N. BF1=16

Model 0: glmer(Correct _Guess ~ Sex*Effort + Competition + Effort + n_major.s +
Guess _Number.s + (1|ID Player), data = d.conf.agg.f, family = binomial)

Model 1: glmer(Correct Guess ~ Sex*Effort + Competition*Effort + n_major.s +
Guess_Number.s + (1|ID Player), data = d.conf.agg.f. family = binomial)

Max N = 14073 observations. Min N = 260 observations.

BIC Max N. BF1=118

BIC Min N. BF¢1-=16



Bayesian Models used in RR

Model 1: To compare the number of tiles that players reveal before guessing the majority color in
the Competition treatments versus the No-Competition treatments, we will use a multiple linear
regression, with random effects for player, of the following form:

Yi ~ Normal(u;, o)
Ui = o + opLAYER[] + Pc*Ci + PE*E; + Pce *Ci B+ Pas™*Ns;

Y Number of tiles clicked before guessing. g. Intercept. gprayegry: Random intercept for each
player. C- Competition Treatment (1 / 0). £: Effort Condition (1 / 0). B¢ *C; E;. Interaction between
treatment and effort. By;: Standardized number of tiles for the majority color (i.e. effect size).



Bayesian Models used in RR

Model 2: To assess the probability of a correct guess, we will use a logistic regression, with random
effects for player, of the following form:

Si~ Binomial(1, p:)

Logit(pi) = o + apLaverp + Bc*Ci + BE*E; + Per *Ci B+ Pas*Ns;

Si- Successful guess. g Intercept. gprayerp: Random intercept for each player. C. Competition
Treatment (1 / 0). £: Effort Condition (1 / 0). B¢z *C; E; Interaction between treatment and effort.
Bas: Standardized number of tiles for the majority color (i.e. effect size).



Bayesian Models used in RR

Model 3: To test the effect of competition on the time between clicking one tile and being allowed
to click the subsequent tile (i.e. time to accurately solve one arithmetic problem), we will use a
multiple linear regression, with random effects for player, of the following form:

Yi ~ Normal(u;, ©)
i = o + apLAYER[] + Pc™Ci+ Pas™IVs;

¥: Time between clicking one tile and being allowed to click the subsequent tile (i.e. time to solve
an arithmetic problem; seconds). g. Intercept. gprayery- Random intercept for each player. C-
Competition Treatment (1 / 0). By;: Standardized number of tiles for the majority color (i.e. effect
size).



wha |

Priors for Bayesian Models used in RR

952  Priors.
1993

Parameter | Effort Competition Model 1 Model 2 Model 3
Manipulation Attention (Tiles) (Correct Guess) (Arithmetic
Check Check Time)

o Gamma (2, 0.5) NA Gamma (2, 0.5) NA Gamma (2, 0.5)

o Gamma (1.5, 0.05) | Normal (0, 10) | Uniform (0, 25) Normal (0, 10) Gamma (1, 0.05)

OPLAYER Normal (0, | NA Normal (0, | Normal (0, | Normal (0,
OPLAYER) OPLAYER) OPLAYER) OPLAYER)

OPLAYER Gamma (1.5, 0.05) | NA Gamma (1.5, 0.05) | Gamma (1.5, 0.05) | Gamma (1, 0.05)

Bc Normal (0, 10) Normal (0, 10) | Normal (0, 10) Normal (0, 10) Normal (0, 10)

Be Normal (0, 10) NA Normal (0, 10) Normal (0, 10) NA

Bce Normal (0, 10) NA Normal (0, 10) Normal (0, 10) NA

Bs NA NA Normal (0, 10) Normal (0, 10) Normal (0, 10)

954

—~




ROPES for Bayesian Models used in RR

Parameter | Effort Competition | Model 1 Model 2 Model 3
Manipulation | Attention (Tiles) (Correct Guess) | (Arithmetic Time)
Check Check

Be NA (-0.8, 0.8) (-1.22, 1.22) (-0.19, 0.19) (-0.33, 0.33)**

Bz (-0.5, 0.5) NA NA NA NA

Bce NA NA (-0.10, 0.10)* | (-0.09, 0.09) NA

Table 2 | Region of practical equivalence (ROPE) for quality checks and confirmatory
analyses. ROPEs for quality checks are based on subjective assessment of what effect size
would convincingly indicate a successful manipulation. ROPEs for confirmatory analyses
(Models 1 - 3) are based on 95% statistical power, unless indicated otherwise. Model 1
tests the effect of the Competition treatment and Effort condition on number of tiles clicked
before guessing, using a multiple linear regression with random effects for each player.
Model 2 tests the effect of the Competition treatment and Effort condition on the
probability of a correct guess, using a logistic regression with random effects for each
player. Model 3 tests the effect of the Competition treatment on the time to accurately solve
one arithmetic problem, using a multiple linear regression with random effects for each
player. *ROPE based on 85% statistical power. **ROPE based on 99% statistical power.
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WAIC: Time 1 Tile Model Comparison

TIME TO REVEAL 1 TILE

WAIC pWAIC dWAIC
Time_Tile_E 192698.0 475.96 0.00
Time_Tile_E_C_EC 192693.1 476,12 0.10

Time _Tile_E_C 192699.2 476.88 1.21
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Time (seconds) to Accurately Solve One Arithmetic Problem
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Density

All Effects. Optimal Opponent = 82%
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Density

Tiles revealed by 85% Bayesian
across effect sizes
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Density
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Why payoff jumps around 75%

Medium Effect. Guessing with 74% Confidence. Mean = 1
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