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Abstract
Recent studies have tracked eye movements to assess the cognitive processes involved in fraction comparison. This study advances that
work by assessing eye movements during the more complex task of fraction addition. Adults mentally solved fraction addition problems that
were presented on a computer screen. The study included four types of problems. The two fractions in each problem had either like
denominators (e.g., 3/7 + 2/7), or unlike denominators exhibiting one of the following relationships: one denominator was a multiple of the
other denominator (e.g., 2/3 + 1/9), both denominators were prime numbers (e.g., 2/7 + 3/5), or both denominators had a common divisor
larger than one (e.g., 5/6 + 3/8). Self-reports, accuracy, and response times confirmed that participants adapted their strategy use
according to problem type. We analysed the number of eye fixations on each fraction component, as well as the number of saccades (rapid
eye movements) between fixations on components. We found that participants predominantly processed the fraction components
separately rather than processing the overall fraction magnitudes. Alternating between the two denominators appeared to be the dominant
process, although in problems with common denominators alternating between numerators was dominant. Participants rarely used
diagonal saccades in any of the problems, which would indicate cross-multiplication. Our findings suggest that adults adapt their cognitive
processes of fraction addition according to problem type. We discuss the implications of our findings for numerical cognition and
mathematics education, as well as the limitations of our current understanding of eye movement patterns.
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Proficiency with fractions is important for everyday life as well as for further mathematical learning (Bailey,
Hoard, Nugent, & Geary, 2012; Booth & Newton, 2012; Siegler et al., 2012; Torbeyns, Schneider, Xin, &
Siegler, 2015). Yet, learning to work with fractions poses great challenges for many students (e.g., Carraher,
1996; Mazzocco & Devlin, 2008; Siegler & Pyke, 2013; Stafylidou & Vosniadou, 2004; Vamvakoussi &
Vosniadou, 2004). To better understand what makes fractions difficult, current research is attempting to unravel
the cognitive processes involved in solving fraction problems (Siegler, Fazio, Bailey, & Zhou, 2013). To that
end, some studies have employed eye tracking in addition to other methods of analysis because eye move-
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ments are believed to reflect cognitive processes (Grant & Spivey, 2003). However, to the best of our knowl-
edge, all previous eye tracking studies focused on fraction processing have included only fraction comparison
problems, in which participants were asked to choose the larger of two fractions (Huber, Moeller, & Nuerk,
2014; Hurst & Cordes, 2016; Ischebeck, Weilharter, & Körner, 2016; Obersteiner et al., 2014; Obersteiner &
Tumpek, 2016). To date, little is known about the cognitive processes in more complex fraction arithmetic, such
as fraction addition. Therefore, the current study investigates adults’ cognitive processes during fraction addi-
tion, using measures of accuracy, response times, and eye movements.

Cognitive Processing of Fractions

Common fractionsi are composed of two natural number components, the numerator and the denominator
(e.g., 3/8 has a numerator of 3 and a denominator of 8). Thus, from a cognitive perspective, it is possible to
process a fraction either componentially—as two separate whole numbers (3 and 8)—or holistically—as one
(rational) number with one overall magnitude (i.e., the numerical value of 3/8). This distinction between compo-
nential and holistic processing is useful to understand why people struggle with solving fraction problems: many
of the mistakes students make in fraction problems seem to be due to their reliance on componential process-
ing in problems that require holistic processing, a phenomenon known as the “whole number bias” or “natural
number bias” (Ni & Zhou, 2005; Vamvakoussi, Van Dooren, & Verschaffel, 2012; Van Hoof, Lijnen, Verschaffel,
& Van Dooren, 2013). For example, when a representative sample of 13-year-old American school students
were asked to choose, without calculation, their best estimate of the addition problem 12/13 + 7/8, the majority
of them chose 19 (the sum of the numerators) or 21 (the sum of the denominators), and only 24% chose the
correct answer of 2 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981). Presumably, the majority of students
engaged in componential rather than holistic processing while working with these two fractions. There is also
evidence that in fraction addition problems, componential addition (i.e., adding the numerators and denomina-
tors separately, e.g., 1/2 + 2/3 = 3/5) without holistic reasoning is students’ single most frequent mistake (Behr,
Wachsmuth, & Post, 1985; Brown & Quinn, 2006; Eichelmann, Narciss, Schnaubert, & Melis, 2012; Padberg,
2009).

Given students’ apparent difficulty processing fractions holistically, research has investigated whether our cog-
nitive system is capable of processing fractions in a holistic manner, and if so, to what extent people make use
of holistic processing of fractions. Many studies address these questions by exploring how educated adults and
academic mathematicians solve number comparison problems (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Meert,
Grégoire, & Noël, 2009, 2010a, 2010b; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; Schneider &
Siegler, 2010). Based on measures of accuracy and response times, a major conclusion from this line of re-
search is that people are—in principle—able to process fractions holistically, although not in an automatized
manner (Meert et al., 2009, 2010a; Obersteiner, Van Dooren, et al., 2013; Schneider & Siegler, 2010). More-
over, studies suggest that while both componential and holistic processes are involved in fraction comparison
problems of any type, the extent to which each process occurs depends on the specific strategy an individual
uses (Meert et al., 2010a). Strategy choice in turn appears to depend on the affordances of the specific prob-
lem at hand (Alibali & Sidney, 2015; Fazio, DeWolf, & Siegler, 2016; Obersteiner, Van Hoof, & Verschaffel,
2013). When comparing two fractions that have common denominators (e.g., 3/7 vs. 5/7) or common numera-
tors (e.g., 3/7 vs. 3/5), people rely predominantly on componential comparison strategies (i.e., they compare
the unequal fraction components only), and these strategies include componential processing more so than ho-
listic processing. In contrast, when comparing two fractions without common components (e.g., 3/7 vs. 5/8),
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people rely more strongly on the overall fraction magnitudes, inclining them towards more holistic processes
than componential processes.

A limitation of the research described so far is that it relies on accuracy and response time measures, which are
distal measures of cognitive processes since they do not capture potential differences in how people solve
problems. It is therefore desirable to extend this research through more proximal measures. Self-reports may
be a more proximal and straightforward way to assess strategy use (Clarke & Roche, 2009; Ericsson & Simon,
1993; Fazio et al., 2016), but the validity and reliability of self-reports are limited (Robinson, 2001) because
people are not always aware of the strategies they used or may struggle to describe their strategies. Moreover,
it is presumably difficult to describe the exact cognitive processes used if problem solving is completely or part-
ly automatized, as might be the case in processing whole number components in fraction problems (Mock,
Huber, Klein, & Moeller, 2016). Finally, asking participants to report their strategies may affect the way they
solve a problem (Kirk & Ashcraft, 2001). Although it is impossible to directly assess cognitive processes, eye
tracking is a less invasive and, compared to other methods, more direct measure of strategy use, since it argu-
ably allows “on-line” assessment of the information participants are processing (Mock et al., 2016).

Eye Movements as a Measure of Cognitive Processes in Fraction Addition

During visually presented cognitive tasks, eye movements are assumed to correspond to mental operations
(Grant & Spivey, 2003). The eye-mind assumption and the immediacy assumption are founded on the premise
that the location and duration of eye fixations correspond to the content of the information being processed and
the time needed to process it (Just & Carpenter, 1980, but see Anderson, Bothell, & Scott, 2004, for a critical
view). An increasing number of studies use eye tracking successfully to detect strategy use during mathemati-
cal problem solving (e.g., Green, Lemaire, & Dufau, 2007; Roy, Inglis, & Alcock, 2017; Schneider et al., 2008;
Sullivan, Juhasz, Slattery, & Barth, 2011).

Recent studies used eye tracking to investigate strategy use and the cognitive processes involved in fraction
comparison (Huber et al., 2014; Hurst & Cordes, 2016; Ischebeck et al., 2016; Obersteiner et al., 2014;
Obersteiner & Tumpek, 2016). Evaluating how long and how often people fixate on specific fraction compo-
nents, these studies concluded—in line with earlier findings relying on measures of accuracy and response
times (see previous section)—that adults use both componential and holistic processing in fraction comparison,
and that the extent to which each process occurs depends on problem type. Componential processes are more
common in comparison problems featuring common denominators, while holistic processes are more common
in comparison problems lacking common components.

Recent eye tracking research also explored whether individual fraction components are more or less difficult to
process when solving fraction comparison problems. Huber et al. (2014) suggested that processing fraction de-
nominators requires more cognitive effort (as measured by the number of fixations) than processing fraction nu-
merators. The reason denominators may be more difficult to process could be that while the size of the numer-
ator corresponds to the overall size of the fraction (i.e., increasing the numerator increases the fraction value),
the denominator is inversely related to the overall size of the fraction (i.e., increasing the denominator decrea-
ses the overall size of the fraction), making it more demanding to process. However, evidence from other stud-
ies points in the opposite direction (Hurst & Cordes, 2016) or suggests that the role of the denominator de-
pends on the affordances of the specific problem type (Obersteiner & Tumpek, 2016). The difference in pro-
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cessing demands between numerators and denominators may be more pronounced in fraction addition, where
the fraction denominators play a particularly important role. The reason is that in fraction addition, the denomi-
nator provides important information about which strategy is most efficient, and standard strategies include cal-
culating the least common denominator, which is presumably a demanding process.

Strategies and Cognitive Processes in Fraction Addition

The results from studies of fraction comparison reviewed above (that holistic and componential fraction pro-
cessing depends on whether fractions have common components) may not be directly transferable to fraction
addition. The cognitive processes involved in fraction addition might differ substantially from those in fraction
comparison because addition problems require the use of different strategies than fraction comparison prob-
lems. For example, it is not evident that people use holistic processing in fraction addition. While holistic pro-
cessing can be beneficial to estimate or to double-check the result of an addition problem,ii it is not absolutely
necessary. In fact, the standard addition algorithm taught in schools relies only on manipulating the fraction
components and does not involve holistic processing. This standard strategy is generally valid for adding any
two fractions (e.g., 5/6 + 3/4). It includes three steps:

• Step 1: Find the least common denominatoriii of the two fractions (e.g., the least common denominator of 6
and 4 is 12).

• Step 2: Multiply the numerators and the denominators of both fractions so the fractions will have like
denominators (e.g., 5/6 = (5 x 2)/(6 x 2) = 10/12 and 3/4 = (3 x 3)/(4 x 3) = 9/12).

• Step 3: Add the new numerators and use the least common denominator as the denominator (e.g., 10/12 +
9/12 = 19/12).

In the following, we refer to fraction addition problems that require all of these steps, and that are not among
the special cases described below, as Standard.

Not every fraction addition problem requires these three steps. There are at least three special cases of fraction
addition problems. The following three types of problems have specific affordances, in the sense that one or
more of the steps described above are especially easy to carry out or can be skipped entirely.

If one of the two fraction denominators is a multiple of the other denominator (e.g., 5/6 + 7/12; hereafter refer-
red to as a MultiDenom problem), Step 1 is especially easy to carry out, because the larger denominator is also
the least common denominator. This may reduce the cognitive effort required to find the least common denomi-
nator. Moreover, Step 2 is especially simple because one needs to multiply only the components of the fraction
with the smaller denominator, not of the fraction with the larger denominator. For example: 5/6 + 7/12 = (5 x
2)/(6 x 2) + 7/12 = 10/12 + 7/12 = 17/12.

If the two denominators are prime numbersiv (that are different from one another, e.g., 2/3 + 5/7; hereafter refer-
red to as a PrimeDenom problem), the least common denominator is the product of the two denominators. Al-
though multiplying the denominators can result in a relatively large number (compared to the least common de-
nominator in the Standard problem type), multiplying the denominators reduces the effort required to determine
common factors of the two denominators (because there are no common factors) and the calculation effort re-
quired to determine the least common denominator. Moreover, Step 2 is especially easy to carry out because
one needs to multiply each numerator with the denominator of the other fraction (i.e., to cross-multiply). It is
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therefore not necessary to keep track of the numbers with which one has to multiply the two fractions’ compo-
nents. For example: 2/3 + 5/7 = (2 x 7 + 3 x 5)/(3 x 7) = (14 + 15)/21 = 29/21.

If the two fractions have like denominators (e.g., 7/8 + 3/8; hereafter referred to as a LikeDenom problem), one
can skip Steps 1 and 2 altogether. It is sufficient to simply add the numerators and maintain the common de-
nominator. For example: 7/8 + 3/8 = 10/8.

The Present Study

This study assesses eye movement patterns in different types of fraction addition problems. The aims of this
study are to investigate how strongly adults rely on componential and holistic processing when solving fraction
addition problems; whether adults adapt their strategies according to problem type; how the cognitive process-
es differ between problem type; and how adults distribute their attention over the two fraction components.

Our study extends previous research in at least five ways. First, while previous research largely focuses on
fraction comparison, we study more complex fraction addition problems, thus providing a broader insight into
the cognitive mechanisms of fraction processing in the context of fraction arithmetic. To our knowledge, no
studies to date have assessed eye movements in fraction addition. Second, we not only analyse the number of
eye fixations on the fraction components but also the saccades (rapid eye movements) between the fixations
on these components. Arguably, saccades are a better measure of cognitive processes than fixations alone be-
cause they track which fraction components participants fixate on in succession. As in previous research
(Ischebeck et al., 2016; Obersteiner & Tumpek, 2016), we assume that saccades between the two fraction nu-
merators and saccades between the fraction denominators indicate component processing, while saccades be-
tween the numerator and the denominator of one fraction indicate holistic processing. Third, in an approach
similar to the one employed by Obersteiner and Tumpek (2016), we analyse the relative frequencies of different
saccades within each problem type, rather than the distribution of specific saccades over different problem
types as reported by Ischebeck et al. (2016). The former analysis provides a general pattern of saccades in
different problem types and is thus a better basis for interpreting differences in cognitive processes between
problem types. Fourth, we create addition problems of different types while controlling for potentially confound-
ing factors such as the sizes of the components (see Methods section). Fifth, we present the addition problems
on a computer screen in an almost natural manner to increase external validity. More specifically, the spatial
distances between number symbols are just large enough to reduce the possibility of people identifying fraction
components without fixating on them (using peripheral vision) and yet small enough to make the fractions look
natural, as they might appear in a textbook. This was not always the case in previous studies. For example, in
an attempt to eliminate peripheral vision, Ischebeck et al. (2016) used very large distances between the fraction
components. In that study, the distances between the numerators and the denominators of each fraction were
the same as the distances between the two numerators and between the two denominators, so that the stimuli
looked more like four separate numbers rather than a pair of fractions.

We used the four types of addition problems (Standard, MultiDenom, PrimeDenom, LikeDenom) described
above, for which the most efficient strategies include different processes (see section entitled Strategies and
Cognitive Processes in Fraction Addition). In addition to eye movements, we also analysed accuracies and re-
sponse times. We expected that both accuracy and response times would differ significantly between problem
types, with mean accuracy decreasing (Hypothesis 1a) and response times increasing (Hypothesis 1b) in the
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following order: LikeDenom, MultiDenom, PrimeDenom, Standard. We expected that accuracies and response
times would reflect the increasing difficulty level of these problem types, a result of the increasing cognitive ef-
fort required to reach a solution.

In regard to eye movement patterns, the first parameter we analysed was the number of fixations on numera-
tors and denominators. We hypothesized that problem type would interact with the relative number of fixations
on numerators and denominators (Hypothesis 2). In LikeDenom problems, we expected the number of fixations
on numerators to be higher than those on denominators because in these problems it is sufficient to add the
numerators without performing any operations on the denominators. In contrast, we expected that there would
be more fixations on denominators than on numerators in problems of all other types because the denomina-
tors determine the most efficient strategy for solving the problem (see above). Moreover, participants would pay
more attention to denominators because these problems require finding a common denominator, which is pre-
sumably a demanding process. In MultiDenom and PrimeDenom problems, we expected that the difference be-
tween fixations on numerators and denominators would be less pronounced than in Standard problems be-
cause of the reduced effort to find a common denominator.

The saccades between the fraction components were of primary interest. We used an approach similar to the
one employed by Obersteiner and Tumpek (2016) and counted the number of the six types of saccades that
connect the four fraction components: 1) saccades between the numerators, 2) saccades between the denomi-
nators, 3) saccades between the left numerator and the left denominator, 4) saccades between the right numer-
ator and the right denominator, 5) saccades between the left numerator and the right denominator, and 6) sac-
cades between the left denominators and the right numerator. We considered saccades between correspond-
ing fraction components (Types 1 and 2) as indicators of componential processing, and saccades between the
numerator and denominator of the same fraction (Types 3 and 4) as indicators of holistic processing. Diagonal
saccades (Types 5 and 6) may indicate cross-multiplication processes. Although cross-multiplying is also a sort
of componential processing (as opposed to holistic processing), we only use the term “componential” to refer to
processes that connect the corresponding fraction components (i.e., both numerators, or both denominators)
rather than different components (i.e., one numerator and one denominator). This terminology is in line with the
literature on fraction processing that has often not considered diagonal processing (Huber et al., 2014;
Ischebeck et al., 2016; Meert et al., 2009; but see Obersteiner & Tumpek, 2016).

As a general indicator of difficulty level, we expected to find differences between problem types in the total
number of the saccades described above, similar to accuracy and response times. The total numbers of sac-
cades should increase moving from LikeDenom to MultiDenom to PrimeDenom to Standard problems (Hypoth-
esis 3). Since previous research demonstrated that people use a variety of saccades in solving fraction com-
parison problems (Ischebeck et al., 2016; Obersteiner & Tumpek, 2016), we did not establish hypotheses con-
cerning the relative numbers of all six types of saccades for each problem type. However, we anticipated that
within each problem type, the majority of saccades would be componential because holistic reasoning is not
required to solve addition problems. More specifically, we expected that in LikeDenom problems, the number of
saccades between numerators would be higher than the numbers of saccades in each of the other categories
(Hypothesis 4a) because adding the numerators is sufficient in these problems. For MultiDenom and Standard
problems, we anticipated that the saccades between denominators would be highest (Hypotheses 4b and 4c,
respectively) because in these types of problems, determining the least common denominators should draw in-
creased attention to denominators. In the case of PrimeDenom problems, we expected that the diagonal sac-
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cades (i.e., Types 5 and 6) would be more frequent than in other types of problems (Hypothesis 4d). These
saccades indicate cross-multiplication processes, which are efficient to solve PrimeDenom problems. Note that
we did not expect diagonal saccades to be more frequent than saccades of other types within PrimeDenom
problems, because not all participants would engage in cross-multiplication. Moreover, Obersteiner and
Tumpek (2016) found that adults rarely use cross-multiplication during fraction comparison although this strat-
egy is viable.

Methods

Participants

The participants in this study included 28 adults (9 females and 19 males). Their mean age was 24.3 years
(SD = 2.3). They were recruited from three universities in a large city in Germany. The participants were enrol-
led in a variety of study programs, most of them in the STEM (science, technology, engineering, mathematics)
fields. It is therefore reasonable to assume that our participants had no particular expertise in fraction arithmetic
but were well able to solve the fraction addition problems in our experiment. All participants reported to have
normal or corrected-to-normal vision.

Fraction Addition Problems

We constructed 40 fraction addition problems of four different types. In LikeDenom problems (10 problems), the
two fractions had the same denominator. In MultiDenom problems (10), the denominator of one fraction was a
multiple of the denominator of the other fraction. In PrimeDenom problems (10), the denominators were un-
equal prime numbers. Standard problems (10) did not belong to any of the before-mentioned types. In these
problems, the denominators had a common divisor larger than one.

To reduce processes unrelated to addition, all fractions were presented in their simplified form. We only inclu-
ded proper fractions (i.e., all fraction values were smaller than 1). The numerators of all fractions were one-digit
numbers, and the denominators were all one- or two-digit numbers smaller than 20, not including ten. The re-
sults of the addition problems were never equal to one. The problems were designed such that several problem
features were comparable between problem types. Among these features were the average magnitudes of the
numerators (problem type averages ranging from 4.25 to 4.60), of the denominators (8.20–11.05), of the two
fractions (0.45–0.67), and of the results of the additions (0.90–1.34). In half of the problems, the first addend of
the addition problem was larger, and in the other half, the second addend was larger. For a complete list of the
addition problems used in this study, see the Appendix.

Procedure

The participants worked on the problems individually in a quiet room at the university. They sat in front of a 22-
inch computer screen connected to a remote SMI eye tracker with a sampling rate of 500 Hz. Before the experi-
ment began, participants performed a five-point calibration and solved a practice problem. The participants
were instructed that they would see fraction addition problems on the screen and that they should try to verbally
provide the correct answer as quickly and as accurately as possible. If they felt unable to solve a problem, they
should say “continue.” The experimenter recorded the participants’ responses. As in the study conducted by
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Green et al. (2007), we used verbal responses rather than key press responses because we wanted to avoid
the participants looking at the keyboard (resulting in potential loss of eye tracking data) to type in their respon-
ses. The problems appeared in the centre of the screen, with fraction bars of approximately 5 cm in width and
fraction numerators and denominators each of approximately 4 cm in height. The distance between the two
fraction bars was approximately 8 cm. The plus symbol was centred between the two fractions. After the partici-
pants provided their responses, the experimenter pressed a key and a fixation cross appeared in the centre of
the screen for 1 second. Afterwards, the next problem appeared. The response time for a problem was defined
as the time between the appearance of the problem on the screen and the moment the experimenter pressed
the key. The problems appeared in random order.

After the eye tracking session, we asked participants to record on a worksheet the strategies they had used to
solve fraction addition problems of each type. The worksheet illustrated one sample problem of each of the four
types that participants had worked on during the eye tracking experiment. We wanted to determine whether
participants actually made use of the strategies we expected to be most efficient for the four different problem
types.

Data Analysis

Although eye movements are the main focus of this study, we first analysed accuracy and response times. We
used analyses of variance (ANOVA), a priori contrasts, and post hoc t-tests for analysing systematic differences
between problem types. To determine effect sizes, we calculated partial eta squared (η2

p) for ANOVAs and Co-
hen’s d for t-tests (e.g., Field, 2013). To analyse eye movements, we defined four equally sized rectangular
areas of interest that covered the numerator or the denominator of the left or the right fraction. Each area of
interest began at the fraction bar of the respective fraction and measured 353 pixels wide by 430 pixels high. All
analyses were conducted with IBM SPSS 24 (IBM Corporation, 2016), and effect sizes were calculated with
G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007).

Results

Self-Reported Strategies

Table 1 provides an overview of the strategies participants reported using for each of the four problem types. It
also notes the absolute and relative frequencies of reported use. For LikeDenom problems, almost all partici-
pants reported just adding the numerators, the result we expected. For MultiDenom problems, approximately
two thirds of participants reported relying on a strategy similar to the standard algorithm, although they multi-
plied one instead of two fractions, which was also the strategy we expected. However, a relatively large number
of participants (approximately one fifth) reported using the full standard algorithm, including multiplication of
both fractions, for these problemsv. For both PrimeDenom and Standard problems, the large majority of partici-
pants reported using the standard algorithm. While we expected this strategy in response to Standard prob-
lems, it is surprising that only two participants reported using cross-multiplication in PrimeDenom problems.
This may suggest that the majority of participants were not aware that in PrimeDenom problems, the denomina-
tors are the numbers with which one has to multiply the other fraction. On the other hand, cross-multiplication is
just a special way of finding common denominators and participants may not explicitly report using it even if
they did.
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Table 1

Self-Reported Strategies per Problem Type

Problem Type / Strategy Frequency Percent

LikeDenom
Check denominators, then add numerators 26 93
Just add numerators 1 4
Just add fractions 1 4

MultiDenom
Find common denominator, multiply one fraction, add numerators 17 61
Find common denominator, multiply both fractions, add numerators 6 21
Multiply one fraction, then add numerators 5 18

PrimeDenom
Find common denominator, multiply both fractions, add numerators 24 86
Find common denominator 2 7
Find common denominator, add cross-product 1 4
Add cross-product 1 4

Standard
Find common denominator, multiply both fractions, add numerators 22 79
Find common denominator, multiply both fractions 3 11
Find common denominator, add numerators 1 4
Find common denominator 1 4
Multiply both fractions, add numerators, find common denominator 1 4

Note. When referring to common denominators, some of our participants actually used the term “least common denominator”,
while others said “common denominator” (without specifying whether or not they meant the “least” common denominator).
We do not distinguish these responses in the table because it is not relevant for our analysis.

More generally, it is important to note that participants’ responses may not be completely reliable because
some participants did not report all the steps necessary to solve these addition problems. For example, in re-
sponse to MultiDenom problems, five participants did not report finding a common denominator. Rather, the first
step these participants reported was multiplying one fraction, a step for which finding a common denominator
is, however, a prerequisite. We assume that participants did not explicitly mention finding a common denomina-
tor because they assumed that this step was included in the first step they described (multiplying one fraction).
Likewise, the strategy “find common denominator” in response to Standard problems (as reported by one par-
ticipant) is clearly incomplete.

It is also noteworthy that none of our participants mentioned using holistic reasoning about the fraction magni-
tudes, which may have been a way to check whether or not their result is reasonable. However, we assume
that even if participants used holistic reasoning, they might not have considered such reasoning part of their
strategy and thus did not report it.

As a whole, however, these reports confirm our assumption that the problems we presented encouraged differ-
ent processes and that the large majority of our participants were aware of the different affordances of these
problem types.
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Accuracy and Response Times

Table 2 shows mean accuracy and mean response time for correctly solved problems of all four types. As ex-
pected (Hypothesis 1a), there were substantial and highly significant differences in mean accuracies between
problem types, F(3, 81) = 29.91, p < .001, η2

p = .69. These differences were ordered as expected, with accuracy
being highest for LikeDenom problems, followed by problems of types MultiDenom, PrimeDenom, and Stand-
ard. All pairwise comparisons between problem types were significant (all p < .05), excepting the difference be-
tween problems of types PrimeDenom and Standard (p = .528). Analyzing response times, we excluded incor-
rectly solved problems (19.8%) and problems with response times that deviated more than two standard devia-
tions from the sample mean per problem type (another 4.5%). There were significant differences in response
times between problem types, F(3, 81) = 137.93, p < .001, η2

p = .84, with response times increasing in the same
order as the accuracies decreased (from LikeDenom to MultiDenom to PrimeDenom to Standard). All pairwise
comparisons between problem types were highly significant (all p < .001), supporting Hypothesis 1b.

Table 2

Mean Accuracy and Response Times for Correctly Solved Problems per Type

Problem Type

Accuracy (%) Response Time (ms)

M SD M SD

LikeDenom 96.1 5.7 4262 724
MultiDenom 91.1 11.0 8683 1958
PrimeDenom 70.4 23.2 23712 7916
Standard 63.2 25.5 31564 10143
All 80.2 22.7 17055 12829

Eye Tracking Data

In the analyses of eye movement data reported in the remainder of this section, we excluded four participants
due to low calibration quality. This exclusion reduced the sample size to 24.

Number of Fixations

As an indicator of the relative importance of the numerators and denominators, we analysed the average num-
ber of fixations on numerators and denominators per problem for each problem type. Table 3 displays these
results. There was a significant effect of problem type on the number of fixations, F(3, 69) = 102.04, p < .001,
η2

p = .82, with the lowest number of fixations appearing in LikeDenom problems, followed by MultiDenom, Pri-
meDenom, and Standard problems. There was also a significant effect of component, F(1, 23) = 99.37,
p < .001, η2

p = .81, indicating that there were generally more fixations on denominators than numerators. Nota-
bly, there was also a significant interaction between problem type and component, F(3, 69) = 85.35, p < .001,
η2

p = .79, indicating that the difference in the number of fixations between numerators and denominators depen-
ded on problem type. Post-hoc t-tests with paired samples illustrated that there were more fixations on numera-
tors than denominators in LikeDenom problems, t(23) = 4.37, p < .001, d = 0.90. In contrast, there were more
fixations on denominators than numerators in all other problem types, with the effect sizes increasing from Mul-
tiDenom problems, t(23) = 2.98, p = .007, d = 0.61, to PrimeDenom problems, t(23) = 5.61, p < .001, d = 1.14,
to Standard problems, t(23) = 10.56, p < .001, d = 2.16. The important role of the denominators for problems

How the Eyes Add Fractions 326

Journal of Numerical Cognition
2018, Vol. 4(2), 317–336
doi:10.5964/jnc.v4i2.130

https://www.psychopen.eu/


with unlike denominators was as expected (Hypothesis 2), but the data reveals the additional finding that the
dominant role of the denominators increased dramatically as problem difficulty increased.

Table 3

Numbers of Fixations on Numerators and Denominators per Problem, for Each Problem Type

Problem Type

Number of Fixations

Numerators Denominators

M SD M SD

LikeDenom 2.78 0.77 2.08 0.51
MultiDenom 4.84 1.70 5.56 1.32
PrimeDenom 10.30 4.94 13.74 4.12
Standard 10.69 5.53 22.86 8.72
All 7.15 5.10 11.06 9.38

Number of Saccades

We also analysed the number of saccades between each of the four AOIs. First, it is notable that the total num-
ber of saccades varied substantially between the four problem types, ranging from only seven saccades in
LikeDenom problems to 30 saccades in Standard problems. As expected, the number of saccades for the other
two problems types fell in between, with an increase from LikeDenom to MultiDenom, PrimeDenom, and Stand-
ard problems (see Table 4). These differences in the number of saccades between problem types were signifi-
cant, F(3, 69) = 49.29, p < .001, η2

p = .68, as were the pairwise comparisons (all p < .05), supporting Hypothesis
3.

Table 4

Numbers of Saccades per Problem, for Each Problem Type

Number of Saccades

Problem Type M SD

LikeDenom 6.78 1.80
MultiDenom 13.04 4.99
PrimeDenom 23.84 12.03
Standard 29.31 15.49
All 18.24 13.38

Proportions of Different Types of Saccades

To analyse the proportions of the different types of saccades within each problem type, we first calculated per
problem the percentage of each saccade type relative to the total number of relevant saccades on that prob-
lem. We averaged this number across the ten problems of each type for each participant and then across par-
ticipants. Figure 1 shows the proportions of all six types of saccades per problem type.vi
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Figure 1. Proportions of saccades within each problem type.

Note. Error bars indicate standard errors of the mean. Percentages refer to the distribution within each problem type. The
sum of percentages within each problem type may deviate slightly from 100 due to rounding.

The figure demonstrates that all types of saccades occurred in problems of any type. As expected (Hypothesis
4a), the saccades between numerators played the dominant role in LikeDenom problems, with their proportion
being highest among the different saccades of interest. Particularly, they were more frequent than saccades be-
tween denominators, t(23) = 3.32, p = .003, d = 0.71. In contrast, saccades between denominators were by far
the most frequent types of saccade in all other problem types, and their frequency increased in order of prob-
lem difficulty (from MultiDenom to PrimeDenom to Standard). Regarding MultiDenom and Standard problems,
repeated measures ANOVAs and post-hoc comparisons confirmed our predictions (Hypotheses 4b and 4c) that
the saccades between denominators were more frequent than saccades of any other type (MultiDenom: F(5,
115) = 69.64, p < .001, η2

p = .75; Standard: F(5, 115) = 143.37, p < .001, η2
p = .86; with p < .001 for all compari-

sons between saccades connecting denominators and any other saccades, in both problem types). For all
problem types, diagonal saccades occurred only rarely, suggesting that cross-multiplication was not frequently
applied in solving these addition problems. Even in PrimeDenom problems, for which cross-multiplication would
be most efficient, saccades along the two diagonals accounted for only 7% and 8%, respectively, of the sac-
cades of interest. Problem types did not differ significantly in terms of the frequencies of diagonal saccades be-
tween the left numerator and the right denominator, F(3, 92) = 1.37, p = .257. However, they did differ signifi-
cantly in the frequencies of diagonal saccades between the right numerator and left denominator, F(3,
92) = 4.95, p = .003, η2

p = .14. Post hoc comparisons showed that saccades of this type were more frequent in
PrimeDenom problems than in LikeDenom problems, t(23) = 3.16, p = .004, d = 0.67, and in PrimeDenom
problems than MultiDenom problems, t(23) = 2.98, p = .007, d = 0.60, with no significant difference between
PrimeDenom problems and Standard problems. These analyses only partially support Hypothesis 4d, which
would have assumed that both types of diagonal saccades occur generally more frequently in PrimeDenom
problems compared to any other problem type.
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It is also notable that for all problem types, holistic saccades (i.e., those between the numerator and the de-
nominator of each fraction) were relatively common, regardless of problem type. These saccade types occurred
nearly as often in all problem types, except for LikeDenom problems, where saccades between the numerator
and the denominator of the right fraction occurred more often than those between the numerator and denomi-
nator of the left fraction.

Discussion

The aim of this study was to explore the cognitive processes involved in fraction addition by adults, thereby ex-
tending previous research on fraction comparison (Huber et al., 2014; Hurst & Cordes, 2016; Ischebeck et al.,
2016; Obersteiner et al., 2014; Obersteiner & Tumpek, 2016). We were particularly interested in the extent to
which adults use componential processing, holistic processing, and cross-multiplication, and how these pro-
cesses relate to strategy use in different problem types.

Strategy Use in Different Problem Types

The addition problems in our study differed with respect to the strategies that were thought to be most efficient
for solving them. Participants’ self-reports largely confirmed that they adapted their strategies to the affordan-
ces of the different problem types. Response times and accuracy also reflected the different affordances of
problems of different types. Participants were particularly correct and fast in adding fractions with like denomi-
nators, where the only required process was to add the numerators. For other addition problems, difficulty is
presumably determined by the cognitive effort required in the different solution steps, namely finding a common
denominator, multiplying the fraction components, and adding the numerators. In line with our analysis of these
steps (see section entitled Strategies and Cognitive Processes in Fraction Addition), accuracy decreased and
response times increased from MultiDenom problems to PrimeDenom problems to Standard problems. Overall
eye movement parameters such as the numbers of fixations and the total numbers of saccades per problem
also increased from one problem type to another in the same order, supporting our basic assumption that eye
movement patterns correspond closely to the problem solvers’ cognitive processes. We can conclude that par-
ticipants adapted their strategies to the affordances of the problems, which is in line with findings from fraction
comparison studies (Fazio et al., 2016; Huber et al., 2014; Ischebeck et al., 2016; Obersteiner & Tumpek,
2016).

Cognitive Processes Depending on Problem Type

As different strategies should require different cognitive processes, the results discussed in the previous sec-
tion already suggest that different processes are involved in solving fraction addition problems of different
types. Our analysis of the proportions of saccade types within each problem type allowed for a more detailed
analysis of these processes. We had expected that, within each problem type, the majority of saccades would
be componential, because fraction addition does not necessarily require holistic processing of the fraction mag-
nitudes. The results show that for fractions with like denominators, the (componential) saccades between nu-
merators account for the majority of saccades within this problem type. For all other problem types, the most
frequently occurring saccades are (componential) saccades between the denominators. Although holistic sac-
cades occur in all problems types, these saccades (counted separately for the two fractions within a problem)
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never represented the majority of saccades. These results offer further support for the assumption that adults
increase their reliance on holistic processing of fractions only when this is required for solving the problem, pre-
sumably because holistic processing is more demanding than componential processing. For example, in the
study by Obersteiner and Tumpek (2016), holistic saccades account for the majority of saccades within com-
parison problems that require holistic processing (those without common components) but not in other prob-
lems that do not require holistic processing (those with common components). Our conclusion is also in line
with accuracy and response time patterns documented in earlier fraction comparison studies (Meert et al.,
2010a, 2010b; Obersteiner, Van Dooren, et al., 2013; Schneider & Siegler, 2010).

Although holistic saccades for the left or the right fraction did not represent the majority of saccades for any
problem type, the proportions of holistic saccades were remarkably high, given that the addition problems did
not require holistic processing. In fact, the holistic saccades for the left and the right fraction together accounted
for approximately 40 percent of all saccades in each problem type. This proportion is only a little less than the
proportion of holistic saccades in fraction comparison problems reported by Obersteiner and Tumpek (2016)
(42–52%, depending on problem type). One explanation could be that participants did use holistic reasoning to
some extent, for example to double-check their results. Another explanation is that these saccades do not sole-
ly reflect holistic reasoning but also more general processes such as reading. Ischebeck et al. (2016) assumed
that the first four fixations in their fraction comparison problems represented reading processes. While this
seems to be a reasonable assumption, one could also argue that people already reason about number magni-
tudes while reading, making it hard to disentangle reading from task-relevant numerical processes. Further re-
search is needed to separate the different processes in fraction problem solving, such as reading and calculat-
ing. One approach could be to present identical stimuli in experimental conditions (calculation) and in control
conditions (reading only).

Somewhat unexpectedly, diagonal saccades did not play a major role in fraction addition problems, not even in
those with prime denominators. Although cross-multiplication would be an efficient strategy in these problems,
the participants in our study did not seem to make extensive use of this strategy. This finding corresponds to
our participants’ self-reports, in which only two participants reported using cross-multiplication. It is also in line
with the study by Obersteiner and Tumpek (2016), in which diagonal saccades rarely occurred in fraction com-
parison.

Processing of Numerators and Denominators

We have assumed that fraction denominators play a key role in fraction addition problems because strategy
choice depends largely on the relation between the denominators and because finding a common denominator
—which was required in three fourths of the problems in our study—is a relatively demanding step (see section
entitled Strategies and Cognitive Processes in Fraction Addition). Thus, we expected that processing the de-
nominators would be more demanding than processing the numerators in all problem types except for LikeDe-
nom.

The number of fixations and the saccades analyses are in line with our predictions. In LikeDenom problems,
people fixate less often on the denominators than on the numerators, and they switch less often between de-
nominators than between numerators presumably because it is sufficient to add the numerators to find the re-
sult. In contrast, in all other problem types, the denominators require more attention than the numerators, as
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indicated by both fixations and saccades. While previous studies on fraction comparison were inconclusive
about whether denominators are generally more difficult to process than numerators (Huber et al., 2014; Hurst
& Cordes, 2016; Obersteiner & Tumpek, 2016), our data suggest that processing the denominator plays a key
role in fraction addition. Thus, the relative difficulty of processing a fraction’s numerator and denominator might
depend on the specific affordances of the fraction problem.

Implications for Mathematics Education

It is well documented that school students who struggle with fraction problems rely heavily on componential
processing and hardly employ holistic processing when working with fractions (see section entitled Cognitive
Processing of Fractions). The specific cognitive processes of individual students are, however, less well under-
stood. In further research, the eye movement patterns of educated adults identified in our study may help inter-
pret eye movement patterns of students who process fractions ineffectively. For example, if a student solves a
Standard fraction addition problem by purely relying on componential addition (i.e., adding the numerators and
denominators separately), we would expect—relative to the pattern of our adult sample—larger proportions of
saccades between numerators, and lower proportions of saccades between denominators. Moreover, the ab-
sence of holistic processing should be expressed by lower proportions of holistic saccades.

Assessing holistic processing of fractions may prove particularly relevant for mathematical learning because ac-
cording to current standards in mathematics education, estimation and arguing about the reasonableness of a
result are increasingly important skills (Common Core State Standards Initiative, 2010). Eye tracking could be
used—in addition to measures of accuracy, response times, or verbal reports—to assess these processes
more reliably. Of course, further research and technological development is necessary before eye movements
may actually be used as an assessment tool in classrooms.

Limitations

A major limitation of our study is that eye movements may not be a perfectly valid measure of cognitive pro-
cesses and strategy use in fraction addition, although previous research suggests that eye movements are a
valid measure of strategy use in other mathematical problems such as number line estimation (Schneider et al.,
2008). We used participants’ self-reports to validate the assumption that our participants adapted their strat-
egies to problem types. However, as in previous research (e.g., Ganor-Stern & Weiss, 2016), we assessed
these self-reports in a separate session after the eye tracking experiment. To better match participants’ self-
reports to their eye movement patterns, it would be preferable to collect these reports on a trial by trial basis
during (think-aloud) or right after (immediate recall) the actual problem solving process. This alteration may be
challenging, though, because eye tracking tolerates only minimal head movement while providing verbal or writ-
ten responses might induce head movement. Another alternative would be asking participants to verbalize their
strategies while watching their own eye movements recorded in a prior eye tracking session (cued retrospective
think-aloud). Although this method allows directly matching eye movements and self-reports, it poses the addi-
tional challenge for participants to interpret eye movement patterns.

Another limitation of our study is that our interpretations of eye movement patterns are tentative to some extent.
The reason is that although these interpretations are based on theoretical considerations and empirical evi-
dence from previous fraction comparison studies, our knowledge about how to interpret eye movements is still
limited. For example, it is not completely clear if all saccades between the numerator and the denominator of a
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fraction actually indicate holistic fraction processing. As discussed earlier (see section entitled Cognitive Pro-
cesses Depending on Problem Type), some of these numerator-denominator saccades may indicate reading
processes. Moreover, these saccades may also indicate additive rather than multiplicative comparisons be-
tween numerators and denominators. This means that participants may reason about the difference rather than
the quotient of a fractions’ numerator and denominator, and thus may not process (holistic) fraction magnitudes.
Further research is certainly necessary to better understand the relationship between specific cognitive pro-
cesses and eye movement patterns.

Conclusion

Research suggests that adults compare fractions in both componential and holistic ways and that their strat-
egies depend on the type of problem they encounter. Our study supports and extends these findings. Educated
adults solve fraction addition problems mainly by focusing on and switching between the most informative frac-
tion components. Whether these components are the numerators or the denominators depends on the specific
type of addition problem at hand. In regard to methods, combining different measures such as self-reports, ac-
curacy rates, response times, and eye movements is a promising way to gain insight into the cognitive process-
es of solving fraction problems.

Notes

i) Note that we only consider positive fractions here.
ii) For example, one might reject that 2/3 + 3/4 = 5/7, a result emerging from componential addition, without actually
calculating the sum of the fractions, by arguing that adding two fractions larger than a half should result in a number larger
than one, which 5/7 is not.
iii) It is actually not necessary to use the least common denominator to add fractions. Rather, any common denominator,
whether the smallest or not, can be used. However, the standard algorithm suggests using the least common denominator
to keep the numbers as small as possible.
iv) The strategy described for problems with prime denominators does not necessarily require prime denominators. This
strategy is actually valid for any fraction addition problem. However, in problems with denominators that are not prime
numbers, multiplying the denominators can result in large numbers, so that it is often more reasonable to find the least
common denominator (as described in Standard problems), rather than multiplying the denominators.
v) Note that these participants’ responses imply that they used a common denominator that was larger than both
denominators of the two given fractions, rather than the larger of the two denominators. For example, participants may have
multiplied both denominators, although they did not explicitly mention doing so.
vi) We ran a cluster analysis to identify potential subgroups of participants that might differ in their saccade patterns (and
thus in their cognitive processes). This analysis showed, however, that we can consider our sample as a homogeneous
group in terms of saccade patterns.
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Appendix: List of Fraction Pairs of Each Type

Like
Denominators (LikeDenom)

Multiple
Denominators (MultiDenom)

Prime
Denominators (PrimeDenom) Standard

3/5 + 4/5 3/20 + 4/5 3/11 + 4/5 5/6 + 7/8
2/7 + 1/7 2/7 + 1/14 2/7 + 1/11 7/12 + 4/9
5/8 + 7/8 7/18 + 4/9 3/5 + 6/7 1/16 + 7/12
7/9 + 4/9 1/6 + 7/12 2/3 + 8/13 4/9 + 8/15
3/7 + 6/7 9/16 + 3/8 4/5 + 8/11 5/18 + 1/12

1/12 + 7/12 4/5 + 8/15 1/2 + 8/17 3/14 + 1/6
2/13 + 8/13 5/18 + 1/3 6/19 + 1/2 5/8 + 3/14
9/16 + 3/16 7/8 + 1/2 2/3 + 9/13 7/18 + 3/4
4/15 + 8/15 2/3 + 8/15 9/17 + 1/3 5/6 + 3/16
5/18 + 1/18 3/4 + 5/12 5/7 + 2/3 1/4 + 9/14
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