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Summary

A series of psychological tests assess the ability of inductive reasoning. Examples
are analogies, series completions, or matrices with materials varying across verbal,
geometric—figural, or numerical content. The purpose of this study is to establish
a prerequisite order on different inductive reasoning tests and to provide a basis for
an adaptive assessment instrument that covers various types of inductive reasoning
problems.

To generate a hypothesis on the structure of inductive reasoning tests, I selected the
non—numerical knowledge space theory, because in this approach the dependencies
among items are interpreted as surmise or prerequisite relations, which establish a par-
tial order on the set of items. A recent generalization of the theory to surmise relations
between tests renders similar interpretations with respect to sets of tests instead of
items. Thereby, the response patterns in a subset of the tests are inferred from the
given responses in some other test. For the establishment of a surmise relation between
inductive reasoning tests, five common components for the various problem types were
extracted from earlier psychological findings. The principle of componentwise ordering
of product sets was applied to define difficulty orders on the components’ attributes
and to establish a test knowledge space (i. e. the set of all predicted solution patterns).

For the empirical validation of the postulated model, three investigations were con-
ducted. For Investigations I (IV = 572 corporal and officer candidates) and II (N =
2628 draftees) the set of related tests comprised a verbal analogy and a geometric
matrix test (with 30 and 40 items for Investigations I and II respectively). For Inves-
tigation III (N = 121 students of both sexes) the set of tests was extended to four
problem types with 5 items each, viz. verbal and geometric analogies, number series
completions, and geometric matrices. The validation of the derived models is based
on procedures via the surmise relation and via the knowledge space. The results of
both procedures indicate a good fit of the models established for Investigations I and
ITI. For Investigation II, the results derived via the surmise relation support the pos-
tulated model, whereas the results derived via the knowledge space reveal significant
deviations.

Considering the possibility of unexpectedly high noise rates in Investigation II, the
derived models of all three investigations were implemented into adaptive assessment
procedures. Using the postulated knowledge spaces, the adaptive algorithms estimate
the complete response patterns from a subset of the given answers. A comparison of
the estimated and the empirical patterns showed that the average error rate arising
from the adaptive assessments amounts to less than one item per pattern. Moreover,
the adaptive algorithms lead to savings of 43.96% to 72.23% of the posed questions.
Thus, the presented study shows that ordering inductive reasoning tests on the basis
of knowledge space theory provides a good foundation for an integrative and efficient
diagnostic instrument in this domain. Further research should focus on the construction
of an item and test pool that covers all possible item classes and can subsequently be
implemented into a comprehensive adaptive assessment system.



2 Summary

Zusammenfassung

Eine Reihe psychologischer Tests beschiftigt sich mit der Diagnose induktiven Denkens,
wobei den Testpersonen verschiedene Aufgabentypen, wie Analogien, Reihenfortset-
zen oder Matrizen anhand verbaler, geometrisch—figuraler oder numerischer Materialen
vorgegeben werden. Ziel der vorliegenden Arbeit ist es, induktive Denktests derart zu
strukturieren, dafs unterschiedliche Aufgabentypen in einem umfassenden, adaptiven
Testsystem integriert werden kénnen.

Fiir die Strukturierung induktiver Denktests wurde die nicht-numerische Wissensraum-
theorie gewéhlt, die es erlaubt, auf der Menge der Items eine partielle Ordnung zu
etablieren und Abhéngigkeiten zwischen Testitems als Vermutungs- oder Voraussetz-
ungsbeziehungen zu interpretieren. In einer Verallgemeinerung der Theorie zu Vermu-
tungsrelationen zwischen Tests wird von den Antwortmustern aus einem Test auf die
Antwortmuster in weiteren Tests geschlossen. Zur Konstruktion des Wissensraumes
(d.h. der Menge aller postulierten Antwortmuster) bzw. der Vermutungsrelation zwi-
schen induktiven Denktests wurden fiinf Komponenten, durch die verschiedene Auf-
gabentypen beschreibbar sind, abgeleitet. Die Voraussetzungsbeziehungen zwischen
Items und Tests basieren auf dem Prinzip der komponentenweisen Ordnung, wonach
eine Menge von Aufgaben beziiglich ihrer Schwierigkeiten strukturiert wird.

Die empirische Validierung der erhaltenen Aufgaben— und Teststrukturen erfolgte mit-
tels drei Untersuchungen. In den Untersuchungen I (N = 572 Offiziers— und Unterof-
fiziersanwérter) und II (V = 2628 Rekruten) wurden je zwei Tests, bestehend aus ver-
balen Analogien und geometrischen Matrizen, bearbeitet (mit 30 bzw. 40 Items fiir die
Untersuchungen I bzw. II), wihrend in Untersuchung IIT (N = 121 SchiilerInnen und
StudentInnen) die vier Aufgabentypen verbale und geometrische Analogien, Zahlenfol-
gen und geometrische Matrizen durch jeweils 5 Items prasentiert wurden. Die Validier-
ung der drei Modelle erfolgte fiir die postulierten Vermutungsrelationen und die zuge-
horigen Wissensrdume jeweils getrennt. Die Ergebnisse der Untersuchungen I und III
zeigen eine gute Anpassung der Modelle an die empirischen Daten, wéihrend fiir Unter-
suchung II zwar die Ergebnisse der Vermutungsrelation den Hypothesen entsprechen,
die Ergebnisse des Wissensraums jedoch Modellabweichungen aufweisen.

Hinsichtlich der Moglichkeit unerwartet hoher Fehler— und Ratewahrscheinlichkeiten
in Untersuchung II, wurden die Modelle aller Untersuchungen in wissensraumbasierte
adaptive Testverfahren implementiert. Ein Vergleich der geschétzten mit den em-
pirischen Antwortmustern zeigte, daf die durch die adaptive Diagnose bedingten Ab-
weichungen im Mittel weniger als eine Aufgabe pro Antwortmuster betragen, wahrend
die Anzahl der présentierten Items um bis zu 72.23% reduziert wurde. Die vor-
liegende Arbeit zeigt, dafs die Strukturierung induktiver Denktests auf Basis der Wis-
sensraumtheorie eine gute Grundlage fiir ein effizientes, adaptives Diagnoseverfahren
fiir diesen Bereich bietet. Fiir weiterfithrende Forschungsarbeiten erscheint vor allem
die Konstruktion eines Aufgaben— und Testpools, der alle moglichen Aufgabenklassen
umfafkt und in ein adaptives Diagnosesystem implementiert werden kann, von Bedeu-
tung.



1 Introduction

This study is about the diagnosis of inductive reasoning abilities. Induction is the
process of reasoning from particular instances to reach a general conclusion or find
a general rule governing these instances. Inductive inferences are also the means for
predicting future instances and for handling new situations by applying already stored
knowledge of past events. Thus, inductive reasoning abilities and reasoning in general
are fundamental to human intelligence.

The ability to solve intellectual problems differs among individuals. In order to measure
these differences a large number of intelligence and aptitude tests has been developed.
In many of the diagnostic procedures inductive reasoning skills are tested by presenting
at least one subtest containing problems of inducing structure (e. g., analogies or series
completion problems). One of the primary motivations for the widespread use of these
tests is that inductive reasoning is a central indicator of general intelligence. The
interest in this field is documented by the substantial amount of research devoted to
either inductive reasoning in general or the study of specific problem types such as
analogies.

Inductive reasoning involves forming and testing hypotheses. The testee is given a
series of instances, from which he or she must induce a rule that relates the instances
to each other. These rule induction skills are usually measured by means of several
problem types, including analogies, classifications, series completions, and matrices
with materials varying across pictorial, verbal, numerical, and geometric—figural con-
tent. For each test or subtest, the testee is assigned a numerical score denoting his or
her level of ability on the respective problem type. Generally, the scores derived from
psychometric tests consider, whether or not participants answered a question correctly,
but do not account for the specific problem requirements that are met by a participant.
By this, we are able to differentiate between participants of varying ability but remain
uninformed about the problem requirements that are not met and therefore need to be
trained on.

The purpose of this research is the development of a new approach to the diagnosis
of inductive reasoning abilities. The two foci of the study are (a) on the integration
of various problem types into one common classification scheme and (b) on the de-
velopment of an efficient assessment instrument that provides precise information on
problem demands and person abilities. For (a) the integrative representation of induc-
tive reasoning tests, the results of earlier research are taken into account. Therefore, I
will provide a review of some prominent findings on inductive reasoning in Chapter 2. I
will start out with a general introduction into the field (Section 2.1), which is followed

3



4 1 Introduction

by an overview of the tasks belonging to the domain of inductive reasoning (Section
2.2). This overview includes an outline of the components and attributes inherent in
single problem types and an integration of the findings with respect to the problem
types’ communalities and differences. Since I am interested in a comprehensive clas-
sification scheme, I will also report two theories of inductive reasoning, which cover
various problem types (Section 2.3). With regard to (b), the psychometric approach
to inductive reasoning and intelligence is outlined in Section 2.4. This includes a short
description of some intelligence models as well as a selection of some tests measuring
inductive reasoning abilities. The chapter on inductive reasoning will conclude with a
summary of the most important findings with respect to this study (Section 2.5).

Knowledge of the common features inherent in different types of inductive reasoning
problems is fundamental for an integrative diagnostic system. However, the implemen-
tation of adaptive assessment algorithms requires additional information. In order to
infer the responses to a subset of the items and tests under investigation, a prerequisite
order has to be defined on the set of items and tests. The theory of knowledge spaces has
been selected as methodological framework for this purpose. This non—numerical ap-
proach was originally developed for the representation and efficient diagnosis of knowl-
edge in a given domain. In all knowledge domains or psychometric tests, the set of
items varies with respect to difficulty. By considering these implicit dependencies (the
so called surmise relation) among a set of problems, the correct or incorrect solutions to
a subset of items can be inferred from previously obtained responses. These inferences
reduce the number of questions posed to a testee. If the dependencies among items
are specified by varying problem demands, it is furthermore possible to obtain precise
information on the testee’s knowledge state, i.e. of the problem requirements he or she
is able to meet. Chapter 3 provides an outline of the knowledge space theory. After
an introduction to the basic idea of a surmise or prerequisite relation between items
(Section 3.1), I will report a recent generalization of this concept (Section 3.2). The
new approach of surmise relations between tests is cardinal to this research, because it
permits the establishment of prerequisite relationships between sets of items or, as for
this study, between inductive reasoning tests. The specification of the difficulty order
on items and tests is based on the components and attributes identified in Chapter
2. Methods for the generation of testable hypotheses will be discussed in Section 3.3,
with special focus on a component based approach that allows the establishment of
a theoretically founded knowledge structure. In Section 3.4, I will introduce several
validation methods that are either based on the surmise relation or on the knowledge
space. Finally, in Section 3.5, I will report two studies, in which single inductive rea-
soning tests have been structured on the basis of knowledge space theory. A short
summary will conclude the chapter (Section 3.6).

The theoretical part of this report is followed by a short overview of the study’s pur-
pose and conceived scientific questions (Chapter 4). Subsequently, the empirical part
(Chapter 5) is entered with a detailed description of how the overall hypothesis on
a surmise relation between inductive reasoning tests has been derived (Section 5.1).
For the evaluation of the derived model, three closely related investigations have been
conducted, which are presented together with a short discussion each in Sections 5.2,
5.3, and 5.4.



The derived hypotheses allow predictions on participants’ solution behavior and are,
after they have proved to be valid representations of the knowledge domain, applicable
to adaptive testing procedures. Since the results of the investigations show that there
is no obstacle to applying the derived test knowledge spaces (or corresponding surmise
relations) to adaptive assessment algorithms, I will address this issue in Chapter 6.
After a general introduction to the adaptive assessment of knowledge and a short
outline of traditional approaches (Section 6.1), I will introduce a deterministic and
a non—deterministic assessment algorithm, which are both based on the concepts of
knowledge space theory (Section 6.2). In Section 6.3, the three postulated models of
Investigations I through III are implemented into the algorithms and the empirically
obtained answer patterns are compared to the estimated knowledge states.

Finally, in Chapter 7, the empirical findings of the three investigations and the adaptive
assessment are reviewed and integrated. A short outlook on further research with
respect to an efficient and comprehensive diagnostic instrument for inductive reasoning
concludes this report.






2 Inductive Reasoning

Inductive reasoning abilities have been central in theories of human thinking already in
the early stages of intelligence research. One reason is the assumption that inductive
reasoning is highly associated with the general intelligence factor.

Within the factor—analytic tradition Spearman (as cited in Brody, 1992) believed that
his factor g of general intelligence was mainly determined by inductive reasoning pro-
cesses and Thurstone (1931) considered inductive reasoning as one of the primary
mental ability factors. This view was also sustained in the hierarchical model by
Cattell (1963; Horn and Cattell, 1966), who divided Spearman’s ¢ into the factors
g. of crystallized intelligence and gy of fluid intelligence. Cattell found that g; was
defined by measurements of an individual’s biological capacity to acquire knowledge
and was highly determined by the factors inductive and spatial reasoning. Cattell’s
Culture-Fair tests, which were designed to assess gy, are again constituted by inductive
reasoning problems, such as analogies, matrices, classifications, or series continuations.
The importance of inductive reasoning with regard to general intelligence was also con-
firmed by newer investigations in which also methods like LISREL or multidimensional
scalings have been used (e. g., Gustafsson, 1984; Marshalek, Lohman, and Snow, 1983;
Shye, 1988; Snow, Kyllonen, and Marshalek, 1984; Tziner and Rimmer, 1984; Undheim
and Gustafsson, 1987).

In this chapter, I will first give a short introduction into the domain of inductive
reasoning (Section 2.1), which is followed by a description of some typical inductive
reasoning tasks (Section 2.2), including analogies (2.2.1), series completions (2.2.2), and
matrices (2.2.3). The section on inductive reasoning tasks concludes with a discussion
of the communalities and differences among the various problem types (2.2.4). In
Section 2.3, I will introduce two prominent models for inductive reasoning, namely
Klauer’s cognitive training approach (2.3.1) and the cognitive components approach
by R.J. Sternberg (2.3.2). The last part of this chapter (Section 2.4) deals with the
psychometric approach to inductive reasoning and intelligence. It includes structure of
intelligence models (2.4.1) as well as a selection of tests assessing the ability of inductive
reasoning either as a subtest within a general test of intelligence or as specific test
measuring only inductive reasoning abilities (Section 2.4.2). Furthermore, the most
important findings with respect to this study will be reviewed in a short summary
(Section 2.5).
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2.1 General introduction to inductive reasoning

Reasoning, in general, involves inferences that are drawn from principles and from
evidence, whereby the reasoner either infers new conclusions or evaluates proposed
conclusions from what is already known (Johnson-Laird, Byrne, and Shaeken, 1992;
Johnson-Laird and Byrne, 1993; Rips, 1990; Shye, 1988; Wason and Johnson-Laird,
1972). There are two main types of reasoning, namely deductive and inductive reason-
ing.

Whereas deductive reasoning denotes the process of reasoning from a set of general
premises to reach a logically valid conclusion, inductive reasoning is the process of
reasoning from specific premises or observations to reach a general conclusion or overall
rule. Deductive inferences therefore draw out conclusions which are implicit in the given
information, while inductive inferences add information (Bisanz, Bisanz, and Korpan,
1994; Klauer, 2001; Mayer, 1992).

Examples for deductive reasoning are judging the validity of propositional, categorical,
or linear syllogisms, conditional reasoning like the Wason selection task, or mathemat-
ical deduction, in which the consequences are deduced from a set of axioms. Examples
for inductive reasoning are language acquisition (inducing the rules of a grammar from
a set of sentences), scientific induction (e.g., inducing a molecular structure or a for-
mula from a set of numerical data), mathematical induction (e. g., the proof that a rule
is valid for all natural numbers), or intelligence test tasks like classifications, analogies,
series completions, or matrices (Goertzel, 1993; Greeno, 1978; Greeno and Simon, 1988;
Schaefer, 1985).

While mathematical induction contains information about all instances in a class (e. g.,
the class of all positive integers) and therefore concludes with certainty, psychological
induction usually refers to the given instances and does therefore reach conclusions that
are not necessarily valid for all possible instances (Klauer, 2001; Schaefer, 1985). Thus,
the inductive reasoner can only use probable conclusions to predict further instances
(Evans, Newstead, and Byrne, 1993; Sternberg, 1999). A well known example for
induction by Karl Popper (1972) is that after observing several instances of white
swans the inductive reasoner draws the conclusion that all swans are white. Thus,
the process of drawing inductive conclusions about general laws starts with single
observations which are combined with the strength of previous observations in order
to arrive at a conclusion. However, the derived conclusion is not necessarily accurate
or logically valid as can be seen in this example. Nevertheless, in many cases the
inductive inferences are valid and provide an important basis for the understanding
of regularities. Regularities as well as uniformities are the basis for the generation of
concepts and categories, which play a fundamental role in our every—day life (Klauer
and Phye, 1994). Rips (1990) argued that we should therefore concentrate on the
strength of the inductive conclusion rather than on the validity.

The development of a shared set of concepts is essential for the mutual understanding
of human beings. These concepts vary between very concrete ideas, such as what we
identify as a table, and more abstract ideas like truth or justice. From an analysis
of the similarities and differences between specific experiences, we gather the defin-
ing attributes of objects and situations. Thereafter, we can refine and modify these
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generalizations by applying them to new objects and situations. By this, the derived
concepts become part of our permanent knowledge base (Pellegrino, 1985).

The research within the field of inductive reasoning is very broad, ranging from re-
constructing the mental processes involved in inductive problem solving (e. g., Dorner,
1976; Greeno, 1978; Holzman, Pellegrino, and Glaser, 1982, 1983; Mulholland, Pelle-
grino, and Glaser, 1980; Sternberg, 1977a,b) over the construction of computer pro-
grams in artificial intelligence (e. g., Carpenter, Just, and Shell, 1990; Ernst and Newell,
1969; Holland, Holyoak, Nisbett, and Thagard, 1986; Kotovsky and Simon, 1973;
Michalski, 1983) to investigations on the effects of training on reasoning (e. g., Biichel
and Scharnhorst, 1993; Klauer, 2001; Klauer and Phye, 1994; Lehman, Lempert, and
Nisbett, 1988; Lehman and Nisbett, 1990).

At the same time the terms induction as well as reasoning are interpreted in a vari-
ety of ways (see e.g., Klauer, 2001, for distinctive definitions of the terms induction,
inductive reasoning, inductive thinking, inductive inference, or problem of inducing
structure). Just looking at the examples for inductive reasoning given above, it be-
comes clear that the meaning of induction differs depending on the respective area
of research. In scientific research induction is used to either generate or to confirm
hypotheses (Breuer, 1977). In both cases empirical data form the basis for the induc-
tive processes. The inductive generation of hypotheses starts with the collection of
empirical data, from which regularities and theoretical predictions are derived (e. g. by
explorative methods such as factor or cluster analysis). The validity of an inductive
hypothesis is strengthened by each collected data set,which confirms the hypothesis.
An important characteristic of scientific induction is that the validity of the derived hy-
potheses can only become more probable, i.e. there always remains uncertainty about
the unobserved instances. Thus inductive hypotheses are only falsifiable but not veri-
fiable. Mathematical inductions, on the other hand, conclude with certainty. Starting
with a mathematical statement or rule about a natural number and the proof, that
the rule is true for a small sample of numbers, mathematical induction is a technique
to show that the rule is true for the infinite class of natural numbers. A simple ex-
ample (taken from Schaefer, 1985) is the inductive proof that the sum of the first n
n+1)

natural numbers > 1 equals ”(T As first step of the inductive process it is shown

that the rule is true for the minimal case n = 1 (1 = 2). In a second step, it is

assumed that the rule is true for n — 1 (Z;:ll = W) and then shown that it also

holds for n (371 | = w +n= (n_1)2n+2” = ”(”2+1)). Together, the two steps imply
that the rule is true for all possible cases, i.e. the minimal case and all its successors.
Thus, mathematical induction also generalizes to a whole class from a smaller sample,
but as opposed to scientific induction, it gives information about every member of the
class. In psychometric inductive reasoning, the testee’s task is to extract a rule from a
sequence of presented instances (e.g. symbols or numbers). In this case, the extracted
rule applies only to the finite class of given instances and does not include generaliza-
tions for all possible cases. Since the rule is constricted to the observable cases, the
application of the rule should also lead to a single correct response (by for example
completing a given pattern by one or two further instances). Thus the different types
of induction vary with respect to the size of the class, for which a rule is induced and
with respect to the certainty of the conclusion. However, they have in common, that
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they all involve a generalization process from single instances to an overall rule. Thus,
induction can be viewed as drawing conclusions from a smaller sample in order to reach
a general rule governing all instances in the class under consideration.

For my research, the focus is on inductive reasoning as it is required in typical intelli-
gence test problems (e.g., analogies, series completion problems, or matrices). There-
fore, I refer to inductive reasoning as the process of reasoning from particular instances
to reach a general conclusion, i.e. an overall rule that governs the relationships among
the single instances.

With respect to inductive reasoning problems, as they are found in psychological ap-
titude and intelligence tests, the reasoner’s task is to discover the pattern of relations
among several elements in a given item. The skills required to solve such problems are
apprehension of the presented relations and generating an integrated representation or
overall rule of the pattern.

2.2 Inductive reasoning tasks

Individuals differ in their ability to solve inductive reasoning problems. In order to
assess these differences and to study the underlying factors contributing to individual
differences, a variety of tasks has been developed.

Besides the less restrictively structured problem solving contexts, such as Gick and
Holyoak’s (1980; 1983) research on building analogies between, e.g., ‘The General
Story’ and Duncker’s radiation problem (Gick and Holyoak, 1980, 1983, see Box 2.1)
or Gentner’s (1983; Gentner and Toupin, 1986) investigations on analogies between,
e.g., the solar system and an atom, there are several types of inductive reasoning
problems; which can be found in nearly every intelligence or aptitude test. Examples
are classification problems, analogy problems, series completion problems, or matrices.

All the tasks found in psychometric tests have a common property. After the presen-
tation of a set of stimuli, the testee has to infer the rules or pattern structure for the
item and generate or select an appropriate completion or continuation of the pattern.

In the following sections, I will introduce several types of inductive reasoning problems
and describe the problems’ main features and their solution requirements. Facing
the wide selection of proposed models in the cognitive psychology literature, I will
concentrate on those problem types and respective models, which are relevant to my
own research. The selection of problem types is based on the materials used in the
three investigations conducted for this study (see Chapter 5). For the selection of
models describing the problem types, my criterion was that the problems are described
by components or attributes and that the models provide information on how the items
of each problem type vary in difficulty.

The problem types included in this section are verbal and geometric analogies, number
series completions, and geometric matrices. For other types of problems, as for exam-
ple, pictorial or number analogies, pictorial, word, or letter series, verbal matrices, or
various types of classification problems, the reader is referred to, e.g., Alderton, Gold-
man, and Pellegrino (1985), Holzman et al. (1982), Jacobs and Vandeventer (1972),
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Box 2.1: Analogical transfer between stories

The General Story:

A general wished to capture a fortress located in the center of a country. Many roads
radiated outward from the fortress, but these were mined so that although small
groups could pass over them safely, any large group would detonate the mines. Yet
the general needed to get his entire large army to the fortress in order to launch
a successful attack. The general, however, knew just what to do. He divided his
men into small groups and dispatched them simultaneously down multiple roads to
converge the fortress. (Holland et al., 1986, p.291)

The Radiation Problem:

Suppose you are a doctor faced with a patient who has a malignant tumor in his
stomach. It is impossible to operate on the patient, but unless the tumor is destroyed,
the patient will die. There is a kind of ray that at a sufficiently high intensity can be
used to destroy the tumor. Unfortunately, at this intensity the healthy tissue that the
rays pass through on the way to the tumor will also be destroyed. At lower intensities
the rays are harmless to healthy tissue but will not affect the tumor either. How can
the rays be used to destroy the tumor without injuring the healthy tissue? (Holland
et al., 1986, p.290)

Analogy:
Goal Use force to overcome a central target.
Resources Sufficiently great force.

Constraint Unable to apply full force along one path.
Solution plan Apply weak forces along multiple paths simultaneously.

Outcome Central target overcome by force.
(from Gick and Holyoak, 1983)

Participant’s task was to detect the analogy between the two stories and find a
solution to the radiation problem after hearing the general story.

Klauer (2001), Mayer (1992), Scharroo and Leeuwenberg (2000), Schrepp (1999), and
Sternberg and Gardner (1983).

2.2.1 Verbal and geometric analogies

Analogies are the most frequently and most intensively studied type of inductive rea-
soning problems and can be found in a large number of intelligence tests.

In general, analogy problems are of the form A is to Bas C'isto D (A: B:: C: D).
Mostly, they are presented in a forced choice format with a three-term stem (A :
B :: C :7) and a set of answer alternatives D; (standard format). Other variants of
psychometric analogy problems are the presentation of the terms A : B as stem pair
and a set of alternative pairs C; : D; to choose from (see e.g., Bejar, Chaffin, and
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Embretson, 1991) or presentations in a true—false format (see e.g., Mulholland et al.,
1980). Box 2.2 shows some example analogies of different content and format.

The participant’s task is to infer the relation between the terms A and B, to apply this
relation to term C', and to choose the correct alternative D;, so that D has the same
relation to C' as B has to A (standard item format). The solution process involves
the search in a space of relations to find a relation that can be applied to both A : B
and C' : D. For the two most frequent types of analogy problems, viz. verbal and
geometric ones, the relations are based on semantic memory and on feature analysis
respectively (Greeno and Simon, 1988). Verbal analogies require the consideration of
semantic relations and nuances of word meanings, whereas geometric analogies require
an analysis of the terms’ features and spatial transformations (Pellegrino and Glaser,

1979).

Dependent on the kind of presentation, the solution process furthermore involves either
the selection of the correct answer alternative D; (standard format), the judgment
whether the terms A : B and C : D are related by the same rule (true-false format),
or the selection of the correct pair C; : D;.

As I am interested in the difficulty structure of problems, I will next outline the main
components contributing to item difficulty. Other research on analogy problems in-
cludes, among others, Pellegrino and Glaser’s (1982) conceptual and interactive mod-
els, Evan’s (as cited in Bejar et al., 1991) artificial intelligence model, Embretson’s
latent trait models (published as Whitely, 1980, 1981), Rumelhart and Abrahamson’s
(1973) semantic distance model, or Gentner’s (1983) structural mapping theory on
analogies.

2.2.1.1 Task requirements for verbal analogies

The basis for solving verbal analogy items is the knowledge of word meanings and of
semantic relations between the words an item is composed of. Given general knowledge
about word meanings and semantic relations, the problem solver has the task to identify
the relevant semantic relation between the terms of the stem pair (A : B) and to apply
the relation to the third term C'. Then term D is either generated immediately or each
answer alternative D; is evaluated in order to choose the D; term which matches the
A : B relation best (given the standard forced choice format).

Item difficulty can be described by three major factors, namely operation difficulty, ra-
tionale complexity, and degree of constraint (Bejar et al., 1991; Pellegrino and Glaser,
1980). Operation difficulty refers to the type of semantic relation connecting the pairs,
rationale complexity is based on the number of relevant elements or concepts in the
given relation, and constraint refers to the detectability of the relevant relation. Other
factors contributing to item difficulty are word frequency, the use of concrete versus ab-
stract words, or the semantic distance between the terms (Bejar et al., 1991; Rumelhart
and Abrahamson, 1973).

Based on taxonomies by Chaffin and Herrmann (1984) and Whitely (1977), Bejar et al.
(1991) developed a taxonomy of semantic relations (or operations) which consists of
10 families. Each of the families has between 5 and 10 members. Table 2.1 depicts
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Box 2.2: Examples for psychometric analogy items (from Bejar et al., 1991, Pellegrino,
1985, and Pellegrino and Glaser, 1982)

Verbal analogies:

e sugar : sweet :: lemon : 7
(a) yellow (b) sour (c) fruit (d) squeeze (e) tea correct answer: (b)

e concert : audience ::
(a) restaurant : waiter
(b) orchestra : musicians
(c) game : spectators
(d) school : cheerleaders
(e) zoo : keepers correct answer: (c)

Geometric analogies

e standard format

@ ® © @ @ correct answer: (e)

e true-false format

@ ORIV SHA
correct answer: true

The testee’s task is to identify the relation between the first two terms, to apply it to
the third term, and to either select the correct answer alternative or to judge, whether
the analogy is true or false (last example).

the 10 families (1st column) with a short description each (2nd column), some exem-
plary members (3rd column) for each family, and an example (4th column) for each
member. Bejar et al. (1991) analyzed a set of data for 179 GRE (Graduate Records
Examination) analogy items, which they first assigned to one of the 10 families of se-
mantic relations (each family contains between 7 and 30 items). By calculating the
item difficulty parameter A! for each family, they found that the relation families class
inclusion and similar are the most difficult ones to solve (in the given order A =
14.2 and 14.0 compared to 10.85 < A < 13.9 for the remaining families). This re-
sult was also confirmed by Klix (1978, 1992) who differentiated between seven types
of relations (attribute/quality, cause-purpose, class inclusion, comparative (similar),
contrast, coordinates, and location).

Box 2.3 shows an example for rationale complexity. A verbal analogy item is expected

LA is a measure of item difficulty, which is derived from the percentage of correct solutions. It is
defined in terms of a normal distribution with a mean of 13 and a standard deviation of 4.
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Table 2.1: Taxonomy of semantic relations (adapted from Bejar et al., 1991)

Families Descriptions Members Examples
Class inclusion  One word names a class that includes  taxonomic flower:tulip
the entity named by the other word. functional weapon:knife

Part—whole

Similar

Contrast

Attribute

Nonattribute

Case-relation

Cause—purpose

Space-time

Representation

One word names a part of the entity
named by the other word.

One word names a different degree
or form of the quality, object, or
action represented by the other word.

One word names an opposite or
incompatible of the other word.

One word names a quality, property,
or action of the other word.

One word names a quality that is not
an attribute of the other word.

One word names an action that the
other word is usually involved in.

One word represents the cause,
purpose, or goal of the other word.

One word names an entity that is as-
sociated with a particular location
or time named by the other word.

One word names something that is an
expression or representation of, or a
plan or design for the other word.

mass:portion
object:stuff

conversion
comparative
coordinate

contrary
reverse

item:attribute
object:action

attribute:nonstate
item:nonattribute

agent:object
action:object

cause:effect
agent:goal

item:location
contiguity
sequence
expression
representation
plan

water:drop
glacier:ice

grape:wine
breeze:gale
son:daughter

old:young
love:hate

beggar:poor
glass:break

immortal:death
bulwark:flimsy

tailor:suit
plow:earth

joke:laughter
pilgrim:shrine
arsenal:weapon

coast:ocean
coda:symphony

hug:affection
person:portrait
recipe:cake

to become more difficult, the more elements are contained in the rationale. Bejar et al.
(1991) calculated the mean complexity (mean number of elements in the rationale) for
each family and compared the derived scores to the difficulty parameters A. They found
no significant relationship between complexity and difficulty. However, the analysis
does not include a direct comparison of the number of elements and difficulty, i.e. the
mean A for each level of complexity. The range of the number of elements within one
family varies from zero to five (e. g., the family class inclusion contains only items with
2 elements, while the family similar contains items with 1, 2, 3, 4, and 6 elements).

The third factor contributing to item difficulty describes the degree of constraint on
the set of possible answers for an item, i.e. the easiness to detect the relevant relation
(Pellegrino and Glaser, 1980). For easy items (high constraint), the semantic relation
can be specified immediately and a potential completion term is easily generated.
The solution process follows a working—forward strategy, i. e. hypotheses are generated
and tested and the processing of answer alternatives only involves a search for the
hypothesized answer. An example for high constraint is the analogy ‘wolf:dog::tiger:?’.
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Box 2.3: Example for rationale complexity in verbal analogies (adapted from Bejar
et al., 1991)

No. and kind
Rationale of elements Example
A is a member of B 1: membership robin:bird
A is a verbal expression of B 2: expression, verbal scream:fear

A is a device through which the 3: device, flow
flow of B is regulated regulation dam:water

In items of high difficulty (low constraint) the relationship between the terms of the
stem pair is not well specified and the item elicits more than one answer. The solution
process is partially or completely guided by the set of answer alternatives, i.e. the
problem solver uses a working-backward strategy. An example for low constraint is
the analogy ‘city:village::army:?’. Presenting the two mentioned analogies in an open
answer format, Pellegrino and Glaser (1980) found that the high constraint analogy
elicited seven different responses, with 74% agreement on the answer ‘cat’. The low
constraint analogy elicited 27 different responses with only 17% agreement on the most
frequent answer ‘platoon’.

2.2.1.2 Task requirements for geometric analogies

The correct solution of geometric analogy items (see Box 2.2) requires processes to
(a) decompose geometric figures into their constituent elements and (b) to identify
specific transformations, which link the terms (Pellegrino and Glaser, 1980). Thus, the
problem solver needs two types of declarative knowledge, namely (a) knowledge of the
constituent elements used to construct the individual terms and (b) knowledge of the
transformations that relate the terms. In general, the relations are found by examining
the features of the terms. Looking, for example, at the true—false analogy in Box 2.2,
terms A and B are decomposed into circles and plus signs and terms C' and D into
squares and triangles. Then, a transformation in size is applied to the circle and the
square in terms A and C, and a transformation in number is applied to the terms’ plus
signs and triangles.

Mulholland et al. (1980) constructed 460 true-false analogies with varying numbers of
elements and transformations. The number of elements per term varied between one
and three, the number of transformations between zero and three. Figure 2.1 depicts
the obtained reaction times (a) and error rates (b) as a function of the number of
elements and transformations for 240 true analogies.

The latency data in Figure 2.1a show that the solution time is a direct function of
the number of elements and the number of transformations. Each additional element
and each additional transformation results in an increase in solution time. This in-
dicates that individuals decompose the patterns of an analogy item sequentially by
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Figure 2.1: Reaction times (a) and error rates (b) for geometric analogies as a function
of the number of elements and transformations (from Pellegrino and Glaser, 1980)

isolating the constituent elements one by one, as well as by performing the transfor-
mations in a serial manner. With regard to the error data, Figure 2.1b shows that
only the number of transformations but not the number of elements influences the
percentage of errors (a repeated ANOVA resulted in F'(2,240) = 1.63,p > .05 for the
elements and in F(3,240) = 129.4,p < .001 for the transformations). Furthermore,
Mulholland et al. (1980) found that the the number of elements and transformations
interacted (F'(4,240) = 5.9,p < .05), with the major portion of interaction variance
being associated with the different trend for transformations in the one— versus two and
three—element conditions. The most rapid increase in error rate occurred for items, in
which several different transformations had to be performed on a single element. Thus,
difficulties seem to arise from retaining and operating on the intermediate products of
the transformations. Mulholland et al. (1980) conclude that with an increasing number
of elements and transformations, it becomes more difficult to keep all of the performed
steps in working memory, whereby the number of required transformations contributes
more to item difficulty than the number of basic elements involved. Individual differ-
ences in the ability to solve geometric analogy problems is then related to differences
in working memory capacity.

Besides the number of elements and transformations, geometric analogy items are
mostly varied with geometric figures (e.g., triangles, circles, or squares) and back-
ground textures (patterns or shadings) as constituent elements and various types of
basic transformations, such as removing, adding, rotating, reflecting, displacing, size
changes, and variations in shading, form, shape, or number. The difficulty of the trans-
formations varies in dependence of the elements’ features. Features, that are directly
perceptible, such as size changes or variations in shading or form are easier to trans-
form than features that require a more abstract analysis, such as counting components
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(Hunt, 1974). Furthermore, the application of spatial transformations was shown to
contribute to item difficulty, because they are not as salient and are assumed to be not
stored visually but acoustically (Posner and Mitchell, 1967).

A further factor contributing to item difficulty is that of constraint. As for verbal
analogies, it refers to the easiness to detect the relevant relation or (given a forced
choice format) to the likelihood that the stem terms A, B, and C' elicit more than one
answer D (see Section 2.2.1.1 for a more detailed description of constraint).

Summarized, item difficulty of geometric analogy items depends on the number of
constituent elements of the terms, the number and type of required transformations,
and the degree of constraint.

2.2.2 Series completions

Series completion problems are also part of many aptitude and intelligence tests, al-
though they are not as frequently encountered as analogy problems. The types of
serial patterns which are usually found in psychometric tests are primarily composed
of letters or numbers (Pellegrino, 1985). Box 2.4 shows two examples each for number
and letter series completions, of which one is presented in an open answer format, the
other in a forced choice format. The general item structure is characterized by a set of
elements (numbers or letters), which are ordered by one or more relations between the
elements. The problem solver’s task is to infer the relationship(s) and either generate
the next item(s) in the series or select a correct completion of the series from a set of
answer alternatives.

Simon and Kotovsky (1963; Kotovsky and Simon, 1973) proposed four basic compo-
nents that are involved in the solution process for letter series completion problems
and Holzman et al. (1983) showed that the same four components are also applicable
to number series completions. In the following, a short description of each component

Box 2.4: Examples for number series completion items

Number series:
e 32113315341935 correct answer: 23 36

e 2523201815
(a) 12 (b) 17 (c) 13 (d) 14 correct answer: (c)

Letter series:
ejkqrklrslms correct answer: m n t t

eazbycxdw _
(a)e (b)x (¢)v (d)c correct answer: (a)

The testee’s task is to infer the relationship(s) between the elements of the series and
to either generate or to select a correct completion of the series.




18 2 Inductive Reasoning

is given together with an example. The example refers to the first number series in Box
2.4. For letter series completion problems, the same solution steps apply, but numbers
have to be replaced by letters and the relations refer to the distance of two letters
within the alphabet (e.g same letter, next letter, predecessor, double—, or triple-next
letter). The flow chart in Figure 2.2 illustrates the suggested processes involved in the
solution of series completion problems. Performance is primarily determined by the
following four processes:

1. Relation detection: Scanning of the series and generation of a hypothesis about
the relationship among two or more elements of the series. In the first example in
Box 2.4 scanning the series might first lead to the hypothesis that the elements
32 33 34 ... are related by the rule +1.

2. Discovery of periodicity: Using the information about the inferred relationship,
the period length of the series is extracted (i.e. the number of elements that con-
stitute one complete cycle of the pattern). The period length can be determined
by checking, whether the relation is repeated at regular intervals (or for adjacent
elements, such as 12 12 13 13 14 14, whether the relation is interrupted at regular
intervals). In the above example, every other number is related by the rule +1,
thus the period length is set to 2. Whenever the initially discovered relation is
not repeated at regular intervals, the rule is discarded and a search for a new
relation starts.

3. Completion of pattern description: Identification of rules which relate the re-
maining elements within the period (by applying the knowledge of the series’
periodicity) and definition of a higher order rule for the full sequence. In the ex-
ample, the remaining numbers are 11 15 19 which are related by the rule +4. The
higher order rule in the relation can now be determined as adding 1 to location
M; [+1(M;)] and adding 4 to location My [+4(Ms3)]. For the complete pattern
description Holzman et al. (1983) use the notation [My, +1(M;), My, +4(Ms)].

4. FExtrapolation: Completion of the series based upon the pattern description. For
each answer blank the relevant rule is isolated and applied to generate the com-
pletion term. In the example, the first answer blank belongs to the cycle 11 15
19, and therefore the rule +4 is applied and the number 23 is generated. For
the second answer blank the rule 41 is applied to the cycle 32 33 34 35 and the
number 36 is generated to complete the series.

The difficulty of series completion problems is influenced by several components, in-
cluding the type of relation that has to be detected, the period length of the series,
and the number of elements in the pattern description. For the following more detailed
report of the components and some corresponding empirical results, I will refer to num-
ber series completions, since this type of problem is also part of my study and therefore
included in the classification scheme for inductive reasoning developed in Chapter 5.

According to Holzman et al. (1983), there are several components, which influence
the difficulty of number series completion problems. Firstly, the types of relations
involve a variety of arithmetic operations, such as addition, subtraction, multiplication,
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Completion of pattern
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of period

found?
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Figure 2.2: Flowchart representing the sequence of information—processing during the
solution of series completion problems (modified from Holzman et al., 1983)

or division. Secondly, the magnitude of the arithmetic operation varies, by which
the elements are related (e.g., +4 vs. +14). The third component contributing to
item difficulty is the complexity of the operation, which can be increased by applying
hierarchical sequences to the operations. As an example, the operation relating the
elements of the problem 12 13 16 25 52 is an addition, but the magnitude of the
addend is multiplied by three for each step in the sequence. The pattern description
for this sequence is [My, +Ni(My), x3(Ny)], with N denoting the placekeeper for the
hierarchical operation. The length of the period constitutes the fourth component.

The complexity of the operation and the periodicity of the serial pattern influence the
amount of information that must be held and coordinated in working memory, i.e. the
number of required working memory placekeepers (WMPs). The number of WMPs per
item results from the number of operations (M; in the pattern description) and the
number of hierarchical sequences (JV; in the pattern description).

Holzman et al. (1983) developed a set of number series completion items that varied,
among others, in the type, magnitude, and complexity of the required operation, in
the number of WMPs (0-3), and in period length (1-3). Holzman et al. presented
90 test items to three groups of different ability level (university students, high and
average ability children with N = 18 each). Performing ANOVAs for the various
components, they found significant effects for the type of operation (F[1, 1887] =
169.85, p < .001 with additions and subtractions being easier than multiplications
and divisions), for the operation’s magnitude (F[1,1887] = 67.78,p < .001 with low
magnitude operators being easier than high magnitude operators), for the presence vs.
absence of hierarchical sequences (F'[1,1887] = 20.43,p < .001), and for the number of
WMPs (F[1,1887] = 276.89/599.06/48.85,p < .001 for comparisons between 0 and 1-
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3/1 and 2-3/2 and 3 WMPs respectively). The component period length was evaluated
within a multiple regression analysis on the proportion of correct solutions. Holzman et
al. found no significant effect arising from the length of a period (¢ = .32/.99/1.10,n.s.
for the average, high, and adult ability groups respectively). Overall, the number of
WDMPs contributed most to the differences in item difficulty. Individual differences
in the ability to solve number series completions can thus be related to differences in
working memory capacity.

One problem often encountered in series completion problems is that of ambiguity,
which occurs when a given sequence can be extrapolated by more than one rule. Ko-
rossy (1998), who took a formal approach to the description of rules applied in number
series problems, emphasized two consequences that follow from different solution for-
mulae. In one case, different solution formulae lead to identical extensions of the
number series, but the solution times differ. Although the solutions are correct no
matter which rule is applied, the test scores are biased. Especially in the usually ad-
ministered speed—power tests, higher solution times per item will lead to lower test
scores. In the second case, different solution formulae lead to different extensions of
the series. This case is even more critical, because the extensions which were not in-
tended by the test constructors will be judged as incorrect. Box 2.5 shows an example
for each of the two cases. In problem (a), the number series can either be solved by the
formula a; 1 + 2 or by the formula 2a; ; — a; 5 (a; is the number to be found, a;_; the
preceding number, etc.). Both formulae yield the same result, but the second formula
takes more time to process all of the elements and to generate the correct response.
Problem (b) in Box 2.5 depicts a number series, for which the application of different
solution rules leads to different extensions of the series, and therefore to answers that
are scored as incorrect. One way to deal with this problem is the use of a set of answer
alternatives the participant has to choose from. By this procedure it is possible to
rule out several alternative rules by excluding the respective answers from the set of
alternatives. With respect to item difficulty, it is necessary to differentiate between
varying degrees of constraint when using multiple choice formats.

Other approaches to the solution and construction of series completion problems have
been developed within the framework of knowledge space theory (see Chapter 3).
Schrepp (1995, 1999) derived a quasi ordinal knowledge space for letter series com-
pletion problems which is based on the four described solution processes and Wriess-
negger, Janzen, and Albert (2002) developed an eye movement model, which assigns
eye movements to the first three solution processes (relation detection, discovery of
periodicity, and completion of pattern description). Both investigations support the
process model by Simon and Kotovsky (1963) and can be used to predict the difficulty
and interdependency of letter series completion problems. Number series completions
have been investigated by Albert and Held (1994, 1999) and Ptucha (1994). I will
outline the knowledge space based approach by Albert and Held in Section 3.5.1.

2.2.3 Geometric matrices

The most prominent example for matrix problems are probably Raven’s Progressive
Matrices tests (Raven, 1958, 1965, 1976, see also Section 2.4.2.3), which have been



Inductive reasoning tasks 21

Box 2.5: Examples for ambiguity in number series completions (adapted from Korossy,
1998)

e Two solution formulae lead to identical extensions:

(a) 1357911

— formula 1: a;_1 + 2 — solution: 13 15

— formula 2: 2a;,_1 — a;_s — solution: 13 15

e Two solution formulae lead to different extensions:

(b) 2224610

— formula 1: a;_; + a;_o + a;—_3 — 2 — solution: 18 32

— formula 2: a;_; + a;_o — a;_3 + 2 — solution: 14 20

widely applied in both practice and research settings. Geometric matrix items are
also often found in intelligence tests. Because of their high loadings on the general
intelligence factor g (see e.g., Carroll, 1993; Marshalek et al., 1983; Paul, 1986; Tziner
and Rimmer, 1984), there are also several tests that consist only of geometric matrix
items, such as the Figure Reasoning Test (FRT by Daniels, 1993), the Vienna Matrices
Test (WMT by Formann and Piswanger, 1979), or the already mentioned Coloured,
Standard, and Advanced Progressive Matrices (CPM, SPM, and APM by Raven, 1976,
1958, 1965).

Box 2.6: Example for a geometric matrix item

AlO]IO

o
©

& | e
1 Il

The testee’s task is to infer the relationships among the figures in the matrix and to
select the answer alternative which correctly completes the matrix.

correct answer: alternative 2
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Box 2.6 provides an example for a geometric matrix item (the item is invented, but
similar to the items found in Raven’s Progressive Matrices or in the WMT). The
matrices are usually composed of a diagram with several figures arranged in rows and
columns with one part missing. Items can be presented as, e.g., 2 by 3, 2 by 4, or 3 by
3 matrices. The problem solver’s task is to induce the relationships among the figures
and either to generate the missing element or to select the correct answer from a set
of alternatives to complete the diagram. Variations in the entries of the matrix are
based on different figural elements (such as triangles, circles, or squares) and different
background textures (such as patterns or shadings), which can vary in form, number,
spatial orientation, color, etc.

Carpenter et al. (1990) as well as, for example, Hunt (1974) developed algorithms to
simulate the processes involved in the performance on Raven’s Advanced Progressive
Matrices (APM). In order to explain the processing characteristics responsible for in-
dividual differences in performance, Carpenter et al. (1990) developed two models, viz.
FAIRRAVEN and BETTERRAVEN. FAIRRAVEN models the performance processes of
moderately skilled university students, whereas BETTERRAVEN is an enhanced ver-
sion representing the solution processes of highly skilled students. The relatively good
match of the computer simulations’ and the students’ error profiles (i.e. the number
of errors per problem) as well as eye-movement data, and self-reports lead to the fol-
lowing explanation of what APM actually assess and how students solve the problems.
Carpenter et al. (1990) found that the APM assess the common ability to decompose
the problem into manageable units of processing and to iterate through the emerged
subgoals one at a time. Besides this common ability, the more difficult problems also
require the differential ability to manage the hierarchy of (sub)goals and to form higher
level abstractions. The distinction between moderately and highly skilled students is
the more or less successful goal management, i.e. the ability of better students to
generate and manage the problem solving goals and subgoals in working memory.

Verguts, De Boeck, and Maris (1999) suggested that a rule generation process plays a
crucial role in solving geometric matrix items. This generation process can either result
in qualitative or in quantitative differences. In their work, Verguts et al. concentrated
on the generation speed or response fluency, which they found to be an important factor
in solving the problems. The consequence is that testees with higher generation speed
have a higher probability to solve the items. Especially in the case of speed—power
tests, lower test scores do therefore not necessarily imply that the testees are not able
to solve the items when given enough time.

With respect to item difficulty, Carpenter et al. (1990) proposed three factors con-
tributing to the complexity of APM, namely the number of sub—problems, the type of
rule governing the variations among the elements, and the difficulty in correspondence
finding.

The number of sub—problems refers to the number of rules that are required to solve a
matrix problem correctly. Usually, the number of sub—problems varies between one and
four rules. In one of their experiments, Carpenter et al. (1990) found that the error rate
ranges between 16% of errors for the application of only one rule up to 59% of errors
for the application of three or four rules. Carpenter et al. attributed the increasing
number of errors with an increasing number of rules to the difficulty of keeping track
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Table 2.2: Rules for the solution of geometric matrices (from Carpenter et al., 1990;
Kinder and Lachnit, 1994; Musch and Albert, 2003, see also text)

Rule Description Example
Constant in a row (CR) The same attribute value aaa
occurs throughout a row, bbb
but changes down a column. cc?
Constant in a column (CC) The same attribute value abc
occurs throughout a column, abc
but changes along a row. ab?
Quantitative pairwise Increment or decrement abc
progression (PP) between adjacent entries becd
in an attribute such as cd?
number, size, or position.
Distribution of Two attribute values are aab
2 values (D2) distributed through a row, aba
the third differs. ba?
Distribution of Permutation of three abc
3 values (D3) attribute values through bca
a Tow. ca?

Figure addition (FA)

Figure subtraction (FS)

Exclusive-OR (XO)

Boolean AND (BA)

A figure from one column is
added to another figure
to produce the third.

A figure from one column is
superimposed to another one
to produce the third.

Two attributes are combined
in the exclusive-or fashion
of Boolean algebra®.

Two attributes are combined
in the AND fashion
of Boolean algebra®.

/

AV

2] X[

0] X [=]

/\/<

Note. “If an attribute value occurs in exactly one of the first two entries it also occurs in the

third entry, if it occurs in both entries it does not occur in the third entry, which leads to the
following truth table: 11 = 0, 01 = 1, 10 = 1, 00 = 0 (1 = attribute present, 0 = attribute
absent). °If an attribute value occurs in both or neither of the first two entries it also occurs

in the third entry, if it occurs in only one of the first two entries it does not occur in the third

entry, which leads to the following truth table: 11 = 1, 01 = 0, 10 = 0, 00 = 1.

of the already inferred rules while inducing the third or fourth rule. This means that
each rule imposes additional load on working memory.
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Table 2.2 depicts an extended list of the types of rules that Carpenter et al. (1990)
specified for the solution of geometric matrices. The list of rules covers the findings
by Carpenter et al. (1990), as well as Hornke and Habon (1984), Hunt (1974), Jacobs
and Vandeventer (1972), Kinder and Lachnit (1994), Klix (1978), Musch and Albert
(2003), and Vodegel Matzen, van der Molen, and Dudink (1994). Vodegel Matzen
et al. (1994) constructed 52 Raven-like geometric matrices based on the five solution
rules from Carpenter et al. (1990), viz. the rules constant in a row (CC), quantitative
pairwise progression (PP), distribution of two (D2) and three (D3) values, and figure
addition (FA)/figure subtraction (FS). Performing an error analysis, they found that
most errors were due to omitting one or more rules. Vodegel Matzen et al. (1994)
constructed the eight distractors per item in such a way that the types of omitted rules
could be inferred from the incorrectly chosen answer alternative. They found a linear
increase in error rate for the type of required rule. The lowest mean omission score
occurred for the rule CC (M = 2.8 errors, SD = 2.85) and the highest score for the rule
D2 (M = 6.2 errors, SD = 3.7). The error rates for the remaining rules are in between
CC and D2, with increasing rates from PP over FA/FS to D3. The two Boolean rules
exclusive-OR (XO) and Boolean AND (BA), which are expected to exceed all other
rules in difficulty (Haygood and Bourne, 1965; Kinder and Lachnit, 1994), were not
included in the analyses of Carpenter et al. (1990) or Vodegel Matzen et al. (1994).

Finally, the difficulty in correspondence finding refers to the easiness of detecting which
elements are governed by the same rule. This last component corresponds to the degree
of constraint (see Sections 2.2.1 and 2.2.2) which determines, whether a working—-
forward or a working—backward strategy is applied. The difficulty in correspondence
finding is on the one hand influenced by the number of figural elements or attributes
that vary across a row (Carpenter et al., 1990). On the other hand, also the salience
of material attributes influences the difficulty in correspondence finding (Musch and
Albert, 2003; Posner and Mitchell, 1967), with the attribute spatial order being more
difficult to detect than other attributes such as variations in geometric figures, shadings,
or patterns.

Other approaches to the investigation of matrices are the two—step theory (variation
and retention) of how people solve series of items by Verguts (Verguts, Van Nijlen,
and De Boeck, 1999; Verguts et al., 1999), the knowledge space approach by Musch
and Albert (2003, see Section 3.5.2), or linear logistic models. Formann (1973), for
example, developed the Vienna Matrices Test (‘Wiener Matrizen Test’, short WMT;
Formann and Piswanger, 1979), which is based on a well-balanced construction of items
and a linear logistic analysis for Rasch-homogeneity (see Section 2.4.2.4).

2.2.4 Communalities and differences

Looking at the descriptions of the four discussed problem types, there are several
components which are common to all of them. With respect to my own research, I
want to concentrate on the common components that influence item difficulty.

According to Klauer (2001), inductive reasoning problems require the ability to detect
similarities and/or dissimilarities of attributes or relations (see Section 2.3.1). Simi-
larly, Pellegrino and Glaser (1979, 1980) attribute inductive reasoning performance to



Inductive reasoning tasks 25

the abilities to extract relations among the elements of a problem, to assemble those
relations into a rule governing the entire problem, and to maintain and update the ac-
cumulated results in working memory. Item difficulty then increases with an increasing
number of different operators that must be represented in working memory and with
lower constraint on the possible rules.

Reviewing the components found for the four presented problem types, there are three
major components (or factors) contributing to item difficulty. These are (a) operation
difficulty, (b) relational complexity, and (c) the degree of constraint.

Variations in these components have been described for all problem types mentioned in
the last three sections (2.2.1, 2.2.2; and 2.2.3), although some of the components’ labels
differed. Table 2.3 gives an overview of the components, including a short description
and the respective labels for each of the discussed problem types. Additionally, the
reported components that are specific to each problem type (i.e. the components in
which the problem types differ) are listed in Table 2.3. The components that are
specific to each problem type (as, e.g., word frequency for verbal material or the
number of constituent elements for geometric material) require different abilities in
the problem solving process and therefore, should also influence item difficulty. For
this first attempt to predict the interdependencies between items of various inductive
reasoning tests, I chose a more general model for the classification of problems; in
which only the components that are common to all problem types are considered (see
Chapter 7, classification scheme, for a discussion of this issue).

The component (a) operation difficulty refers to the type of operation that needs to be
extracted. For each type of problem there are one or two types which are assumed to be
more difficult to extract than all other types of possible operations. The more difficult
operations are class inclusion and similar /comparative for verbal analogies, variations
in space and number for geometric analogies, hierarchical sequences for number series
completion problems?, and the exclusive-OR and Boolean AND rules for geometric
matrices. Component (b) relational complexity refers to the number of operations
governing the entire problem. For verbal analogies, this component was referred to as
rationale complexity (which denotes the number of elements in the semantic rationale),
for number series completion problems as period length (i.e. the interval in which a
relation is repeated and thus, the number of relations contained in the series). Describ-
ing geometric analogies and matrices, I simply spoke of the number of transformations
and rules or subproblems. The last component (c) constraint is identical for all prob-
lem types. For matrix problems it was also referred to as difficulty in correspondence
finding. It refers to the easiness of extracting the relevant relation. This last compo-
nent differentiates between high degrees of constraint (or low salience), which allow
a working—forward strategy and low degrees of constraint (or high salience), which
require a working—backward strategy.

In addition to the three mentioned components, which can be specified for each single

2As reported in Section 2.2.2, the results of Holzman et al. (1983) indicate that the number of
WMPs contributes most to item difficulty, whereas the presence of hierarchical sequences and the
period length (number of operations) did not always show a significant effect. However, since the
number of WMPs is composed of the number of the hierarchical sequences and operations, I will
consider these two components separately.



Table 2.3: Communalities and differences for inductive reasoning problems

2 Inductive Reasoning

Label
Component  Description Verbal Geometric Number Geometric
analogies analogies series matrices
operation variations in the type | operation difficulty difficulty (type) operational complexity  type of rule
difficulty of applied rules (type of semantic relation) of transformation (hierarchical sequences)
relational variations in the num- | rationale complexity number of period length number of
complexity  ber of applied rules (number of elements in transformations sub—problems
the semantic rationale) (rules)
constraint easiness of detecting constraint constraint constraint correspondence
the relevant relation finding
type specific word frequency, semantic ~ number of constituent magnitude and type of  material
components distance, concrete vs. elements the arithmetic operation attributes
abstract words

26
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problem type, the varying types of content are also a factor contributing to item dif-
ficulty. Sternberg and Gardner (1983) found that the processing of geometric—figural
material leads to longer solution times than the processing of verbal material (mean
latencies for geometric material = 5.43 sec compared to 3.5 sec for verbal material;
latencies are averaged over analogy, series completion, and classification problems).
Whereas verbal stimuli are composed of only one information unit (a word), geometric
stimuli are composed of several figural elements, which need to be decomposed be-
fore the relevant rules can be inferred (Pellegrino, 1985). Since numerical stimuli are
also composed of only one information unit (a number), the processing of numerical
material should also be faster than the processing of geometric material.

Under consideration of my own research aims, the mentioned communalities are of spe-
cial importance, because they permit the establishment of a common structure for the
items of the various problem types. Thus, summarized, inductive reasoning problems
can be described by three general components (operation difficulty, relational complex-
ity or number of operations, and constraint), which can be applied to all mentioned
types of inductive reasoning problems. In addition, the applied material or content
influences the difficulty of the problems.

2.3 Inductive reasoning models

In most studies only one or two types of inductive reasoning problems are investi-
gated, as for example classifications (Alderton et al., 1985; Posner and Mitchell, 1967),
analogies (Alderton et al., 1985; Bejar et al., 1991; Mulholland et al., 1980; Whitely
and Barnes, 1979), series completions (Albert and Held, 1999; Egan and Greeno, 1974;
Holzman et al., 1982, 1983; Klahr and Wallace, 1970; Scharroo and Leeuwenberg, 2000;
Schrepp, 1999; Simon and Kotovsky, 1963), or matrices (Carpenter et al., 1990; Hornke
and Habon, 1984; Hunt, 1974; Musch and Albert, 2003; Raven, 2000; Verguts and
De Boeck, 1999). Since the aim of my own research is to integrate various problem
types into a common structure of inductive reasoning problems; it is necessary to con-
sider comprehensive models of inductive reasoning, which account for several problem
types. Therefore, I will next describe two prominent models, which cover various
types of inductive reasoning problems from different perspectives. First, I will outline
Klauer’s (1997; 2001) model, which is based on a paradigmatic training approach to
inductive reasoning (Section 2.3.1). This is followed by Sternberg’s (1977a,b; Sternberg
and Gardner, 1983) information—processing approach to inductive reasoning (Section
2.3.2), which elicited a high number of investigations on different problem types.

2.3.1 Klauer’s model of inductive reasoning

Klauer’s (1996; 1997; 2001) model of inductive reasoning was developed within a
paradigmatic training approach. On the one hand, it incorporates an exact defini-
tion that delimits inductive reasoning problems from other types of problems (e.g.
deductive). On the other hand, it specifies the cognitive strategies for solving induc-
tive reasoning problems.
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Figure 2.3 presents Klauer’s definition of inductive reasoning together with the pro-
cesses that are necessary to solve inductive reasoning problems. The first part (i.e.
the preceding sentence) renders a general definition of inductive reasoning, viz. the
detection of regularities and irregularities. It also signifies the end product of the in-
ductive reasoning process, namely the discovery of a generalization or the disproving
of an assumed generalization. The second part in Figure 2.3, which is given in form
of a mapping sentence®, describes the strategy to be used to solve inductive reason-
ing problems. It contains three facets A, B, and C' with three, two and five elements
respectively. It is therefore possible to develop 30 (3 x 2 x 5) variants of inductive
reasoning problems. Central to the model are facets A and B, which display the six
basic types of inductive reasoning tasks (see below, Table 2.4).

Inductive reasoning consists of detecting regularities and
irregularities by finding out

A B

ay similarity

as dissimilarity of b, attributes

a3 similarity and by relations

dissimilarity
C
¢y verbal
co pictorial
with c3 geometric—figural materials.

¢4 numerical
cs other

Figure 2.3: Definition of inductive reasoning by Klauer (1994)

Facet A determines whether similarities or dissimilarities have to be detected. A class
formation task, for example, requires the detection of common features among the
elements, whereas a disturbed series requires the detection of a dissimilar element in
the series.

3Mapping sentences were developed as a basic technique within Guttman’s Facet theory. A mapping
sentence is a formal method to classify a topic by specifying its content as a disjunctive and exhaustive
set containing the concepts or facets of interest. Each facet consists of several elements that are
combined by building the Cartesian product of the facets. The resulting set of all possible element
combinations yields the products under investigation. To give another example, Tziner and Rimmer
(1984) used a mapping sentence for the description of ability tests, were the facets are (a) the language
of presentation (with elements such as verbal, numerical, or figural) and (b) the mental operation
required by the test (with elements such as rule inference or variants of rule application). The
products are the various ability tests (e.g., analogies, vocabulary, or arithmetic problems).
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Table 2.4: The six variants of inductive reasoning problems (adapted from Klauer,
1994)

Processing facet problem

classes identification types

Generalization a1by class formation, class expansion
Discrimination asby identifying irregularities

Cross Classification azby 4—, 6-, 9—fold scheme

Recognizing Relationships a1bs series completion, ordered series, analogy
Differentiating Relationships aqby disturbed series

System Construction azby matrices

Facet B determines which elements have to be compared. The model distinguishes
between attributes and relations, which are predicates with one or two and more argu-
ments respectively. Similar attributes are, for example, identical colours or geometric
forms of the elements in a class formation task, whereas similar relations are, for ex-
ample, part—whole relations between the terms A : B and C' : D in a verbal analogy
task.

The comparisons which are presented by facets A and B are abstract and occur an-
alytically. This means, that first it is necessary to consider individual attributes or
relations by disregarding irrelevant elements. Secondly, the comparisons do not occur
globally but attribute by attribute or relation by relation. The last facet C' identifies
the materials, i.e. the content of a given problem, such as verbal or geometric—figural
material.

The six variants of inductive reasoning problems, which are given by the combination
of facets A and B, constitute the basic classes of inductive reasoning processes (e.g.
detecting similarity (a;) of attributes (b;) by comparing the problem’s elements). Table
2.4 shows the resulting processing classes, some of their respective problem types, and
the cognitive processes or operations required to solve the problems (facet identifica-
tion). As an example, generalization is defined as the process of recognizing similarities
(a1) of objects or events by comparing their attributes (b;), whereas discrimination is
defined as the process of recognizing differences (ay) among objects or events by com-
paring their attributes (by).

The six basic types of problems are related by the core strategy for solving induc-
tive reasoning problems, namely the process of comparing. Coming from a training
approach to inductive reasoning, the goal is to teach individuals solution strategies
that enable them to solve all types of inductive reasoning problems. Therefore, Klauer
(2001) developed an analytic and a heuristic strategy, both of which share the core
process of comparing. The analytical strategy (see Figure 2.4) compares objects with
respect to their common attributes (one place predicates) or relations (two place pred-
icates). After evaluating all objects regarding the similarities and dissimilarities of all
attributes or relations, the problem solver will discover the rule, and consequently the
solution. The strategy assumes that the problem solver is able to recognize all at-
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Start

Attend to the one (two) place
predicate i of object (pair of
objects) j i=i+1

Attend to predicate i of
object (pair of objects) —
j+1 j=j+1

Similarity
judgement

Dissimilarity

[ yes Similar? no—| .
judgement
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objects checked? no—
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Figure 2.4: Flowchart representing the analytical strategy used for the solution of
inductive reasoning problems (adapted from Klauer 2001; Klauer & Phye, 1994 )

tributes or relations inherent in the problem. The strategy yields six solution variants
dependent on the type of problem to be solved (i. e. whether attributes or relations are
involved and whether similarities, dissimilarities, or both have to be detected). The
flowchart in Figure 2.4 models the involved processes. The second strategy is based
on the assumption that problem solvers often start with rather global hypotheses on
the correct solution. They use a heuristic, hypothesis—guided strategy starting with
global comparisons of the objects in order to test the generated hypothesis. Only when
individuals are not successful in establishing a reasonable hypothesis on the problem
structure, the more arduous analytic strategy must be employed.

The goal of Klauer’s training approach is that the trainees become experts in inductive
reasoning, i. e. that they acquire the competences necessary to solve inductive reasoning
problems. Therefore, the trainees have to learn to recognize identical problem struc-
tures that differ only in their kind of presentation and content. The transfer of the
learned solution strategies to new problems requires the identification of the problem
type (generalization, discrimination, etc.) and the selection of the adequate solution
strategy (detection of similarities or dissimilarities of attributes or relations).

Klauer (2001) performed a meta-analysis of 61 experiments to evaluate the effect of the
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training on the performance on inductive reasoning tests (mostly the Culture Fair Tests
by Cattell and Weiss or Raven’s Progressive Matrices). He found a positive training
effect for all but one of the experiments with the effect sizes d ranging between -0.05
and 1.3, My = 0.6, SD = .32 (d = 1 indicates that a trained child performed by an
average of one standard deviation better than an untrained child). An estimation of
the effect size A across all 61 experiments resulted into A = .54, p < .001, N = 2632.
Further analyses to the long-term effect of the training, based on 17 experiments,
also showed a significant training effect. The mean effect size right after the training
amounted to My = .77(SD = .22) and stayed almost unchanged for the retests after
3-12 month, with M, = .7(SD = .31).

2.3.2 R.J. Sternberg’s cognitive components approach

Whereas Klauer (2001) classified various inductive reasoning problems and their corre-
sponding solution strategies, Sternberg performed a detailed analysis of the cognitive
processes underlying the solution of inductive reasoning problems.

Sternberg’s (1977a,b; Sternberg and Gardner, 1983) cognitive components approach be-
longs to the broader field of information—processing. Within the information—processing
framework, researchers try to identify the processes that underly performance. The
goal is to answer questions about what the basic psychological processes are that are
involved in solving psychometric tasks and which mental activities contribute to the
interindividual differences, as they are assessed in psychometric tests. Mostly reaction
times are used to investigate and separate the assumed cognitive processes. There
are two main approaches, namely the cognitive correlates approach and the cognitive
components approach.

The cognitive correlates approach has the aim to specify the information processing
abilities that are related to different levels of aptitude. Questions are of the form:
“What does it mean to be high in some ability?” To answer these questions, psychome-
tric tests are used to identify subgroups of different ability, which are then compared on
cognitive processing characteristics, such as decoding or holding information in long—
and short—term memory respectively (Brocke and Beauducel, 2001; Mayer, 1992; Pel-
legrino and Glaser, 1979). These processes constitute the cognitive correlates of the
respective psychometric scores. Representatives of the cognitive correlates approach
include, among others, Beauducel and Brocke (1993), Hunt (1978, 1985), Neubauer
(1995), or Schweizer (1995).

The aim of the second major approach, viz. the cognitive components approach is to
break a task down into its underlying cognitive subprocesses (components?) and to
assess individual differences in each of the component processes. In this task—analytic
approach, questions are of the form: “What do intelligence tests measure?” To answer
these questions, a problem is broken down into a list of component processes. The
goal is to discover processes that individuals use in problem solving, from the time

“Note that within the cognitive components approach the term component refers to non—observable
cognitive processes, such as encoding or comparing, while in Section 2.2 it was used to describe
observable problem components (e. g. as type or number of operations) that influence the difficulty to
solve an item correctly.
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the problem is presented to the time an answer is given. In order to identify plausible
models, performance measures such as latency or accuracy data and verbal self-reports
are used (Bisanz et al., 1994; Mayer, 1992; Pellegrino and Glaser, 1979; Sternberg,
1977a,b). Furthermore, in connection with knowledge space theory (see Chapter 3),
the component processes involved in letter series completion problems (see Section
2.2.2) have been investigated by means of predictable answer and latency patterns
(Schrepp, 1995, 1999) as well as eye tracking data (Wriessnegger, 2000; Wriessnegger
et al., 2002).

Whereas the majority of research within the cognitive components approach investi-
gated the components of only one type of problem (e.g., Holzman et al., 1982, 1983;
Mulholland et al., 1980; Sternberg, 1977a,b; Whitely and Barnes, 1979), Sternberg and
Gardner (1983) conducted comparisons across several tasks to identify their common
components. They started out with Sternberg’s (1977a,b) model for analogy solu-
tion and extended their investigations to series completion and classification problems
(including verbal, pictorial, and geometric material).

With regard to the four typical psychometric inductive reasoning tasks (classifications,
analogies, series completions, matrices) Sternberg and Gardner (1983) and Pellegrino
(1985) showed that the following five components can be used to describe the processes
underlying the performance on all four tasks. For an example of each component pro-
cess, I will refer to the verbal classification problem “(a) Furnace, Stove (b) Refrigerator,
Air Conditioner — classify Oven” from Sternberg and Gardner (1983).

1. Encoding processes to create a mental representation of the given stimuli. In the
above example, the testee has to encode the terms Furnace, Stove, Refrigerator,
Air Conditioner, and Oven.

2. Inference processes to infer rules which relate the individual stimuli to each other.
In the above example, the testee has to infer that the two terms in class (a) are
objects used for heating and that the two terms in class (b) are objects used for
cooling.

3. Comparison processes to compare the consistency of the inferred rules and to cre-
ate a relational structure in memory. In the above example, the testee compares
the term ‘Oven’ to the inferred concepts for (a) and (b).

4. Justification processes to select the best answer from a set of alternatives which
does not contain the ideal answer or contains several possible answers; this com-
ponent is only applicable for ambiguous items in multiple—choice formats. If the
term ‘Oven’ does neither belong to the concept inferred for class (a) nor to the
concept inferred for class (b), the testee has to justify one of the options as being
closer to the ideal solution.

5. Response processes to give the chosen answer, i.e. overtly indicate which answer
alternative (or in this case which class) is selected. In the example, the correct
answer is (a).

Besides those five common processes, Sternberg and Gardner (1983) found two further
processes which are required for the solution of analogies. The first one is mapping a
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Figure 2.5: Simplified flowchart representing the sequence of information—processing
during the solution of inductive reasoning problems (adapted from Sternberg and Gard-
ner, 1983)

higher—order rule between the two parts of the analogy and the second is applying this
rule to generate an ideal solution. The latter process is also required for the solution
of series completion problems (in this case, the comparison process is followed by an
application process, in which the inferred rule is applied to the relevant element of
the series in order to generate an ideal completion). Matrices, as they constitute an
extended form of analogies, require the same processes as analogies do. Generally,
the processes are executed sequentially, but often the problem solver needs to perform
multiple cycles through the various processes until a response can be made. Figure 2.5
shows a simplified flowchart which represents the sequence of information—processing
during the solution of inductive reasoning problems.

In order to test the model of componential processing, Sternberg (1977a,b) introduced
an experimental method called partial cueing. Showing the participants a variable
number of terms (problem elements) before the entire problem (the three stem terms
plus the answer alternatives) is presented, it is possible to extract the latencies for each
component process. Box 2.7 shows an example analogy, the cues presented in the four
precueing conditions, and the equations of Sternberg’s basic solution model.

In the four-term analogy shown in Box 2.7, showing the participant the first term of
the problem (Washington) should decrease the latency for encoding (parameter a in the
model) by one term or 25% (assuming an additive model and sequential processing).
By showing the first two terms of the analogy (Washington and 1), the latency for
encoding should be cut in half and the time used for inference processes (parameter z
in the model) should drop out.

In one of their experiments, Sternberg and Gardner (1983) presented nine types of
task—content combinations (classifications, analogies, series completion and verbal, ge-
ometric, and pictorial material) to estimate the fit of the processing model. The corre-
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lations between the predicted and the observed values were significant for each of the
nine task—content combinations (.70 < r < .97, p < .05, Mdn = .82). Furthermore,
intercorrelations between tasks (collapsed over contents) and between contents (col-
lapsed over tasks) supported the assumption of a single information—processing model
for the different types of problems (r ranged between .96 and .97 for tasks and between
.72 and .91 for contents).

The analysis of the components across tasks or contents (as pairwise comparisons)
yielded the highest correlations for the comparison component (.40 — .80), followed
by the reasoning component (including the three reasoning processes inference, map-
ping, and application; .10 — .69), and the justification component (.19 — .43). For
the encoding component, all but one of the correlations were nonsignificant (-.08 —
43), indicating that there are different encoding processes involved in the tasks and
contents. Comparing the component processes with psychometric tests measuring rea-
soning abilities, Sternberg and Gardner (1983) found the highest correlations between
the psychometric scores and the component processes for reasoning (.50 — .79) and
comparison (.61 — .75).

Comparing Sternberg’s componential approach to Klauer’s training approach (see Sec-
tion 2.3.1), both models indicate that various types of inductive reasoning problems
can be described by the following set of underlying cognitive processes. The two
flowcharts in Figures 2.4 and 2.5, which illustrate the solution process for inductive
reasoning problems, both involve the processes of encoding, inference, and compari-
son. In Klauer’s model (Figure 2.4), encoding is given by the two entries “Attend to
predicate ¢ ...”, inferences are necessary for similarity and dissimilarity judgments,

Box 2.7: Experimental design and basic additive model of Sternberg’s (1977a) cogni-
tive component approach

Example:
Washington : 1 :: Lincoln : 7 (a) 10  (b) 5 correct answer: (b)

Terms presented in the first part of the precueing condition (with 0-3 cues):
0:

1: Washington

2: Washington : 1

3: Washington : 1 :: Lincoln

Equations for the basic additive model:
0: STy =4da+ fr+gy+ fz+c

1: STy =3a+ fr+gy+ fz+c

2: STy =2a+gy+ fz+c

3: STy =1la+ fz+c

ST = solution time, a = encoding time, = inference time, y = mapping time, z = application
time, ¢ = constant response time, f = number of values changed from A to B, g = number
of values changed from A to C.
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and the comparison process for deciding, whether or not the overall “rule is discov-
ered”. Differences are found in the model specifications. Klauer’s model yields a more
detailed description of the differences among various problem types. Whereas Stern-
berg differentiates between different contents and tasks as well as the sets of necessary
cognitive components per task, Klauer also specifies the types of elements that have to
be encoded, inferred, and compared. More exactly, with facets A and B he differenti-
ates between problems that require the detection of similarities and/or dissimilarities
as well as between the detection of attributes or relations. However, Klauer’s aim
was to give a definition of inductive reasoning that also differentiates between different
types of problems, whereas Sternberg’s intention was to identify their common cogni-
tive components. With respect to the evaluation of the two models, Klauer (2001), who
was mainly interested in the training of inductive reasoning, validated his model by
measuring the overall training effect of the proposed strategies. Sternberg and Gardner
(1983), on the other hand, validated their model by investigating the adequacy of each
of the assumed component processes by means of the described precueing procedure.

Essential for my own research is the result that various inductive reasoning problems
can be subsumed within a single model and that the main components required for the
solution of the problems are common to all problem types.

2.4 Psychometric approach to inductive reasoning and
intelligence

Besides the cognitive training approach taken by Klauer (2001; see Section 2.3.1) and
the information—processing approach taken by Sternberg (1977a,b; see Section 2.3.2),
the psychometric approach to inductive reasoning is also of importance for this re-
search. Klauer and Sternberg both showed that various types of inductive problems
can be described by common components. This result is taken up for my own work,
in which different problem types are structured within a common model of inductive
reasoning tasks. This common structure is intended to form the basis for an adaptive
testing system in the domain of inductive reasoning (see also Chapter 6). Thus, the
psychometric approach, which is concerned with the development of tests has to be
considered.

I will start out with a short overview of intelligence models, with the focus on structure
models. Structure models of intelligence are closely related to my own work, but
located on a higher level of classification. While structure of intelligence models identify
the major components of intelligence and classify various problem types within their
models, I want to identify the major components of inductive reasoning tests only and
classify the single problems. After introducing some of the models used to describe
intelligence and the placement of inductive reasoning within these models (see Section
2.4.1), I will describe some intelligence tests in order to show the different principles
applied for the test developments (see Section 2.4.2).

Within the psychometric approach to the study of intelligence and interindividual
differences the basic mental abilities are determined and then tests are developed to
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assess these abilities. The general idea is that humans are equipped with a set of
cognitive factors and that individuals differ along these factors. The interindividual
differences are reflected by the differences shown in intellectual performance on the
tests. One main question within the psychometric approach is, how many cognitive
factors are involved in intellectual performance (Mayer, 1992; Kail and Pellegrino,
1988).

Starting with Spearman’s (as cited in Brody, 1992) two—factor-theory of intelligence,
psychometric intelligence models based on factor analysis dominated the research in
this area for several decades. Therefore, most of the traditional intelligence tests are
based on factor analytic models but they vary with respect to the number and hierar-
chical order of the assumed factors. Spearman related performance on an intellectual
task to only two factors (or factor sets), namely to a general intellectual ability factor g
which is common to all tasks and to a set of specific factors s, each of which is specific
to a single task. Spearman’s theory implies that intelligence is best represented as an
aggregate of diverse ability measures. Thurstone (1931), on the other hand, assumed
several unrelated factors. He extracted seven independent primary mental abilities,
namely perceptual speed, verbal comprehension, word fluency, induction/reasoning,
memory, number, and space. A person’s intelligence level should therefore be rep-
resented by one ability score on each of the seven primary factors as opposed to an
aggregated score.

In Cattell’s (1963, Horn and Cattell, 1966) hierarchical model of intelligence, Spear-
man’s g is divided into the two factors g. of crystallized and g; of fluid general ability.
Factor g. measures the influence of schooling and acculturation, whereas gy measures
the ability to acquire knowledge and to adapt to new situations. Within each of the
two major factors, there are several, more specific factors, from which the verbal ability
factor (assessed, e.g. by vocabulary tests) loads high on g. and the reasoning factor
loads high on g; (assessed, e.g. by Cattell’s Culture-Fair tests). Later on Horn and
Cattell (1966) elaborated the model by adding the factors general visualization g,,
general fluency f, and general speediness g, to g5 and ge.

Carroll (1993, 1994) analyzed 461 factor—analytic data sets and, thereafter, proposed
his three-stratum theory of intelligence, which subsumes the factors found by Spear-
man, Thurstone, and Cattell. At the lowest level, Stratum I, there are over 40 rather
specific abilities, as for example, lexical knowledge, memory span, perceptual speed,
numerical facility, or induction. The eight second-order factors at Stratum II include,
among others, fluid and crystallized intelligence, general memory, visualization capac-
ity, or general cognitive speed. Finally, Stratum III constitutes the highest level with
general intelligence ¢ as the only factor.

Inductive reasoning abilities show high loadings on Spearman’s g, Cattell’s g;, and
Thurstone’s primary ability induction/reasoning. In Carroll’s model, induction is lo-
cated at Stratum I as one of the abilities constituting the second-order factor fluid
intelligence.
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2.4.1 Structure of intelligence models

A different approach to the notion of intelligence was taken with the structure of
intelligence models. Prominent models within this approach are Guilford’s (1965; 1981)
Structure—of-Intellect model and the Berlin Structure of Intelligence (BIS) model by
Jiger (1982, 1984).

2.4.1.1 Guilford’s Structure—of—Intellect model

Guilford (1965, 1981) based his model on a three-dimensional taxonomy of intellectual
abilities or tasks. Figure 2.6 illustrates the model, which can be understood in terms
of a cube that represents the intersection of three dimensions. Fach ability and its
corresponding tasks can be described by the three aspects kind of mental operation,
kind of informational content, and kind of product information. Operations are mental
processes (e.g., cognition C, memory M, or evaluation E), which are applied to the
contents, i.e. the types of materials that appear in a problem (e. g., visual V, symbolic
S, or semantic M). The results of applying an operation to a content are described
in terms of products, which constitute the required responses (e.g., units U, classes
C, or relations R). The possible combinations of five operations, five contents, and
six products lead to 5 x 5 x 6 = 150 types of intellectual abilities, to each of which
one or more types of mental tasks are assigned. Inductive reasoning problems assess,
for example, the cognition of semantic and visual relations (CMR and CVR assessed
by verbal and figural analogies or matrices), the cognition of symbolic systems (CSS
assessed by letter or number series), or the cognition of semantic and visual classes
(CMC and CVC assessed by verbal and figural classifications).

In the original formulation of his model, Guilford assumed the resulting combinations
as independent primary factors. Later on (Guilford, 1981) he revised this view in
favor of a hierarchical model, in which second—order factors are characterized by the
combination of only two dimensions (e.g., CM for cognition of semantic content) and
third—order factors by considering only one dimensions (e.g., cognition C).

2.4.1.2 The Berlin Structure of Intelligence model (BIS)

The BIS model (Jager, 1982, 1984) is a descriptive system of intellectual abilities, which
is based on three basic assumptions, namely (1) the multi-factorial conditionality,
(2) the multi-modality principle, and (3) the hierarchical structure of abilities. With
respect to (1) the model postulates that each intellectual achievement is determined by
all intellectual abilities but that the weight of each ability varies. Assumption (2) states
that intellectual achievements and abilities can be classified by different modalities or
components. The model specifies a bimodal classification in the modalities operations
and contents. The operation modality is divided into four ability components, the
content modality into three components (see below and Figure 2.7). However, Jéger
(1984) points out that the current model is expandable in the number of modalities
as well as in the number of components per modality. Assumption (3) states that
intellectual abilities are structured hierarchically, that is they can be differentiated on
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Figure 2.6: Guilford’s Structure-of-Intellect model (adapted from Guilford, 1981 and
Mayer 1992)

several levels of generality. Figure 2.7 illustrates the structure of the BIS model. On
the most general level, the factor ggig of general intelligence is assumed as the integral
part of all abilities (similar to Spearman’s g or Carroll’s Stratum III, see above). The
seven ability components, which are arranged on the second level of generality, are
comparable to second order factors (like Carroll’s Stratum II). The combination of the
four operational components and the three content related components yields 3 x 4 =
12 cells, to which the various intelligence tasks can be assigned. The 12 cells constitute
the third level of generality. However, as opposed to Guilford’s Structure—of-Intellect
model (see above), the cells of the BIS model do not constitute primary factors but
abilities that are determined by multiple factors (assumption (2) of the BIS model).

As shown in Figure 2.7 the four operations comprise the components reasoning (R),
processing speed (.S), memory (M), and creativity (C'), which refer to the following
abilities. Component R refers to the ability to process information in complex tasks. It
includes inductive, deductive, and spatial reasoning (a more detailed description of the
inductive reasoning tasks is given in Section 2.4.2.2. Component S refers to the ability
to process simple tasks quickly but accurately. The memory component M refers to
the ability to encode and recall or recognize sets of items and the creativity component
C refers to the ability to produce ideas fluently and to look at things from different
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Figure 2.7: The Berlin Structure of Intelligence model (adapted from Jager, 1984)

points of view. The second modality differentiates between three types of contents,
namely spatial-figural (F), verbal (V'), and numerical (N) content. The three content
components refer to geometric—figural and spatial sense (F'), and the acquisition and
availability of the language (V') and number (N) systems.

The structure of the BIS model is based on a representative sample of intelligence
test problems found in the literature to intelligence and creativity research. Jager and
his group analyzed 2000 different problem types, which they reduced to a set of 98
problem types. The selection criteria for the remaining 98 problem types included to
maintain diversity and to maintain representations of the marking variables for other
intelligence models, such as the models by Spearman, Thurstone, Guilford, or Cattell
(see above). From these 98 problem types, 45 have finally been used for the BIS test
(Jager, Siifs, and Beauducel, 1997, see Section 2.4.2.2). The selection criteria for these
45 problem types included, among others, an equal distribution of problem types per
content component, how well the problems predict the operational and content related
components, the elimination of bottom and ceiling effects, and adequate processing
times. Jéger and Tesch-Romer (1988) could also replicate the BIS model with other
sets of items, such as the ‘Kit of Reference Test for Cognitive Factors’ (French, Ekstrom,
& Price, 1963, as cited in Jéger & Tesch-Romer, 1988) and Schmidt (1984) confirmed
the content and operation related ability dimensions using LISREL.

Comparing the BIS model to Guilford’s Structure—of-Intellect model (1965; 1981; Sec-
tion 2.4.1.1), both models are based on a multi-modality concept, whereby the BIS
model includes only a subset of Guilford’s modalities (contents and operations, but not
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products). Differences between the two models are primarily found in the assumptions
on the factor hierarchy. While Guilford originally assumed that the combinations of
operations, contents, and products are independent primary factors (later on first—
order factors), the BIS model conceives the combinations of contents and operations
as multifactorial conditioned achievements.

2.4.2 Tests assessing the ability of inductive reasoning

Inductive reasoning tests belong to the group of intelligence or aptitude tests. Regard-
ing the large but still growing number of existing intelligence tests (Brickenkamp’s test
compendium includes 57 published intelligence tests for the German speaking area), I
will concentrate on a small selection of tests, which either assess inductive reasoning
abilities by means of subtests within a general intelligence model or as a specific test
including only one type of inductive reasoning problem, but constituting a good in-
dicator for the factor g of general intelligence. For an overview of the prevalent tests
available in the German-speaking area I refer the reader to Brahler, Holling, Leutner,
and Petermann (2002).

The four selected tests are the Intelligence Structure Analysis (ISA), the Berlin Struc-
ture of Intelligence test (BIS test), Raven’s Advanced Progressive Matrices (APM),
and the Vienna Matrices Test (WMT). While the ISA and the BIS test are general
intelligence tests, which consist of several subtests, the APM and the WMT are specific
intelligence tests, which consist of only one type of inductive reasoning task (geometric
matrices). The BIS test and the WMT are the two tests, from which I selected the
material for my third investigation. I chose the ISA and APM for comparison, because
they contain similar materials but are based on different principles regarding the test
development. All four of the tests constitute traditional intelligence tests with fixed
numbers of items. In Chapter 6, I will also discuss different approaches to adaptive
testing.

With respect to the content of my own work, I will only report the basic concepts the
tests are build on and focus on the problem types used to assess inductive reasoning
abilities. For information on the tests’ quality criteria (objectivity, reliability, and
validity), assessment and evaluation procedures, norms, and areas of application, I
refer the reader to the respective test manuals.

2.4.2.1 Intelligence Structure Analysis (ISA)

The ISA (Fay, Trost, and Gittler, 1998) was developed to assess primary cognitive
abilities on a differentiated level (comparable to Thurstone’s intelligence model, see
above) and to provide a measure for general intelligence by aggregating the scores
of the single ability dimensions. The authors of the ISA based their concepts and
test materials on Amthauer’s IST-70 (1973). However, the items of the ISA were
newly constructed in order to overcome some weaknesses of the IST—70, as for example
different language uses in Germany, Switzerland, and Austria or inconsistent item
sequences (mostly but not always according to item difficulty).
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Table 2.5: ISA problem types and their assignment to ability components (from Fay
et al., 1998)

Problem Type ISA Thurstone BIS

SE Sétze ergénzen verbal verbal comprehension RV
(sentence completion)

GF Gemeinsamkeiten finden verbal verbal comprehension RV
(detecting similarities)
WM Waren merken memory memory MV
(memorizing products)

ZF Zahlenreihen fortsetzen = numerical induction /reasoning (number) RN
(number series completion)

BE Beziehungen erschliessen verbal verbal comprehension RV
(inducing relationships)

WE Wiirfel erkennen figural-spatial space RF
(recognizing cubes)

PR Praktisches Rechnen numerical reasoning (number) RN
(word problems)

BB Begriffe bilden verbal verbal comprehension RV
(forming concepts)

FZ Figuren zusammensetzen figural-spatial space RF
(assembling figures)

Note. *R = reasoning, M = memory, V = verbal, N = numerical, F' = figural.

The test construction is based on classical test theory, starting with the construction
of an item pool and a stepwise selection of items based on difficulty and discriminatory
power indices.

The ISA comprises nine problem types which can be assigned to the four factors or
ability domains verbal intelligence (4 problem types), numerical intelligence (2 problem
types), figural-spatial intelligence (2 problem types), and memory (one problem type).
The nine item types cover five of Thurstone’s seven primary abilities, the three content
related components of the BIS model (see Section 2.4.1.2) as well as two of the four
operational components specified in the BIS model. Table 2.5 depicts the nine problem
types and their assignments to the four ISA factors, Thurstone’s primary ability factors,
and the BIS components. Although there are high intercorrelations among the subtests
(r = .41 — .80) and all of the subtests correlate highly with the overall test score (i.e.
with the general intelligence factor; r = .69 — .89), the test authors could reallocate the
nine problem types within their respective factors by applying a confirmatory factor
analysis.

Each problem type comprises 20 items (except for memorizing products with 17 items)
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and is preceded by instructions and warming up items. Inductive reasoning abilities
are assessed by the three problem types GF (detecting commonalities), ZF (number
series completion), and BE (inducing relationships). The items of the problem type
GF consist of five words, four of which share a superordinate concept (e.g. fruit).
The testee’s task is to find the word that does not share a common concept with
the remaining words. The number series completion items (problem type ZF) are
presented in an open answer format and consist of seven elements each. The testee’s
task is to complete the series by generating the eighth element. The items of the last
problem type measuring inductive reasoning abilities are verbal analogy problems (BE)
presented in a standard item format (A : B = C: 7). The testee has to select one out
of five answer alternatives to complete the analogy.

For the test results, the number of correctly solved items is recorded for each problem
type and for the complete test. The raw scores are standardized by percentile ranks
and T-scores. The standard presentation of the results is a table, but the test authors
point out that a presentation as ability profile is also possible.

2.4.2.2 Berlin Structure of Intelligence Test (BIS test)

The BIS test (Jéger et al., 1997) is an instrument for measuring the intellectual abilities
specified in the BIS model (see Section 2.4.1.2). The test scores derived from the BIS
test can therefore be interpreted on the basis of the BIS model.

The test development is based on structural test theory, an extension of classical test
theory, which allows a controlled portion of heterogeneity per subscale. The selection of
problem types is based on the investigations for the BIS model, which started with the
2000 problem types the authors found in the intelligence and creativity literature. The
final BIS test consists of 45 problem types (see Section 2.4.1.2 for the selection criteria)
which can be located in the model as follows. For the operation component reasoning
(R) there are five problem types per content component (i.e. spatial-figural F', verbal
V', and numerical N), for the components speed (S) and memory (M) there are three
problem types per content component each, and for the component creativity (C') there
are four problem types per content component. Each problem type contributes to the
overall score of three ability scales, namely to one of the operational scales, to one of
the content related scales, and to the general intelligence scale (ggis). Table 2.6 depicts
one example problem type for each component combination.

With respect to construct validity, a confirmatory factor analysis showed a high cor-
respondence between the BIS test and the BIS model. The test authors report that
the model structure was replicated without any allocation errors. The correlations
between the abilities and their respective task bundles (problem types measuring the
same ability scale) range between .62 and .72 for the operation components and be-
tween .6 and .73 for the content related components. The correlations between the
single task bundels and the general factor ggig vary between .87 and .88.

With regard to inductive reasoning, there are seven problem types measuring this
ability, viz. figural and verbal analogies (RF and RV), figural, number, and letter
series completion problems (RF and twice RN), and figural and verbal classification
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Table 2.6: Examples for problem types measuring the ability dimensions of the BIS
model (adapted from Jéger et al., 1997)

9BIS Spatial-figural F Verbal V/ Numerical N

Speed S number—symbol test classifying words arithmetic operators
(assigning symbols to (crossing out words  (inserting arithmetic
given numbers according  that name a plant) operators in simple
to a set of specified equations)
number—symbol pairs)

Memory M | figures phantasy words number pairs
(remembering the borders (remembering pairs (remembering
of company logos) consisting of a pairs of numbers)

german and a
phantasy word)

Creativity C' | design of layouts naming attributes phone numbers
(designing company (naming attributes (constructing phone
logos for a small people in a certain numbers with n
shop) profession should not digits that are easy
have) to remember)
Reasoning R | geometric analogies verbal analogies number series

problems (RF and RV). The test items of each problem type are preceded by two
practice items. The two types of analogy problems (figural and verbal) comprise eight
test items each and are presented in a standard item format (A : B = C : 7) with
five answer alternatives. The series completion problems comprise six (figural), eight
(letter), and nine (number) items and are presented in an open answer format. The
figural items consist of four elements each, the letter items of 8-15 elements, and the
numerical items of five or seven elements. The testee’s task is to complete the series by
either two figures, two letters, or one number. Finally, the two types of classification
problems comprise five (figural) and nine (verbal) items. The figural classification
problems are presented as two sets A and B with six elements each. On the right—
hand side three further elements are depicted, each of which the testee has to assign
to either set A or set B. The verbal classification items consist of four words, of which
three share a common concept (e.g. furniture). The testee’s task is to find the word
that does not share this concept.

For the analysis of the results, the BIS test includes a computer program, which con-
verts the raw scores into percentiles, z—scores, and standardized scores with M = 100,
SD = 10. Furthermore, the results are presented as ability profiles, with scores for
each operational scale (based on 9 to 15 problem types), each content related scale
(based on 15 problem types each), and a score for the general intelligence factor (based
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on all 45 problem types). The feedback for the participants includes a ranking of their
abilities, but no comparisons with group norms.

As compared to the ISA (Section 2.4.2.1) with only nine problem types that assess
four different ability dimensions (with one to four problem types each), the BIS test
covers seven ability dimensions with 9 to 15 problem types each (the processing time
for the ISA takes about 110 minutes, for the BIS about 130 minutes). In addition, the
BIS test is based on a theoretically well founded model with a series of preliminary
investigations (see Section 2.4.1.2). A further special characteristic of the BIS test is
that, on the one hand, each problem type contributes to multiple ability scales, and
on the other hand, that for each ability scale a relatively large number (9 to 15) and
diversity of independent problem types contribute to the resulting ability measure.

2.4.2.3 Advanced Progressive Matrices (APM)

The APM are a speech—free intelligence test (based on classical test theory) for the
assessment of reasoning abilities. Raven’s intent when developing the progressive ma-
trices (PM) CPM (Coloured PM, 1976), SPM (Standard PM, 1958), and APM (Ad-
vanced PM, 1965) was to create tests that are easy to administer and to interpret in
a clear and theoretically relevant way. The main component assessed by Raven’s tests
is eductive or analytical reasoning ability, which refers to the ability to extract rules
or educe relations (Carpenter et al., 1990; Raven, 2000). Raven (1948) himself pointed
out that the matrices are not a test for general intelligence. However, Marshalek et al.
(1983), as well as Tziner and Rimmer (1984), who applied multidimensional scaling
techniques, allocated Raven’s matrices at the center of the derived Radex structures,
i.e. the tests show high ¢ loadings and are therefore a good indicator for general intel-
ligence (see also, e.g., Bisanz et al., 1994; Carroll, 1993; Neubauer, 1995; Paul, 1986).
This might also be the reason why the Raven tests have often been used as models
for similar tests, such as the WMT (see below) or the FRT (Figure Reasoning Test by
Daniels, 1993). They also inspired the development of other speech free intelligence
tests, such as number series or paper—folding tests.

Being the most difficult of Raven’s tests, the APM was developed to differentiate be-
tween the more able, i.e. people above average. Raven constructed the set of items in
order to avoid ceiling effects. For the selection and sequencing of the items, discrim-
ination and difficulty parameters were calculated and the distractor alternatives were
analyzed (based on classical test theory).

The APM consist of 48 geometric matrices (12 in Set I, 36 in Set II). To solve the
problems it is necessary to form comparisons and reason by analogy, i.e. the solutions
require analytic and integrating operations (exceptions are the first four problems in
Set I, which can be solved by applying Gestalt principles).

Each item is depicted as a three by three matrix, in which the bottom right-hand
cell is empty. Below the matrix eight answer alternatives are depicted (see Box 2.6
for an example of an APM-like matrix). Participants’ task is to select the answer
alternative that completes the matrix correctly. The cells of the matrix contain figural
elements, such as lines, geometric figures, or background textures, which are related



Psychometric approach to inductive reasoning and intelligence 45

by one to four rules (Carpenter et al., 1990; Musch and Albert, 2003). Participants’
are instructed to look for rules governing the first and the second row (or column) of
the matrix, and then to apply the found rule(s) to the third row (column) in order to
complete the matrix.

For the results, the number of correctly solved items is added up and the raw scores
can be converted to percentiles, 1Qs, and T—scores.

With respect to item difficulty, Raven designed the items on intuition and did not
explicitly report the types of rules used for the APM. However, there are several anal-
yses of the items by other authors (e.g., Carpenter et al., 1990; Hunt, 1974; Jacobs
and Vandeventer, 1972; Musch and Albert, 2003; Vodegel Matzen et al., 1994). The
extracted rules are listed in Section 2.2, Table 2.2.

Vodegel Matzen et al. (1994) also pointed out that the PM were not constructed with
the intent to provide information on how a particular test score is achieved. The
interpretation of the test score takes only account of the number of correctly solved
items but not of the underlying cognitive processes (see Section 2.2.3 for research on
the requirements of geometric matrices).

2.4.2.4 Vienna Matrix Test (WMT)

The WMT (Formann and Piswanger, 1979) is also a speech—free geometric matrix
test, which strongly builds upon Raven’s progressive matrices. It was developed to
assess a testee’s reasoning ability associated with abstract symbols, but also shows
high correlations with measures of general intelligence <T(WMT,IST) = .85). While
the WMT shares the intention and basic concepts of the APM, the construction and
selection of items differ. As compared to the APM, which were designed on intuition,
the item set of the WMT was developed according to construction principles (see
below). The set of principles was used to create an item universe that defines all
possible item classes. From this item universe, Formann (1973) constructed a subset of
42 items and analyzed the item set with Rasch’s probabilistic test model (Fischer and
Molenaar, 1995). From the set of 42 items, nine items had to be eliminated because
they did not fit the Rasch model. In addition, four items were excluded, because
their parameters deviated from the preferred hypothesis on item difficulty (see below)
and one item was eliminated due to the high solution probability of 98.5%. From the
remaining 28 items, one serves as instructional item, three as practice items, and the

final 24 items constitute the actual set of test items (two of the 24 items are taken
from the SPM, one from the APM).

With regard to the presentation of the problems, Formann (1973) based the appearence
of the items on the APM, i.e. each item is presented as a three by three matrix
with eight anwer alternatives (see Box 2.6 for a WMT-like matrix). However, for the
specific design of each item, Formann specified three components, which determine
the construction principle of the items and can be used to describe the items. The
three components are (1) effective rules, (2) relevant material attributes, and (3) the
direction of the rule. The first component (1) consists of the three rules continuation,
variation, and superimposition. The applied material attributes (2) are form, pattern,
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number, and spatial orientation, the rule directions (3) are vertical, horizontal, or both.
As for the APM, the testee’s task is to find a correct completion of a matrix by applying
one of the rules to the elements’ material attributes in either of the directions.

In order to determine the relationship between the structure of the items (given by
the components’ attributes) and item difficulty, Formann (1973) examined several hy-
potheses by means of the linear logistic Rasch model. Generally, he found that item
difficulty cannot be completely explained by the item structure. The best approxima-
tion was that the three components influence item difficulty independent of each other,
with the component effective rule being most important and the component material
attributes least important. With respect to the attributes’ difficulty, he found that the
rule superimposition is most difficult, followed by the rule variation, whereas the rule
continuation is least difficult. With regard to the material attributes, spatial order and
number are more difficult than form or pattern. For the component direction, vertical
rules are most difficult for the particpants, while horizontal rules are least difficult.

With respect to the diagnostic results of the WMT, the number of correct responses
is added up and the raw scores are converted to percentiles, z—scores, 1Qs, and verbal
descriptions of the ability levels.

The WMT and the APM both assess the ability of analytic reasoning, more specifically
to educe relations in abstract symbols. As compared to the APM, the development
of the WMT is based on predefined construction principles, which allows an anlysis of
the items with respect to the demands or components contributing to item difficulty.
Furthermore, the selection of items is based on the Rasch model, which has the ad-
vantage that the test assesses exactly one ability dimension that is the same for all
persons independent of their educational background.

However, inspite of the precise formulation of the underlying model and the specifica-
tion of an item universe by construction principles, Formann had to exclude several
items that did not meet the model requirements. Other investigations on geometric
matrices did also not succeed in predicting item difficulty as a linear ordered combi-
nation of the problem components and had to eliminate some items with non—fitting
item parameters (see e. g., Hornke and Habon, 1984; Hornke, Kiippers, and Etzel, 2000;
Néhrer, 1980). In Section 3.5.2, I will introduce an alternative approach to the mod-
elling of geometric matrices by Musch and Albert (2003), which is based on knowledge
space theory (see Chapter 3) and assumes a partial order on the items’ components.

2.5 Summary of Chapter 2

Inductive reasoning can be defined as the process of drawing conclusions from single in-
stances or observations in order to reach a general rule that governs all instances under
consideration (Section 2.1). Inductive reasoning problems can be found in many intelli-
gence or aptitude tests, where they are mostly presented as analogy, series completion,
classification, or matrix items. In Section 2.2, I outlined the demands inherent in those
problem types, which are relevant to my own research (verbal and geometric analogies,
number series, geometric matrices) and compared the found components to each other.
The aim of this research is to order the inductive reasoning problems by their difficulty
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so that an efficient basis for an adaptive testing system can be developed. For the es-
tablishment of a difficulty structure on various problem types it is necessary to define
comparable features among the problems. In Sections 2.3.1 and 2.3.2, T introduced
two models by Klauer (2001) and Sternberg (1977a,b; Sternberg and Gardner, 1983),
which are both designed for various problem types. Whereas Sternberg’s approach
concentrates on the identification of common cognitive processes underlying different
inductive reasoning problems, Klauer’s model is based on a definition of inductive rea-
soning, which gives detailed problem specifications, such as the problems’ content or
the detection of (dis)similarities in attributes or relations. Both models provide impor-
tant assumptions on the components that are shared by different types of problems as
well as on the differences among the various problem types. Knowing the demands or
components of inductive reasoning problems, it is still necessary to find an appropriate
test model for the intended adaptive assessment system. Focusing on structure models,
Section 2.4 dealt with the psychometric approach to inductive reasoning, including a
selection of tests measuring this ability. Still missing is an integrative test model of
inductive reasoning abilities, that constitutes the basis for efficient testing procedures.
In the next chapter, I will outline a method that is suitable for the establishment and
validation of a difficulty structure on various problem types and can be applied for
adaptive knowledge assessments.
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3 The Theory of Knowledge Spaces

In Chapter 2, I outlined several models on the cognitive requirements of inductive rea-
soning problems. Furthermore, I discussed the communalities and differences among
various types of inductive reasoning problems and gave some examples for tests assess-
ing the ability of inductive reasoning.

What is still needed, though, is a precise and comprehensive description of the prop-
erties of various types of inductive reasoning problems, which at the same time can be
used to describe individual differences in performance. After defining common compo-
nents and properties of inductive reasoning problems, it is possible to develop means
for an exact diagnosis of a persons knowledge in the domain. The currently available
instruments (most of which are based on classical test theory) describe a person’s abil-
ity level by a numerical test score, which refers to the performance on a subtest or
on the entire test (see also Section 2.4.2). The test scores are usually standardized,
so that an individual’s ability level can be located within the population of reference.
Probabilistic test theory additionally provides information on the difficulty and ability
ratios between items and persons respectively. Moreover, the estimated item and per-
son parameters are independent of each other (see also Section 6.1). One requirement
for the application of probabilistic test theory is that the items are unidimensional,
i.e. that they assess only one ability dimension. Item as well as person parameters are
based on interval scales and the established linear orders on the items can be used for
adaptive testing procedures (see also Chapter 6).

Another approach is to define a person’s knowledge state by the set of problems the
person is able to solve. If the demands of each problem are known, a person’s missing
knowledge can be derived directly from the diagnosed knowledge state. Such an ap-
proach has the advantage that psychological theories on the problem requirements or
cognitive demands are directly related to the empirical solution patterns. Furthermore,
the diagnostic instrument can simultaneously be used as a basis for adaptive testing
procedures as well as for tutorial systems.

In this chapter, I want to discuss a methodological framework, which permits the
diagnosis of a person’s knowledge state in a specified domain as well as the prediction
of observable behavior. In order to describe problem demands and persons abilities not
only by numerical parameters but by the specific requirements inherent in a problem or
met by the person, non—numerical test theory seems to be the appropriate instrument
of measurement.

The behavioral Knowledge Space Theory, originally developed by Doignon and Fal-
magne (1985; 1999; Falmagne, Koppen, Villano, Doignon, and Johannesen, 1990), is a
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major constituent within the non-numerical test theory. Some of the main advantages
of this approach are its low scale requirements and non-linearity combined with the
possibility of empirical validation. Furthermore, the mathematical modeling underly-
ing the theory shows a high degree of formal precision, while starting out with fairly
simple psychological assumptions.

The primary idea behind the theory of knowledge spaces was the development of a
model that permits an efficient estimation of a person’s knowledge state in a given
domain. Generally, it is assumed that a person’s proficiency level in a specified field
of information can be assessed by testing the person on a set of problems from this
field. One method to carry out the testing is to present all available problems. In this
case the set of problems solved correctly represents the knowledge state of the person.
However, with a large set of problems and participants the method would prove itself
as rather impracticable and uneconomical in time and expense.

The knowledge space theory provides a framework for more efficient testing procedures,
which diagnose a person’s knowledge state by specifying the problem demands the
person is able to meet and/or the underlying skills the person possesses. A further
objective is to reduce the number of presented problems by taking advantage of the
dependencies among a set of problems. In this case only a subset of the test items
needs to be presented, while the solution of the remaining items can be surmised from
the correct or incorrect solution of the previously observed responses. As an example,
one might imagine a person who is capable of multiplying fractions. Assuming that the
same person will also be capable of multiplying real numbers, it would be inefficient
to present problems containing this type of task. Hence, by taking advantage of the
implicit structure relating a set of problems, it is possible to reduce the number of
items presented in a test and simultaneously obtain precise information on the person’s
knowledge state.

With this issue in mind Doignon and Falmagne (1985; 1999; Falmagne et al., 1990) de-
veloped a mathematical model in which the representation and diagnosis of knowledge
are directly related. The notational framework of the knowledge space theory is de-
fined in terms of behavioral data structures. Furthermore, the theory allows computer
aided knowledge assessments and yields a basis for the development of computerized
tutoring systems.

The following sections give an overview of the main concepts and ideas which are
relevant for the presented research. I will start with a description of the main ideas
for surmise relations between items (Section 3.1) and tests (Section 3.2) and proceed
with different methods for the generation (Section 3.3) and validation (Section 3.4) of
knowledge spaces. This Chapter will conclude with two examples of how knowledge
space theory has already been applied to single inductive reasoning tests (Section 3.5).

For a comprehensive review of the theory, I refer the reader to Doignon and Falmagne
(1999) and for theoretical extensions and empirical applications to Albert and Lukas
(1999). Considering the model’s formal approach, the mathematical basics and used
terminology are outlined in Appendix A for a better understanding of the concepts.
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3.1 Surmise relations between items

Consider a set @ = {q1,q2, ..., ¢} of test items which are related implicitly by their
difficulty. For example ¢, is at least as difficult as ¢o, which again is at least as difficult
as ¢z, and so on. In this case, all items can be ordered linearly along one dimension,
which is known as Guttman scale. A Guttman scale is a special case of a quasi order,
where all items are connected. The theory of knowledge spaces generalizes the linear
order to a partial order by including independence between items. The related concept
is called a surmise or prerequisite relation. More specifically, a surmise relation is a
binary relation on a set of problems or test items with the following interpretation:

“Whenever a person masters an item x € () and we can surmise that this
person is also able to master item y € ) we say that the pair (y,z) is in a
surmise relation.”

In other words, from the mastery of item x we can surmise or assume the mastery
of item vy, i.e. item y is a prerequisite for item x. Surmise relations are reflexive and
transitive but not necessarily connex, i. e. they are quasi orders. Doignon and Falmagne
(1985, 1999) defined this dependency between test items as follows:

Definition 3.1 Let Q be a set of problems and S C ) x @) a reflexive and transitive
binary relation on ). Then the quasi order S is called a surmise relation. 0

Common notations for a surmise relation between two items x and y are ySz, (y,x) € S,
S={(y,x)},y 2z, or (y,z) €x. I will use the notations ySz or S = {(y, z)}.

If the pairs (y,z) and (z,y) are both elements of a surmise relation S (i.e. ySz and
xSy) then the items x and y are called equivalent.

Example 3.1 Imagine a set @ = {q1, ¢2, g3, ¢4} of three items and a surmise relation
S ={(q1,01),(q2,42),(43,43), (q1,94), (g2, 1), (g3, @1), (@1, q1), (s, g3) } on Q. With regard
to S we assume that the items ¢, and q3 are prerequisites for item ¢; and that the
item ¢, is prerequisite for items ¢; and ¢3. Or, in other words, from a correct solution
to item ¢; we can surmise a correct solution to items go, g3, and q4 (¢25¢1, ¢35¢1, and
¢45¢1) and from a correct solution to item g3 we can surmise a correct solution to item
q1 (¢45q3). The two items ¢y and g3 as well as the pair ¢, and ¢4 are independent

(2Sq3 € S, 35¢2 € S, @2Sqs € S, and quSqa & S). O

A surmise relation can be depicted as matrix or as Hasse diagram. In the matrix, a ’1’
in column = and row y indicates that the pair (y,z) is element of the surmise relation
(ySxz). In the Hasse diagram a descending line signifies that a correct solution of the
lower item is surmisable from a correct solution of the upper item. Figure 3.1 illustrates
the surmise or prerequisite relation described in Example 3.1 as matrix (3.1a) and as
Hasse diagram (3.1b).

The set of all elements of () that are surmisable from item x is also called downset of
x (D,). Formally,

D, ={y | ySz} Vx,ye€ Q. (3.1)
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Q1
G G2 g3 g /\
w11 0 0 0
0 1 1 0 0 a2 a3
(@) g1 0 1 1 (b) @

Figure 3.1: Matrix (a) and Hasse diagram (b) for the surmise relation in Example 3.1

In other words, a downset D is a downset of x, whenever x is the greatest element of D
(Davey and Priestley, 1990). For Example 3.1 the following downsets can be derived:

Dy = Aa1, @, 4,0}
Dy, = {@}

Dy = {a3,q4}

Dy, = {a}

The surmise relation in Example 3.1 is a partial order, which has the properties of
transitivity, reflexivity, and antisymmetry. Surmise relations that are additionally
connected are called linear ordered surmise relations. In a linear ordered surmise
relation, there are no independent item pairs.

With regard to the expected item combinations or solution patterns, a surmise relation
reduces the set of all possible solution patterns (the powerset P with 2@l elements) to
a subset of admissible solution patterns. Imagine a surmise relationship between two
items z and y (ySx), where item y is prerequisite for item xz. The possible response
patterns (see Figure 3.2a) are that both items are solved correctly, which is denoted
(1,1) (cell dgy), that only item z is answered correctly ((1,0), cell b,,), that only
item y is answered correctly ((0, 1), cell ¢,,) or that neither of the items is answered
correctly ((0,0), cell a,,). The admissible solution patterns for the items include only
cells agy, czy and dg,. This means, that under the assumption ySz, = should only be
mastered in combination with a correct solution to y. The solution pattern (1,0) is
possible, but not admissible. Figure 3.2 shows (a) the contingency table for a pair
of items x and y and (b) the respective prerequisite relationship as Hasse diagram.
The variables agy, byy, Czy, and dg, denote the frequencies for the four possible answer
vectors. The frequency for cell b,, should equal zero.

Each admissible item combination resulting from a given surmise relation is called a
quast ordinal knowledge state. Formally, a quasi ordinal knowledge state K is defined
by

KCQ& (Vr,ye Q,ySc Nz e K=ye K) (3.2)

Correspondingly, Doignon and Falmagne (1985) defined the knowledge state of a person
as the set of problems in a specified domain () this individual is able to master under
ideal conditions. The set of all knowledge states is called knowledge structure (KC).

Definition 3.2 A knowledge structure is a pair (@), K), in which @ is a nonempty set,
and I is a family of subsets of (), containing at least the complete set of items () and
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x
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Figure 3.2: Possible response patterns and assumed prerequisite relation for a pair of
items with b,, =0

the empty set (). The elements of () are the problems or test items of a knowledge
domain and the subsets in the family KC are called knowledge states. 0

In Example 3.1 the number of possible solution patterns 2/%l = 16 is reduced to seven
admissible solution patterns or knowledge states. The resulting knowledge structure is
depicted in Figure 3.3.

Q

42,43, 44

N

42,44 q3, 44
q2 q4

0

K= {®a {q2}a {q4}a {q2a q4}a {Q3a q4}7 {Q2> qs, 614}7 Q}
Figure 3.3: Derived knowledge structure for Example 3.1

Knowing that only a specified family of subsets of () is accepted as knowledge states,
one can presume that a knowledge structure itself can be described by its special
characteristics. For a knowledge structure IC that is derived from a surmise relation
and fulfills the requirements of a quasi order, two properties are always satisfied.

(1) K,LeK=KULeK
(i) K,LeK=KNLeKk (3.3)
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Knowledge structures which fulfill property (i) are called knowledge spaces. Knowledge
structures fulfilling both properties (z) and (i7), i. e. they are closed under union U and
intersection N, are called quasi ordinal knowledge spaces. This means that for any two
knowledge states K and L, their union U and their intersection N are also knowledge
states.

According to a theorem by Birkhoff (1937), quasi orders on a set of items establish a
one-to-one correspondence between a surmise relation and its corresponding knowledge
space. Thus, the quasi ordinal relation can be directly inferred from the quasi ordinal
space, and vice versa.

Theorem 3.1 The Birkhoff-Theorem defines two equivalences:

ySr & (VKeK,reK=ycK) (3.4)
KeK & (Vr,ye @ with ySz,z € K =y € K) (3.5)
U

Another important concept within the knowledge space theory is the base of a knowl-
edge space. The base is the minimal subfamily B of K, from which each knowledge
state can be restored by building the closure under union of its elements. Hence, the

base constitutes an economic storage for all knowledge states. Doignon and Falmagne
(1999) defined the base as follows:

Definition 3.3 A base for a knowledge structure (@, K) is a minimal family B of
states spanning /. A knowledge structure has a base only if it is a knowledge space.
A knowledge state K belonging to some base B of K cannot be the union of other
elements of B or other states of K. O

The base can also be seen as the family of downsets D, of (). Hence, the base for the
knowledge space in Example 3.1 contains the minimal states B = {{q2}, {q1}, {¢3, ¢4},
{¢1,42,93,q4}}. Figure 3.1 depicts the base for Example 3.1 as a matrix. In the matrix,
a ‘1’ in row ¢ indicates that the base element is minimal for item 7. A ‘2" in row i
indicates that the item in column j is prerequisite for item ¢ and therefore contained
in the base element that is minimal for i.

Table 3.1: Base for Example 3.1

g1 492 43 (g3
|1 2 2 2
|0 1 0 0
|10 0 0 1

In general, the advantage of organizing knowledge according to surmise or prerequisite
relations is that the number of possible response vectors, i.e. the powerset P (with 2/€!
elements) of all problems, can be reduced to a subset K € 29 of knowledge states.
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The basic concepts and ideas of the theory of knowledge spaces elicited several new
theoretical approaches. Examples are the generalization to surmise systems or sur-
mise functions, which allow alternative prerequisites (Doignon and Falmagne, 1985,
1999), the inclusion of skills (Doignon, 1994a; Diintsch and Gediga, 1995), compe-
tencies (Korossy, 1997), or process models (Schrepp, 1995, 1999), the assessment of
misconceptions (Lukas, 1997; Korner, 1998), the extension to probabilistic knowledge
structures (Cosyn and Thiéry, 2000; Doignon and Falmagne, 1999; Falmagne, 1989a,b,
1994; Lakshminarayan and Gilson, 1998; Villano, 1991), and the development of tech-
niques to obtain a knowledge space (Albert and Held, 1994, 1999; Dowling, 1993b;
Held, 1999; Held and Korossy, 1998; Kambouri, Koppen, Villano, and Falmagne, 1994,
Koppen, 1994, 1993; Koppen and Doignon, 1990). A theory based approach to obtain
a knowledge space developed by Albert and Held (1994) will be outlined in Section 3.3.
Furthermore, the concept has been extended from relationships between items to re-
lationships between tests (Albert, 1995; Brandt, Albert, and Hockemeyer, 1999, 2003;
Albert, Brandt, Hockemeyer, Unlii, and Schappacher, 2003), which will be discussed
next (Section 3.2).

3.2 Surmise relations between tests

So far, the theory of knowledge spaces referred to single tests. However, in com-
mon psychological assessment procedures we often deal with a set 7 of different tests
that are usually related. Examples are educational or cognitive psychology where pre-
requisite relationships between different educational stages or cognitive functions are
investigated.

The classical conception of the relations between tests is based on correlations. Usually,
the strength of relationships between two tests is investigated, but not the direction of
the relationship. Here, the non-—numerical test theory can be employed to investigate
directed relationships between tests. The idea is that the possession of one, e. g. cogni-
tive ability might be prerequisite for some other ability. Or, with regard to educational
psychology, the mastery of one course within a curriculum might be prerequisite for
the mastery of another course.

On the background of Doignon and Falmagne’s (1985; 1999) framework, Albert and his
group (1995; Albert et al., 2003; Brandt et al., 1999; 2003) extended the concept of the
non—symmetric surmise relation between items (i. e. within tests) to surmise relations
between tests. The interpretation of a surmise or prerequisite relation between tests is
as follows:

“Whenever a person masters a given set of items in test A and we can
surmise that this person is also able to master a particular non-empty
subset of items in test B, we say that the two tests A, B € 7 are in surmise
relation from A to B.”

Figure 3.4 illustrates the described concept. In this example mastering item b3 in test
B is a prerequisite for the mastery of item a; in test A. Formally, the surmise relation
between tests is defined as follows:
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Definition 3.4 Let 7 be a set of tests. Then the relation S C 7 x 7, defined by
BSAs JacA:B,#0 VYA BeT (3.6)

is called surmise relation between tests. When B S A holds we say that the tests A
and B are in surmise relation from A to B. O

Common notations for a surmise relation between two tests A and B are B S A,
(B,A) ES, SCT x T, or St.7.

A

Figure 3.4: Two tests A and B are in surmise relation from A to B (B S A)

Regarding the properties of a surmise relation between tests, one important point is
that, unlike the surmise relation between items, it is in general not a quasi order. More
specifically, for a set of tests 7 = {A, B,C,. ..}, a surmise relation between tests has the
property of reflexivity but not necessarily transitivity. However, there are special cases
for which transitivity holds, namely left—, right—, and total-covering surmise relations.
Analogous to items (see Birkhoff-Theorem 3.1), the advantage of a quasi order on a
set of tests is that transitive surmise relations between tests can be inferred from the
corresponding test knowledge structure (see below, Definitions 3.8 and 3.9). However,
the reverse inference is not valid for a set of tests (Albert et al., 2003).

The interpretation of a left—covering surmise relation (B S, A) is that for each item
a € A there exists a nonempty subset of prerequisites in test B. This means that a
person who doesn’t solve any item in B will not be able to solve any item in A, either.
There is no need to test this person on test A (see Figure 3.5).

Definition 3.5 Let 7 be a set of tests. Then the relation S C 7 x 7, defined by
BSAeNYaecA:B,#0 YA BeT (3.7)

is called left-covering surmise relation. When B S; A holds we say the two tests A and
B € T are in a left—covering surmise relation from test A to test B. (l

The interpretation of a right—covering surmise relation (B S, A) is that for each item
b € B, there exists at least one item a € A for which b is a prerequisite. This means
that failing to solve a given item in test B implies a failure on a subset of items in test
A. In other words, a person who solves all items in test A is also able to solve all items
in test B. Hence, there is no further need to test this person on test B (see Figure
3.6).
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B

Figure 3.5: Left—covering surmise relation from test A to test B (B S; A)

A B

Figure 3.6: Right covering surmise relation from test A to test B (B S, A)

Definition 3.6 Let 7 be a set of tests. Then the relation S, C 7 x 7, defined by

BS, As |JB.=B VABeT (3.8)

acA

is called right—covering surmise relation. When B S, A holds we say the two tests A
and B € T are in a right—covering surmise relation from test A to test B. OJ

Finally, we speak of a total covering surmise relation (B S, A), if all items in test
A have a prerequisite b € B and all items in test B are prerequisite for some item
a € A, i.e. the surmise relation is left— as well as right—covering. For surmise relations
between tests which are neither left— nor right—covering, I will refer to as general
surmise relations between tests.

Aside of the surmise relation between tests, it is necessary to differentiate between
various subsets of the surmise relation on the entire set @) of items. Sg.o denotes the
surmise relation on the whole set of items and is referred to as the surmise relation
between items (SRbI). The disjoint subsets of the surmise relation Sg,qo on two tests
A and B are denoted S,4, Span, Sazn, and Spya. The sets Sa.4 and Sp,p are called
surmise relations within tests (SRwT), the sets Sa,p and Sp,4 surmise relations across
tests (SRzT). Each subset is defined as follows:
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SRxT SRxT
(Sas) (Sexa)

Cartesian Product QxQ \

SRbl
(Soxa)

Figure 3.7: Illustration of the different subsets contained in the Cartesian product for
the items of two tests A and B

{(y,2) |2,y € Q NySx}
SAzA {(ai,aj) | ai,a; € ANa;Sa;}
Spep = {(bi,b;) | bi,b; € B ADSb;}
{(a,b)|a € A,b € B AaSb}
{(b,a)|a € A,b € BAbSa} (3.9)

SQzQ

SA:):B

SBacA

If a surmise relation fulfills either the condition Sa,p or Sp,a, we speak of a surmise
relation between tests (S, or SRbT) as it is defined in terms of Definition 3.4.
If Sy.p or Sg.a fulfill the conditions specified in Definition 3.5 or 3.6, we speak of
a left— respectively right-covering surmise relation. Surmise relations between tests
which fulfill both conditions are called total-covering. Figure 3.7 depicts the item
pairs contained in the Cartesian product of the set () of items contained in both tests,
the SRbI (Sg.q) as subset of the Cartesian product Qz(@), and the partitioning of the
SRbI, including the set of item pairs contained in the SROT.

To illustrate the concepts of surmise relations between items, within, and across tests,
I will use the surmise relation depicted in Figure 3.6 and refer to it as Example 3.2.

Example 3.2 Imagine a surmise relation between two tests A = {a1, as, ag} and
B = {by, by, b3} as depicted in Figure 3.6. Then we can derive the following subsets
of pairs for the surmise relation between items (Sg.q), within tests (Sa.4 and Sp.p),
and across tests (Sa.p and Spga).

Sazq = {(a1,a1), (a2, a2), (as, as), (b, b1), (b2, b2), (bs, b3), (a2, a1), (a3, ar),
(b2, b1), (b3, b1), (b3, b2), (b1, a1), (ba, ar), (b3, a1), (bs, az)}

Saca = {(a17a1)7(a2aa2)a(a37a3)7(a27a1>7(a37a1)}

Spep = {(b1,b1), (b2, b2), (b3, b3), (b, b1), (b3, b1), (b3, b2)}
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Saen = {}
SBza = {(517611),(52,%),(53,@1)7(537@3)}

0

As for the generalization of the surmise relation between items to the surmise relation
between tests, Albert and his group (Albert et al., 2003; Brandt et al., 1999; 2003) also
extended the concepts of a knowledge state, a knowledge structure, and a knowledge
space. I will illustrate the concepts by means of Example 3.2.

The test knowledge state K; of a person i is defined as the combination of item subsets
per test this person is capable of mastering. Accordingly, the collection of all test
knowledge states K is called the test knowledge structure.

Definition 3.7 Let K; € K be a knowledge state. Then for this knowledge state K;
the n—tuple K; = (A;, By, ...) is called test knowledge state, with A; being the subset
of items mastered in test A, B; the subset of items mastered in test B, and so on. [J

Definition 3.8 Let K denote the set of all test knowledge states. Then the pair (7, K)
is called test knowledge structure, with 7" denoting the set of tests {A, B,C,...}. O

For a test knowledge structure K the combinations of the knowledge states from each
single test are restricted to the set of test knowledge states. The set of test knowledge
states can be derived from the surmise relation between tests.

Regarding Example 3.2 the following test knowledge structure can be derived from the
surmise relation between the items of the two tests A and B.

Kiasy = {(0,0),(0,{bs}), (0, {bs,b3}), (0, B), ({az}, D), ({az}, {bs}),
({as}, {b2,b3}), ({az}, B), ({as}, {bs}), ({as}, {b2, b3}),

({as}, B), ({az, as}, {bs}), ({az, as}, {ba, b3}),
(

{a2> a3} B) (A’ B)}

As mentioned above, a surmise relation between tests and, therefore, its corresponding
test knowledge structure are not necessarily quasi ordinal. However, the properties
of closure under union U and intersection U can also be defined for test knowledge
structures (Brandt et al., 2003).

For Kz = (AZ',BZ', .. ) and Kj = (Aj,Bj, .. ) :

Test knowledge structures which fulfill property (i) are called test knowledge spaces.
If a test knowledge structure fulfills both properties (i) and (ii) we speak of a quasi
ordinal test knowledge space.
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Definition 3.9 A test knowledge structure (7, IC) is a test knowledge space, if K is
closed under union U. (7,K) is a quasi ordinal test knowledge space if K is closed
under union U and intersection N. 0

Regarding the correspondence between a knowledge space on the items of different
tests and a test knowledge space, the test knowledge structure K is a (quasi ordinal)
test knowledge space, if its corresponding knowledge structure K is a (quasi ordinal)
knowledge space.

Finally, the set of test knowledge states can be stored in the base B of the corresponding
test knowledge space, i.e. as a subset of IC. The base is defined as follows:

Definition 3.10 A subset B C K of test knowledge states is called the base of a test
knowledge structure, if the following condition holds:

B = {(Ai,B;,...),(A;,Bj,...),...} is the base of K<
B = {AUB,;...,A;UB;...,...} is the base of K. (3.11)

g

By means of the base B, it is possible to reestablish the test knowledge space K, the
knowledge space IC on the set of items and its substructures, the surmise relation
between items and its subsets, the surmise relation between tests, and its properties
(e.g., transitivity, left,— and right coveringness).

For the test knowledge structure of Example 3.2, the base consists of the following test
knowledge states:

B = {((Z)v {b3})7 ((Z)a {b2a b3}>7 (@7 B)a ({a2}7 @>7 ({a3}a {b3})7 (A7 B)}

Analogous to the surmise relation, I will refer to the test knowledge space as TKS,
to the knowledge space between the items of all tests as K.SbI, to its substructures
within tests as K. SwT and across tests as KSxT'.

The advantage of the concept of surmise relations between tests is that it is possible
to specify prerequisite relations not only between single items but between subsets of
items. Such subsets can be psychological tests or, for example, cognitive or develop-
mental stages, where the possession of one ability is prerequisite for the acquisition of
some other ability. Regarding the area of diagnostics, the number of employed tests can
be reduced and adaptive testing systems can be developed, which are more economical
and more informative by covering a wide range of problems. Further potential ap-
plications include the fields of educational psychology (e.g., curriculum development;
Hockemeyer, Albert, and Brandt, 1998; Albert and Hockemeyer, 1999) or computer
sciences (e.g., structuring hypertext documents; Albert and Hockemeyer, 1997).

3.3 Generation of knowledge structures

The theory of knowledge spaces, as it was outlined in Sections 3.1 and 3.2, describes
how a structure or a relation on a set of problems can be represented in a formal model.
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The question now is, how the relational dependencies between problems and their cor-
responding knowledge states can be determined. The derivation of well founded knowl-
edge structures is a crucial requirement for the application of diagnostic procedures.
Especially, for the use of adaptive testing procedures, the knowledge spaces have to
provide a proper representation of the knowledge domain by simultaneously reducing
the number of knowledge states to a subset of the powerset. The efficiency of a di-
agnostic procedure is directly related to the number of states in a knowledge space
or correspondingly to the number of pairs in a surmise relation. With a decreasing
number of knowledge states and an increasing number of pairs in the surmise relation,
also the number of questions decreases that need to be asked to determine a person’s
knowledge state. Several approaches have been developed to generate a knowledge
structure.

One way to establish a surmise relation on a set of items is the analysis of binary data
matrices. Van Leeuwe (1974, see also Held & Korossy, 1998), for example, describes
a deterministic method called item tree analysis (ITA). In this approach, the surmise
relation is estimated directly from an analysis of empirical contingency tables for each
pair of items. Similar deterministic methods with a more general approach to binary
data analysis can be found in Airasian and Bart (1973), Bart and Krus (1973), and
van Buggenhaut and Degreef (1987). Probabilistic approaches were suggested by, for
example, Cosyn and Thiéry (2000), Doignon and Falmagne (1999), Falmagne (1994,
1989a,b) and Villano (1991). However, the application of data analytic approaches
is limited, since the resulting knowledge structure depends strongly on the sample of
participants. Probabilistic procedures furthermore require the existence of very large
data sets in order to estimate the models’ parameter values.

A second method to generate a knowledge structure is to consult experts of the rel-
evant knowledge domain. Dowling (1993a,b), Koppen (1993, 1994), and Koppen and
Doignon (1990) have developed elaborated algorithms for computerized query proce-
dures. In accordance with the behavioral approach of the knowledge space theory,
the querying procedures refer directly to the given set of items. In the course of a
query, the expert judges implications on the relationships among subsets of items. Ad-
ditionally, inferences on further pairs in the relation can be drawn. Due to frequent
inconsistencies in the experts’ ratings (Baumunk and Dowling, 1997; Wesiak, 1998),
a knowledge space established by means of a query can only be considered as a first
sketch. The consultation of experts is especially suitable for fields of information which
are not highly formalized. In these cases, a theoretical, content based analysis of the
domain would not yield sufficient information about the set of reasonable knowledge
states. One example is the field of psychopathology, which was investigated by means
of querying experts by Riegler (1999) and Wesiak (1998). Among others, Dowling,
Koch, and Quante (1996), Kambouri et al. (1994), and Koppen (1993, 1994) improved
and refined the querying methods. One example is the development of a user—friendly
interface, which includes visualizations of the derived structure and yields not only
more efficient procedures but also more consistent results (Dowling et al., 1996).

In a third approach, the knowledge spaces are built from theoretically founded item
hierarchies. Starting from psychological findings, surmise relations and their corre-
sponding knowledge spaces are established. Based on task analyses or a cognitive
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theory on the solution processes, the relationships between items are explicitly for-
mulated, (Albert and Held, 1994, 1999; Albert, Schrepp, and Held, 1994; Held, 1999;
Schrepp, 1995, 1999; Schrepp, Held, and Albert, 1999). Thereby, the problems of a
specified domain are broken down into a set of components or into several steps of
the solution process. Then, a surmise relation and the corresponding knowledge space
can be derived by applying various ordering principles (e.g. set—inclusion, sequence
inclusion, multiset inclusion, or componentwise product formation). For an overview
of the ordering principles, I refer the reader to Lukas and Albert (1993) and Albert
and Lukas (1999).

The main requirement for theoretically founded problem structures is a well defined
set of problem components. In one approach the components, i.e. sets of demands
or competencies, are assigned to the items and an order is established by way of set—
inclusion (see Albert and Held, 1994, 1999; Albert et al., 1994; Schrepp et al., 1999,
for applications to the domain of chess). This means that items defined by a given
set of demands have all those items as prerequisites, which are defined by a subset of
these demands. Going beyond this model, where demands are either present or not,
items are described by the same set of components but with variable attributes on
each component. In this case difficulty orders are defined on the attributes of each
component and the problems are ordered by a componentwise comparison of their
respective attributes (Albert and Held, 1994, 1999; Held, 1999, see Section 3.3.1).
Finally, the most specific way of structuring a set of problems is based on process
models, according to which individual steps of the problem solving process are analyzed
and structured (Schrepp, 1995, 1999).

For a detailed discussion, comparison, and integrated application of the three ap-
proaches to generate a knowledge structure see Held, Schrepp, and Fries (1995).

In the following subsection, I will outline the method for generating hypotheses which is
relevant to my research in more detail. I chose the theory based method of componen-
twise ordering of product sets. As already outlined in Section 2.2, inductive reasoning
problems are often described by the components that contribute to item difficulty and
influence the solution process of the respective items. Also Klauer’s (2001, see Section
2.3.1) definition of inductive reasoning is based on components and their attributes.
Klauer refers to the components as facets and uses a mapping sentence to derive the
set of all possible inductive reasoning problems. This approach basically corresponds
to forming the Cartesian product of the facets (or components). Thus, the selected
approach has the advantage that the existing research on inductive reasoning problems
can be integrated in a straight forward way. Moreover, the applicability of the com-
ponent based approach to single inductive reasoning tests has already been shown in
several studies (cf. Section 3.5).

3.3.1 Componentwise ordering of product sets

The principle of componentwise ordering of product sets (Albert and Held, 1994,
1999) assumes that every item in a set @) of problems is described by the same set

of components C' = {A, B,C,...}. Each component consists of a set of attributes
(A = {ay,aq,...}, B = {by, by, ...},C = {c1,¢a,...}), on which order relations are
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defined. It is assumed that the attributes belonging to the same component cannot
be combined with each other. This means that every item has exactly one attribute
a;, b;, ¢;, ..., whereby an attribute can also be defined as empty set. For example,
when describing number series completion problems, one of the components could be
the type of mathematical operation involved in the series. Then the attributes of this
component could be addition, subtraction, multiplication, division, and no operation
(i.e. the empty set).

Forming the Cartesian product of the components results in the set of all possible
attribute combinations, which can be used as a basis for constructing problems or for
a demand analysis of a given set of problems. Items that are described by the same
set of attributes form an item class.

Example 3.3 Let us imagine a set of two components (C' = {A, B}), with three
attributes each. On each set of attributes (A = {ay, as, az}, B = {b1, by, b3}) a linear
difficulty order is defined, with i; being the most difficult attribute and 73 the least
difficult attribute. Figure 3.8a illustrates the linear orders on the components A and
B, Figure 3.8b depicts the set of pairs derived by forming the Cartesian product of the

two components A and B. O
A X B
(51 bl

(a1,01) (a1, b2) (a1,b3)
AXB: (a2,61> (CLQ,bQ) (CLQ,bg)

(as,b1) (as,ba) (as,bs)

(a) a3 bs (b)
Figure 3.8: Cartesian product of two attribute sets A and B (Example 3.3)

The surmise relation on a set of problems is established by a pairwise comparison of
the problems with respect to the components’ attributes. More exactly, the ordering
rule assumes that a problem y is prerequisite for a problem x, if the demands of all
attributes (a;,b;,¢;,. . .) of y are equal or less difficult than the corresponding attributes
(aj, b, c;y ...) of x. This principle is known as coordinatewise order (see Davey and
Priestley, 1990), which also corresponds to a choice heuristic from decision theory,
viz. the dominance rule. For Example 3.3, the problem structure derived through a
pairwise comparison of the components’ attributes a; and b; is shown in Figure 3.9a.
In this example, forming the product of the two components A and B results in nine
possible attribute combinations or item classes (see also Fig. 3.8b). Because of the two
linear attribute orders (see Fig. 3.8a) the obtained surmise relation contains 36 item
pairs (including reflexive pairs).

Of course, it is also possible to define a partial order on the attributes of one or more
components. In this case the resulting surmise relation will include less pairs than are
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derived by the linear ordered attributes. Defining, for example, a partial order on both
components A and B with the attributes 75 and i3 being prerequisites for the attributes
i1, but independent of each other, results in a surmise relation with 25 pairs.

CL1, b1 ar, bl

A

a2> bl a1> b2

aq, b2

ay, bs

<
)

-
Y

<
w

=
N

(a1,01)
(a1,02)
(a1,05)
(a2,01)
(az,br)  (az,b2) (a1, by) (a2 Do)
(a2, bs)
(a3, 01)
(a3, 02)
(a3, b3)

(a) (a3, bs) (b)

Figure 3.9: Problem structure for Example 3.3 with linear attribute orders and (a)
incomparable components versus (b) lexicographic ordering

In Figure 3.9a an antichain is defined on the two components A and B, i.e. the com-
ponents are incomparable. In more specific cases, the components themselves can be
ordered lexicographically, meaning that one component A is assumed to be more im-
portant than another component B. In this case, the attributes of component A are
first compared. Attributes of component B are only considered for problems equipped
with the same attribute a;. By this, the resulting surmise relation becomes a linear or-
der (provided that the attributes of each component are also ordered linearly). Figure
3.9b shows a lexicographic order on the components of Example 3.3. With the linear
order on the two sets of attributes, the surmise relation contains 45 pairs (including
reflexive pairs).

In a similar approach a partial order can be defined on the components, meaning that
some of the components are assumed to be incomparable with respect to importance.
An order on a set of three components C = {A, B, C'} could, for example, define
components A and B as incomparable but both as more important than component

C.

The principle of componentwise ordering of product sets has already been applied
successfully for the domains of elementary stochastics (Held, 1993, 1999), and various
types of inductive reasoning problems (Albert and Held, 1994, 1999; Musch and Albert,
2003; Albert and Wesiak, 2002, see Section 3.5).
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3.4 Validation of knowledge structures

Strictly viewed, the goodness of fit of a given knowledge structure to a set of data can
be defined by the number of response patterns which can be assigned exactly to one
of the hypothesized states. However, the set of items a person is able to solve at a
certain point in time during a testing procedure does not necessarily reflect the true
knowledge state of this person. It has to be accounted for various influences such as
careless errors (e.g., in computations or in transcribing the answer) while responding
to some of the items. Additionally, restricted answer formats like multiple choice
tests provide opportunities for lucky guesses on items the person could otherwise not
answer correctly. Hence, the knowledge states in a deterministic model describe the
latent knowledge of persons or the response patterns observed under ideal conditions.
Thus, it is necessary to apply validation methods that are able to account for noise in
the data.

In the following, I will introduce different methods for validating a knowledge space and
its respective surmise relation under consideration of eventual discrepancies between a
person’s true knowledge state and his or her empirical response pattern. First, I will
describe procedures that measure the agreement of a hypothesized surmise relation to a
set of data. The second approach is based on the knowledge space, i.e. the correspon-
dence of hypothetical knowledge states and empirical answer patterns is evaluated.
All of the discussed procedures can be applied to surmise relations and knowledge
spaces between items (SRbI/KSbI), within tests (SRwT/KSwT'), and across tests
(SRxT /K SzT). In this case, the set of answer patterns and the postulated pairs in
the surmise relation or the knowledge states in the knowledge space are reduced to the
respective subsets of the SRbI/KSbI (see Section 3.2).

In order to compare the validity of the different subsets, it is necessary to account for
the varying number of pairs in the relations as well as the sizes of the knowledge spaces.
Generally, with a higher number of pairs in the relation or a lower number of states
in the knowledge space, the hypothetical model contains more assumptions on the
dependencies among items and tests. Because each additional assumption might lead
to additional contradictions of the observed response patterns, knowledge structures of
varying sizes should not be directly compared with regard to their validity. Therefore,
I will calculate various indices that account for these discrepancies by relativizing the
number of observed contradictions to the number of pairs in the relation or to the size
of the space. Concerning the surmise relation between tests (SRbT'), the presence of a
right—, left—, or total-covering SROT is derived from the SRbI.

For an easier understanding of the discussed procedures, I will illustrate the methods
by means of Example 3.4, which refers to a single test. As mentioned above, for the
validation of a set of tests only the relevant substructures and the corresponding parts
of the answer vectors are considered.

Example 3.4 Let Q = {a,b,c,d} be a set of four items and S C @ x @) a hypothetical
surmise relation on @ with S = {(a,a), (b,b),(c,c),(d,d), (b,a),(c,a),(d,a), (c,b),(d,b)}.

Then the corresponding quasi ordinal knowledge space IC contains the elements

KK ={0,{c},{d},{c,d},{b,c,d},{a,b,c,d}} and is described by the base
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Table 3.2: Relation and base files for Example 3.4

Relation file Base file

4
4 4
1000 1222
1100 0122
1110 0010
1101 0001

B = {{c},{d},{b,c,d},{a,b,c,d}}.

Figure 3.10 shows the Hasse diagram for the resulting surmise relation (Fig. 3.10a)
and the corresponding knowledge space (Fig. 3.10b). Table 3.2 depicts the respective
relation file with four items and the base file with four items and four base elements
(see Section 3.1 for the interpretation of the two matrices).

a,b,c,d

a b,c,d

b c,d

N N

(a) (b)

Figure 3.10: Hypothetical surmise relation (a) and its corresponding knowledge space
(b) on a set @ = {a,b,c,d} of four items (Example 3.4)

o
U

o
U

For the validation of the hypothetical surmise relation and knowledge space in this
example a set of 10 fictitious response patterns will be used (see Table 3.3). Correct
responses are coded '1’; incorrect responses are coded '0’. Hence, the empirical response
patterns are represented by binary response vectors as, for example, (0010) (pattern
1 in Table 3.3). With regard to the pairs contained in the surmise relation, Table 3.4
depicts the derived contingency tables for the set of response patterns. O

Before introducing the various validation methods, it has to be noted that the empirical
validation of knowledge space hypotheses requires complete response patterns, i.e.
each item has to be processed by all participants. Otherwise, it is not possible to
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decide whether the empirical states correspond to one of the hypothetical states or
not. Furthermore, the solution frequencies of the items should yield no floor of ceiling
effects. Trivial response patterns, in which either all or none of the items are solved
correctly, do not contribute to the validation of a knowledge space hypothesis, because
the empty and the full set are always knowledge states, i. e. element of K (see Definition
3.2). On the level of item pairs, response vectors with either both or neither of the
items solved correctly do not give any evidence on the model’s validity. Thus, for some
of the validation methods, which include trivial response vectors or item pairs, floor
and ceiling effects can lead to an overestimation of the model’s fit.

Finally, it should be mentioned that all computer programs (Hockemeyer, 2001; Hocke-
meyer and Potzi, 2001; P6tzi, 2001; Potzi and Wesiak, 2001) necessary for the discussed
validation procedures are available at the Cognitive Science Section at the University
of Graz. For a list and short description of the used programs see Appendix D.

3.4.1 Validation of hypotheses via the surmise relation

The fit of a surmise relation to a set of data can be estimated by calculating the relative
frequencies of correct solutions for each item or by computing various indices, which
measure the overall fit of a hypothesized surmise relation to a set of data. As mentioned
above, the validation methods will be demonstrated for a surmise relation on a single
test. For a set of tests, the same methods are applied to the various subsets of the
relation. For the SRwT the pairs within each test are considered separately, for the
SRxT only the pairs between items of two different tests are considered, and for the
SRbI all pairs are taken into account. The validity of the SRbOT is estimated by means
of the relative solution frequencies (see below), by checking whether the requirements

Table 3.3: Data set for four items and 10 response patterns (Example 3.4)

pattern item a item b item ¢ itemd X
1 0 0 1 0 1
2 0 0 0 1 1
3 0 0 1 1 2
4 0 1 1 1 3
5 0 1 1 1 3
6 0 0 1 1 2
7 0 0 0 1 1
8 0 1 1 0 2
9 0 1 0 0 1
10 1 1 1 0 3
)y 1 5 7 6 19

Note. 1 = correct response, 0 = incorrect response; ¥ = number of correct solutions per
pattern and item.
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Table 3.4: Contingency tables for Example 3.4

b a b a a
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for an eventual general, left—, right—, or total-covering surmise relation are fulfilled (see
Section 3.2, Definitions 3.4, 3.5 and 3.6).

Percentage of correct solutions Imagine a surmise relationship between two items
x and y, where item y is prerequisite for item z (ySz). The admissible response vectors
for the items are that both items are solved correctly (1,1), neither of the items is solved
correctly (0,0), or only item y is solved correctly (0, 1) (see also Section 3.1). Since
x should only be solved in combination with a correct solution to y, it is expected
that the solution frequency for item y is equal or higher than the solution frequency
for item 2 (Albert and Held, 1994). In the Hasse diagram the lower item is supposed
to have the higher solution frequency. In the case of reversed solution frequencies (x
has a higher solution frequency than y) a one-dimensional x? statistic is calculated to
decide whether the difference is significant or not.

Regarding Example 3.4 the relative solution frequencies for items a, b, ¢, and d are 10%),
50%, 70%, and 60% respectively. Figure 3.11 depicts the hypothetical surmise relation
together with the relative solution frequency for each item.

a
10%
b
/50%\
c d
70% 60%

Figure 3.11: Percentage of correct solutions for Example 3.4

As can be seen in the Hasse diagram, the hypothesis is verified by all values (lower
items always show higher solution frequencies than the items they are prerequisite
for). However, from the percentage of correct solutions it is not possible to infer,
whether the individual response vectors for each item pair are in accordance with the
surmise relation (i.e. whether the responses only reflect pairs which are elements of the
relation). Therefore, the percentage of correct solutions has to be viewed as a quick
method to get a general impression of the hypothesis’ validity.
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Indices for the fit of a surmise relation In order to evaluate the hypothesis on
an individual level, T will apply two indices which measure the fit of a hypothetical
surmise relation to a set of data.

The first index is called gamma—index (7). It was initially proposed by Goodman and
Kruskal (1972) and is based on the item easiness index by Scheiblechner (1997; see
also Kérner, 2000). In Section 3.1, I described the possible correct/incorrect response
patterns for an item pair. Assuming a prerequisite relationship between two items x
and y, where item y is prerequisite for item x, it was pointed out, that the response
pattern (1,0) contradicts the hypothesized relationship (item x is solved correctly, its
prerequisite y incorrectly). These cases are called discordant pairs (cell b,, in Figure
3.2). The pattern (0, 1), on the other hand, confirms the hypothesis, because some of
the participants are expected to solve item y but not the more difficult item z. These
cases are called concordant pairs (cell ¢, in Figure 3.2). The cases in which either both
or none of the items are solved (cells d,, and a,, in Figure 3.2) are neither contradicting
nor confirming the hypothesis. Thus, it is not possible to draw a conclusion about the
predicted relationship between the items.

Since the cases a,, and d,, are ambiguous, the y-index only uses the number of concor-
dant and discordant answer patterns to calculate the validity of each pair in a surmise
relation. Furthermore, a global index (7¢) is computed to evaluate the overall fit of
a model by accumulating the frequencies of concordant and discordant cases over all
pairs of items in the surmise relation. Formally, the y—index is defined by
o Nc - Nd

 N.+ Ny’

with N, being the number of concordant pairs (cell ¢,,,) and N, the number of discor-
dant pairs (cell b,,) over all response patterns. The vy-index varies between —1 and
+1 (v € [-1,1]), with +1 indicating a perfect fit (no contradictions at all). Item pairs
that are incomparable with regard to a given hypothesis [(z,y) ¢ S and (y,z) ¢ S;
within the Hasse diagram, there is no direct or indirect line connecting the two items|
are not taken into account, because they are neither confirming nor contradicting the
hypothesis. In order to decide, whether the derived v value supports the hypothesis,
a McNemar Y2 test is calculated to compare the number of concordant pairs to the
number of discordant pairs.

Yoy (3.12)

For the five pairs of the surmise relation in Example 3.4, the contingency tables depicted
in Table 3.4 show the frequencies for the concordant (N.) and discordant (Ny) pairs in
the hypothesized relation.

Looking, for example, at Table 3.4a, the y—index is computed as follows:
N.—N; 3-1
”Y(c’b) —_= NC _'_ Nd —_= 4 = 0.5

The indices for the remaining item pairs amount to yas = .14, Y4 = .71, and
Y(ba),(c;a) = 1. Thus, all of the five pairs in the relation show a positive  value, which
indicates that N, is always larger than N,;. For the computation of the global index
(7¢) the frequencies for N, and N, are added over all pairs in the relation.

N.—N; 23-5

N.+ Ny 28

Ya
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With x?(1, N = 28) = 10.94,p < 0.005 (after Yate’s continuity correction) the number
of concordant pairs is significantly larger than the number of discordant pairs, which
supports the hypothetical surmise relation.

The second index used in the validation process is called wviolational coefficient VC
(Schrepp et al., 1999). The index compares the fit of a surmise relation to a given
data set by counting the number of violations or contradictions for each pair ySz in a
surmise relation S. Violations are defined as those cases, in which a person mastered
item z but failed in mastering item y. Formally, the V(' is defined as follows:

Ve = ! 5| Z Vny (3.13)

with n denoting the number response vectors, m the number of items, |S| the number
of pairs in the relation, and v,, the number of violations for all pairs in S. Thus, the
V(' value denotes the averaged number of violations of the item pairs ySx contained
in a surmise relation S (with x # y). The index varies within the limits of 0 and 1
(VC €10,1]), with 0 denoting a perfect fit (no violations at all). For Example 3.4 the
V' C value is calculated as follows (the sum of v,, can be inferred from Table 3.4 by
adding the frequencies of the cells b,, over all item pairs).

1
VO=——x5=0.1
109 —4) ~

The obtained V' C value indicates that 10% of the empirical response vectors contradict
the item pairs contained in the hypothetical surmise relation. Note, that contrary to
the y—index, VC also includes the response vectors (0, 0) and (1, 1) and represents
therefore a weaker test of the hypothesis.

With regard to the interpretation and/or applicability of the indices, it has to be con-
sidered that they are pragmatical approaches to test the fit of a surmise relation and
that they are primarily used to compare different models. There is also no statistical
test available to judge the significance of V. However the indices can be used to com-
pare the fit of the SRbI, the SRwT, and the SRxT to each other. Such a comparison
is valuable in order to uncover which part(s) of the SRbT" has (have) to be refined.

3.4.2 Validation of hypotheses via the knowledge space

The general idea of validation procedures via the knowledge space is to compare the
hypothetical knowledge states to a set of empirical response patterns. First the aver-
aged minimal symmetric distance between a knowledge space and a set of empirical
response patterns is calculated (this distance will be referred to as ddat). In a sec-
ond step the distance agreement coefficient DA is calculated, which estimates the fit
between a knowledge structure and a binary data matrix by taking account of the
structure’s size (i.e. the number of knowledge states |K|). This is necessary in or-
der to compare the distances for knowledge spaces of varying sizes (the distance ddat
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decreases with an increasing number of knowledge states). Since the symmetric dis-
tances yield a frequency distribution for the distances between the empirical response
patterns and the postulated knowledge states, it is also possible to estimate the fit of
the knowledge space by comparisons with simulated data sets.

In the case of a set of tests, the same methods are applied to the various substructures
of the test knowledge space (see Section 3.2). Furthermore, the knowledge spaces
induced by the KSbI, the KSwT, and the KSxzT are compared to each other in
order to decide which part of the test knowledge structure deviates most from the
empirical response patterns. Analogous to the SRbI and its subsets, the K.SbI and its
substructures are validated by considering only the relevant parts of the postulated test
knowledge states and the empirical response patterns. For the K SwT, only the part of
the knowledge states referring to the items in a single test as well as the corresponding
part of the response patterns are considered. For the K.SxT', only the parts denoting
prerequisites between items of different tests are considered and for the K.SbI the
whole test knowledge space is taken into account. The K SzT and the KSbI require
the complete response patterns for the validation procedures.

Symmetric distances Symmetric distances between a knowledge structure and a
binary data matrix denote the averaged minimal distance or number of deviations
between each person’s response pattern and the nearest hypothesized knowledge state
(e.g., Garnier and Taylor, 1992; Albert et al., 1994; Kambouri et al., 1994). Generally,
the distance d between two sets A and B is defined as the number of elements contained
in the symmetric set difference of A and B and abbreviated by d(A, B).

d(A,B) = |AA B|,where AAB = (A\ B)U (B\ A). (3.14)
Hence, the symmetric distance of two sets equals the number of elements that are
contained in one set but not in the other.

The minimal distance between a response pattern r € R and a knowledge space K
is defined as the distance to the nearest knowledge state K € I and abbreviated by
dmin(r, IC).

dmin(r, K) = min{d(r, K)|K € K} (3.15)

Now, the averaged minimal distance (which will be called ddat) between a set of re-
sponse patterns R and a knowledge space K can be defined as follows:

{dmin(r,K)|r € R} _

n

dmin(R,K) = 2 ddat, (3.16)

with n denoting the number of response patterns in R. For two sets, there is also a

distance’s theoretical minimum (dmin) and maximum (dmax). The theoretical min-

imum corresponds to perfect results, i.e. there are no deviations at all (dmin always

equals 0). The theoretical maximum denotes the greatest possible distance with regard

to the number of items, which is equivalent to the greatest integer k that is smaller or
(n—1)

equal % (dmaz = {'%J = 4 or =5~ for even and odd numbers respectively).

Table 3.5 shows the minimal symmetric distances for Example 3.4. With |Q| = 5 items
the maximal distance dmax equals two. The observed distances show a frequency of
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seven for dmin(r, K) = 0 and a frequency of three for dmin(r, ) = 1. Thus, the
distance distribution is positively skewed and the averaged minimal distance (ddat =
.3) is much smaller than the theoretical maximum. Regarding a distribution’s skewness,
the fit of a knowledge space to a data set is better the more positive the distribution’s
skew (for a perfect fit all distances equal zero). It should be noted that the distance
for trivial response patterns (all or none of the items solved correctly) always equals
Z€ero.

Table 3.5: Symmetric distances between the data set and the hypothesized knowledge
space for Example 3.4

dmin(r,KC) frequency f | dmin dmax ddat (SD) Mdn

7

X ; 0 2 03(046) 0

For a statistical test of the knowledge structure’s empirical validity, Heller (2001) sug-
gests to use the frequency distribution of the symmetric distances. Starting with the
null hypothesis that there is no structure inherent in the empirical data, the validity
of the postulated knowledge structure is estimated by means of a one-dimensional y?
statistic. The distance distribution of the items’ powerset P is used as basic model
for the test (a more detailed description of P is given in the next subsection). The
question is, whether the distance distribution for the observed response patterns differs
significantly (is more positively skewed) from the distribution for the expected patterns
(generated with the powerset P with 2/9! elements). Whenever the null hypothesis is
accepted, it has to be assumed that there is no structure in the empirical data and
that the data therefore contradict the hypothetical knowledge space.

Table 3.6 shows the observed and expected distance distributions as well as the derived
x? values for Example 3.4. To obtain the expected frequencies, the relative frequencies
for each distance dmin(., K) are multiplied with the number of empirical response
patterns N = 10. With & — 1 = 1 degree of freedom and at a 5% level of significance
(X%, = 3.84), the null hypothesis is rejected, because of x% (1, N = 10) = 4.51.
Thus, the set of response patterns reflects the hypothesized knowledge structure in the
example better than the powerset does.

Assuming a valid test knowledge space, it still has to be considered that for the knowl-
edge spaces between items, within, and across tests the number of knowledge states
varies. Therefore, I will next apply a validation method which accounts for the struc-
tures’ sizes, that is the number of knowledge states |K|.

Distance agreement coefficient As 1 am mainly interested in the validity of the
test knowledge space, it is necessary to find out, whether the distance of the entire
structure (K.SbI) is primarily due to the distances within or across tests. Regarding
the varying sizes of the hypothetical substructures, the K.Sbl, KSwT, and KSxT can
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Table 3.6: Distance distributions and x? values for Example 3.4

powerset (P, K) data set (R, )
dmin(.,K) | absolute f relative f | observed f expected f | X2,
0 6 0.3750 7 3.75 2.82
1 9 0.5625 3 6.25 1.69
2 1 0.0625 0 0 0
> 16 1.0000 10 10.00 4.51

only be compared by taking into account the number of knowledge states within the
respective powersets. Hence, I will calculate the distance agreement coefficient DA
(Schrepp, 1993; Schrepp et al., 1999), which measures the fit between a knowledge
space and a data set under consideration of the structure’s size. The index indicates
the validity of a knowledge space K by relativizing the empirical distance ddat to the
mean distance of the space’s powerset P (dpot). Formally DA is defined by

B ddat

DA = ——
dpot’

(3.17)

with dpot! denoting the averaged minimal distance between a knowledge space K and
its powerset P. The value dpot yields the expected distance for random response
patterns, i.e. if K cannot account for the behavior of participants. Generally, dpot is
an inverse function of the number of states contained in . The term ddat is defined
in Equation 3.16. DA varies between the limits of 0 and d;;gf (DA € |0, dgz(‘f . A
lower value of the distance agreement coefficient indicates a better fit of a knowledge
structure to a given set of data. In the case of a small ddat value that is due to a large

number of knowledge states, DA compensates the small value by a small dpot value.

For Example 3.4, the powerset P contains 2* = 16 elements. The distance distribution,
dpot, and the coefficient DA are given in Table 3.7.

Table 3.7: Distance distribution for the power set (dpot) and DA for Example 3.4

dmin(p,K) frequency f | dpot (SD) Mdn DA

0 6
1 9 0.688 (0.58) 1 0.44
2 1

As mentioned above, the index DA is mainly applied to compare alternative hypotheses
or models. To evaluate a single knowledge space and its respective distance distribution
by means of different data sets, I will simulate two types of data sets for a comparison
with the empirically observed response patterns.

Ldpot = Z{dmm;‘

2OWEP} | with |Q| denoting the number of items.
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Simulations In order to compare the goodness of the empirical distance (ddat) and
the DA value with other data sets, I will compute simulations with different degrees
of specificity. The least specific type is the computation of random patterns for the
respective number of items. In this case knowledge states are randomly drawn from
the states contained in the powerset. In the following, this type of simulation will
be called random simulation. For various sets of random data the mean symmetric
distances between the random data sets and the respective knowledge structure are
calculated (dsim,). Afterwards, a one-dimensional x? test is applied to estimate,
whether the fit between the empirical data set and the knowledge structure is better
than chance.

In a second approach, which will be referred to as probability simulation, patterns are
simulated on the hypothetical knowledge structure under consideration of the proba-
bilities for careless errors () and lucky guesses (7). In case of multiple—choice items
the probabilities for lucky guesses results from the number of answer alternatives (e. g.
8 alternatives allow 12.5% guesses), whereas the probability for careless errors is un-
known. Therefore, I will vary the probability for careless errors (with 0.05 < 5 < 0.15)
and simulate sets of response patterns for each ( value. As for the random simula-
tions, the mean distances (dsim,) and DA values are calculated and compared to the
empirical results. However, the interpretation of the results differs.

While it is expected that the empirical data fit the hypothetical knowledge structure
significantly better than random simulations, for probability simulations it is expected
that there is no significant difference between the two types of data. In the first case,
the aim is to show that there are differences between the empirical and the simulated
data, i. e. that the agreement of the empirical data set with the postulated model is not
put forth by random. Simulations on the hypothetical structure, on the other hand,
reflect response patterns under the assumption of a correct model, but permitting a
certain amount of noise in the data. Hence, if the empirical set of data does not deviate
significantly from the simulated data sets (or even shows smaller distances), deviations
can be attributed to noise in the data and it can be assumed that the model is correct.

Finally, the most specific type of simulation, which will be referred to as frequency
stmulation, is to compute data matrices under consideration of the solution frequencies
for items and persons. This means that the marginal frequencies of the simulated
matrices are equivalent to those of the original data matrix, whereas the distributions
of ‘0’s and ‘1’s differ. The used algorithm? (Ponocny and Waldherr, 2002) randomly
selects two rows and two columns of the given matrix. If the four selected entries show
either the pattern 2 or %, the ‘0’s and ‘1’s are exchanged. Otherwise, the algorithm
keeps the pattern and selects another pair of rows and columns. The total number of
potentially exchanged entries amounts to n x m+ 3000, with n denoting the number of
response patterns and m the number of items. As for the other two types of simulations,
various data matrices will be simulated and their symmetric distances (dsimy) to the
corresponding knowledge spaces as well as the DA values will be calculated. For the
interpretation of the results, it has to be considered that the postulated model assumes
that a partial order reflects the dependencies among items better than a linear order.
This means, that not only the solution frequencies of the items (and persons) but also

2T thank Ivo Ponocny for providing the algorithm, which was adapted by C. Hockemeyer.
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the specific patterns of the responses are relevant for the prediction of testee’s solution
behavior. Thus, for the frequency simulations, the expectation is, that the empirical
data matrix significantly differs from the simulated matrices. Being the most specific
type of simulation and therefore the strictest test of the hypothesis, the frequency
simulation will only be applied for data sets that confirm the hypothesis according to
the random and probability simulations.

For an illustration of these approaches, I simulated various data sets for Example 3.4.
Table 3.8 shows the distance distributions and DA values for the empirical response
patterns (ddat), sets of random data (dsim,), data sets simulated under consideration
of the knowledge space hypothesis (dsim,), or the solution frequencies (dsimy). For
each type of simulation, 10 different sets of data with 10 response patterns each were
generated. For dsim, the response patterns were drawn randomly from the power set,
which contains 2* = 16 states. For dsim,, the probabilities for lucky guesses (n) and
careless errors () were set to n = 0.125 and 0.05 < # < 0.15 and for dsim/ the original
data matrix was permuted as described above (with 10 response patterns and 4 items,
there are 10 x 4 + 3000 = 3040 potential exchanges of entries). The numbers in Table
3.8 denote the averaged values of the 10 data sets for each type of simulation.

Table 3.8: Average distances and DA coefficients for simulated data sets

dmin(.,K) | ddat dsim, dsim,, dsimy
0 7 4.2 8.0 6.6
1 3 5.1 1.9 3.4
2 0 0.7 0.1 0
M (SD) | 0.30(0.46) 0.65 (0.57) 0.21 (0.38) 0.34 (0.05)
DA 0.44 0.95 0.31 0.49
z -1.84 0.66 -0.76
2df = 1) 3.22 0.63 0.07

Note. The values for dsim,., dsim,,, and dsimy are averaged over 10 sets of data & 10 response
patterns for each type of simulation.

To assure the differences between the empirical and simulated data, I standardized
the empirical values (obtaining z—scores) and calculated one—dimensional y? statistics
to estimate the differences with regard to the distribution of the symmetric distances
(for larger item and data sets a Mann-Whitney U test will be calculated to estimate
differences regarding the central tendency; in this example there are too many tied
ranks). At a 5% level of significance (zeip = 1.96; Xerie = 3.84) there is no difference
between the empirical distribution and the three simulated distributions. Thus, with
the small sample in this example, the hypothesis is neither contradicted nor confirmed
and the results are therefore ambiguous.
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3.5 Knowledge spaces for inductive reasoning

In this last section of the theoretical part of this report, I want to show how the theory
of knowledge spaces has already been applied for the domain of inductive reasoning. Up
to now, there are several investigations, in which the items of single problem types have
been ordered on the basis of knowledge space theory. The investigated problem types
include letter series completions (Schrepp, 1995, 1999; Wriessnegger, 2000), number
series completions (Albert and Held, 1994, 1999; Ptucha, 1994), and geometric matrices
(Musch and Albert, 2003). Since letter series completion problems are not part of
my own research, I will demonstrate the approach by the two problem types number
series completions and geometric matrices. For number series completion problems,
the approach taken by Albert and Held (1994, 1999) will be reported. Both Albert
and Held’s (1994; 1999) as well as Musch and Albert’s (2003) approaches are based on
the principle of componentwise ordering of product sets (see Section 3.3.1), which also
constitutes the method for hypothesis generation in my own work.

3.5.1 Number series completions

Albert and Held (1994, 1999) investigated the solution of number series completion
problems (see also Section 2.2.2) as one empirical example for the component based
construction of problems and the application of ordering principles, such as the com-
ponentwise ordering of product sets (see Section 3.3.1). Albert and Held started with
the assumption that two cognitive demands are required for the solution of number
series completions, namely (1) the recognition of the properties and regularities of a
sequence and (2) the establishment, application, and testing of a hypothesis on the
rule that governs the sequence. The problems themselves are described by solution
formulae, such as z,, = z,_1 + 2" as rule for the number series 30 32 36 44 60 (z,
denotes the number to be found, z,,_; its immediate predecessor).

For the component based construction of problems, Albert and Held specified three
distinct components in order to construct 12 classes of number series completions with
varying difficulty.

The first component, the level of recursion (M), is based on the number of immediate
predecessors used for the solution (see also Krause, 1985). For example, the problem
descriptions z, = =z, and z, = x,_1 + x,_2 have recursion levels of ‘1’ and ‘2’
respectively. Albert and Held specified three attributes on component M; (M; =
{a1, az,as}), namely the levels of recursion 1, 2, and 3 (1 corresponds to attribute as,
etc.). The attributes are ordered linearly, with a; being the most difficult and a3 being
the least difficult attribute.

The second and third component are the multiplicative (M) and additive factor (Ms).
The two factors specify, whether or not it is necessary to multiply one of the prede-
cessors by some factor and/or to use an addend in the pattern description. Examples
for problem descriptions with and without the multiplicative factor are z,, = 2x,_ 4
versus , = ,_1, and for the description with and without the additive factor are
Tp = Tp_1 + 4 and z, = x,_;. The components multiplicative and additive factor
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consist of two attributes each, namely presence versus absence of a multiplicand or
an addend (M = {b1, b2}, M3 = {c1,c2}). The attributes b; and ¢; denote that a
multiplicative factor > 1 and an additive factor > 0 are present, the attributes by and
co denote that the multiplicative factor equals 1 and that the additive factor equals 0.
The attributes b; and ¢; are assumed to be more difficult than the attributes b, and ¢,
respectively.

Forming the Cartesian product of the three components results in 3 x 2 x 2 = 12 classes
of number series completion problems with varying difficulty. Accordingly, Albert and
Held constructed 12 solution formulae and one number series completion problem per
formula. Table 3.9 shows some examples of the developed formulae and items.

Table 3.9: Examples for the problem construction of number series completions
(from Albert and Held, 1999)

Attributes Solution formula Item Solution
ai,b1,c1 1, =2xr, 3+ T, o+x,1+4 159204385 172
a1,ba, 0 Ty =Tp 3+ Tpo+ Tpoq 26 34 41 101 176 318 595
as,bi,c1 T, =Tp_o+ 2,1+ 2 14112869 168 407
ag,bo, 1 Ty =Xp_o+Tp_1+5 12 17 34 56 95 156 256
as,bi,co w1, = 21,1 4816 3264 128 256
3, Do, Cy Ty = Ty 113 113 113 113 113 113

For the construction of a knowledge space, Albert and Held applied the coordinatewise
as well as the lexicographic ordering principle (see Section 3.3.1), which resulted in
knowledges spaces with 50 and 13 knowledge states respectively (the powerset for
12 problems contains 2'2 = 4096 elements). For the coordinatewise order all three
components were viewed as independent of each other, for the lexicographic order
component M (level of recursion) was assumed to be most important, component Mo
(multiplicative factor) second most important, and component Mj (additive factor)
least important.

For an empirical validation of the two knowledge spaces, Albert and Held conducted
two investigations with altogether 48 response patterns. The trivial problem (as, b, ¢2)
was excluded from the analysis, because in one investigation it was solved by 100%
of the participants, in the other it was not presented. Regarding the remaining 11
problems,; the response patterns of the participants yielded a mean symmetric distance
(see Section 3.4.2) of 0.44 for the coordinatewise order and a mean distance of 1.23
for the lexicographic order. In the first case 34 response patterns showed a distance of
zero, in the second case 10 response patterns (however, since the lexicographic order
is much more restrictive, a comparison of the two values is not possible).

Regarding the small distances derived by the coordinatewise ordered knowledge space,
the results of Albert and Held’s investigations clearly show that item difficulty is in-
creased by higher levels of recursion and by the application of the multiplicative as
well as the additive factor.
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3.5.2 Geometric matrices

The knowledge space approach to the problem type geometric matrices (see also Section
2.2.3) was taken up by Musch and Albert (2003), who established a complete item
taxonomy for the Sets I and II of Raven’s APM (1965, see Section 2.4.2.3). Their aim
was to develop a formal model for the description of item characteristics and individual
differences in performance on the APM.

Applying the principle of componentwise ordering of product sets (see Section 3.3.1),
Musch and Albert defined three distinct components with varying numbers of attributes
each. The specification of the three components and their attributes is based on the
results of previous investigation on the APM, especially Carpenter et al. (1990), Jacobs
and Vandeventer (1972), Kinder and Lachnit (1994), and Vodegel Matzen et al. (1994).
The derived components are (1) number of rules, (2) types of rules, and (3) material
attributes.

The first component (1) refers to the number of rules (N) or operations necessary to
solve the problem. For the 46 analyzed matrices of the APM, the number of rules
ranges between one and four. Thus, component N has four attributes, N = {1,2,3,4}.
It is assumed that a higher number of rules leads to higher item difficulty.

Component (2) refers to the types of rules (T) that govern the variations among the
items’ elements. In order to account for all items of the APM, Musch and Albert
(2003) extended the five rules specified by Carpenter et al. (1990, see Section 2.2.3) to
a set of seven rules (see Table 2.2 for a description of the rules). The rules are divided
into two attribute classes, namely the application of the more difficult exclusive-OR
rule and rules of other types, viz. constant in a row, pairwise progression, distribution
of two or three values, figure addition, and figure subtraction. Thus, component T has
two attributes, T = {X,0}, with X denoting the presence of the exclusive-OR rule and
O denoting that only rules of other types are necessary to solve a given item.

The rules operate on materials of different detectability. The last component (3) con-
siders these material attributes (M), which influence the difficulty in the correspondence
finding process. The two attribute classes of this component are spatial order, which
is supposed to be less salient (high demand on correspondence finding process, low de-
tectability), and materials making low demands on the corresponding finding process
due to higher salience (high detectability). The latter attribute class includes varia-
tions in geometric figures, patterns, and number. With the two attribute classes high
demands (H) and low demands (L), component M = {H,L}.

Regarding the item taxonomy, Musch and Albert (2003) classified the set of APM items
according to the number (N) and type (T) of rules involved, as well as the difficulty
of the material attributes (M). As an example, a matrix item with two rules of the
types constant in a row (CR) and distribution of three values (D3) operating on the
geometric form and shading of the elements would therefore be described by (2,0,L).
Looking, for example, at the geometric matrix in Figure 2.6, the testee’s task is to
detect and apply the CC rule to the inner part of the figures and the D3 rule to the
outer part of the figures. Since neither of the two rules is applied to spatial order, the
detection of the relevant elements is supposed to be low in difficulty (low demand).
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A combination of the attributes of all three components results in 4 x 2 x 2 = 16
possible item classes, of which 10 are actually realized in the APM. The number of
items per class varies between one and 13. In order to establish a knowledge space
on the 16 possible item classes by the componentwise ordering principle, it had to be
decided, whether the components should be ordered coordinatewise, lexicographicly,
or as a mixture of both (see Section 3.3.1). Furthermore, it had to be decided, whether
all three components or only a subset of the three components should be taken into
account. Since there was no evidence on the importance of the single components,
Musch and Albert (2003) specified all possible models on the set of items, which are
either based on a coordinatewise or a lexicographic order on all three components or
on a subset of one or two components. Altogether, they derived 19 different models
(7 based on a coordinatewise order, 12 on a lexicographic order), which they first
evaluated by means of the relative solution frequencies (see Section 3.4.1) from a data
set containing 1015 response patterns. After this first estimation of the models’ fit, 14
models were excluded from further validation procedures. The remaining five models
(4 are based on a coordinatewise order, one on a lexicographic order) were validated
by two data sets of 41 and 44 response patterns. The number of realized item classes
per model varied between 3 and 10. The results derived via the mean symmetric
distances and the distance agreement coefficient DA (see Section 3.4.2) show for both
samples that the models based on coordinatewise ordering fit the empirical data better
than the lexicographic model (for the two samples, DA ranged between 0.00 and 0.40
for the coordinatewise ordered models and amounted to DA = 0.24 and 0.68 for the
lexicographic model; the reported values refer to a threshold of 75% with regard to the
percentage of items solved within an item class).

Musch and Albert (2003) concluded that a partial order on the components is more
suitable than a lexicographic order to model item difficulty and individual performance
on the APM. Furthermore, the results indicate that the three specified components type
and number of rule, as well as material attributes influence item difficulty.

3.6 Summary of Chapter 3

Knowledge space theory is a non—numerical approach, which can be used for both the
representation of a knowledge domain and the diagnosis of an individual’s performance
state in this domain. Starting out with the idea of prerequisite relationships or surmise
relations between items, Doignon and Falmagne (1985; 1999; Falmagne et al., 1990)
developed a mathematical model, in which the structure of a given knowledge domain
as well as people’s knowledge states are formally defined (Section 3.1). Albert and
his group (1995; Albert et al., 2003, Brandt et al., 1999; 2003) generalized the model
to surmise relations between tests, where sets of items or tests are the basic units
(Section 3.2). There are several methods to construct a surmise relation or knowledge
space (Section 3.3), of which the principle of componentwise ordering of product sets
by Albert and Held (1994, 1999) is of most importance to my research. As outlined
in Section 3.3.1, the principle of componentwise ordering assumes that all items in a
given knowledge domain can be described by the same set of components. Furthermore,
each component consists of a set of attributes, on which order relations are defined.
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Forming the Cartesian product of the components results in all possible attribute
combinations (item classes), which are then compared to specify an order on the set
of item classes. The principle of componentwise ordering has already been successfully
applied to single inductive reasoning tests (see Section 3.5). Applying the principle to
sets of tests requires the specification of components, which account for all occurring
types of problems. Thereafter, it is possible to establish a surmise relation between
tests by following the same procedure as for items. The surmise relation between
tests has the advantage that items of different problem domains can be ordered in a
common test knowledge structure and later be used for adaptive testing procedures.
Before implementing a (test) knowledge structure into an adaptive testing system it is
of course necessary to validate the structure. In Section 3.4 several validation methods
are introduced which are either based on the surmise relation (Section 3.4.1) or the
knowledge space (Section 3.4.2). In this work both approaches are applied.



4 Purpose and Scientific Questions

The purpose of the presented study is to establish an integrative structure for different
types of inductive reasoning problems in order to lay the basis for an adaptive testing
instrument in this domain. In Section 2.2, I described several types of inductive reason-
ing problems including the demands required to solve these problems. The presentation
of the problems followed the customs in common literature on this topic, namely sep-
arately for each problem type. After discussing the components that influence item
difficulty of the various tests, I compared the components of different problem types
with respect to corresponding elements, and thereby arrived at a set of components all
types of problems have in common (see Section 2.2.4). That various problem types and
their underlying cognitive demands can be described by a set of common components,
has already been shown within the two inductive reasoning models by Sternberg and
Gardner (1983) and Klauer (2001), which are outlined in Section 2.3. Both models fo-
cus on the similarities and differences of various problem types. My goal is to integrate
the findings on the common components of different problem types and the findings
on the varying demands required by the single items that represent a problem type.
Thus, the general objective is to integrate various types of problems into one common
classification scheme that specifies the problem requirements and is able to relate items
of different tests.

For the establishment of such a classification scheme, a structural approach will be
taken, which is comparable to some of the existing models of intelligence and inductive
reasoning. The BIS model (see Section 2.4.1.2) covers a set of four operational and
a set of three content related dimensions of intelligence. Forming the product of the
two sets results in 4 x 3 = 12 ability combinations (similarly, Guilford’s Structure—of—
Intellect model specifies 150 ability dimensions by the combination of five operations,
five contents, and six products, see Section 2.4.1.1). Going a step further to Klauer’s
model of inductive reasoning (see Section 2.3.1), the problem types are also described
by a set of content related demands (with 5 elements), but the operational abilities
are specified with respect to inductive reasoning. For this specification, Klauer (2001)
differentiates between (A) the detection of similarities, dissimilarities, or both and (B)
the comparison of elements or attributes. Forming the product of the three sets results
in 5 x 3 x 2 = 30 types of inductive reasoning problems. On the next level, the items
of single inductive reasoning problem types are analyzed to identify the components
contributing to the difficulty of individual items. Examples for such analyses are given
within the descriptions of inductive reasoning tasks in Section 2.2. Furthermore, For-
mann and Piswanger (1979) used construction principles for the WMT (see Section
2.4.2.4), that are based on three components with varying numbers of attributes. The
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result are 36 classes of geometric matrices, which are composed of three types of rules,
four material attributes, and three rule directions. A similar approach was taken by
some of the applications of knowledge space theory for the structuring of inductive
reasoning problems. In Sections 3.5.1 and 3.5.2, I outlined the principles for the com-
ponentwise ordering of number series completion problems and Raven’s APM, which
are also based on the specification of a set of components with varying attributes.

What is still missing, though, is the specification of components for various problem
types on the level of single items. A first attempt to the establishment of such a
classification scheme is made in Section 5.1, where I will specify a set of common
components and their respective attributes for the four types of inductive reasoning
problems used in the succeeding investigations.

Since the obtained classification scheme should be applicable as a basis for an adaptive
testing system of inductive reasoning, it is also necessary to establish an order on the
set of items and problem types (see Chapter 6 for adaptive testing applications). Thus,
another question concerns the development of a test model, in which the established
classification system as well as the derived order can be validated.

In Section 2.4.2, I presented a selection of tests measuring inductive reasoning abilities
either as a subtest within a test assessing several dimensions of intelligence (ISA and
BIS test, see Sections 2.4.2.1 and 2.4.2.2) or as specific intelligence test assessing the
ability of analytic reasoning by means of geometric matrices (APM and WMT, see
Sections 2.4.2.3 and 2.4.2.4). As of now, several tests or subtests are presented to assess
a person’s abilities in solving analogies, series completions, or matrices, as well as for
the assessment of how capable a person is in processing different content types such
as verbal, numerical, or geometric—figural material. As diagnostic result the testees
are described by a standardized numerical test score or an ability parameter for each
(sub)test and/or for an ability scale. Even if construction principles are used for the
development of the test items (as e.g., for the WMT), the test results are usually not
intended to provide information on the demands a testee is (un)able to fulfill.

Obtaining more detailed information on a testee’s performance has the advantage that
the ability level of the testee is not only given by an ability parameter (based on the
number of correctly solved items), but by the problem requirements the testee is able
to meet. This additional information allows for an exact feedback regarding the lacking
skills and can be employed for tutoring purposes. The information can also be used in
terms of item difficulty characteristics, which are the basis for more efficient, adaptive
testing procedures. Dealing with various types of inductive reasoning problems, the
established test model should also be able to predict from a person’s performance in
one of the tests the response behavior in one or more of the other tests.

In order to combine the request for detailed item descriptions and for precise informa-
tion on the set of problem demands that are met by a person, the theory of knowledge
spaces provides an appropriate framework.

The knowledge space theory, as outlined in Chapter 3, has been developed as a method-
ological framework for precise and efficient knowledge assessments. Considering the
recent developments of the theory, such as the generalization of surmise relations be-
tween items to surmise relations between tests, it provides a promising approach for
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the establishment of an integrative diagnostic system. The general reasoning is that a
mathematical model permits a precise representation of information in a given knowl-
edge domain and additionally adapts easily to computerized systems.

Foremost, it is necessary to construct a plausible test knowledge structure, which con-
tains all relevant prerequisite relationships within, across, and between inductive rea-
soning tests. Considering the methods for the establishment of knowledge structures
(see Section 3.3), the principle of componentwise ordering of product sets seems to
be most suitable for the investigated domain. Inductive reasoning tests have been
studied intensively. Thus, the derivation of hypotheses should definitely make use of
earlier research and incorporate the psychological findings. Data—driven approaches
and querying methods yield information on the prerequisite relationships among items
(and consequentially tests), but not on specific problem demands. For these reasons,
the classification scheme is developed by defining components and attributes based on
the findings reported in Sections 2.2 and 3.5. The establishment of surmise relations
between the actually presented sets of items and tests (see Chapter 5) follows a task
analysis. In order to evaluate the applicability of the models to an adaptive diagnostic
instrument, the derived knowledge spaces are implemented into a deterministic and a
non—deterministic adaptive assessment algorithm (see Chapter 6).

Remembering the objectives of this study, namely the establishment of a common
structure for various inductive reasoning problems, which can be used as a basis for an
adaptive assessment system, the following scientific problems are conceived.

(i) Is the approach of surmise relations between tests suitable to order a
set of inductive reasoning tests?

- Is it possible to define meaningful relationships between the items
of different tests, such that the solution behavior in one test allows
predictions on the solution behavior in one or more other tests?

- Do the postulated relationships between tests accurately predict
participants’ solution behavior?

(ii) Can the principle of componentwise ordering of product sets be applied
to a set of inductive reasoning tests?

- Is it possible to describe various types of inductive reasoning prob-
lems by a set of common components and attributes?

- Are the specified components, their attributes, and the postulated
order on the components and attributes a valid representation of
participants’ solution behavior?

(iii) Are the derived models valid representations of the knowledge domain
when implemented into adaptive assessment algorithms?

- Are the estimations of participants’ knowledge states an accurate
representation of their empirical response patterns?

- Does the application of adaptive assessment algorithms reduce the
number of presented items without a substantial loss in accuracy?






5 Method and Results

The aim of my research is to establish a structure on the items of various inductive
reasoning tests, which can be used as a basis for an adaptive testing system (see Chapter
6). Since I am dealing with a set of tests, the mathematical approach to surmise
relations between tests (see Section 3.2) is applied. In order to specify the surmise
relation on the set of items and tests, I have chosen the principle of componentwise
ordering of product sets (see Section 3.3.1).

A detailed description of how the hypotheses are derived is given in the next section
(Section 5.1). The basic assumptions for the surmise relations between items, within,
across, and between tests are equivalent for all three of the conducted investigations.
Differences in the specific hypotheses are due to variations in the presented materials.
I will discuss the methods and results for the three investigations in the succeeding
sections.

Investigation I (Section 5.2) serves as a first examination of the surmise relations be-
tween tests approach to the domain of inductive reasoning and the developed classi-
fication scheme (Section 5.1). The set of data and the two inductive reasoning tests
used in this investigation have been provided for reanalysis by the psychological service
of the Austrian military (see Section 5.2 for detailed information). For methodological
reasons a second reanalysis of a larger data set and computer—aided tests provided by
the psychological service of the German military is conducted for Investigation II (Sec-
tion 5.3). For a final investigation (Investigation III, Section 5.4), the set of data has
been collected by myself in accordance with the standards of knowledge space research
and the set of tests has been increased to four different problem types.

5.1 Derivation of hypotheses

In order to establish the surmise relation between tests by means of the componentwise
ordering principle (see Section 3.3.1), items of various inductive reasoning tests have
been analyzed and described by components and attributes that are applicable to all
types of problems. On this basis the items of all analyzed tests can be compared and
possible surmise relations between items and tests can be defined.

The specification of common components and attributes for various inductive reasoning
tests is based on the problem requirements described in Sections 2.2 and 3.5. With
regard to the materials used in the following three investigations (see Sections 5.2, 5.3,
and 5.4), a general classification scheme has been developed, in which items of the types
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Table 5.1: Components, attributes, and assumed downsets for inductive reasoning
problems

Downsets Downsets

Components for components  Attributes for attributes
A: Operation difficulty® {A,D,E} a; O other (less difficult) {a;}

as D difficult {a1,a2}
B: Number of operations {B,D,E} b =1-4 {b<;}b
C': Constraint {C,D,E} ¢1 L low demand {c1}

¢o H high demand {c1,02}
D: Material {D} dy V verbal {di}

dy N numerical {ds}

ds G geometric-figural {d1,d2,ds}
E: Number of answer alternatives {FE} e1 4 alternatives {e1}

eo 5 alternatives {e1,e2}

es 8 alternatives {e1,e2,e3}

Note. “Types of operations (A) vary with respect to component D (e.g., rotation is only
applicable to geometric, class inclusion to verbal material). *The smaller the number of
operations the easier the attribute.

analogy, series completion, and matrix problem can be integrated. The specification
of common components follows the findings outlined in Section 2.2.4, while attributes
that differ with respect to problem types are based on the findings outlined in Sections
2.2.1,2.2.2,2.2.3, and 3.5. Table 5.1 depicts the derived classification scheme including
the assumed downsets for each component and attribute. Figure 5.1 illustrates the
assumed downsets by means of Hasse diagrams for each component.

5.1.1 Specification and ordering of components

Column one in Table 5.1 depicts five components, which can be applied to all problem
types under consideration. Components that are specific to one of the problem types
(e. g., word frequency for verbal analogies, the magnitude of an arithmetic operation for
number series completions, or the number of constituent elements in geometric analo-
gies or matrices, see Table 2.3) have not been included in the classification scheme (see
Chapter 7, classification scheme, for a discussion of this issue). As already discussed
in Section 2.2.4, the components (A) operation difficulty, (B) relational complexity or
number of operations, and (C) constraint are the three major factors contributing to
the difficulty of problem demands. Furthermore, the influence of the items’ content
was pointed out, for which component (D) material is introduced. Finally, component
E' is added to account for the varying number of answer alternatives used as answer
formats in the investigated tests.

The assumed order of importance (see Section 3.3.1) on the five components is pre-
sented in column two in Table 5.1 and Figure 5.1f. The three major components A, B,
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b4
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(a) (b) (c) (d) (e) (f)

Figure 5.1: Hasse diagrams for the attributes of the five components operation difficulty
(a), number of operations (b), constraint (c), material (d), and number of answer
alternatives (e) and order of importance on the components A through E (f)

and C' are defined as being more important than components D and E. The reasoning
is that in common inductive reasoning tests the first three components vary within
single tests and can therefore also distinguish between items of the same problem type.
For the latter two components, the items within one test are usually described by the
same attributes d; and e;. Assigning the same degree of importance to all five com-
ponents would result in a rather unreasonable test knowledge structure, in which a
whole test A is prerequisite for a test B because of a single attribute, such as five vs.
eight answer alternatives or geometric vs. verbal material. In other word, items with
geometric material or a higher number of answer alternatives would never be prerequi-
site for items with other materials or fewer answer alternatives (see Section 5.1.2 for a
description of the components’ attributes). Regarding for example component F, the
mastery of an easy geometric analogy item with eight answer alternatives but only one
operation of less difficulty and low demand in constraint could not be surmised from
the mastery of a more difficult geometric matrix item with five answer alternatives,
three necessary operations, and high demand in constraint.

5.1.2 Specification and ordering of attributes

Columns three and four in Table 5.1 show the components’ attributes and their assumed
downsets. The attribute orders on each component are based on the findings outlined
in Section 2.2. Component A (operation difficulty) has two attributes, viz. difficult
operations (az: D) and less difficult operations (a1: O), with ‘O’ being prerequisite for
‘D’ (see Fig. 5.1a). The kinds of operations vary with regard to the problems’ material.
Difficult operations (D), as they are pointed out in Section 2.2, are semantic relations
of the types class inclusion and similar/comparative, numerical operations that include
hierarchical sequences, and geometric transformations in number and space, as well as
the Boolean AND and exclusive-OR operators. Other operations (O) include, for ex-
ample, the semantic relations part—whole, contrast, or attribute, numerical operations
without hierarchical sequences, and geometric transformations in form, shading, or
size, as well as the rules constant in row, pairwise progression, or distribution of three
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values (see Section 2.2 for a description of the whole set of operations). For compo-
nent B (number of operations), it is assumed that an item is more difficult the more
operations are necessary to solve the item (see Fig. 5.1b). With regard to the tests
analyzed for this study, there are four attributes presenting the presence of one (bs:
1), two (by: 2), three (bs: 3), or four (by: 4) necessary operations. The two attributes
of component C' (constraint) are high constraint or low demand on correspondence
finding processes (c¢1: L) and low constraint or high demand on correspondence finding
processes (co: H), with ‘L’ being prerequisite for ‘H’ (see Fig. 5.1c). For component
D (material), the specified types of material are verbal content (dy: V) and numerical
content (dy: N), which are both prerequisite for the third attribute geometric—figural
content (dz: G), as depicted in Figure 5.1d. Other materials used for the presentation
of inductive reasoning problems, such as letters or pictorial material, are not included
in this scheme, because they do not occur in the tests under investigation and can
therefore not be validated. Finally, the last component E specifies the number of an-
swer alternatives. It is assumed that the smaller the number of answer alternatives the
easier the problem demand on this component. A higher number of answer alternatives
reduces the possibility to find the correct answer by way of exclusion and decreases
the probability to guess the correct answer. The attributes can vary between two and
n answer alternatives, with sets of four, five, and eight alternatives being realized in
the three presented investigations. Therefore, there is a linear order on the three at-
tributes, with e; (four alternatives) defined as the easiest and e (eight alternatives)
defined as the most difficult attribute (see Fig. 5.1e).

5.1.3 Model for the surmise relation between item classes

According to the presented classification scheme, the test items can be described by
their respective attributes on each component. Forming the Cartesian product of the
five sets of attributes results in 2 x 4 x 2 x 3 x 3 = 144 item classes, i. e. items described
by the same set of attributes. The item classes can then be ordered by comparing the
attributes of each item class. Figure 5.2 exemplifies the derivation of item classes by
forming the Cartesian product of the three major components A, B, and C. The
product of their attributes results in 2 x 4 x 2 = 16 item classes.

Figure 5.3 shows the derived order for the three major components A, B, and C' (for

A x B x (C

| [ (O,1,L) (0,2,L) (O,3,L) (O4,L) ]
D 3 H (b,1,L) (D,2,L) (D,3,L) (D4,L)
X X AxBxC =
O 5 1 (O,1,H) (0,2,H) (0,3,H) (0,4,H)
| (D,1,H) (D,2,H) (D,3,H) (D,4H) |
1

Figure 5.2: Cartesian product of the attribute sets for components A, B, and C
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reasons of representation components D and E are not included). In order to obtain
the set of all 144 possible attribute combinations, the Cartesian product is extended
by components D and E. Because of the order of importance specified in Table 5.1
and Figure 5.1, the components D and E are disregarded for item pairs with different
attributes a;, b;, and ¢;, e.g. for the item classes (O,1,1,V,5) and (O,2,1,,G,5). With
respect to the order on all 144 item classes, components D and F have to be considered
only for item classes with the same attributes a;, b;, and ¢;, e.g. for the item classes

(0,1,L,V,5) and (O,1,L,G,5).

5.1.4 Model for the surmise relation between tests

In Figure 5.3 the derived item classes (for components A, B, (') are depicted in a com-
mon structure. For the establishment of a surmise relation between tests, the item
classes are partitioned into two or more sets of item classes. Thereby, the differen-
tiation of problem types (e.g., analogy vs. matrix problems), as it is usually found
in inductive reasoning tests, can be retained. Furthermore, the partitioning allows
both the consideration of the entire set of item classes and the consideration of single
problem types. This distinction has the advantage that, according to the diagnostic
demands, it is possible to assess either the ability of inductive reasoning in general or
the more specific abilities associated with only one problem type (e.g., the ability to
solve verbal analogy problems).

Figure 5.4 depicts an example for surmise relations within and between two tests AN
and SC'. For both tests all possible attribute combinations for components A through
C' are shown. Regarding the components D and E, test AN is assumed to consist of

(D,4,H)

(0,4.H) (D,3,H) (D,4,L)
0.4 (0,3,H) (D,2,H) (D31
03,0 (0,2H) (D,1,H) D,2,L)
0,2,L) (0,1,H) ®1,1)

©,1,1)

Figure 5.3: Derived order for item classes defined by components A, B, and C'
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verbal analogy items with eight answer alternatives each (V,8) and test SC' is assumed
to consist of numerical series completion items with five answer alternatives each (N,5).
In this example component D does not contribute to the established order, because
the materials verbal and numerical content are not comparable. Due to component F
(number of answer alternatives), for item classes of different tests but with the same
attributes a;, b;, and ¢;, the series completion item class will always be prerequisite
for the analogy item class. For reasons of more clarity, the prerequisite relationships
between the item classes of different tests (i.e. the SRxT') are not shown in detail.
However, it is easy to imagine a line from each AN item class to its respective SC' item
class with the same attributes a;, b;, and ¢;. For example, item class (O,1,L,N5) is
prerequisite for item class (O,1,1,,V,8). Therefore, the two tests are in a total-covering
surmise relation from the analogy test to the series completion test (SC S, AN ). This
means that there is a left—, as well as a right—covering surmise relation (cf. Definitions
3.5 and 3.6) from AN to SC. Each item class in AN has a prerequisite in SC' and each
item class in SC' is prerequisite for some item class in AN. Therefore, it is possible
to surmise that a person who solves all items in test AN will also solve the entire test
SC and that a person who fails on all items in SC will also fail on the entire test AN.
Furthermore, there is a general surmise relation (cf. Definition 3.4) from the series
completion test to the analogy test (AN S SC'), which means that at least one item in
AN is prerequisite for some item in SC'. Because components D and F are defined as
being less important than components A through C' (see Tabel 5.1), analogy items with
equal or less difficult attributes on components A, B, and C' are prerequisite for the
respective series completion items. For example, item class (O,1,1,V,8) is prerequisite
for item class (0,2,1,N,5).

In order to specify the surmise relation between item classes and its subsets, only the
relationships contained in the respective relation are taken into account (see Equation
3.9 and Fig. 3.7 for the definition and an illustration of the subsets). For the surmise
relation between items (SRbI) all pairs of item classes are considered, for the surmise
relation across tests (SRxT') only the relationhips between item classes of different
tests, and for each surmise relation within tests (SRwT') only the relationships between
item classes contained in the same test are considered.

5.1.5 Empirical predictions

The hypotheses for each of the following three investigations (see Sections 5.2, 5.3, and
5.4) are derived by analyzing each item with respect to the five components listed in
Table 5.1 and by assigning each item to its respective item class. Depending on the item
classes realized in each of the analyzed tests, surmise relations between items, within,
across, and between tests are established according to the componentwise ordering
principle illustrated in Figures 5.3 and 5.4.

The postulated surmise relations between items of the sets of tests render a difficulty
order with the following interpretation:

“Whenever the demands of the attributes of a problem y are equal or less
difficult than the corresponding attributes of a problem x, we assume that
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Figure 5.4: Derived surmise relation between two tests AN and SC with SC S, AN
and AN § SC

y is prerequisite for problem z.”

In order to account for the various substructures for each set of tests and the different
validation methods via the surmise relation and the knowledge space, several empirical
predictions have been derived.

For the presented sets of tests, the difficulty order leads to the following predictions on
the surmise relation between tests (SRbT):

Ta

Ib

Ic

Id

For each postulated general SRbT (7; S 7;), it is expected that at least one
item class in test 7; has a prerequisite and therefore an equal or lower solution
frequency than one of the item classes in test 7;.

For each postulated left-covering SRbT (7; S; T;), it is expected that each item
class in test 7; has a prerequisite and therefore an equal or lower solution fre-
quency than one of the item classes in test 7;.

For each postulated right-covering SRVT (7; S, T;), it is expected that each
item class in test 7; is prerequisite for one of the item classes in test 7; and has
therefore an equal or higher solution frequency.

For each postulated total-covering SRbT (7; S, 7,), it is expected that the
predictions Ib and Ic apply.
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For the presented set of items, the difficulty order leads to the following predictions
on the surmise relation between items (SRbI), across tests (SRxT'), and within tests
(SRwT):

IIa

ITb

For each postulated SRbI, SRxT, and SRwT, it is expected that the percent-
age of correct solutions for item classes described by attributes of equal or less
difficulty is equal or higher than for the item classes they are prerequisite for.

For each postulated SRbI, SRxT, and SRwT, it is expected that the v—index
yields a significantly higher number of concordant pairs than discordant pairs.

For the presented set of items, the difficulty order leads to the following predictions
on the knowledge space between items (K SbI), across tests (K.SzT), and within tests
(KSwT):

IITa

ITIb

ITIc

ITId

For each postulated KSbI, KSzT, and KSwT, it is expected that the mean
symmetric distance between the knowledge space and the empirical data set is
significantly lower than the mean symmetric distance between the knowledge
space and its powerset.

For each postulated KSbI, KSzT, and KSwT, it is expected that the mean
symmetric distance between the knowledge space and the empirical data set is
significantly lower than the mean symmetric distance between the knowledge
space and random data sets (random simulations).

For each postulated KSbI, KSzT, and KSwT, it is expected that the mean
symmetric distance between the knowledge space and the empirical data set is
not significantly higher than the mean symmetric distance between the knowledge
space and data sets simulated on the hypothesis (probability simulations).

For each postulated KSbI, KSzT, and KSwT, it is expected that the mean
symmetric distance between the knowledge space and the empirical data set are
significantly lower than the mean symmetric distance between the knowledge
space and data sets simulated under consideration of the data matrices’ marginal
frequencies (frequency simulations).

Summarized, prediction I refers to the postulated relationships between tests. It as-
sumes the validity of the hypothesized SRbT and its properties (left—, right—, or total-
covering). Prediction II was derived in order to validate the postulated surmise re-
lations on the various substructures, while prediction III refers to the corresponding
knowledge spaces. The differentiation between the surmise relation and the knowledge
space also allows for a comparison of the different validation methods (see Chapter 7,
validation methods, for a disscussion of this issue).
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5.2 Investigation I

Relating a pair of inductive reasoning tests: First ap-
plication

The general aim of this work is to develop a structure for various inductive reasoning
tests, which contains different problem types. The derived structure should also be
applicable to adaptive testing procedures. In Section 5.1, I have introduced a classifi-
cation scheme for inductive reasoning problems, which is based on the results of earlier
investigations in the domain (Chapter 2). By applying the non—numerical knowledge
space theory (Chapter 3), it is possible to order the set of problems in such a way
that implicit prerequisite relationships between items and tests can be used to draw
inferences from previously answered items. In order to implement the derived structure
into an adaptive testing system, it is first of all necessary to validate the hypothesized
surmise relations. For the first evaluation of the approach of surmise relations between
tests (Section 3.2) and the postulated classification scheme (Section 5.1), only a subset
of the possible problem types is investigated.

Therefore, a set of data and tests provided by the “Heerespsychologischer Dienst des
BMLV” (HPD) in Vienna, Austria, has been reanalyzed (see Section 5.2.2). The origi-
nal data set contained response patterns of 1221 participants, who performed a psycho-
logical test for the selection of corporals and officers (“Psychologische Auswahltestung
fir Offiziers— und Unteroffiziersanwérter”). For the establishment and validation of the
hypotheses, two inductive reasoning tests (geometric matrices and verbal analogies)
have been selected. The sets of data and items were reduced (see Section 5.2.3) to
fulfill the condition of complete answer patterns as it is required for the validation of
knowledge space hypotheses (see Section 3.4).

5.2.1 Hypothesis

The hypothetical knowledge structure for the two inductive reasoning tests (geometric
matrices and verbal analogies) used in Investigation I was constructed as outlined in
Section 5.1. The surmise relation on the set of items and tests was established in
two steps. First, I analyzed the given items (see Section 5.2.2) with respect to their
attributes on each of the five components (see Table 5.1) and assigned each item to
the corresponding item class. In a second step, I ordered the item classes realized in
the two tests (i.e. a subset of the 144 possible item classes) according to the structures
derived in Sections 5.1.3 and 5.1.4 (see Figures 5.3 and 5.4 for an illustration of the
ordering principles).

Expectations regarding the derived surmise relation between tests (SRbT'), the surmise
relation between items (SRbI) and its subsets (SRxT and SRwT), as well as the
corresponding knowledge spaces (KSbl, KSzT, and KSwT) are according to the
empirical predictions made in Section 5.1.5.

For the SRbT, the item classes realized in the two tests (see Section 5.2.2.2 for details)
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suggest a total-covering surmise relation from the matrix (MT) test to the analogy
(AN) test (AN S, MT) and a general surmise relation from the analogy test to the
matrix test (MT S AN). For (AN S, MT), it is expected that each item class in the
matrix test has a prerequisite item class in the analogy test (AN S M T) and that
each item class in the analogy test is prerequisite for a matrix item class (AN S, M T).
For (MT S AN ), it is expected that at least one item class in the analogy test has a
prerequisite item class in the matrix test (see also Section 5.1.5, predictions la and Id).

A detailed description of the items and prerequisite relationships contained in the two
tests under investigation is given in the next section.

5.2.2 Method
5.2.2.1 Participants

From the original 1221 male participants, 572 response patterns have been analyzed for
Investigation I. All participants were corporal and officer candidates of the Austrian
military and therefore taking the tests voluntarily. Participants’ age ranged between
18 and 35 years with the average located in the early 20s (personal information).
For confidentiality reasons more detailed personal data of the participants was not
provided.

5.2.2.2 Material

Materials consist of two inductive reasoning tests developed by the HPD. The first test
(MT) originally comprised 20 geometric matrix items. Because of the requirement of
complete answer patterns (see Section 3.4), the set of items has been reduced to 14
matrix problems.

Each matrix item consists of nine squares arranged in three rows and three columns.
The square on the lower right contains a question mark, all other squares are divided
into nine cells. Each cell is either a blank or colored in red, green, yellow, dark or
light blue, or brown. By analyzing the squares row by row and/or column by column,
between one and three relational rules can be induced (see Table 5.2). On the right of
the matrix eight answer alternatives (labeled A through H) are depicted. Participants
had to decide, which alternative belongs in the square with the question mark. Fig-
ure 5.5 shows an example matrix (for confidentiality reasons the item is invented but
similar to the original items), which requires the rule ‘Figure Addition’ as only nec-
essary operation to induce the correct answer ‘E’. With one rule of less difficulty, low
demands on the correspondence finding process, geometric material, and eight answer
alternatives, the corresponding item class is (O,1,L,G,8).

An analysis of the items’ attributes on each of the five components (see Table 5.1)
results in six item classes with one to four items each. Table 5.2 depicts the attribute
combinations realized in the six item classes and a description (item number, operation
types, and downsets) for each item.
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A B
C D
" E F
G H

Figure 5.5: Example for a matrix item presented in Investigation I

The first item class (first column in Table 5.2), for example, is described by the at-
tributes (O,1,1,,G,8). This means that the included four items (item numbers in the
second column) all have Other operation difficulty (component A, operation difficulty),
1 necessary operation to solve the problem (component B, number of operations), and
Low demand on correspondence finding processes (component C, constraint). The
attributes on components D (material) and E (number of answer alternatives) are
identical for all item classes, viz. Geometric—figural material and 8 answer alterna-
tives. The third column in Table 5.2 specifies the types of operations that need to
be inferred to solve the items. The operations realized within the six item classes are
constant in a row (CR), constant in a column (CC), pairwise progression (PP), figure
addition (FA), distribution of two (D2) and three values (D3), and the exclusive-OR
rule (XO). The operations are described in detail in Section 2.2.3, Table 2.2. Overall,
one out of the six item classes has the attribute Difficult operation and the number
of operations varies between one and three. Four item classes have the attribute High
demand on correspondence finding processes and all six item classes are described by
Geometric material and 8 answer alternatives. Finally, the last two columns in Table
5.2 depict the prerequisites (downsets) for item classes (fourth column) and items (fifth
column), which were derived according to Section 5.1, Table 5.1.

The second test (AN) originally comprised 25 verbal analogy problems in German,
which have been reduced to a set of 16 items (see Section 5.2.3). Each analogy has
a three—term stem of the form A : B = C :?. Below the stem terms five answer
alternatives (labeled a through e) are presented. Exceptions are two analogies with
only four answer alternatives. Participants had to choose the alternative that completes
the analogy best. Stem terms as well as alternatives are nouns (8 items), verbs (4
items), or adjectives (1 item). Three of the analogies are mixed (noun-verb once and
noun-adjective twice). Figure 5.6 gives an example analogy (for confidentiality reasons
the example is an extended item taken from Bejar et al., 1991, but it is similar to the
original items), which can be solved by applying the semantic rationale ‘A is part of
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Table 5.2: Item descriptions and downsets for the matrix test in Investigation I

Item Operation  Downsets for Downsets
Item classes® numbers types? item classes® for items
(0,1,L,G,8) 1 D3 (0,1,L,G,8) 1,3,5,7
3 PP
5 CR
7 FA
(0,1,H,G,8) 6 FA (0,1,L,G;8),(0,1,H,G,8) 1,3,5,6,7
(0,2,L,G,8) 2 CC,PP (0,1,1,G,8),(0,2,L,G,8) 1,2,3,4,5,7,
4 D3,D3 10,12
10 D2,D2
12 PP,PP
(0,2,H,G,8) 8 CC,D3 (0,1,L,G,8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,
9 CR,CC (0,2,1,G,8),(0,2,H,G,8) 9,10,12
(0,3,H,G,8) 11 D2,D2,D3 (0O,1,L,G\8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,
13 CR,CC,CC (0,2,L,G,8),(0,2,H,G,8), 9,10,11,12,13
(0,3,H,G,8)
(D,2,H,G,8) 14 X0,X0O (0,1,L,G,8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,
(0,2,L,G,8),(0,2,H,G,8), 9,10,12,14
(D,2,H,G,8)

Note. @ Components are ordered alphabetically, i.e. A through E. ® CR = constant in a row,
CC = constant in a column, PP = pairwise progression, FA = figure addition, D2 (D3) =
distribution of two (three) values, XO = exclusive-OR. ¢ See Table 5.1 for the derivation of
downsets.

B’ to the third term of the analogy (the correct answer is ‘a’). With a rule of less
difficulty (part—whole relation), one element in the semantic rationale, low demands
on the correspondence finding process, verbal material, and five answer alternatives,
the corresponding item class is (O,1,1,V.5).

wheel : car = leg : 7

a) horse  b) bicycle c¢) forest d) bookcase e) snake

Figure 5.6: Example for an analogy item presented in Investigation I

An analysis of the items’ attributes on each component (see Table 5.1) results in nine
item classes with one to four items each. Table 5.3 depicts the attribute combinations
(first column), item numbers (second column), types of operations (third columns),
and downsets for item classes (fourth column) and items (last column). In the case
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of verbal analogies the number of operations (component B) refers to the number of
elements in the analogies’ rationales (see Section 2.2.1, Box 2.3). In Table 5.3 only the
semantic relations between the terms are listed (third column), whereas the complete
rationales are given in Appendix B.1, Table B.1.

As can be seen from the attribute combinations (first column), the types of operations
(component A; specified in the third column) that need to be inferred include the
semantic relations of Other types part-whole (PW), contrast (CO), attribute (AT),
cause—purpose (CP), and space-time (ST), as well as the more Difficult relation sim-
ilar/comparative (SI). The latter is required by three out of nine item classes. The
semantic rules are described in detail in Section 2.2.1, Table 2.1. The number of ele-
ments in the rationales (component B) varies between one and three. High demands
on correspondence finding processes (component C') are required by four item classes,
while the attributes on component D are identical for all items, viz. Verbal material.
Eight item classes have 5 answer alternatives (component E), one item class only 4
(for item 21 alternative e is missing, for item 26 the alternatives ¢ and d are identical).

Using the order of importance on the components (Tabel 5.1, second column) and
the difficulty orders on the attributes (Tabel 5.1, fourth column) a surmise relation
was established on the item classes of both tests. Table 5.4 shows the prerequisite
relationships for the surmise relation across tests (Syrxay and Sayxur, see Section
3.2). The surmise relation from the matrix test to the analogy test (Sanxar) is
represented by ‘¢’. Since each matrix item class has a prerequisite item class in the
analogy test and each of the analogy item classes is prerequisite for a matrix item class,
a total-covering surmise relation (AN S, MT, see Definitions 3.5 and 3.6) is postulated.
The surmise relation from the analogy test to the matrix test (Sy7xan) is represented
by ‘x’. In this case, only a subset of the analogy item classes has prerequisites in the
matrix test and only a subset of matrix item classes is prerequisite for an analogy
item class. Therefore, a general surmise relation (M7 S AN, see Definition 3.4)
from the analogy test to the matrix test is postulated. The surmise relation between
items (SRbI), i.e. within (SRwMT and SRwAN) and across (SRzT') the two tests
is depicted as a Hasse diagram in Figure 5.7. The relation files for the SRbI, SRxT,
SRwMT, and SRwAN are given in Appendix E.1. With regard to the corresponding
knowledge spaces, the base files for the K.SbI, the K SzT, the matrix test (KSwMT),
and the analogy test (K SwAN) are listed in Appendix E.2.

5.2.2.3 Procedure

Participants were run in group sessions with an average of 21 persons each (SD = 5.2),
ranging between 5 and 32 individuals per group. The data were collected between 1995
and 1997 by members of the HPD. The entire examination lasted 22 hours including an
initial testing (first day, 2 pm to 10 pm) and a final testing (second day, 6 am to 12 am),
which were separated by an endurance phase with no sleep and physical strain (10 pm
to 5 am). The initial and the final testings consisted of 14 and 10 subtests respectively,
including tests for concentration, perception, and memory, various intelligence tests,
oral presentations, and writing an essay. The two inductive reasoning tests of the initial
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Table 5.3: Item descriptions and downsets for the analogy test in Investigation I

Item Item Operation Downsets for Downsets
classes® numbers types? item classes® items
(0,1,L,V.4) 21 PW (0,1,L,V 4) 21,26
26 CP
(0,1,L,V,5) 15 CcO (0,1,L,V,4),(0,1,L,V,5)  15,17,21,25,26,
17 CO 30
25 PW
30 PW
(0,1,H,V.5) 27 AT (0,1,L,V,4),(0,1,L,V,5), 15,17,21,25,26,
29 AT (O,1,H,V,5) 27,29,30
(0,2,L,V,5) 18 ST (0,1,L,V,4),(0,1,L,V,5), 15,17,18,21,25,
(0,2,L,V,5) 26,30
(0,2,H,V,5) 22 ST (0,1,L,V,4),(0,1,L,V.,5), 15,17,21,22,24,
24 ST (O,1,H,V,5),(0,2,L,V.,5), 25,26,27,29,30
(0,2,H,V,5)
(0,3,H,V.5) 20 CP (0,1,L,V,4),(0,1,L,V,5), 15,17,18,20,21,
28 CP (0,1,H,V,5),(0,2L,V,5), 22,24,2526,27,
(0,2,H,V,5),(0,3,H,V,5) 28,29,30
(D,1,L,V,5) 16 ST (0,1,L,V,4),(0,1,L,V,5), 15,16,17,21,25,
(D,1,L,V,5) 26,30
(D,1,H,V,5) 19 SI (0,1,L,V,4),(0,1,L,V,5), 15,16,17,19,21,
(O,1,H,V,5),(D,1,L,V,5), 25,26,27,29,30
(D,1,H,V.5)
(D,2,L,V,5) 23 ST (0,1,L,V,4),(0,1,L,V,5), 15,16,17,1821,

(0727L7v75)1(D717L7V75)’
(D,2,L,V,5)

23,25,26,30

Note. ® Components are ordered alphabetically, i.e. A through E. ® PW = part-whole, CP =
cause purpose, CO = contrast, AT = attribute, ST = space—time, SI = similar/comparative.
¢ See Table 5.1 for the derivation of downsets.

testing were selected for this investigation.

The tests were presented as booklet with a separate machine-readable answersheet for
the responses. The matrix test was the third test to take, following a concentration
test and a verbal activity test (40 items), which took together 13 minutes. The analogy
test was presented after the matrix test, but with a break of 15 minutes in between.
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Table 5.4: Surmise relation across tests in Investigation I

Analogies Matrices (D = G)

(D=V) | (0O1,L8) (O1,H8) (02L8) (02H8) (03H8) (D2ML8)
(O,1,L4) o o o o o o
(O,1,L,5) o o o o o o
(O,1,H,5) X o o o o
(0,2,L,5) X o o o o
(0,2,H,5) x X x o o o
(0,3,H,5) X b'e X X o

(D,1,L,5) X o
(D,1,H,5) X X o
(D,2,L.,5) X X o

Note. An x indicates that the matrix item class in column ¢ is prerequisite for the analogy
item class in row j (iS7); a ¢ indicates that the analogy item class in row j is prerequisite for
the matrix item class in column i (5.57).

The items of both inductive reasoning tests were presented as speed-power tests' in
paper-pencil form. Participants had 12 minutes to complete the matrix test (20 items)
and 5 minutes for the analogy test (25 items). Both tests included two practice items,
which were reviewed with the instructor. For the matrix test, the instructions to the
paractice items were given only verbally (personal information), whereas the analogy
test includes a written explanation of the relevant relation for the first practice item.The
given sequence of the items (see item numbers in Tables 5.2 and 5.3) was not binding
for the participants.

5.2.3 Results

For the validation of the established hypotheses the methods outlined in Section 3.4
are applied. After a short description of the procedure used for pre-editing data and
tests, I will continue with the results regarding the surmise relation. This is followed
by the results derived via the knowledge space, which also include comparisons with
simulated data sets and statistical analyses.

IThe presentation of the items as speed—power test lead to incomplete answer patterns, which was
the reason for eliminating items and patterns from the original data matrix (see Section 5.2.3)



100 5 Method and Results

Pre—editing of data and tests The validation of knowledge space hypotheses re-
quires complete response patterns, i.e. all the items have to be answered by each
participant (see Section 3.4). The data are coded as binary strings of '0” and 1’ with
‘0" denoting an incorrect answer and ’1’ denoting a correct answer. Missing responses
are not intended. The presentation of items as a speed—power test generally leads to
unprocessed items at the end of the test, which results in a lower percentage of correct
responses for these items. Therefore, incomplete answer patterns have to be removed
from the data set. Furthermore, the validation procedure requires a reasonable high
number of response patterns given by the same participants for both tests. In the
original data matrix only 51 persons answered all of the 45 items. In order to handle
the trade—off between the total number of response patterns and the number of items
answered by all participants, the following procedure was applied.

First, the program patt-statistics was applied to count the number of complete
response patterns for various numbers of items. The order, in which the items are
removed depends on the number of missing responses per item. First, the item with the
highest number of missing responses is removed and the number of complete patterns
for the remaining items is recounted. For the two tests in Investigation I, the last item
presented in the analogy test was removed first, which left 56 persons who answered all
of the remaining 44 items. Then the item with the second highest number of missing
responses was deleted, the number of complete patterns was recounted, and so on.

In a second step, the postulated knowledge spaces were calculated for various numbers
of items and the item set, for which the number of complete response patterns ex-
ceeded the number of hypothetical knowledge states, was selected for further analyses.
The goal was to achieve a maximal number of items by simultaneously maintaining
the number of postulated states smaller than the number of response patterns. The
procedure resulted in a reduction to 30 items (14 matrix and 16 analogy items) and
572 response patterns for both tests. The postulated test knowledge space for 30 items
contains 293 states.

The reduced data matrix contains 17,160 responses from 572 participants. Table 5.5
gives an overview of the original and the reduced data sets. The minimal number of
correctly solved items equals zero (1 response pattern) the maximal number 30 (26
response pattern), which amounts to 4,7% of all response patterns (due to the small
percentage, the trivial response patterns have not been excluded from the final data
set).

5.2.3.1 Validation of hypotheses via the surmise relation

Percentage of correct solutions All in all 84.66% of the items were solved cor-
rectly. This corresponds to a total of 14,528 correct responses. The relative solution
frequencies for each single item are provided in Appendix F.1, Table F.1. Figure 5.7
depicts the relative solution frequencies together with the postulated surmise relation
between the item classes of both tests. The relative solution frequencies for the nine
item classes with more than one item (see Tables 5.2 and 5.3) represent the averaged
relative solution frequencies of all items in the respective class. The number of items
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Table 5.5: Original (N=1221) and reduced (N=572) data sets in Investigation I

No. of  No.of  No. of correct No. of incorrect No. of missing

Tests items  responses responses responses responses
MT original 20 24,420 15,853 4,278 4,289
AN original 25 30,525 18,661 4,680 7.184

Total 45 54,945 34,514 8,958 11,473
MT reduced 14 8,008 6,801 1,207 0
AN reduced 16 9,152 7,727 1,425 0

Total 30 17,160 14,528 2,632 0

Note. MT = matrix test, AN = analogy test, total refers to the set of items contained in
both tests.

Figure 5.7: Hasse diagram for the postulated surmise relation between items and rel-
ative solution frequencies in Investigation I (AN S; MT and MT S AN)

contained in one item class varies between one and four. The average maximal dif-
ference in solution frequencies of items contained in the same class amounts to 5.89%
(SD = 5.1). Regarding the item classes, the percentages of correctly solved item classes
vary from 59.79% for item class (D,2,H,G,8) up to 97.46% for item class (O,1,1.,G,8).

Looking at the two surmise relations within tests, the results for the geometric matrices
(SRwMT, left ellipse in Figure 5.7) represent a perfect fit of the hypothesized (see
Table 5.2) and the empirical surmise relation. For all of the 13 pairs contained in the
SRwMT, the relative solution frequencies for the postulated prerequisite item classes
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are higher than those for the item classes they are surmised from. The results for
the analogy test (SRwAN, right ellipse) show that the relative solution frequencies
for item classes (O,1,H,V,5) and (O,1,L.,V,5) are lower than those for two respectively
five item classes they are prerequisite for (see Table 5.3 for the postulated downsets).
More precisely, 17 out of 24 pairs of item classes confirm the hypothetical surmise
relation (reflexive pairs are not counted). However, one—dimensional x? tests show
that the differences for all of the seven reversed pairs are not significant (a = .05;% see
Appendix F.2, Table F.4 for the exact values). Considering that the hypothesis states
that the solution frequency for a prerequisite item class should be higher than or equal
to the frequency of the item class it can be surmised from (see prediction Ia in Section
5.1.5), the reversed pairs are still in accordance with the postulated knowledge space.

With regard to the surmise relation across tests (see Figure 5.7), i.e. prerequisite
relationships between item classes of different tests (SRzT, represented by lines going
from one ellipse to the other), 22 out of 27 pairs (see Table 5.4) confirm the surmise
relation from the matrix test to the analogy test. Deviations occur for the three item
classes (0,1,1,G,8), (O,1,H,G,8), and (0,2,1.,G,8) with higher solution frequencies than
part of their postulated prerequisites in the analogy test. From the five pairs of item
classes with reversed solution frequencies, only the pair (O,1,L,G,8) and (0O,1,1,,V.5)
shows a significant difference (y?(1, N = 1041) = 5.19,p < .05; see Appendix F.2,
Table F.4 for the remaining values).

Regarding the surmise relation from the analogy test to the matrix test (see Figure 5.7)
the solution frequencies for all of the 14 pairs are in accordance with the hypothesis
(see Table 5.4).

For the surmise relation between tests, a total-covering surmise relation from the
matrix test to the analogy test (AN S M T) and a general surmise relation from the
analogy test to the matrix test (MT S AN) was postulated in Section 5.2.1. For the
total-covering surmise relation, it is expected that each of the six item classes in the
matrix test has a prerequisite in the analogy test and that each of the nine analogy
item classes is prerequisite for one of the matrix item classes (prediction Id in Section
5.1.5). For the general surmise relation, it is expected that at least one item class in
the analogy test has a prerequisite in the matrix test (prediction Ia in Section 5.1.5).
The total-covering surmise relation (AN S M T) is verified by all but one of the 15
item classes in both test. With 97.46% of correct answers, item class (O,1,1,G,8) shows
the highest solution frequency within the set of tests, and does therefore not have a
prerequisite in the analogy test (yet the difference between this item class and the class
(0,1,1,V,4) is not significant; x?(1, N = 1075) = 1.54,p < .05). The general surmise
relation (MT S AN) is clearly verified, since not only one but all of the 14 postulated
prerequisite relationships from the analogy test to the matrix test are confirmed by the
relative solution frequencies. Summing up, the surmise relation between items of both
tests (i.e. the pairs within each test and across the two tests) is confirmed by 66 out
of 78 postulated pairs of item classes (reflexive pairs are not counted). Of the 12 pairs
with reversed solution frequencies only one pair shows a significant difference.

2Generally, with the a—adjustment for item classes involved in multiple x? tests, the a—level can
be reduced. However, because the model postulates that there are no significant differences, the
a—adjustment would lead to a weaker test of the hypothesis and was therefore disregarded.
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Table 5.6: V(' and v for the surmise relation between items and its subsets

(N = 572)

No. of No. of

items pairs® VC g v>0 x>
SRbI 30 351 0.08 0.36 270 (76.92%) 6437.43
SRxT 30 191 0.08 0.31 136 (71.20%) 2606.61
SRwMT 14 71 0.04 0.68 69 (97.18%) 4715.82
SRwAN 16 89 0.09 0.20 65 (73.03%) 501.06

Note. SRbI = surmise relation between items of both tests, SRXT = surmise relation across
the two tests, SRwMT = surmise relation within the matrix test, SRwAN = surmise relation
within the analogy test. “Reflexive pairs are not counted.

Summarized, the surmise relation between items is confirmed by 84.62% of the pos-
tulated pairs, the surmise relation across tests by 87.81%, and the surmise relations
within the matrix and the analogy test by 100% and 70.83% respectively. Regarding
only the statistically significant differences, the SRxzT is confirmed by 97.56%, the
SRbI and the two SRwT by 100% each.

Indices for the fit of a surmise relation 'To validate the fit of each item pair in
the surmise relation, the violational coefficient (V'C') and the gamma-index () were
calculated by specifying the respective pairs for the SRbI and its subsets, namely the
SRzxT, the SRwMT, and the SRwAN. Note that the values refer to relationships
between single items as compared to item classes.

As outlined in Section 3.4.1, a better fit of a surmise relation to a set of data is
indicated by lower V C' but higher v values. As shown in Table 5.6, the indices VC' and
~v¢ both indicate that the SRwMT fits the set of data best, whereas SRwAN deviates
most from the data. Regarding V' C', the data violate the hypotheses for the various
(sub)structures in 4% to 9% of the pairs in the relation. However, the differences
between the SRbI, the SRzT, and the SRwAN are extremely small (8% and 9%).
Furthermore, it needs to be considered, that the VC considers all but the reflexive
pairs in the relation. Hence, the small number of violations is partly caused by the
high percentage of correctly solved items (see above). Trivial response vectors (both
items correct or both items incorrect) are always in accordance with the hypothesis.
The results from the y—index are more specific, because the index considers only those
item pairs where only one of the items is answered correctly. Table 5.6 also lists the
number of pairs with positive y-indices and the McNemar x? values for concordant
and discordant pairs over all items and participants. The percentage of pairs with
values greater than zero range between 71.2% (SRzT') and 97.18% (SRwMT). All
four of the McNemar y? values are highly significant and thus confirm the hypothesis
(see Section 5.1.5, prediction IIb).

The results yielded by the two indices are in accordance with the analysis of relative
solution frequencies (see above). This means that also on the item level (instead of the
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more global view of item classes), the values indicate that the analogy test contributes
most to the deviations of the surmise relation between items, while the matrix test
shows the best fitting results. Regarding the postulated surmise relation between
tests, the indices do not permit a direct conclusion about its validity.

5.2.3.2 Validation of hypotheses via the knowledge space

Symmetric distances and distance agreement coeffictent Table 5.7 shows the
mean symmetric distances (ddat; 5th column in Table 5.7) between the empirical data
set and the test knowledge structure (K.Sbl) as well as its substructures across tests
(KSzT) and within tests (KSwMT and KSwAN). The empirical distances for all
postulated knowledge spaces are far below the theoretical maxima (0.84 < ddat < 2.99
as compared to 7 < dmax < 15; 4th column in Table 5.7). An analysis of the items’
invalidity shows that the distances are mainly associated with careless errors, which
means that the contradicting response patterns included for the main part incorrect
solutions for items that are assumed to be prerequisite for some other correctly solved
item(s). The mean relative frequencies for careless errors per item and person amounts
to .084 as compared to .016 lucky guesses per item and person® (see Appendix F.4,
Table F.13 for the invalidities of each item).

A comparison of the (sub)structures’ ddat values with the distances between the knowl-
edge spaces and their powersets! (dpot; 7th column in Table 5.7) clearly indicates
that the empirical data fit the knowledge spaces better than random response vec-
tors. The distance dpot ranges between 4.57 (KSwMT) and 10.08 (K SbI), the me-
dians for dpot (8th column in Table 5.7) between 5 and 10 as compared to 1 and
3 for the medians of the empirical data (6th column in Table 5.7). For all four
(sub)structures, x? tests show that the empirical distance distributions are signifi-
cantly better (more positively skewed) than the distance distributions of the respective
powersets (9, 717 < x? < 38,446; see Appendix F.5 for the exact values). These re-
sults support the postulated model according to prediction IIla in Section 5.1.5. The
distance distributions for the test knowledge space, its substructures, and the corre-
sponding powersets are provided in Appendix F.3, Tables F.7 and F.8.

As already mentioned in Section 3.4.2, a direct comparison of the various structures’
ddat values is not reasonable, because the number of items as well as the number of
knowledge states varies among the structures. In order to relate the test knowledge
space to its substructures, I calculated the distance agreement coefficient (DA; see
Section 3.4.2). The interpretation of the coefficient is that the lower DA the better

3Note that the analysis of careless errors and lucky guesses is based on the assumption of a correct
model, i. e. each contradicting response is interpreted as either careless error or lucky guess (depending
on the nearest knowledge state). Furthermore, the reported number of careless errors and lucky guesses
only reflects the portion, which contradicts one of the postulated knowledge states. This means that
the participants might have made additional careless errors or lucky guesses which are, however, in
accordance with one of the knowledge states and are therefore not counted as such.

4For the knowledge spaces between items and across tests with 30 items each, the powerset was not
computable and therefore, the values for dpot were calculated with 20,000 simulated random patterns.
Similar computations with smaller knowledge spaces (20 items) showed that the values do not differ
up to the 2nd decimal place.
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Table 5.7: Symmetric distances for the test knowledge space, its substructures, and
their powersets (N = 572)

m IK| dmaz ddat (SD) Mdn dpot (SD) Mdn DA

KSbl 30 293 15 299 (217) 3 10.08 (1.90) 10  0.30
KSzT 30 83,219 15 1.82(1.26) 2 598 (1.46) 6  0.30
KSwMT 14 57 7 084095 1 3.77(1.23) 4 0.22
KSwAN 16 71 8 142(1.36) 1  457(1.34) 5 031

Note. m denotes the number of items, |K| the number of knowledge states; K .SbI = knowledge
space between items of both tests, K.SzI" = knowledge space across the two tests, K.SwMT
= knowledge space within the matrix test, KSwAN = knowledge space within the analogy
test.

the fit of the knowledge space to a data matrix. As opposed to ddat, the highest
D A value does not result for the test knowledge structure (K.SbI) but for the analogy
test. Corresponding to the results found for the surmise relation (percentage of correct
solutions, VC', and ~¢g, see Section 5.2.3.1), the matrix test shows the best (lowest)
D A value, whereas the values for the K.SbI, the KSxT, and the KSwAN differ only
slightly (see last column in Table 5.7).

Stmulations As outlined in Section 3.4.2, I simulated data sets to compare the
results of the empirical data set to results derived from random sets of data as well
as data sets based on the postulated knowledge spaces. Table 5.8 depicts the mean
symmetric distances and DA values for the empirical data (ddat) and for the simulated
sets of data. The values for random simulations (dsim,) and probability simulations
(dsim,) are the averaged mean distances and standard deviations from 1000 data sets
each. The number of response patterns per data set corresponds to the number in the
empirical data set, i.e. 572 patterns. For the probability simulation, the probability
for lucky guesses corresponds to the number of answer alternatives (n = 0.16 for K.Sbl
and KSzT, 0.125 for KSwMT, and 0.2 for KSwAN). The probability for careless
errors was varied in 10 steps with 0.05 < g < 0.15, because the true probability of
participants making a careless error is unknown. For each probability level, I simulated
100 sets of data. The averaged distance distributions for the simulated data sets are
provided in Appendix F.3, Tables F.7 and F.8.

The empirical mean distances for the K'Sbl and its substructures are all far below the
distances resulting from random simulations (3.76 < dsim, < 10.08) and slightly lower
than the distances for the respective probability simulations (1.07 < dsim, < 3.15).
The same is true for the DA values of the various knowledge spaces (see Table 5.8) .

Figure 5.8 depicts the frequency distribution of the empirical distances to the K.SbIl and
the averaged distance distributions derived from random and probability simulations.
Regarding the random simulations (left figure), there is only a small overlap of the
empirical and the simulated data sets. Furthermore, the empirical data set is located
further to the left on the distance scale and has a positive skew as opposed to the
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Table 5.8: Symmetric distances for the test knowledge space, its substructures, and
simulated data sets (N = 572)

random simulations probability simulations
ddat DA dsim, (SD) Mdn DA dsim, (SD) Mdn DA

KSbI 299 0.30 10.08 (1.90) 10 1.000  3.15 (1.66) 3 0.31
KSxT 1.82 0.30  5.99 (1.46) 6 1.002  1.86 (1.25) 2 0.31
KSwMT 0.84 022  3.76 (1.23) 4 0.997  1.07 (0.95) 1 0.28
KSwAN 142 0.31 4.56 (1.34) 5 0.998 1.58 (1.18) 1 0.35

Note. For the simulated data sets SD refers to the mean standard deviations; K.Sbl =
knowledge space between items of both tests, K.SxT = knowledge space across the two tests,
KSwMT = knowledge space within the matrix test, KSwAN = knowledge space within the
analogy test.

Odsimr
_ W ddat 1209 Odsimp
W ddat

Frequencies

9 10 11 12 18 14 15

5 6
Symmetric distances Symmetric distances

Figure 5.8: Distance distribution of the empirical data set (ddat) compared to the
distributions of random (dsim,) and probability simulations (dsim,,)

random data sets. This result clearly indicates that the postulated test knowledge
space fits the empirical data far better than sets of data simulated under the assumption
that there is no structure inherent in the data. The distribution resulting from the
probability simulations (right figure) strongly overlaps with the empirical distribution.
On the lower end of the distance scale (di = 0 or 1) the empirical frequencies are higher
than the simulated ones, which indicates a slightly better fit of the test knowledge space
to the empirical data than to the simulated data sets.

Statistical analyses Regarding the differences between the empirical data set and
the distributions of simulated data, I computed several tests to judge, whether or not
the differences are statistically significant. In order to allocate the empirical mean
distances (ddat) within the distributions of simulated data sets, the values have been
standardized. Table 5.9 shows the averaged mean symmetric distances (dsim,., dsim,,)
of the 1000 simulated data sets each, the distributions’ standard deviations (SD),
and the standardized z—scores for the empirical mean distances (ddat). For the data
sets simulated on the postulated knowledge spaces (dsim,,), furthermore the results of
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Table 5.9: Comparison of the empirical and simulated symmetric distances for the test
knowledge space and its substructures (N = 572)

random simulations probability simulations
dsim, SD z dsim, SD z  U(z) X% (df)

KSbI 10.08 0.07 -89.75 3.15 0.37 -0.43 -2.91 111.58 (
KSzT 5.99 0.06 -65.97 1.86 0.33 -0.10 -0.39 3.84 (
KSwMT 3.76  0.05 -58.72 1.07 0.12 -2.00 -4.55  50.06 (
KSwAN 456 0.05 -59.29 1.58 020 -0.76 -3.15  52.55 (

Note. SD refers to the distributions’ standard deviations; KSbl = knowledge space between
items of both tests, KSzT = knowledge space across the two tests, K.SwMT = knowledge
space within the matrix test, KSwAN = knowledge space within the analogy test; U(z)
denotes the standardized U—score for large samples with tied ranks.

Mann-Whitney U and x? tests are given.

Regarding the results for random simulations (dsim,.), the empirical z—scores are so far
below the mean of the distributions, that further calculations have not been necessary
(—89.75 < z < —58.72). According to prediction IIIb (Section 5.1.5), the results
support the postulated model.

The standardization of the mean empirical distances (ddat) to the distributions of data
sets derived from the probability simulations (dsim,,) reveals no significant difference
for the test knowledge space or its subsets at an alpha—level of 0.01 (—2.0 < z < —0.1).
The results of U and y? tests show significant differences in favor of the hypotheses
(prediction IIlc in Section 5.1.5) for all but one value. The values for the K.SzT are
not significant (U(z) = 0.39, x?(6, N = 1144) = 3.84,p < 0.05). This means that for
the KSbI and the two knowledge spaces within tests, the empirical probabilities for
careless errors and /or lucky guesses are smaller than the assumed probabilities. For the
K SbI, a more differentiated analysis of the distributions obtained by the probability
simulations shows that the simulated data sets yield significantly lower mean distances
(z > 3.99) at [ levels < .07 and significantly higher mean distances (z < —3.24) at
levels > .11. For .08 < 3 < .10 the differences are not significant, which indicates that
the probability for careless errors is located between 8% and 10%.

These results imply that, under the assumptions of n = 0.16 and 3 > 0.08, the postu-
lated model and all of its substructures reliably reflect the empirical response patterns.

Since the results of the probability simulations confirm the postulated K'Sbl and its
substructures, I also performed the strictest test of the hypothesis by simulating data
based on the solution frequency of items and persons. As for the other types of sim-
ulations, 1000 data matrices were simulated. The matrices have the same marginal
frequencies as the empirical data matrix, but the distribution of ‘0’s and ‘1’s in the
rows and columns of the matrices differ. Table 5.10 shows the mean symmetric dis-
tances (dsimy), the DA values, and the results of the statistical analyses for the four
substructures.
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Table 5.10: Results of the frequency simulations for the test knowledge space and its
substructures (N = 572)

frequency simulations
dsimy (SD) Mdn DA z U(z) 2 (df)

KSbI 3.01 (2.16)
KSaT 1.82 (1.28)
KSwMT 085 (0.93)
KSwAN  1.43 (1.34)

030 -1.06 -0.35 4.43 (8)
030 026 0.08 249 (5)
023 -0.93 -0.40 1.22 (4)
031 -053 -0.17 0.35 (5)

_ =N W

Note. KSbI = knowledge space between items of both tests, K.SxT = knowledge space across
the two tests, KSwMT = knowledge space within the matrix test, KSwAN = knowledge
space within the analogy test; U(z) denotes the standardized U-score for large samples with
tied ranks.

The results show that the symmetric distances (0.85 < dim; < 3.01) and the DA
values (0.23 < DA < 0.31) are basically equivalent to those of the empirical data. The
results from the statistical analyses reveal only one significant value, namly the y? for
the SRbI (x*(8, N = 1144) = 4.43,p < 0.05). Thus, for the SRbI, the exact solution
patterns are an important predictor within the postulated model, whereas the solution
frequencies seem to suffice for its substructures.

5.2.4 Discussion

The results of Investigation I show that the approach of surmise relations between tests
can be applied successfully when structuring a set of inductive reasoning tests by means
of the componentwise ordering principle. The differentiated validation of the surmise
relation between items (SRbI) and its subsets (SRxT, SRwMT, and SRwAN) allows
the following assumptions about the way, in which each part of the surmise relation
contributes to the results. The various validation methods all imply that the surmise
relation established on the matrix test explains the set of data best, whereas the surmise
relation on the analogy test deviates most from the empirical data. Thus, refinements
of the postulated test knowledge space should primarily concern the hypothesis on the
analogy test. However, the results of the simulation studies show that the postulated
knowledge spaces fit the empirical data equally well or even better than sets of data that
were simulated under the assumption of a correct model but with a certain amount
of lucky guesses and careless errors. Therefore, all of the found deviations can be
attributed to noise in the data. With regard to the assumed partial order, the frequency
simulations showed that the postulated knowledge states are an important predictor
for the solution behavior in both tests, whereas the solution behavior within the single
tests can also be explained by the frequencies of correct responses per item and person.

Nevertheless, the reported results have to be interpreted with caution. The presen-
tation of the matrix as well as the analogy test as speed—power tests with relatively
strict time limits of 12 respectively 5 minutes lead to a high percentage of items that
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have not been processed by all participants. Therefore, it was necessary to apply the
elimination procedure described in Section 5.2.3 (pre—editing of data and tests), which
resulted in a reduction to only 30 out of the original 45 items. Additionally, the more
difficult items were presented at the end of each session. Hence, the items remaining
after the pre—editing of data and tests belong to an easier subset of the entire set of
items. Regarding the matrix test, for example, there is only one item left in the finally
analyzed set, which shows the attribute difficult type of operation. The resulting ceil-
ing effect becomes obvious when looking at the averaged solution frequency of 84.66%
for both tests.

As a consequence of the ceiling effect, the remaining subset of items shows only little
variation in the solution frequencies (see Section 5.2.3, percentage of correct solutions).
Ranging between 57.14% and 96.73% (M = 82.58, SD = 12.45) for the matrix items
and between 69.02% and 88.4% (M = 82.1, SD = 6.34) for the analogy items, the
relative solution frequencies do not yield the desired range for knowledge space valida-
tion procedures. As mentioned in Section 3.4, item pairs with either both or neither
of the items solved correctly cannot contribute to the validation of a knowledge space
hypothesis. In the case of a large set of high solution frequencies, we can also assume a
large number of pairs with both items solved correctly. In fact, for the 351 item pairs
in the SRbI, which were processed by the 572 participants, in 72.58% of the cases (i. e.
145,711 vectors of (1,1)) both items were answered correctly. Such item pairs do not
contradict the hypothesis. Consequently, the very well fitting knowledge space might
be an artifact of the high number of correctly solved items.

5.3 Investigation II

Relating a pair of inductive reasoning tests: Reconsid-
ered

The surmise relation between tests established in Investigation I could clearly be con-
firmed by means of the applied validation methods. However, as already pointed out in
Section 5.2.4, there are several problems concerning the set of data and tests analyzed
in Investigation I. The purpose of Investigation II is to carry out a second evaluation
of the model and postulated classification scheme using a larger set of data obtained
by a computer—aided presentation of items. Because the processing time for the two
analyzed tests was restricted, the set of response patterns had to be reduced in order
to obtain complete answer patterns. However, because of the large number of origi-
nal patterns (12,759), a complete set of items (20 per test) was available even after
deleting incomplete patterns. The inclusion of items with a broader range of difficulty
also yields larger variations in the solution frequencies (in Investigation I, the more
difficult items presented at the end of each test have been deleted). Furthermore, the
computer—aided presentation of the tests permitted a clear distinction between items
that were not proceeded versus items that could not be solved.

The set of data and the tests (see Sections 5.3.2.1 and 5.3.2.2) reanalyzed for Inves-
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tigation II have been provided by the “Psychologischer Dienst der Bundeswehr der
Bundesrepublik Deutschland” (PDB) in Bonn, Germany. The complete set of data
consisted of response patterns from 23,802 participants, who worked on two sets of
parallel tests (forms A and B). For the establishment and validation of the hypotheses,
form A (12,759 patterns) of the inductive reasoning tests (a matrix and an analogy
test) has been selected. In order to fulfill the condition of complete response patterns,
the set of data was reduced to 2628 patterns (see Section 5.3.3).

5.3.1 Hypothesis

The hypothetical knowledge structure for the two inductive reasoning tests (geometric
matrices and verbal analogies) used in Investigation II was constructed as outlined in
Section 5.1. As in Investigation I, the surmise relation on the set of items and tests
was established in two steps. First, the given items were analyzed with respect to their
attributes on each of the five components and assigned to their corresponding item
class (see Table 5.1). In a second step, an order on the item classes realized in the
two tests was established, i.e. the subset of pairs relevant for the given material was
extracted from the relations derived in Sections 5.1.3 and 5.1.4 (see Figures 5.3 and
5.4 for an illustration of the ordering principle).

Expectations regarding the derived surmise relation between tests (SRbT'), the surmise
relation between items (SRbI) and its subsets (SRzT and SRwT), as well as the
corresponding knowledge spaces (KSbl, KSzT, and KSwT) are according to the
empirical predictions made in Section 5.1.5.

For the SRbT, the item classes realized in the two tests (see Section 5.3.2.2 for details)
render a total-covering surmise relation from the matrix test to the analogy test (AN S,
MT) and a general surmise relation from the analogy test to the matrix test (MT S
AN). For AN S, MT, it is expected that each item class in the matrix test has a
prerequisite item class in the analogy test (AN S M T) and that each item class in
the analogy test is prerequisite for an item class in the matrix test (AN S, M T).
For MT S AN it is expected that at least one item class in the analogy test has a
prerequisite item class in the matrix test (see also Section 5.1.5, predictions Ia and 1d).
A detailed description of the items and prerequisite relationships contained in the two
tests under investigation is given in the next section.

It should be noted that in spite of the different sets of item classes realized in Inves-
tigations I and II, the SRbT have the same properties in both investigations (viz.,
a total-covering surmise relation from the matrix to the analogy test and a general
surmise relation from the analogy test to the matrix test).

5.3.2 Method
5.3.2.1 Participants

From the original 12,759 male participants, 2628 response patterns were analyzed for
Investigation II. Participants were draftees of the German Military who took form
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A of the psychological aptitude test (“Psychologische Eignungsuntersuchung und —
feststellung”) developed by the PDB. Taking the test was obligatory for all participants.
For confidentiality reasons personal data of the participants was not provided.

5.3.2.2 Material

Materials consist of two computer—aided inductive reasoning tests developed by the
PDB.

The first test (MT') contains 20 geometric matrix items. The items are constructed
as 2 by 3, 2 by 4, or 3 by 3 matrices with 3, 2, and 15 items respectively. The items
contain different types of geometric forms (squares, circles, etc.) colored in black and
a blank square on the lower right. By analyzing the geometric forms row by row
and /or column by column, between one and three relational rules can be induced (see
Table 5.11). Below each matrix eight answer alternatives (labeled 1 through 8) are
depicted. Participants had to decide which alternative belongs in the blank square to
complete the matrix correctly. Figure 5.9 depicts an example matrix (for confidentiality
reasons the example is modified), which requires the rule ‘Figure Addition’ as only
necessary operation to induce the correct answer ‘5. With one rule of less difficulty,
low demands on the correspondence finding process, geometric material, and eight
answer alternatives, the corresponding item class is (O,1,L,G,8).

OOoo=Egoa

1 2 3 4 5 6 7 8

Figure 5.9: Example for a matrix item presented in Investigation II

An analysis of the items’ attributes on each of the five components (see Table 5.1)
results in seven item classes with one to five items each. Table 5.11 shows the attribute
combinations (first column), item numbers (second column), operation types (third
column), and downsets for the item classes and items (last two columns).

For component A (operation difficulty), the attribute Difficult type of operation (three
item classes) includes the Boolean AND operator (BA) and the exclusive-OR rule (XO),
whereas Other types of operations (four item classes) include the rules constant in a
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row (CR), pairwise progression (PP), figure addition (FA), distribution of two values
(D2), and distribution of three values (D3). The rules are listed in Table 5.11 (column
three) and described in detail in Section 2.2.3, Table 2.2. The attributes one, two, and
three operations necessary to solve the problem are realized for component B (number
of operations) with two, four, and one item classes respectively. Component C' (con-
straint) differentiates between four item classes with High and three item classes with
Low demands on correspondence finding processes, while components D (material) and
E (number of answer alternatives) show identical attributes for all item classes, viz.
Geometric-figural material and 8 answer alternatives. The last two columns in Table
5.11 depict the downsets for item classes (fourth column) and items (fifth column),
which were derived according to Section 5.1, Table 5.1.

The second test (AN) consists of 20 verbal analogy problems in German. Each anal-
ogy has a three-term stem of the form A : B = C' : 7. Below the stem terms, five
answer alternatives (labeled 1 through 5) are presented. Participants had to choose
the alternative that completes the analogy best. Stem terms as well as alternatives are
nouns (18 items) or adjectives (1 item). One analogy is mixed with nouns for terms
A and C and verbs for term B and the five answer alternatives. Figure 5.10 depicts
an example analogy (for confidentiality reasons the example is an extended item taken
from Bejar et al., 1991, but is similar to the original items), which belongs to the
item class (O,1,L,;V,5). A more detailed description of the item is given in see Section
5.2.2.2.

wheel : car = leg : 7

0
2) bicycle
3) forest

4) bookcase
5)

Figure 5.10: Example for an analogy item presented in Investigation II

An analysis of the items’ attributes on each component (see Table 5.1) results in nine
item classes with one to four items each. Table 5.12 depicts the attribute combinations
(first column), item numbers (second column), operation types (third column), and
downsets for the item classes and items (last two columns). As already mentioned in
Section 5.2.2.2, for verbal analogies the number of operations (component B) refers
to the number of elements in the analogies’ rationales (see Section 2.2.1, Box 2.3).
Table 5.12 shows the semantic relations between the terms (third column) of each
item, whereas the complete rationales are given in Appendix B.1, Table B.2.

With regard to the different attribute combinations (first column), the types of se-
mantic relations (component A, specified in the third column) that are realized in this
test are part-whole (PW), contrast (CO), attribute (AT), cause-purpose (CP), and
space—time (ST), which constitute the operations of Other types (realized in five item
classes), and class inclusion (CI) and similar/comparative (SI) as Difficult operations
(four item classes). The semantic rules are described in detail in Section 2.2.1, Table
2.1. The number of elements in the rationales (component B) varies between one (2
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Table 5.11: Item descriptions and downsets for the matrix test in Investigation II

Item Operation  Downsets for Downsets
Item classes® numbers types? item classes® for items
(0,1,1,G,8) 1 FA (0,1,1,G,8) 1,2,7,8
2 FA
7 FA
8 FA
(0,1,H,G.8) 3 PP (0,1,L,G;8),(0,1,H,G,8) 1,2,3,4,6,7,8
4 PP
6 FA
(0,2,L,G,8) 5 PP, PP (0,1,L,G,8),(0,2,L,G,8)  1,2,5,7,8,9,10,
9 D2,PP 11,12
10 D2,CR
11 PP,PP
12 PP,PP
(0,2,H,G,8) 14 D3,FA (0,1,L,G,8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,9,
15 PP PP (0,2,,G;8),(0,2,H,G,8) 10,11,12,14,15,
16 FA PP 16,17,19
17 D3,PP
19 D3,D3
(D,2,L.,G,8) 13 PP,BA (0,1,L,G,8),(0,2,L,G,8), 1,2,5,7,8,9,10,
(D,2,1.,G,8) 11,12,13
(D,2,H,G,8) 18 PPBA (0,1,L,G,8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,9,
(0,2,L,G,8),(0,2,H,G,8), 10,11,12,13,14,
(D,2,L,G,8),(D,2,H,G,8) 15,16,17,18,19
(D,3,H,G,8) 20 XO,BA,BA (0,1,L,G,8),(0,1,H,G,8), 1,2,3,4,5,6,7,8,9,

D>2>L7G78 7(D727H7G78)>

( )
(0,2,L,G.8),(0,2,H,G.8),
( )
(D,3,H,G.8)

10,11,12,13,14,
15,16,17,18,19,
20

Note. ® Components are ordered alphabetically, i.e. A through E. ® CR = constant in a row,

PP = pairwise progression, FA = figure addition, D2 (D3) = distribution of two (three) values,
BA = Boolean AND, XO = exclusive-OR. ¢ See Table 5.1 for the derivation of downsets.

item classes) and three (one item class). High demands on correspondence finding
processes (component C') are required by five item classes, Low demands by four item
classes. The attributes on components D and E are identical for all items, viz. Verbal
material and 5 answer alternatives.

A combined analysis of the items of both tests results in the SRxT shown in Table
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Table 5.12: Item descriptions and downsets for the analogy test in Investigation II

Item Item Operation Downsets for Downsets
classes® numbers types? item classes® items
(0,1,L,V,5) 21 ST (0,1,L,V,5) 21,23
23 CO
(O,1,H,V,5) 30 AT (0,1,L,V,5),(0,1,H,V,5)  21,23,30
(0,2,L.,V,5) 36 PW (0,1,L,V,5),(0,2,L,V,5)  21,23,36
(0,2,H,V,5) 35 PW (0,1,L,V,5),(0,1,H,V,5), 21,23,30,35,36
(0727L7V75)7(O727H7V’5)
(0,3,H,V,5) 39 PW (0,1,L,V,5),(0,1,H,V,5), 21,23,30,35,36,
(0,2,L,V,5),(0,2,H,V,5), 39
(0,3,H,V,5)
(D,1,L,V,5) 22 CI (0,1,L,V.,5),(D,1,L,V,5)  21,22,23,24,27
24 SI
27 SI
(D,1,H,V,5) 25 ST (0,1,L,V,5),(0,1,H,V,5), 21,2223,24,25,
28 SI (D,1,L,V,5),(D,1,H,V,5) 27,28,30,32
32 SI
(D,2,L,V,5) 26 ST (0,1,L,V,5),(0,2L,V,5), 21,22.23,24,26,
29 SI (D,1,L,V,5),(D,2,L,V,5)  27,29,34,36,37
34 SI
37 SI
(D,2,H,V,5) 31 ST 0,1,L,V,5),(0,1,H,V,5), 21,22,23,24,25,

38 ST D,1,L.V,5),(D,1,H,V,5), 31,32,33,34,35,

( ) ( )
33 SI (0.2,L,V,5),(0,2,H,V,5), 26,27,28,29,30,
( )i( )
40 SI (D,2,L,V,5),(D,2,H,V,5)

36,37,38,40

Note. ® Components are ordered alphabetically, i.e. A through E. ® PW = part-whole, CP =
cause purpose, CO = contrast, AT = attribute, ST = space-time, SI = similar/comparative.
¢ See Table 5.1 for the derivation of downsets.

5.13. The prerequisite relationships were derived by using the order of importance on
the components and the difficulty order on the attributes specified in Table 5.1 (column
two and four). The item classes realized in the two tests yield a total-covering surmise
relation from the matrix test to the analogy test and a general surmise relation from the
analogy test to the matrix test. For the total-covering surmise relation (AN S M T),
Table 5.13 shows that each matrix item class has a prerequisite item class (indicated
by ‘¢’) in the analogy test (AN S, MT, see Definition 3.5) and that each analogy item
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class is prerequisite for some item class in the matrix test (AN S, MT, see Definition
3.6). Regarding the general surmise relation (MT S AN, see Definition 3.4), it can
be inferred from the prerequisites (indicated by ‘x’) specified in Table 5.13 that these
two conditions are not fulfilled for the surmise relation from the analogy to the matrix
test, but that there are prerequisite item classes in the matrix test. The surmise
relation between the items of both tests (i.e. within and across the tests) is depicted
as Hasse diagram in Figure 5.11. The relation files for the SRbI, SRxT, SRwMT,
and SRwAN are given in Appendix E.1, the corresponding base files for the K.Sbl,
KSxT, KSwMT, and KSwAN in Appendix E.2.

Table 5.13: Surmise relation across tests in Investigation II

Analogies Matrices (D = G, E = 8)
(D=V,E=5)]|(0,1L) (O,1H) (O2L) (0,2H) (D2L) (D2H) (D,3H)
(0,1,L) o o o o o o o
(0,1,H) X o o o o
(0,2,L) X o o o o o
(0,2,H) X X X o o o
(0,3,H) X X X X o
(D,1L) X o o o
(D,1,H) X X o o
(D,2,L) X X o o o
(D,2,H) X X X X X o o

Note. An x indicates that the matrix item class in column ¢ is prerequisite for the analogy
item class in row j (iS7); a ¢ indicates that the analogy item class in row j is prerequisite for
the matrix item class in column

5.3.2.3 Procedure

The data were collected between December 1997 and and October 1998 by members
of PDB. The application of the aptitute test was carried out via computer and covered
various subtests (geometric matrices, verbal analogies, arithmetics, mechanics, elec-
tronics). The matrix test was presented first, followed by the analogy test. At the
beginning of each test a short description of the tests’ objective and several instruction
items were presented (seven items for the matrix test and eight items for the analogy
test). Each example included a typical item for the respective test, the correct solution,
and a comprehensive explanation of the solution (i.e. which relations are relevant to
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complete a given matrix or analogy problem). After the instructional items, the test
items were presented in the same order for all participants (see item numbers in Tables
5.11 and 5.12). The processing time for each test was limited® (18 minutes for the
matrices, 4.5 minutes for the analogies), starting with the presentation of the first test
item. There was no time limit for the processing of single items. Participants had the
possibility to skip items and review them at the end of the test (within the given time
limit). The items were presented in a multiple choice format, where participants had
to type in the correct solution number. For each item the computer program recorded
the given response, the solution time®, and whether an item was skipped.

5.3.3 Results

The validation of the established hypotheses follows the methods outlined in Section
3.4. First, [ will report the results derived via the surmise relation, which is followed by
the results derived via the knowledge space. The latter will also include comparisons
with simulated data sets and statistical analyses.

Pre—editing of data and tests The original data set analyzed in Investigation II
contained 12,759 response patterns. In order to obtain a greater variability in item
difficulty (than in Investigation I), only incomplete answer patterns were excluded
from the data set. Due to the large number of participants, it was not necessary to
exclude items. The remaining raw data analyzed in this investigation contain 105,120
responses from 2628 participants for the 20 matrix and the 20 analogy items. Table
5.14 gives an overview of the original and the reduced data sets. The minimal number
of correctly solved items equals zero (2 response patterns), the maximal number 37
items (1 response pattern). The two trivial response patterns (0.08% of all patterns)
have been kept in the analysed data set.

5.3.3.1 Validation of hypotheses via the surmise relation

Percentage of correct solutions Overall, the participants solved 50.62% of the
items, which corresponds to a total of 53,212 correct responses. The frequencies for
each single item are provided in Appendix F.1, Table F.2. The postulated surmise
relation between items together with the relative solution frequencies for the item
classes in Investigation II is depicted in Figure 5.11. The relative solution frequencies
for the nine item classes with more than one item (see Tables 5.11 and 5.12) represent
the averaged relative solution frequencies of all items in the respective class. The
average maximal difference in solution frequencies of items contained in the same class
amounts to 14.69% (SD = 9.51). With regard to the item classes, the percentages
of correct solutions vary from 8.98% for item class (D,3,H,G,8) up to 82.18% for item
class (0,1,L.,G,8).

5The presentation of the items as speed—power test lead to incomplete answer patterns, which was
the reason for eliminating patterns from the original data matrix (see Section 5.3.3)

6Since the postulated model predicts the empirical response patterns with respect to cor-
rect/incorrect answers but not the processing times, latencies are not included in the results.
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Table 5.14: Original (N=12,759) and reduced (N=2628) data sets in Investigation II

No. of  No.of  No. of correct No. of incorrect No. of missing

Test items  responses responses responses responses
MT original 20 255,180 139,375 106,130 9,675
AN original 20 255,180 123,023 83,365 48,792

Total 40 510,360 262,398 189,495 58,467
MT reduced 20 52,560 26,092 26,468 0
AN reduced 20 52,560 27,120 25,440 0

Total 40 105,120 53,212 51,908 0

Note. MT = matrix test, AN = analogy test, total refers to the set of items contained in

both tests.

Figure 5.11: Hasse diagram for the postulated surmise relation between items and
relative solution frequencies in Investigation II (AN S; MT and MT S AN)

In the following, referring to pairs of item classes, does not include reflexive pairs.

The results for the two surmise relations within tests show that all of the 18 postulated
pairs of item classes in the geometric matrix test (SRwMT, left ellipse) and 22 out
of 23 pairs in the verbal analogy test (SRwAN, right ellipse) are confirmed by the
solution frequencies. Within the analogy test, the percentage of correct solutions for
item class (D,1,L.,V,5) is higher than that for its postulated prerequisite item class
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(0,1,1,V,5), but the difference is not significant (x2(1, N = 4256) = .09,p < .057).
Since the hypothesis (prediction I1a in Section 5.1.5) states that the solution frequency
for a prerequisite item class should be higher than or equal to the frequency of the
item class it can be surmised from, the reversed pair is still in accordance with the
postulated surmise relation.

Regarding the SRxT (see Figure 5.11), i.e. prerequisite relationships between item
classes of different tests, 27 out of 30 pairs confirm the postulated relationships from
the matrix test to the analogy test and 17 out of 19 pairs the relationships from the
analogy to the matrix test (see also Table 5.13). In the first case, the relative solution
frequencies for item classes (0,1,1,G,8), (0,1,H,G,8), and (0,2,1,,G,8) are higher than
their respective prerequisites (O,1,L,V,5), (O,1,H,V,5), and (O,2,L,;V,5). A significant
difference was only found for the pair (O,1,H,G,8) and (O,1,H,V,5), x*(1, N = 3492) =
21.19,p < .05 (see Appendix F.2, Table F.5 for the remaining values). A notable point
is, that the three item classes in the matrix test and their respective prerequisites in the
analogy test are all described by the same attributes on the three main components A,
B, and C'. For the relation from the analogy test to the matrix test, deviations occur for
the analogy class (D,2,H,V,5) with respect to its postulated prerequisites (O,2,H,G,8)
and (D,2,L,G,8). For both pairs the differences are significant, x?(1, N = 1358) = 4.76
for (0,2,H,G,8) and x*(1, N = 1319) = 10.74 for (D,2,L,G,8), p < .05.

With regard to the SROT (predictions Ia and Id in Section 5.1.5), the results clearly
confirm the hypothesized general surmise relation from the analogy test to the matrix
test (MT S AN ), since all eight of the expected analogy item classes have a prerequisite
in the matrix test. The total-covering surmise relation from the matrix test to the
analogy test (AN S, MT) is confirmed by 15 out of the expected 16 item classes
of both tests. More precisely, all of the nine item classes in the analogy test are
prerequisite for some item class in the matrix test, while six out seven item classes
in the matrix test have a prerequisite in the analogy test. Item class (O,1,L,G,8)
has a higher solution frequency than its postulated prerequisite (O,1,1,V,5) but the
difference is not significant (x*(1, N = 4278) = .41).

Summing up, the SRbI (i.e. pairs in the SRzT and in the two SRwT) is confirmed
by 84 out of 90 postulated pairs of item classes. Of the six pairs with reversed solution
frequencies four pairs differ significantly.

Summarized, the surmise relation between item classes of both tests is confirmed by
93.33% of the postulated pairs, the surmise relation across tests by 89.8%, and the
surmise relations within the matrix and the analogy test by 100% and 95.65% respec-
tively. Regarding only the statistically significant differences, the SRbI is confirmed
by 96.66% of the pairs, the SRxzT by 93.88%, and the two SRwT by 100% each.

Indices for the fit of a surmise relation To estimate the fit of each item pair
in the surmise relation, I calculated the violational coefficient (V') and the gamma-—
index (7¢) for the SRbI and its subsets, viz. the SRxT and the two SRwT. For both
indices, the obtained values refer to relationships between single items (as compared
to item classes).

"See footnote on page 102.
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Table 5.15: V(' and ~ for the surmise relation between items and its subsets
(N = 2628)

No. of No. of
items pairs® VO g >0 e
SRbI 40 543  0.09 0.64 503 (92.63%) 278,142.75

( )

SRxT 40 284 0.10 0.58 248 (87.32%) 117,034.71
SRwMT 20 138 0.06 0.76 137 (99.28%) 106,044.29
SRwAN 20 121 0.09 0.63 118 (97.52%)  59,211.45

Note. SRbI = surmise relation between the items of both tests, SRxT = surmise relation
across the two tests, SRwMT = surmise relation within the matrix test, SRwAN = surmise
relation within the analogy test. “Reflexive pairs are not counted.

As shown in Table 5.15, the indices signify that the surmise relation on the matrix
test fits the set of data best (yo = .76, VC' = .06), while the surmise relation across
tests deviates most from the data (7o = .58, VC' = .1). With regard to VC, the
data violates the postulated surmise relations in 6% to 10% of the respective pairs.
The differences between the SRbI, the SRxT and the SRwAN are too small to be
interpreted.

The results derived from the y—index show that between 87.32% (SRzT') and 99.28%
(SRwMT) of the postulated item pairs yield a positive 7 value, i.e. the number of
concordant responses is higher than the number of discordant responses. Furthermore,
all four of the McNemar y? values indicate that the differences between the concor-
dant and discordant pairs are highly significant, which supports the postulated models
(prediction IIb in Section 5.1.5).

The results derived from the two indices correspond to the more global analysis of
relative solution frequencies (see above). Thus, also on an item level the relationships
across the two tests contribute most to the deviations in the SRbI, while the relation-
ships postulated within the matrix test fit the empirical data best. With regard to the
validity of the SRbT', the indices do not allow any conclusions.

5.3.3.2 Validation of hypotheses via the knowledge space

Symmetric distances and distance agreement coefficient Table 5.16 depicts
the mean symmetric distances (ddat), the theoretical maxima (dmaz), and the dis-
tances for the powersets (dpot) of the test knowledge structure (K SbI) and its sub-
structures (K SzT, KSwMT, and KSwAN). For all four of the postulated knowl-
edge spaces the mean empirical distances (1.79 < ddat < 6.08) are far below their
theoretical maxima (10 < dmaz < 20) and the distances for the respective powersets®

8For the K.SbI and the K SzT with 40 items each, the powerset was not computable and therefore,
the values for dpot were calculated with 20,000 simulated random patterns (see also footnote on page
104).
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Table 5.16: Symmetric distances for the test knowledge space, its substructures, and
their powersets (N = 2628)

m IK|  dmax ddat (SD) Mdn dpot (SD) Mdn DA
KSbI 40 7,633 20 6.08 (2.26) 6 12.96 (2.33) 13 047
KSzT 40 2278770 20 467 (L76) 5 820 (L.64) 8 057
KSwMT 20 343 10 179 (125) 2 553(157) 6  0.32
KSwAN 20 484 10 2.45 (1.32) 2 5.38 (1.57) ) 0.46

Note. m denotes the number of items, || the number of knowledge states; K.SbI = knowl-
edge space between the items of both tests, K.SzT = knowledge space across the two tests,
KSwMT = knowledge space within the matrix test, KSwAN = knowledge space within the
analogy test.

(5.38 < dpot < 12.96). x? statistics show that the empirical data fit the test knowledge
space as well as its substructures significantly better than their respective powersets
(36,649 < x* < 264, 596; see Appendix F.5 for the exact values), which supports
the hypothesis according to prediction IIla (Section 5.1.5). The distance distributions
for the K Sbl, its substructures, and the corresponding powersets are provided in Ap-
pendix F.3, Tables F.9 and F.10. Regarding the proportion of careless errors and lucky
guesses contributing to the mean empirical distance, an analysis of the items’ invalidity
(see Appendix F.4, Table F.14) shows no difference between the two measures (on the
average, the mean distance is composed of .076 careless errors and .075 lucky guesses
per item and person)?.

For a comparison of the various structures’ fit, the distance agreement coefficient (DA)
was calculated. The DA values for the test knowledge space and its substructures
are comparable to the results derived via the surmise relation (percentage of correct
solution, g, and V| see Section 5.3.3.1). The matrix test shows the best fitting
knowledge space (DA = 0.32), whereas the K SzT deviates most from the empirical
data (DA = 0.57).

Simulations In Table 5.17 the mean symmetric distances and the DA values for the
empirical data (ddat) are compared to the according values for simulated data sets.
The values for random simulations (dsim,) and probability simulations (dsim,) are
the averaged mean distances and standard deviations from 1000 data sets each. The
number of response patterns per data set corresponds to the number in the empirical
data set, i. e. 2628 patterns. For dsim,,, the probability for lucky guesses corresponds to
the number of answer alternatives (7 = 0.16 for KSbl and K SzT', 0.125 for KSwMT,
and 0.2 for KSwAN). Since the probability for careless errors is not known, it was
varied in 10 steps with 0.05 < # < 0.15. For each probability level, 100 sets of data
have been simulated. The averaged distance distributions for the simulated data sets
are provided in Appendix F.3, Tables F.9 and F.10.

9See footnote on page 104.
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Figure 5.12: Distance distribution of the empirical data set (ddat) compared to the
distributions of random (dsim,) and probability simulations (dsim,,)

The values for random simulations (dsim,.) are equivalent to those found for the pow-
ersets of the various structures (5.53 < dsim, < 12.95). Regarding the results for the
simulations based on the postulated knowledge spaces (dsim,), the mean symmetric
distances as well as the DA values for the KSbI and its substructures are below, i.e.
better than those for the empirical data set (1.44 < dsim,, < 3.68).

Figure 5.12 illustrates the differences between the empirical and the simulated distance
distributions of the test knowledge space. With regard to the random simulations (left
figure) the overlap of the empirical and the simulated distribution is rather small
and the empirical data is located further left on the distance scale. Thus, it can
be concluded, that the postulated test knowledge space fits the empirical data far
better than random response patterns. The distribution obtained from the probability
simulations (right figure) shows a greater overlap with the empirical distribution but in
this case, the empirical distances are located further right on the distance scale. Thus,
the postulated test knowledge space fits the empirical data set less than the data sets
simulated on the hypothesis.

Table 5.17: Symmetric distances for the test knowledge space, its substructures, and
simulated data sets (N = 2628)

random simulations probability simulations

ddat DA dsim, (SD) Mdn DA dsim, (SD) Mdn DA

KSbI 6.08 047 12.95(2.34) 13 0999 3.68(181) 4 028
SxT 467 057 819(1.63) 8 0999 242 (148) 2  0.30
KSwMT 179 032 553 (1.57) 6 1000 144 (1.11) 1  0.26
KSwAN 245 046 538 (1.57) 5 1000 1.68(1.20) 2  0.31

Note. For the simulated data sets SD refers to the mean standard deviations; K.Sbl =
knowledge space between the items of both tests, K.SxT = knowledge space across the two
tests, KSwMT = knowledge space within the matrix test, KSwAN = knowledge space
within the analogy test.
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Table 5.18: Comparison of the empirical and simulated symmetric distances for the
test knowledge space and its substructures (N = 2628)

random simulations probability simulations
dsim, SD z dsimp, SD z U(z) 2 (df)

KSbI 12.95 0.05 -142.00 3.68 0.51 4.68 36.70 7481.01 (11)
KSxT 8.19 0.03 -114.83 242 049 4.56 41.34 9794.60 (8)
KSwMT 5.53 0.03 -123.86 144 0.15 233 1031 268.85 (5)
KSwAN 50.38 0.03 -96.14 1.68 0.21 3.67 22.63 1091.69 (6)

Note. SD refers to the distributions’ standard deviations; K.SbI = knowledge space between
the items of both tests, K SzT" = knowledge space across the two tests, K.SwMT = knowledge
space within the matrix test, KSwAN = knowledge space within the analogy test; U(z)
denotes the standardized U-score for large samples with tied ranks.

In order to find out, whether or not the obtained differences are significant, the following
statistical analyses have been performed.

Statistical analyses As for Investigation I, I computed several tests to judge, whether
or not the differences between the empirical and the simulated data sets are statisti-

cally significant. With regard to the differences between the empirical data and ran-

domly simulated data sets (dsim,.), the z—scores in Table 5.18 show that the empirical

distances are located significantly below the distributions of the random simulations

(—142 < z < —96.14), which supports the postulated model (see prediction IIIb in

Section 5.1.5).

The standardization of the mean empirical distances to the distributions of probability
simulations (dsim,) reveals significant differences for the KSbI, the K.SxT, and the
KSwAN. At an alpha—level of 0.01, the z—score for the matrix test is not significant
(z = 2.33). However, the results derived from U and x? statistics show significant
differences for all four (sub)structures (U(z) > 10.31, x*(N = 5256) > 268.85). Re-
garding only the highest assumed [ level with 15% careless errors, dsim,, for the K.SbI
amounts to 4.38 (with the distribution’s SD = 0.03, z = 50.63 for the respective 100
data sets). Thus, even with the highest assumed noise level, the model cannot be ex-
plained by the empirical data. It therefore has to be concluded, that the deviations of
the postulated model to the set of data are not only due to the assumed noise variables
and the hypothesis regarding prediction Illc (Section 5.1.5) has to be rejectet (con-
sidering these results, frequency simulations were not computed, since they constitute
an even stricter test of the hypothesis). The results obtained for random simulations,
on the other hand, imply that the postulated test knowledge space still explains the
empirical data better than random response vectors.
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5.3.4 Discussion

The investigation reported in this section was conducted in order to overcome some of
the methodological problems that emerged in Investigation I (see Section 5.2.4). The
reanalysis of a larger set of data (2628 participants) derived by a computer—aided pre-
sentation of items yielded the desired range of item difficulty. With a mean of 50.62%
of correctly solved items, the percentage of correct solutions ranges between 8.98%
and 82.18%. Except for the relationships among the three item classes (O,1,1,G,8),
(0,1,L,V,5), and (D,1,1,,V,5) and between the two classes (0,2,1,,G,8) and (O,2,L,V,5),
the solution frequencies differ clearly for each prerequisite relationship in the postulated
surmise relation.

As already noted at the end of Section 5.3.3, the results obtained in this investigation
imply that the postulated model on the test knowledge space between items (and its
substructures) fits the empirical data significantly better than random answer vectors.
However, the data sets obtained from the probability simulations are significantly bet-
ter fitting than the empirical data. This result implies that either the model contains
false predictions or that the assumed amount of noise in the data does not suffice
to explain the differences between the hypothesized (test) knowledge states and the
empirical answer patterns.

Reviewing the results under consideration of the various (sub)structures, all validation
procedures indicate most deviations for the surmise relation across tests. A closer look
at the solution frequencies shows that the item classes of three out of five contradicting
pairs are described by the same attributes on the three main components A, B, and
C' (operation difficulty, number of operations, and constraint). In all three cases, the
postulated prerequisite in the analogy test differs from the corresponding matrix item
class only with respect to the components material and number of answer alternatives.
Hence, the assumption that geometric—figural material is more difficult to process than
verbal material might be too strong. The influence of the number of answer alternatives
may also be reduced when the chances for lucky guesses are relatively small in both
cases (five vs. eight alternatives).

With regard to the surmise relation between tests, the relative solution frequencies (re-
garding the statistically significant results) confirm the total-covering surmise relation
from the matrix to the analogy test (AN S M T') as well as the general surmise relation
from the analogy to the matrix test (MT S AN ). This indicates, that although there
are deviations with respect to the relationships between single item classes, the pre-
dictions rendered by the SRbT' can be maintained. More exactly, a correct completion
of the matrix test implies a correct completion of the analogy test and failing on the
analogy tests implies a failure on the matrix test.

Comparing the results of this investigation to those of Investigation I, two issues with
respect to the validation methods have to be discussed. The first issue concerns the
differences in the results obtained via the surmise relation vs. the knowledge space.
Investigation II shows a higher percentage of pairs in the surmise relation that are
confirmed by the solution frequencies as well as higher v values and higher percentages
of positive v indices for the surmise relation between items and its subsets (V' C' yielded
negligible smaller values for Investigation I). Hence, looking only at pairs of items (or
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item classes), the results for this investigation imply a higher validity of the model
than for Investigation I. The values obtained via the knowledge space, on the other
hand, indicate the direct opposite (DA and simulation studies).

The reason for these contradicting results might be found in the different approaches
the two validation methods take. The procedures working with the surmise relation
validate each pair in the relation separately, while the knowledge space procedures
compare the complete answer vectors with the knowledge states. The high solution
frequencies in Investigation I seem to positively influence the validation of the sur-
mise relation to a smaller degree than the validation of the knowledge space. For the
percentage of correct solutions, all values increase and the y—index only accounts for
concordant and discordant pairs (pairs with both or neither of the items solved are
excluded). The calculation of symmetric distances, on the other hand, is based on the
nearest knowledge state. The higher the number of correct responses, the smaller is
the distance to the full set. Hence, high solution frequencies will yield relatively small
distances.

With this issue in mind, the interpretation of the results derived via the knowledge
space should always include a consideration of the data set’s properties, viz. the range
of solution frequencies and the number of trivial response patterns .

The second issue to be discussed deals with the assumed noise in the data set. While
probability simulations lead to even higher distances than the empirical data set in
Investigation I, the same simulations yield significantly better values than the data set
of Investigation II. One reason is the already mentioned problem of high solution fre-
quencies in Investigation I. Another methodological difference in the two investigations
arises from the participants. The data analyzed in Investigation I stems from corporal
and officer candidates who had obviously personal interest in doing their best. The
participants in Investigation II were draftees, i.e. they were liable for military service.
In this case, we cannot be sure that all participants gave their best. What follows,
is that the amount of careless errors will increase and eventually be higher than the
amount of noise assumed for the probability simulations.

Investigation III should, among others, clarify, whether the knowledge space results of
this investigation are to be contributed to properties of the postulated model or to an
unexpectedly high amount of noise in the data.

5.4 Investigation III

Extension of the model to a surmise relation between
four inductive reasoning tests

Investigation III has two main purposes. The results of the two previous investigations
show that there is no obstacle to applying the method of surmise relations between
tests (see Section 3.2) and the developed classification system for inductive reasoning
tests (see Sections 5.1.1 and 5.1.2) to a set of more than two tests. Hence, the first
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purpose of Investigation III is to find out, how well the postulated model fits a set of
data when a larger set of problem types is presented. Secondly, the methodological
issues discussed in Sections 5.2.4 and 5.3.4 need to be accounted for by collecting data
in accordance with the requirements of knowledge space research.

For these reasons, I conducted a third investigation, in which four different types of
inductive reasoning problems were presented. The problems included verbal and geo-
metric analogies, numerical series completion problems, and geometric matrices with
five items each. With regard to the empirical standards of knowledge space theory,
the items were presented in random order and participants were given enough time
to process all of the presented items. In order to achieve a more consistent form of
presentation for the various problem types, I standardized the number of answer alter-
natives to five alternatives per item. The items originally stem from two intelligence
tests, namely the Berlin Structure of Intelligence test (BIS test) by Jager et al. (1997,
see Section 2.4.2.2) and the Vienna Matrices Test (WMT) by Formann and Piswanger
(1979, see Section 2.4.2.4), but were adapted to meet the criterion of uniform answer
formats'?.

5.4.1 Hypothesis

The hypothetical knowledge structure for the four inductive reasoning tests (verbal
and geometric analogies, number series completions, and geometric matrices) used in
Investigation I1I was constructed as outlined in Section 5.1. Analogously to Investi-
gations I and II, the surmise relation on the set of items and tests was established in
two steps. First, I analyzed the given items with respect to their attributes on each of
the five components (see Table 5.1) and assigned each item to its respective item class.
In a second step, the SRbI, SRwT, SRxT, and SRbI were established for the item
classes realized in the four tests. The so found surmise relations constitute subsets of
the respective relations derived in Sections 5.1.3 and 5.1.4 (see Figures 5.3 and 5.4 for
an illustration of the ordering principle).

Expectations regarding the derived surmise relation between tests (SRbT'), the surmise
relation between items (SRbI) and its subsets (SRxT and SRwT), as well as the
corresponding knowledge spaces (KSbl, KSzT, and KSwT) are according to the
empirical predictions made in Section 5.1.5.

Regarding the SRbT', the derived structure yields the following pairs for the general,
left—, and right—covering surmise relation between tests (see Section 5.4.2.2 for details).

e The left-covering surmise relation contains five test pairs (7; S; 7;). Three of
the five pairs are relationships from the verbal analogy test to the remaining
three tests, viz. to the geometric analogy test (ANg S, ANy ), to the series

completion test (SCy S, ANy ), and to the matrix test (MTg S ANy). The

10The original set of items presented to the participants also contained five geometric classification
problems. However, the structure of these problems does not allow a modification of the answer
format without a substantial alteration of the original task. Therefore, the classification problems
were not included in further analysis.
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remaining two test pairs are relationships from the series completion test to the
geometric analogy test (ANg S, SCy) and from the matrix test to the geometric
analogy test (ANG S M Tc). Note, that there are two transitive triplets, namely
ANg S, SCx S ANy and ANg S MTq S, ANy. For all pairs 7; S 7;, it is
expected that each item class in 7; has a prerequisite item class in 7; (see also

Section 5.1.5, prediction Ib).

e The right—covering surmise relation contains three test pairs (7; S, 7,) from the
matrix test to the remaining tests, viz. to the verbal analogy test (AN S, M Ta),
to the geometric analogy test (ANG S, M Tc), and to the series completion test
(SCy S, MTy). For all pairs 7; S, Tj, it is expected that each item class in 7;
is prerequisite for some item class in 7} (see also Section 5.1.5, prediction Ic).
Note, that the surmise relation from the matrix test to the geometric analogy
test is left— as well as right—covering and thus a total-covering surmise relation
(ANg S; MTg, prediction Id in Section 5.1.5).

e The remaining five test pairs are all element of the general surmise relation (7; S
7;). Each test contains item classes that have a prerequisite in all other three
tests. However, the conditions for a left— or right— covering surmise relation are
not fulfilled. The general surmise relation includes three relationships from the
geometric analogy test to the verbal analogy test (ANy S ANg), to the series
completion test (SCy S ANg), and to the matrix test (MTy S ANg), as well
as two relationships from the series completion test to the verbal analogy test
(ANy S SCy) and to the matrix test (MTg S SCy). For all pairs 7; S 7, it
is expected that some item class in 7; has a prerequisite in 7; (see also Section
5.1.5, prediction Ia).

A detailed description of the item classes, their respective items, and the postulated
prerequisite relationships is given in the next section.

5.4.2 Method
5.4.2.1 Participants

I collected data of 122 participants for Investigation II1. The sample included 80 high—
school students and 42 first year university students, who were enrolled in an introduc-
tory psychology course (Seminar on General Psychology I). High—school students stem
from two Styrian schools, the “Bundesgymnasium Rein” (secondary academic school)
and the “Hohere Bundeslehranstalt fiir wirtschaftliche Berufe Schrodingerstrafe” (sec-
ondary vocational school) with 46 and 34 participants respectively. Ninety—nine par-
ticipants are female and 23 participants are male. The participants’ average age was
19.18 years ranging between 17 and 42 years, with a standard deviation of 3.7. Thirty—
five participants indicated to be familiar with this type of tests. The investigation was
conducted in the class-rooms of the schools and a lecture room at the University of
Graz in January 2001. All participants attended the study voluntarily.
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The data of one male participant had to be excluded from further analyses, because
his response pattern was incomplete (four unprocessed items). Thus, the final number
of participants equals 121.

5.4.2.2 Material

Materials consist of 20 inductive reasoning problems, which can be grouped into four
problem types (tests) with five items each. The four problem types include verbal
analogies (ANy ), geometric analogies (ANg), numerical series completion problems
(SCy), and geometric-figural matrices (MTg). Ttems of the first three problem types
are taken from the BIS test by Jéger et al. (1997, see Section 2.4.2.2), geometric ma-
trices from the WMT by Formann and Piswanger (1979, see Section 2.4.2.4). Except
for the analogy items, answer alternatives have been added (series completion items)
or removed (matrix items) to achieve a common answer format of five answer alterna-
tives per item. Table 5.19 gives an overview of the used items, including the original
item numbers and abbreviations for the subtests as reference. Figure 5.13 shows an
example for each problem type. Except for the verbal analogy item, the depicted
items are self-constructed, but show are similar to the presented ones (copyrights).
The verbal analogy item is taken from Bejar et al. (1991). The selection of items and
answer alternatives was conducted under consideration of the required solution strate-
gies, i.e. the attribute combinations inherent in each item. As far as possible only
items with different attribute combinations were chosen. Exceptions are two verbal
analogies and two matrix problems with the same attribute combinations each!'! (see
Table 5.20). The exact assignments of the items and the modified answer alternatives
used in Investigation III are presented in Appendix B.2, Table B.4.

Table 5.19: Selected items and tests for Investigation 111

Problem type Test  Subtest Instructions Item numbers
Verbal analogies BIS WA Exp.2 1,3,4,6,7
Geometric analogies BIS AN Exp.1 1,3,4,6,7
Numerical series completion — BIS ZN Exp.1 1,4,5,7,9
Geometric matrices WMT - Exp.A C,2,9,22,23

Note. Subtest abbreviations, example (Exp.) and item numbers refer to the original tests

(BIS and WMT).

Table 5.20 summarizes the item descriptions for each of the 20 items, including the
attribute combinations (item classes), item numbers, operation types, and downsets.

' The verbal analogy test did not contain any items with other attribute combinations; for the
geometric matrix test, deleting the component task ambiguity (see Section 7, classification scheme)
lead to a reduction in the number of attribute combinations.
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Verbal Analogy (ANy):
whesel to car asleg to?

a) horse  b) bicycle c) forest d)bookcase e) snake

Geometric Analogy (ANg):

@:@::AA:? @ &) |+ +

Numerical Series Completion (SCy):
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Figure 5.13: Examples for each problem type presented in Investigation III

The five verbal analogy items (in German) are all of the type A : B = C :?. Below the
stem terms, five answer alternatives (labeled a through e) are presented. Participants
had to choose the alternative that completed the analogy best. Stem terms as well as
alternatives are nouns (3 items), verbs (1 item), or mixed with nouns for terms A and B
and verbs for term C' and the five answer alternatives (1 item). The types of operations
(component A) needed to solve the problems include the semantic relations cause—
purpose (CP), part-whole (PW), and the more Difficult relation similar/comparative
(SI). A description of the semantic relations is given in Section 2.2.1.1, Table 2.1. Three
item classes require two operations, one item class three operations (component B).
The number of operations refers to the number of elements in the analogies’ rationales
(see Section 2.2.1.1, Box 2.3). In Table 5.20 only the semantic relations between the
terms are listed (fourth column), while the complete rationales are given in Appendix
B.1, Table B.3. High demands on constraint (component C') are given in three item
classes, Low demands in one item class. Components D and E are identical for all item
classes, viz. Verbal material and 5 answer alternatives. Figure 5.13 gives an example
of a verbal analogy item for the item class (O,1,1,,V,5). A detailed description is given
in Section 5.2.2.2.
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The geometric analogies are of the same type as the verbal analogies, except that stem
terms as well as the answer alternatives are geometric figures, such as triangles, squares,
or circles. On component A (operation difficulty) the items require transformations in
shape (SH) and shading (SD) as well as the Difficult operations in number (NO) and
space (SP). The number of operations (component B) ranges between one and three
per item. High demands on constraint (component ') are given in two item classes,
Low demands in three item classes. Components D and E are identical for all item
classes, viz. Geometric material and 5 answer alternatives. The example in Figure 5.13
requires one transformation in size and one in number, which are both low in demand.
Thus, the corresponding item class is (D,2,1,G,5) and the correct answer is ‘d’.

The third test contains five numerical series completion problems with five (one item)
and seven (four items) numbers per series. The last number is followed by a question
mark, for which the participants had to choose one out of five alternatives (labeled
a through e) to complete the series correctly. The arithmetic operations needed to
solve the problems include additions (AD), subtractions (SU), multiplications (MU),
and divisions (DI). The hierarchical sequences for the two Difficult series completion
problems (component A) are n — 1 for item 14 and n + 1 for item 15. The number
of operations (component B) ranges between one and three per item. High demands
on constraint (component C') are given in two item classes, Low demands in three
item classes. Components D and E are identical for all item classes, viz. Numerical
material and 5 answer alternatives. The example in Figure 5.13 requires one addition
(+5) and one multiplication (x3) with no hierarchical sequences and low demand. The
respective item class is therefore (0,2,1,N,5) and the correct answer is ‘d’.

Finally, the five geometric matrix items contained in the fourth test, are all constructed
as 3 by 3 matrices. The items contain different types of geometric forms (squares,
circles, lines, etc.) colored in black and a blank square on the lower right. Five
answer alternatives (labeled a through e) are presented on the right of each matrix.
Participants had to decide which alternative belongs in the blank square to complete
the matrix correctly. The types of operations included in the five matrix problems
are constant in a row (CR), constant in a column (CC), pairwise progression (PP),
figure addition (FA), distribution of three values (D3), and as Difficult operations
(component A) the Boolean AND operator (BA) and the exclusive-OR rule (XO). A
description of the rules is given in Section 2.2.3, Table 2.2. By analyzing the geometric
forms row by row and/or column by column between one and four relational rules can
be induced (component B). High demands on constraint (component C') are given in
three item classes, Low demands in one item class. Components D and E are identical
for all item classes, viz. Geometric material and 5 answer alternatives. The example
in Figure 5.13 requires the operations D3 (on the geometric form) and CR (on the
background shading), which are both low in demand. Thus, the corresponding item
class is (O,2,L,G,D) and the correct answer is ‘b’.

Regarding the prerequisite relationships postulated in Section 5.1, Table 5.20 depicts
the resulting item classes (2nd column) and their respective downsets (5th column).
Component £ (number of answer alternatives) is not listed, because it is identical
(five alternatives) for all items and does therefore not contribute to the order on items
and tests. The downsets for each item class only include the prerequisite item classes
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Table 5.20: Item descriptions and downsets for the four tests in Investigation III

Problem Item Item Operation Downsets for item Downsets for
types classes®  numbers types? classes (within tests)¢ items (within tests)
AN (02,HV) 1 CP (0,2,H,V) 1
(0,3,H,V) 4 PW (0,2,H,V),(0,3,H,V) 145
— - 5 PW
(D,2,L,V) P SI (D,2,L,V) P
(D,2,H,V) 3 SI (0,2,HV),(D2LV), 123
(D,2,H,V)

AN (0,1,L,G) 8 SH (0,1,L,G) 8
(D,1,H,G) 7 SP (0,1,L,G),(D,1,H,G) 7.8
(D,2,L,G) 6 NO,NO (0,1,1,G),(D,2,L, G) 6,8
(D,2,H,G) 9 NO,SD (0,1,L,G),(D,1,H,G), 6.7.8,9

(D,2,L,G),(D,2,H,G)
(D,3,L,G) 10 NO,SPSH  (0,1,L,G),(D2.L,G), 68,10
(D,3,L,G)

SC  (02LN) 11 SU (0,2,L.N) 11
(03LN) 13 DLADMU  (02L\N),(03LN) 11,13
(0,3HN) 12 DLSUMU  (0.2LN),(03LN), 11,12,13

(0,3,H,N)
(D,2,L.N) 14 SUMU (0,2,LN),(D2LN) 11,14
(D,2,H,N) 15 MU,AD (02,LN),(D2,LN), 11,14,15
(D,2,H,N)

MT  (O,H,G) 16 FA (0,1,H,G) 16

(0,2,,G) 17 CR,CC (0,2,L,G) 17,18
- 18 PP.D3
(D2H,G) 19 XO,BA 0,1,H,G),(0.2,L,G), 16,17,18,19

( )
(D727H7G)
(D4HG) 20  XO,XO,XO.XO (0,1,H,G),(0.2L,G), 16,17,18,19,20
(D.2,H,G),(D,4,H,G)

Note. ® Components are ordered alphabetically, i.e. A through D, component F is identical
for all item classes, viz. 5 answer alternatives; ® CP = cause-purpose, PW = part-whole,
SI = similar/comparative, SH = shape, SP = space, NO = number, SD = shading, SU =
subtraction, DI = division, AD = addition, MU = multiplication, FA = figure addition,
CR = constant in a row, CC = constant in a column, PP = pairwise progression, D3 =
distribution of three values, XO = exclusive-OR, BA = Boolean AND. ¢ See Table 5.1 for
the derivation of downsets.

of the same test. The prerequisite relationships across tests are given in Table 5.21.
Table 5.20 shows that each item class has between one (which is due to the property
of reflexivity) and four prerequisite item classes within its test. Regarding the three
major components A, B, and C, the attribute combinations range from the easiest
item class (O,1,L) in the classification scheme (see Table 5.1 and Figure 5.3) to the
most difficult item class (D,4,H).
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A combined analysis of the item classes of all four tests results in the prerequisite rela-
tionships across tests shown in Table 5.21. By analyzing the prerequisite relationships
between each pair of tests, the hypotheses on surmise relations between tests listed
in Section 5.4.1 have been inferred. Summarized, the general and the left—covering
surmise relation contain five test pairs each and the right—covering surmise relation
contains three pairs. Furthermore, there is one total-covering surmise relation (which
is contained in the left— as well as right—covering relation) from the geometric matrix
test to the verbal analogy test.

Figure 5.14 illustrates the postulated surmise relations within and between the four
tests. For reasons of more clarity, the relationships across tests are not depicted in this
Figure. However, they can easily be transferred from Table 5.21. The relation files for
the SRbI, SRxT', and the four SRwT are listed in Appendix E.1, the corresponding
base files for the K.SbI, KSxT, and the four K.SwT in Appendix E.2.

5.4.2.3 Procedure

The investigation was conducted in group sessions with 17 to 24 (high—schools) and
42 (university) participants. Students’ teachers were present during instructions and
testing periods. At the beginning of each session the general aim of the study and its
theoretical background was outlined. Participants were told that the study is about
the structure of knowledge and that it belongs to the field of cognitive psychology.
As remote aim I mentioned the development of an adaptive testing system. I pointed
out that the presented problems can be found in many intelligence tests and that
they are sometimes used for the recruitment of personnel. Furthermore, I explained
that the problems were analyzed and ordered with respect to their difficulty and that
participants’ data are important for the evaluation of our assumptions. Participant’s
were told, that the test is not about measuring their intelligence but about which
problems can be solved. Finally, participants were requested to try to solve every
single item and not to cheat.

Subsequently, test—papers were handed out and written instructions as well as example
problems were reviewed with the participants. Instructions and examples were also
presented on overhead-transparencies. Participants were instructed to process the
items in the presented order (see below) and to try to solve every single item (the
complete written instructions are provided in Appendix C.1).

After the instructions, participants specified a personal code and filled out questions
concerning demographic data (type of school, level of education, age, sex). Then, a
detailed explanation of one example for each problem type followed (see Appendix C.1).
The main purpose was to familiarize participants with the relevant problem solving
concepts. After all participants had signaled their understanding of the problems,
they started with the test. Beforehand, they were once more reminded to process all
of the problems and to follow the given order.

The presentation of items was randomized by four different sequences generated with
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Table 5.21: Prerequisite relationships across the tests in Investigation 111

ANy

(0,2,H)(0,3,H)(D,2,L)(D,2,H)

ANy

(0,2,H)(0,3,H)(D,2,L)(D,2,H)

ANg

(0,1,L)(D,1,H)(D,2,L)(D,2,H)(D,3,L)

ANeg  (O,1,L) o o o o SCny  (0,2,L) o o o o MTe (0O,1,H) x o
(D,1,H) o (0,3,L) o (0,2,L) x S o o
(D,2,L) x o (0,3,H) X (D,2,H) X X
(D,2,H) x X X (D,2,L) S (D,4,H) x x X x
(D,3,L) x (D,2,H) x X
MTg MTq SCN
(0,1,H)(0,2,L) (D,2,H)(D,4,H) (0,1,H)(0,2,L)(D,2,H)(D,4,H) (0,2,1)(0,3,1)(0,3,H) (D,2,L) (D,2,H)
ANy (0,2,H) x x o o SCny  (0,2,L) o o o ANg  (O,1,L) o o o o
(0,3,H) x x o (0,3,L) x o (D,1,H) o
(D,2,L) x o o (0,3,H) x x o (D,2,L) x x o
(D,2,H) X X o o (D,2,L) x o o (D,2,H) X x x
(D,2,H) x x o o (D,3,L) x x

Note. An x indicates that the item class in column ¢ is prerequisite for the item class in row j (iSj); a ¢ indicates that the
is prerequisite for the item class in column ¢ (jSi). ANy = verbal analogies, ANg = geometric analogies, SCy = number series completions,

and MTg = geometric matrices.

item class in row j
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the program permute (see Appendix C.2 for the generated sequences). The test—papers
were handed out by alternating the four sequences.

After processing all of the problems, participants were prompted to check once more,
whether they had answered all items. If yes, participants had to indicate their familiar-
ity with inductive reasoning problems in general (yes or no) and to rate each problem
type with respect to difficulty (very easy, rather easy, rather difficult, or very difficult).

The entire session lasted about 50 minutes, the time for solving the problems up to
40 minutes. All but one participant processed all problems in the given time limit.
Participants who finished the test early were asked to occupy themselves quietly and
to stay in class until the end of the session.

At the end of each session, participants received information on the type of feedback
provided after the evaluation of the results. The evaluation followed between two
and three weeks after the single sessions. The feedback included the relative solution
frequencies for each participant, the quartiles for the respective groups (school or uni-
versity classes) and for the entire sample of 122 particpants, as well as an explanation
of the given results.

5.4.3 Results

As for Investigations I and II, the validation procedures are divided into two parts,
namely the results derived via the surmise relation and the results derived via the
knowledge space. Comparisons with simulated data sets and statistical analyses are
also included. The data set for this investigation contains 2420 responses from 121
participants who processed all of the 20 items.

5.4.3.1 Validation of hypotheses via the surmise relation

Percentage of correct solutions All in all, the participants gave 1556 correct
responses, i.e. 64.3% of all answers. The minimal number of correctly solved items
amounts to four items (one response pattern), the maximal number to 18 items (6
response patterns). The frequencies for each single item are provided in Appendix
F.1, Table F.3. Figure 5.14 shows the postulated surmise relation within and between
tests together with the relative solution frequencies for each item class. The relative
solution frequencies for the two item classes containing two items (see Table 5.20)
represent the averaged relative solution frequencies of both items in the respective
class. The difference in the percentage of correct solutions for the two items within one
class each amounts to 20.66% for the analogy item class (O,3,H,V) and 12.4% for the
matrix item class (O,2,1,G). The remaining item classes contain only one item each.
The percentages of correct solutions for the item classes range between 16.53% for the
matrix class (D,4,H,G) and 93.80% for the matrix class (O,2,1.,G). For reasons of more
clarity, the relationships across tests are not depicted in Figure 5.14, but can easily be
inferred from Table 5.21.

The results for the four surmise relations within tests (SRwANy, SRwANg, SRwSCl,
SRwMTg) show that the solution frequencies confirm all but one of the 21 postulated
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(0,3,H,V) (D,2.H\V)
3595 53.72

(D,2,H,G)
24.79

(O.2HV)  (D2,LV) (D,1,H,G) (D,2,L.N)
61.16 62.81 76.86 74.38

(02LG)  (O,LHG)
93.80 92.56

(0,1,L,G)
90.08

s
Figure 5.14: Hypothesis and relative solution frequencies for the surmise relation within
and between tests in Investigation III

pairs of item classes (not counting reflexive pairs). Within the geometric analogy test
(SRwANg; 2nd ellipse from the left), the percentage of correct solutions for item class
(D,3,L,G) is higher than that of its postulated prerequisite (D,2,1.,G), but the difference
is statistically not significant (x?(1, N = 158) = 0.23, p < .05).

Regarding the surmise relation across tests (SRxT'), 73 out of 79 pairs confirm the as-
sumed relationships across the various tests (see also Table 5.21). A more differentiated
inspection of the relation’s subsets shows that for the surmise relation from the verbal
analogy test (ANy) to the other three tests all of the 19 pairs in the hypothesized
model are confirmed, while for the geometric analogy tests (AN¢g) 17 out of 18 pairs,
for the numerical series completion test (SCy) 14 out of 16 pairs, and for the geometric
matrix test (MTg) 23 out of 26 pairs are in accordance with the hypothesis. For all
six of the reversed pairs, one-dimensional x? tests yield no significant difference on an
a-level of .05 (.001 < x? < .23; see Appendix F.2, Table F.6 for the exact values).
With respect to the hypothesis that the percentages of prerequisite item classes are
higher than or equal to the classes they are surmised from (prediction Ila in Section
5.1.5), there is no statistically significant contradiction of the postulated model.

The results for the postulated general, left—, right—, and total-covering surmise relations
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between tests (see Figure 5.14) show that 10 out of the 12 test pairs are confirmed by
the relative solution frequencies (see predictions Ia —Id in Section 5.1.5). These 10 pairs
of tests include three pairs in the left—covering surmise relation (ANg Sl ANy, SCy Sl
ANy, and MTg Sl ANy ), two pairs in the right—covering surmise relation (ANy S,
MTg and S C’N S MTg), and the five pairs in the general surmise relation (ANy S
ANg, SCx S ANg, MTz S ANg, ANy S SCx, MTs S SCy). Deviations are found
for the postulated left—covering surmise relation from the series completion test to
the geometric analogy test and the total-covering surmise relation from the geometric
matrix test to the geometric analogy test. In the first case (ANg S SCy), item class
(0,2,I,N) does not have a prerequisite in the geometric analogy test. Regarding the
total—covering surmise relation, each of the geometric analogy items is prerequisite for
a geometric matrix item, hence, there is a right—covering surmise relation from the
matrix tests to the analogy test (ANg S, MTg). However, the left—covering surmise
relation between the same pair of tests (ANg S; MTg) is not confirmed, since the two
matrix item classes (O,1,H,G) and (0,2,1,,G) both have higher solution frequencies
than their postulated prerequisite (O,1,L,G) in the analogy test. However, since the
performed x? tests (see above) show no significant differences for the reversed pairs
of item classes, the postulated left— and total-covering surmise relations between the
tests can also be accepted.

Summarized, the surmise relation between items is confirmed by 93% of the 100 postu-
lated pairs, the surmise relation across tests by 92.4%, and the surmise relations within
the four tests by 95.24%. Considering only the statistically significant differences, the
SRbI and its subrelations are confirmed in 100% of all postulated pairs.

Indices for the fit of a surmise relation As for Investigations I and II, the
fit of the postulated model on an item-level was validated by calculating the viola-
tional coefficient (V') and the gamma—index (). Table 5.22 shows the results for
the SRbI and its subsets, viz. the SRxT and the relations within the four single tests
(SRwANy, SRwANg, SRwSCy, and SRwMTg). The values refer to relationships
between single items.

The values of the indices VC and global 74 both signify that the surmise relation on
the geometric matrix test fits the set of data best and that the surmise relation on
the verbal analogy test deviates most from the data. The percentages of item pairs
with positive y—indices amount to 85.71% for the SRwANg and to 100% for the three
remaining surmise relations within tests. This last result corresponds to the results
derived from the solution frequencies. Thus, also on an item level, the postulated
surmise relation on the set of tests shows a good fit to the empirical data.

The McNemar x? values for the SRbI and its subrelations show that the number of
concordant pairs is always significantly higher than the number of discordant pairs,
which is in accordance with prediction IIb (Section 5.1.5).

5.4.3.2 Validation of hypotheses via the knowledge space

Symmetric distances and distance agreement coefficient The mean symmet-
ric distances (ddat) for Investigation III range between 0.14 (KSwMTg) and 0.47
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Table 5.22: VC and ~ for the surmise relation between items and its subsets
(N = 121)

No. of No. of

items pairs® VC g v>0 e
SRbI 20 123 0.07 0.69 115 (93.50%) 3225.37
SRxT 20 99 0.07 0.70 92 (92.93%) 2593.28
SRwANy, 5 4 0.13 0.40 4 (100%) 32.32
SRwANq 5 7 0.11 0.47 6 (85.71%) 72.86
SRwSCy 5} 6 0.06 0.63 6 (100%) 96.27
SRwMTg 5} 7 0.03 0.92 7 (100%) 497.33

Note. SRbI = surmise relation between the items of the set of tests, SRzT = surmise
relation across the tests, ANy /ANg/SCxN/MTg = surmise relation within the verbal analogy
/ geometric analogy / series completion / matrix test. “Reflexive pairs are not counted.

(KSwANg) for the knowledge spaces of the four single tests and reach a value of
2.31 for the knowledge space between items (K Sbl; see Table 5.23). A compari-
son with the theoretical maxima (dmaxr = 2 and 10) and the powersets’ distances
(0.66 < dpot < 5.66) show significant differences in favor of the hypothesis for all
(sub)structures (see prediction IITa in Section 5.1.5). x? values range between 28.75
(2, N =242) and 1945.75 (6, N = 242), p < .001 (see Appendix F.5 for the remaining
values). Therefore, it can be concluded that the test knowledge space as well as its
substructures fit the empirical data better than unstructured response vectors. The
distance distributions for the K.SbI, its substructures, and the corresponding power-
sets are provided in Appendix F.3, Tables F.11 and F.12. Regarding the proportion
of careless errors and lucky guesses that contribute to the mean empirical distance, an
analysis of the items’ invalidity (see Appendix F.4, Table F.15) yielded about one and
a half times as many careless errors than lucky guesses (on the average, the mean dis-
tance is composed of .070 careless errors and .045 lucky guesses per item and person)'2.
This means that the contradicting response patterns mainly arise from incorrect so-
lutions to items that are assumed to be prerequisite for some other correctly solved
item(s).

A comparison of the various structures’ fit by means of the distance agreement coeffi-
cient (DA) yields results that are comparable to those of the indices VC' and ¢ (see
Section 5.4.3.1). The lowest (best) DA value results for the geometric matrix test (DA
= 0.17), the highest value for the verbal analogy test (DA = 0.53).

Stmulations In Table 5.24 the mean symmetric distances and the DA values for
the empirical data (ddat) are compared to the same values for random (dsim,) and
probability (dsim,) simulations. The values for both types of simulations are the av-
eraged mean distances and standard deviations from 1000 data sets each. The number

12Gee footnote on page 104.
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Table 5.23: Symmetric distances for the test knowledge space, its substructures, and
their powersets (N = 121)

m |K| dmax ddat (SD) Mdn dpot (SD) Mdn DA

K SbI 20 255 10 2.31(1.41) 2 566 (1.54) 6 041
KSaT 20 484 10 2.03(1.30) 2 515(1.44) 5  0.39
KSwANy, 5 14 2 035(051) 0 066064 1 053
KSwANg 5 9 2 047 (0.60) 0 094 (0.70) 1  0.50
KSwSCy 5 10 2 0.25(045 0 0.86(0.70) 1  0.29
KSwMTg; 5 10 2 014(035) 0 081(063) 1 017

Note. m denotes the number of items, |K| the number of knowledge states; K.SbI — knowledge
space between the items of the set of tests, KSzT = knowledge space across the tests,
KSwANy /KSwANg /K SwSCy /K SwMTg = knowledge space within the verbal analogy /
geometric analogy / series completion / matrix test.

Table 5.24: Symmetric distances for the test knowledge space, its substructures, and
simulated data sets (N = 121)

random simulations probability simulations
ddat DA dsim, (SD) Mdn DA dsim, (SD) Mdn DA

KSbl 231 141 5.67 (1.54) 6 1 1.86 (1.26) 2 0.33
KSaT 2.03 1.30 5.14 (1.44) ) 1 1.78 (1.21) 2 0.35
KSwANy 0.35 0.51 0.66 (0.64) 1 1 0.22 (0.43) 0 0.33
KSwANg 047 0.60 0.94 (0.70) 1 1 0.33 (0.53) 0 0.35
KSwSCy 0.25 0.45 0.87 (0.69) 1 1 0.31 (0.51) 0 0.36
KSwMTg 0.14 0.35 0.81 (0.63) 1 1 0.34 (0.50) 0 0.42

Note. For the simulated data sets SD refers to the mean standard deviations; K.Sbl =
knowledge space between the items of the set of tests, KSxT = knowledge space across
the tests, KSwANy /KSwANqg/KSwSCy/KSwMTg = knowledge space within the verbal
analogy / geometric analogy / series completion / matrix test.

of response patterns per data set corresponds to the number in the empirical data
set, i.e. 121 patterns. For the probability simulation, the probability for lucky guesses
corresponds to the number of answer alternatives, namely 1 = 0.2 for five alternatives.
The probability for careless errors was varied in 10 steps with 0.05 < 8 < 0.15. For
each probability level 100 sets of data were simulated. The averaged distance distri-
butions obtained from each of the 1000 simulated data sets are provided in Appendix
F.3, Tables F.11 and F.12.

The results for random simulations (dsim, in Table 5.24) are comparable to those found
for the powersets of the various structures. With 0.66 < dsim, < 5.67, the postulated
K SbI and its substructures fit the empirical data clearly better than random data sets.
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Figure 5.15: Distance distribution of the empirical data set (ddat) compared to the
distributions of random (dsim,) and probability simulations (dsim,,)

Regarding the results for the simulations on the postulated knowledge spaces (dsim,,
in Table 5.24), the mean symmetric distances as well as the DA values for the KSbI,
the KSzT, and the knowledge spaces within the two analogy tests (KSwANy and
KSwANg) are below, i.e. better than those for the empirical data set. For the series
completion (KSwSCy) and the matrix (KSwMTg) test, the respective knowledge
spaces show a better fit to the empirical data than to the data derived from the
probability simulations.

With respect to the KSbl, Figure 5.15 compares the distribution of the empirical
distances to the averaged distance distributions derived from random and probability
simulations. As already found in Investigations I and II, the distribution for the random
data sets (left figure) is located further to the right on the distance scale than the
empirical distribution and there is only a small overlap of the two distributions. The
probability distribution (right figure), on the other hand, shows higher peaks on the
left of the distance scale and a more positive skew than the empirical data. Thus, the
number of response patterns with low distances is higher than for the empirical data.
To test the significance of the found differences, the following statistical analyses have
been performed.

Statistical analyses The standardization of the mean empirical distances to the
distribution of random simulations (dsim,.) reveals significant differences for the K.SbI
and its substructures. The obtained z-scores (see Table 5.25) range between -23.96
for the K.SbI and -5.2 for the K.SwANy. Thus, the results of the random simulations
support the hypothesis according to prediction IIIb (Section 5.1.5).

At an a-level of 0.01, the z-scores derived for the probability simulations (dsim,)
show a significant difference in favor of the hypothesis (prediction IIlc in Section 5.1.5)
for the matrix test (z = —4.09), and a significant difference against the postulated
knowledge space for the verbal analogy test (z = 2.67). The values for the remaining
(sub)structures are not significant'®. The same is true for the results of the x? statistics.
Regarding the central tendency of the distributions, the results of the U test show,

3For a = .05, the data for the KSwANg also shows a significant difference (z = 2.15), whereas
the data for the remaining knowledge spaces differ still not significantly from the simulated data sets.
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Table 5.25: Comparison of the empirical and simulated symmetric distances for the
test knowledge space and its substructures (N = 121)

random simulations probability simulations

dsim, SD z dsim, SD =z U(z) x* (df)

SRbI 5.67 0.14 -23.96 1.86 0.27 1.67 247 13.41 (5)
SRxT 5.14 0.13 -23.31 1.78 0.26 0.97 1.55  6.37 (4)
SRwANy 0.66 0.06 -5.20 0.22 0.06 2.67 217 11.34 (1)
SRwANg 094 0.06 -7.25 0.33 0.06 2.15 1.78  6.58 (1)
SRwSCy 0.87 0.07 -9.42 0.31 0.06 -1.01 -19.10 1.02 (1)
SRwMTg 0.81 0.06 -11.75 0.34 0.05 -4.09 -8.60 18.30 (1)
Note. SD refers to the distributions’ standard deviations; SRbl = surmise relation be-
tween the items of the set of tests, SRxT = surmise relation across the two tests,

ANy /ANg/SCNn/MTg = surmise relation within the verbal analogy / geometric analogy
/ series completion / matrix test; U(z) denotes the standardized U-score for large samples
with tied ranks.

that the empirical means for the series completion and the matrix test are significantly
below the means for the simulated data sets. The U(z) values for the tests knowledge
space (K SbI), and the remaining substructures reveal no significant difference between
the empirical and the simulated data sets (1.55 < U(z) < 2.47,« = 0.01). A more
differentiated analysis of the distributions obtained by the probability simulations for
the KSbI shows that the simulated data sets yield significantly lower mean distances
(z > 3.72, a = 0.01) at § levels < .11. For .12 < 3 < .15, the differences are not
significant (z < 2.54, & = 0.01), which indicates that the probability for careless errors
amounts to about 12%.

The reported results indicate that, except for a substructure in the verbal analogy test,
the postulated test knowledge space reliably explains the empirical data.

In order to estimate the influence of the predicted knowlege states, frequency simula-
tions were computed. Table 5.26 depicts the the mean symmetric distances (dsimy),
the DA values, and the results of the statistical analyses for all but one substructures.
For the verbal analogy test, frequency simulations were not computed, because the
postulated model already showed significant deviations regarding the probability sim-
ulation. The results for all substructures yield no significant differences between the
simulated and the empirical response patterns. Thus, it has to be concluded that the
marginal frequencies of the matrix predict the solution behavior of the participants
equally well as the postulated knowledge states.

5.4.4 Discussion

In this last investigation four types of inductive reasoning tests have been related ac-
cording to the componentwise ordering principle. As already mentioned above, the
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Table 5.26: Results of the frequency simulations for the test knowledge space and its
substructures (N = 121)

frequency simulations
dsimy (SD) Mdn DA z U(z) X2 (df)

KSbI 2.29 (1.32
KSxT 2.03 (1.23

(1.32) 041 039 005 2.86

(1.23)
KSwANg — 0.46 (1.59)

(1.49)

(0.36)

(5)

040 -0.05 -0.06 1.29 (4)

049 0.68 0.17 0.18 (1)
KSwSCy  0.27 (1.49 (1)
KSwMTg — 0.15 (0.36 (1)

0.31 -1.25 -0.15 0.04
0.19 -0.82 -0.18 0.07

O OO NN

Note. KSbl = knowledge space between items of both tests, K.SxT = knowledge space across
the two tests, KSwMT = knowledge space within the matrix test, K.SwAN = knowledge
space within the analogy test; U(z) denotes the standardized U-score for large samples with
tied ranks.

results obtained in this study confirm the assumed prerequisite relationships among
the set of tests. For the single tests, only the deviations within the verbal analogy
test cannot be explained by the assumed noise variables in the data. Locating most
contradictions of the postulated model in this test corresponds to the findings of Inves-
tigations I and II. This issue will be discussed in more detail in Chapter 7 (classification
scheme).

As the postulated surmise relations and knowledge spaces between items, across tests,
and within tests proved, for the main part, appropriate to explain the data set, I will
concentrate on the discussion of the surmise relation between tests.

The presentation of four different types of inductive reasoning problems constitutes a
first demonstration of the applied methods for a larger set of tests. Although the anal-
ysis of items by solely common components simplifies the description of item classes,
the results show that a surmise relation between tests can be established by the com-
ponentwise ordering principle. The reported results (percentage of correct solutions in
Section 5.4.3.1) clearly confirm 10 out of the 12 test pairs in the postulated subrelations
between tests. The right—covering surmise relation is confirmed by both test pairs, the
left—covering surmise relation by three test pairs, and the general surmise relation by
all five of the contained test pairs. The left—covering surmise relation from the numeri-
cal series completion test to the geometric analogy test and the total-covering surmise
relation from the geometric matrix test to the geometric analogy test contain pairs of
item classes with reversed solution frequencies. However, the differences in the solu-
tion frequencies of each of the reversed pairs are not statistically significant. Thus, the
hypothesized surmise relation between the set of all four tests can be accepted.

With respect to the confirmed relationships between the four tests, several inferences
can be drawn. From ANy S, MTg, AN S, MTg, and SCy S, MTg we can surmise
that a person who solves all geometric matrix problems will also be able to solve all of
the items in the remaining three tests. From the left—covering surmise relation, we can
infer that a person won’t solve any item in the verbal analogy test, if he or she doesn’t
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solve any item in either one of the remaining three tests (ANg S, ANy, SCx S, ANy,
and MTs S, ANy). Similar conclusions can be drawn for the test pairs ANg S, SCy
and ANg S MT¢ (the left—covering part of ANg S M Tc). A person, who doesn’t
solve any item in the geometric analogy test, will also fail in solving the items in the
series completion and the matrix test. Regarding the general surmise relation, which
contains the remaining test pairs, it can be concluded that at least some of the item
classes are related, i.e. that the demands on the set of tests are not independent of
each other.

Reconsidering the methodological problems brought up in Section 5.3.4 (results ob-
tained via the surmise relation vs. the knowledge space), the results show the same
trend as those for Investigation II. The results derived via the surmise relation (per-
centage of correct solutions, V', and ) are better fitting than those for Investigation
I, while the values derived via the knowledge space (DA and simulations) are less fit-
ting. A comparison of Investigations II and III, on the other hand, yields the same
results for the methods derived via the surmise relation as for the knowledge space.
Irrespective of the applied validation method, the model of Investigation III fits the
empirical data always better than the model of Investigation II. The only exception is
the verbal analogy test, for which the model in Investigation II yields better results
with all of the applied validation methods. Since the data in both Investigation II and
IIT show a wider range in solution frequency than the data in Investigation I, the very
well fitting results derived via the knowledge space in Investigation I are obviously an
artifact of the high percentage of correct solutions found in Investigation I (see also
Sections 5.2.4 and 5.3.4 for a discussion of this issue). For the interpretation of results
derived via the two different methods, it should therefore be considered that ceiling
effects (and most likely also floor effects) have a positive influence on the results for
the knowledge space but not for the surmise relation.

To answer the question, whether the results of the probability simulations in Inves-
tigation II are primarily due to deficiencies in the model or to a greater amount of
noise in the data (see Section 5.3.4), the results for this last investigation have to be
taken into account. The basic hypothesis on the relationships between various types
of inductive reasoning problems is the same for all three investigations (see Section
5.1). Differences among the investigations occur only with respect to the item classes
realized in each set of tests. Contrary to Investigations I and II, this study was con-
ducted according to the standards of empirical knowledge space research. The response
patterns in Investigation I stem from corporal and officer candidates of the Austrian
military, the pattern in Investigation II from draftees of the German military, while
the participants in Investigation III processed the test items under my supervision and
were asked to give there best and to process all of the items. Thus, supposing that
the validity of the model does not depend on the sampling, this investigation is most
informative with respect to the model’s validity. Hence, the assumption that the noise
specified in the probability simulation of Investigation II was too low for the respective
sample (draftees do not necessarily give their best), will also be maintained.






6 Adaptive Testing

As already mentioned several times (cf. Chapter 4), one of the main goals of my
research is the development of test structures, which can be used as a basis for adaptive
assessment procedures. Adaptive testing has a long tradition. In 1904 Binet began with
the development of the first adaptive intelligence test for children, which started with
questions that matched the children’s age and stopped after a few subsequent questions
could not be answered correctly. Today, adaptive tests are often computerized, which
has the advantage that the selection of questions and the estimation of a person’s
ability level are computed automatically.

In spite of the long tradition of adaptive tests (see e.g., Wainer, 1990, for an intro-
duction and historical overview), most psychometric aptitude and intelligence tests are
constructed for a presentation in a standardized fashion, i.e. the testee has to answer
all items contained in the given test. The advantages of standardized presentations
are that the administration is easy (e.g., in a paper—pencil format), the requirements
on technology are low, and the results represent an exact estimation of the testee’s
performance at that point in time. However, for large sets of items or evaluations of
the testee’s knowledge in various domains, a standardized presentation becomes very
time—consuming. Furthermore, the item pool has to cover a broad range of difficulty,
and therefore, many of the asked questions are often not suitable for the testee’s level
of aptitude. For all testees, there are usually questions that are either too easy or too
difficult for them. Answering easy questions correctly and answering difficult questions
incorrectly doesn’t provide a lot of information about the testee’s ability level.

Adaptive tests, on the other hand, tailor themselves to the testee’s ability level by
taking into account, whether the testee answered previous questions correctly or in-
correctly. Thus, the sets of items presented to low—ability testees and to high—ability
testees differ. The low—ability testee has to answer relatively easy questions, while the
high—ability testee has to answer more difficult questions. The ability level of each
person is iteratively estimated during the testing procedure and the selection of items
is based on the preliminary ability estimate after each response. By this, the testee
receives questions that maximize the information about his or her ability level. Items
that are too easy or too difficult for the testee are not informative and are therefore
not presented. The information of an item is higher, the more we can learn about the
testee’s ability level, i.e. the better the item discriminates among a set of plausible
ability levels (Foster, 1998).

The main advantages of adaptive tests over the standardized presentation of items
are that they are more efficient by reducing the number of presented items and that
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participants are usually more motivated, because the selected items are for the main
part personally challenging without being too easy or too difficult. Moreover, the
personalized selection of items leads to a higher degree of information gained from
each given response (Foster, 1998; Wainer, 1990).

6.1 Approaches to adaptive knowledge assessment

Traditionally (Wainer, 1990; Wainer and Mislevy, 1990), adaptive tests are based on
linear orders derived from probabilistic models, such as item response theory (IRT).
The basic assumption in IRT is a single underlying trait or ability dimension (e.g.
verbal or mathematical proficiency), on which the test items occupy different positions
according to their difficulty. A testee’s observable response to an item is related to
the unobservable ability level of the testee. Thus, in the statistical framework of IRT,
the probability to answer an item correctly is related to the characteristics of the
item and the ability of the person. If the person’s ability is much higher than the
item’s difficulty, the probability for a correct response will be large. Or, vice versa,
if the difficulty of an item is much higher than the person’s ability, the probability
for a correct response will be small. In both cases only little information is gained
from the response. The item characteristic curve depicts this relationship between
item difficulty parameters and person ability parameters, and thereby specifies the
proportion of information each item is contributing to the determination of the ability
parameter, i.e. the latent variable. Maximal information on the person’s ability is
gained when the probability of a correct answer equals 0.5. The selection of items is
based on the available estimates of the person’s ability at each point in time. After each
response, the ability of the testee is re-estimated and as next item that one is selected
which provides most information with respect to the current ability estimate. Criteria
for deciding when to stop the process are often based on the desired accuracy level of
the ability estimation, measured by a precision indicator, such as the standard error
(Fischer and Molenaar, 1995; Foster, 1998; Kubinger, 2000). Representative models of
the IRT are, for example, the family of Rasch models or the two and three parameter
models by Birnbaum (see e.g. Kubinger, 1992, for an overview).

The advantages of IRT models are that they allow a precise and efficient assessment
of person abilities and that they have to fulfill the criterion of specific objectivity.
Thus, the ability ratio for two persons is independent of the presented items and at
the same time, the difficulty ratio for two items is always the same, irrespective of
the sample taking the test (Kubinger, 2000). Adaptive testing procedures that are
based on IRT require large sets of homogeneous items (which assess only one ability
dimension) with known item characteristics. Since most of the available instruments
do not fulfill these requirements, it is usually necessary to construct new item pools.
Examples for adaptive Rasch homogeneous aptitude tests are the paper—pencil test
AID (‘Adaptives Intelligenz Diagnostikum’) by Kubinger and Wurst (1985) or the two
computerized adaptive tests BBT (‘Begriffshildungstest’) by Kubinger, Fischer, and
Schuhfried (1993) and AMT (‘Adaptiver Matrizen Test’) by Hornke, Rettig, and Etzel
(1999; see also Hornke et al., 2000).
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Still, the construction of unidimensional tests is often problematic. Even when ap-
plying strictly defined construction principles, a subset of the resulting items does
often not fulfill the requirement of homogeneity (see e.g., Section 2.4.2.4 in which the
construction of the item set for the WMT is outlined).

A more general approach is the use of non—linear structures. In connection with the
theory of knowledge spaces (see Chapter 3), adaptive tests can be developed which
are based on partial orders, and therefore overcome the restrictions of the traditionally
used linear orders. Using a partial order, it is no longer necessary that the test items
are unidimensional (i.e. that they assess only a single ability dimension). Several
procedures for the deterministic (Degreef, Doignon, Ducamp, and Falmagne, 1986;
Dowling and Hockemeyer, 2001; Hockemeyer, 2002) and non—deterministic (Doignon,
1994b; Falmagne and Doignon, 1988a,b) adaptive assessment of knowledge have been
developed. Based on the set of knowledge states specified within a knowledge space, the
testing procedure can adaptively be reduced to the presentation of a relatively small
amount of problems. A central requirement for an accurate and not only efficient
assessment procedure is the existence of a valid knowledge space. Otherwise, the
algorithms will still reduce the number of posed questions, but the diagnosed knowledge
states will not reflect the testee’s true knowledge state. Considering item descriptions
that are derived by a theory—driven generation of hypotheses (see Section 3.3.1), a
further advantage of testing procedures within the knowledge space framework is that
they provide detailed information on the problem demands a person is (un)able to

fulfill.

The general principles of the IRT and the knowledge space based adaptive testing pro-
cedures are similar. Both approaches are based on a difficulty order (or prerequisite
relation) on the set of items, which is either derived from data or from a theoretical
analysis of the items. The selection of items within an assessment follows the principle
of maximal information gain and participants’ previous answers (correct or incorrect)
are used for the selection of items. Differences between the traditional and the knowl-
edge space approaches are, on the one hand, the type of underlying order (linear vs.
partial) which results in different requirements on the dimensionality (uni— vs. multidi-
mensional), and on the other hand, the diagnostic result (test score or ability parameter
vs. knowledge state).

6.2 Adaptive assessment algorithms based on knowl-
edge space theory

For my research, I applied two algorithms for the adaptive assessment of knowledge
that are both based on knowledge space theory. The first algorithm is a deterministic
procedure, which acts on the assumption that the testees’ responses reflect their true
knowledge states. The second algorithm is probabilistic and takes into account the
probabilities for careless errors and lucky guesses. Both algorithms use the postulated
knowledge states for the selection of items, i.e. the corresponding surmise relation and
its properties (e.g. the partial order) are only considered indirectly.
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6.2.1 Deterministic assessment algorithm

Based on the work by Degreef et al. (1986), Dowling and Hockemeyer (2001; Hocke-
meyer, 2002) developed an algorithm for the adaptive assessment of knowledge, which
is based on prerequisite relationships (see Section 3.1). Assuming a valid knowledge
structure, the assessment procedure selects each item according to the information ob-
tained from previous answers. The first question is always the same for all persons (i. e.
the algorithm does not use potential pre-information on the participants). Working
with a binary decision tree, the algorithm chooses an item that, in the optimal case,
is able to split the set of knowledge states in half (half-split rule). Depending on the
testee’s answer, the procedure will now either disregard items that are prerequisite for
the first question (if the answer was correct) or disregard the items the first question
is prerequisite for (if the answer was incorrect). Then the algorithm selects a question
from the remaining items which will again split the set of remaining knowledge states
in half. This procedure continues until the testee’s knowledge state is determined.

Figure 6.1 gives an example for a set of five items. Figure 6.1a shows the surmise
relation on the set of items, which corresponds to a quasi ordinal knowledge space with
nine knowledge states. Item b occurs in four of the states and can therefore split the
knowledge space in two parts of approximately the same size (four states including
item b and five states not including item b). Figure 6.1b illustrates a correct response
to item b (b +). From the given surmise relation, it can be inferred that the testee will
also master item d and exclude the five knowledge states that do not contain items
b and d. In the remaining four states item ¢ occurs twice. Thus, a question testing
the mastery of item ¢ will again split the remaining set of states in half. Figure 6.1c
illustrates an incorrect response to item ¢ (¢ —) and the inferred incorrect response to
item a. Finally, in Figure 6.1d an item testing the mastery of item e is presented. The
response is incorrect (e —) and the testee’s knowledge state is determined as K = {b,d}.
The maximal number of five questions in this example is reduced by only two items,
but for larger sets of items considerable reductions can be obtained.

Percevic and Wesiak (2001) applied the procedure to sets of data from over 4000 psy-
chotherapeutic patients who answered various questionnaires on psychological stress
(90 items), social functioning (64 items), and psychosomatic complains (24 items). Us-
ing a data—driven method for the generation of hypotheses (item tree analysis by van
Leeuwe, 1974, see Section 3.3), we derived knowledge spaces with 21,323 states, 659
states, and 76 states respectively. The application of the described adaptive assess-
ment algorithm to the data reduced the number of questions from the 90, 64, and 24
questions to an average of 14.15 (SD = 0.6), 9.28 (SD = 0.63), and 6.17 (SD = 0.44)
questions respectively. The mean differences between the empirical and the estimated
answer patterns mount up to 8.3 (SD = 9.8), 6.36 (SD = 5.18), and 3.25 (SD =
2.86) items. Thus, the adaptive strategy leads to large reductions in the number of
posed questions. The mentioned differences between the empirical and the estimated
answer patterns can be attributed to noise variables in the data and invalidities in the
hypotheses, which often occur when the generation process allows a certain amount of
noise in the data. The latter means, that the data—driven method accepts all prerequi-
site relationships between items, which are not contradicted by more than a specified
percentage of empirical responses (in the described study this level was set to 15% of
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Figure 6.1: Illustration of the adaptive assessment procedure by Dowling and Hocke-
meyer (2001; adapted from Dowling et al., 1996)

allowed contradictions).

In general, it needs to be noted that deterministic assessment procedures assume that a
person’s responses are completely determined by that person’s knowledge, i.e. they do
not account for noise variables, such as careless errors or lucky guesses. The advantage
of deterministic procedures is that new information is gained with each question, which
leads to a high efficiency of these procedures. On the other hand, a careless error
or a lucky guess might lead to further invalid inferences and therefore, deterministic
procedures are often less accurate than non—deterministic ones.

6.2.2 Non—deterministic assessment algorithms

There are two main non—deterministic approaches to the adaptive assessment of knowl-
edge, both developed by Falmagne and Doignon (1988a,b; Doignon, 1994b) and based
on the deterministic model by Degreef et al. (1986). As opposed to the deterministic
algorithm, the procedures do not assume that each answer reflects the true knowledge
state of the testee. One (discrete) algorithm determines a testee’s knowledge state by
asking a few additional questions towards the end of the assessment procedure, while
the other (continous) algorithm uses a probability distribution on the knowledge space.

The discrete procedure (Doignon, 1994b; Falmagne and Doignon, 1988b) starts with the
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deterministic algorithm described above (Section 6.2.1) and assumes that the resulting
knowledge state is close to the testee’s true knowledge state. This means, that potential
errors in the diagnosis should only occur with respect to the neighboring knowledge
states, i.e. those states which differ by exactly one item (Falmagne et al., 1990). Thus,
the algorithm presents some additional items (mostly questions that have already been
asked), which distinguish the deterministically diagnosed state from its neighbors and,
if necessary, updates the assessment. As stopping criterion, a number of loops is
specified, which indicates for how many questions the assessed state should remain
unchanged before a final diagnosis is reached.

The second procedure applies a continuous algorithm (Falmagne and Doignon, 1988a),
which works with a probability distribution on the knowledge space. This means,
that for each state in the knowledge space, the algorithm estimates the probability
that the respective state is the testee’s true knowledge state. At the beginning of the
assessment procedure each knowledge state has the same probability, viz. ﬁ, with
| K| denoting the number of knowledge states. After each response, the algorithm
updates the probability distribution on the knowledge space and the probabilities to
answer an item correctly. The probability to answer an item ¢ correctly corresponds
to the probability that the testee is in one of the states containing item ¢ and the
noise probabilities for careless errors and lucky guesses. The noise probabilities have
to be specified for each item. The selection of items is based on the half-split rule
described in Section 6.2.1. Thereby, the procedure selects those items, which have
a probability of about 0.5 to be solved correctly. As mentioned above (Section 6.1),
items with a solution probability of 0.5 provide most information on the testee’s ability
level. The assessment procedure stops, whenever a specified probability estimate of the
testee’s knowledge state is reached, i.e. the probability mass on a single state has to
exceed a given threshold. The specification of this threshold depends on the particular
needs of the assessor. Higher thresholds usually lead to more accurate but less efficient
assessments.

Hockemeyer (2002) compared the discrete and the continuous procedure with respect
to the accuracy and the efficiency of the algorithms. Therefore, he simulated data sets
(1000 patterns each) with varying probabilities for lucky guesses and careless errors
(0%, 5%, and 10%) that are based on three knowledge spaces of varying size (K =
2261, 14,569, and 41,395 states). The item set contained 28 items from the domain
‘usage of AutoCAD’, which were structured by means of expert queries (see Section
3.3). The stopping criteria for the discrete procedure were specified with one, three,
and five loops, the criteria for the continuous procedure with probability estimates of
51%, 70%, and 90%. With regard to accuracy (measured in assessment errors, i.e. the
number of wrongly assessed items per answer pattern), the simulation study showed
that for both procedures accuracy increases with lower noise rates and stricter stopping
criteria. Furthermore, the continuous procedure yielded more accurate results than the
discrete procedure, especially for higher noise rates (0.90 vs. 1.00 wrongly assessed item
at 10% lucky guesses and careless errors) and stricter stopping criteria (0.17 vs. 0.40
wrongly assessed items at probability estimates of 90% or 5 loops). The efficiency
(measured in the number of posed questions) of both procedures decreased with an
increasing number of knowledge states and with stricter stopping criteria. Furthermore,
Hockemeyer found that the continuous algorithm was always more efficient than the
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discrete procedure, irrespective of the knowledge spaces’ sizes and the applied stopping
criteria.

6.3 Adaptive assessment for Investigations I-III

After validating the three sets of tests presented in Investigations I through III, it is
possible to apply the obtained knowledge spaces for a first evaluation of the models
in an adaptive testing system. Since the adaptive algorithms are based on item as
opposed to test structures, the knowledge spaces between items (/K Sbl) have been
used as underlying models. The postulated test knowledge spaces are therefore only
considered indirectly via the subset of pairs contained in the knowledge space across
tests. Considering the deterministic approach for establishing the hypothesis on the
structure of inductive reasoning problems, I first selected the deterministic procedure
for the adaptive assessment of knowledge developed by Dowling and Hockemeyer (2001;
Hockemeyer, 2002; see Section 6.2.1). However, taking into account that the empirical
data are noisy, I also applied a probabilistic procedure, namely the continuous assess-
ment algorithm by Falmagne and Doignon (1988a), which proved to be more accurate
and more efficient than the discrete algorithm in earlier investigations (see Section
6.2.2).

6.3.1 Adaptive testing procedure

For each of the three test knowledge spaces, the corresponding answer patterns have
been used to simulate persons who take an adaptive version of the respective tests
presented in the three investigations. For example, imagine an existing response vector
(0,0,1,1,1) for the items a,b,¢,d, and e and the knowledge space used for the illustration
of the deterministic assessment algorithm (see Figure 6.1 for the corresponding surmise
relation).

Both algorithms start with item b and select the corresponding response from the given
vector which is an incorrect answer (’0’). Based on this response, the deterministic
algorithm infers the incorrect answer to item a and eliminates all knowledge states
containing items a and b. The non—deterministic procedure considers the possibility of
a careless error and will therefore not eliminate all knowledge states containing item b
(and a) right away. It just decreases the probability that the testee’s knowledge state is
one of the states containing items a and b and at the same time increases the likelihood
of the states not containing items a and b. Then, the next items are presented and the
corresponding answers are selected from the response vector until the final knowledge
state can be determined.

For the non—deterministic procedure, it is necessary to specify the probabilities for
careless errors and lucky guesses, as well as the stopping criterion. The guessing
probabilities correspond to the number of answer alternatives in each of the three
investigations (with 8 and 5 alternatives, n = .16 for Investigations I and II, and n = .2
for Investigation IIT with 5 alternatives). Since the probabilities for careless errors
are not known, I simulated several assessments with 3 = 5%, 10%, or 15%. For the
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stopping criterion (i.e. the probability that the assessed knowledge state reflects the
true knowledge state of the participant), the threshold (th) was set to th = .7 for a
moderate criterion and to th = .9 for a strict criterion.

Discrepancies between the empirical and the estimated response patterns occur, when-
ever the distance of an empirical pattern to the nearest knowledge state is greater than
zero. For example, the response vector (0,0, 1,0, 1) contains either a lucky guess for
item ¢ or a careless error for item d (regarding the surmise relation in Figure 6.1).
Since the algorithms’ assessments are based on the postulated knowledge space, the
best estimates are the knowledge states {e} or {c, d, e} with the corresponding re-
sponse vectors (0,0,0,0,1) and (0,0, 1, 1, 1) respectively. More generally said, the
minimal symmetric distance between an empirical response pattern and the knowledge
space will always represent the smallest possible distance between the empirical and
the estimated pattern.

Thus, considering the deviations of the empirical data sets from the postulated mod-
els (see Section 5), the accuracy of the assessment procedure has to be evaluated by
simultaneously considering the results of the models’ empirical validation (see Sec-
tions 5.2.3.2, 5.3.3.2, and 5.4.3.2). Additionally, with larger knowledge spaces, as they
are given in Investigations I through III, this distance can grow with the number of
inferences drawn by the algorithms.

6.3.2 Adaptive testing results and discussion

In order to estimate the algorithms’ accuracy, I computed for each of the three K.SbI
the mean symmetric distances (di) between the estimated and the original response
vectors. The minimal possible distance di between the two response vectors equals the
distance between the empirical response patterns and the postulated knowledge spaces
(ddat), i.e. di is composed of ddat and the discrepencies arising from the adaptive
assessment. In order to determine how much the adaptive assessments contribute to
the distance between the empirical and the estimated response vectors, I determined
the difference between the two averaged symmetric distances [(diff(di, ddat)]. With
regard to the algorithms’ efficiency, I calculated the average number of questions posed
and the percentage of saved questions. Table 6.1 shows the obtained results for the
three investigations.

Accuracy of the algorithms With respect to the accuracy of the two algorithms,
the distances di (2nd column in Table 6.1) between the empirical and the estimated
response patterns yield the best results for Investigation I1I (2.61 < di < 2.64), followed
by Investigations I (3.70 < di < 3.87) and II (6.68 < di < 6.83). This order corresponds
to the number of items presented in each of the Investigations (30, 40, and 20 items in
Investigations I, II, and III respectively) and to the obtained distances ddat between
the empirical patterns and the postulated knowledge spaces (ddat = 2.99, 6.08, and
2.31 for Investigations I through III). As mentioned above, the smallest possible value
for di corresponds to ddat. Thus the obtained order of accuracy is simply caused
by the differences in the fit of the three knowledge spaces (see also Sections 5.2.3.2,



Adaptive assessment for Investigations I-TI1 151

Table 6.1: Results for the adaptive testing procedures

Investigation I (N = 572, 2 tests, 30 items)
|KSbI| = 293, ddat (SD) = 2.99 (2.17), prob for n =.16

Algorithm di (SD)  diff(di, ddat) Q (SD) % saved
deterministic 3.85 (3.04) 0.86 8 33 (0.69)  72.23
prob (8 = .05,th = .7) 3.84 (3.04) 0.85 8.42 (0.66)  71.93
prob (6 =.10,th =.7) 3.84 (2.99) 0.85 8.48 (0.61) 71.73
prob (6 = .15,th =.7) 3.72 (2.99) 0.73 9.17 (0.81) 69.43
prob (3 = .05,th = .9) 3.87 (3.05) 0.88 8.79 (0.77)  70.70
prob (8 = .10,th =.9) 3.83 (3.02) 0.84 9.40 (1.25)  68.67
prob (8 = .15,th =.9) 3.70 (2.92) 0.71 10.22 (1.20)  65.93

Investigation IT (N = 2628, 2 tests, 40 items)
|KSbI| = 7633, ddat (SD) = 6.08 (2.26), prob for n =.16

Algorithm di (SD)  diff(di,ddat) NQ (SD) % saved
deterministic 6.68 (2.62) 0.60 12.96 (0.90)  67.60
prob (3 = 05,1h =.7) 683 (291) 0.75 13.37 (1.21)  66.58
prob (8 = .10,th = .7) 6.83 (2.93) 0.75 15.82 (1.98)  60.45
prob (8 = .15,th = .7) 6.83 (2.92) 0.75 1745 (2.34)  56.38
prob (8 = .05,th = .9) 6.83 (2.93) 0.75 17.26 (2.35)  56.85
prob (8 =.10,th=.9) 6.82(2.92)  0.74  18.68 (2.14)  53.30
prob (8 = .15,th = .9) 6.83 (2.92) 0.75  20.81 (3.88)  47.98

Investigation III (N = 121, 4 tests, 20 items)
|KSbI| = 255, ddat (SD) = 2.31 (1.41), prob for n =.2

Algorithm di (SD)  diff(di, ddat) Q (SD) % saved
deterministic 2.62 (1.57) 0.31 8 01 (0.65)  59.95
prob (8 = .05,th = .7) 2.64 (1.56) 0.33 8.15 (0.65)  59.25
prob (6 =.10,th =.7) 2.61 (1.53) 0.30 8.57 (1.05) 07.15
prob (8 = .15,th = .7) 2.63 (L57) 0.32 9.42 (1.31)  52.90
prob (3 =.05,th = .9) 2.64 (1.56) 0.33 9.27 (1.38)  53.65
prob (3 =.10,th = .9) 2.62 (1.55) 0.31 10.88 (1.50)  45.60
prob (3 = .15,th = .9) 2.63 (1.57) 0.32 11.21 (L67)  43.95

Note. KSbl = knowledge space between items, ddat = distance between the empirical pat-
terns and the KSbI, 3/n = error/guessing probabilities, th = threshold for stopping the as-
sessment, di — distance between the empirical and estimated response patterns, diff(di, ddat)
= difference between di and ddat, NQ = number of posed questions, % saved = percentage
of saved questions.
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5.3.3.2, and 5.4.3.2). In order to estimate the assessment errors of the algorithms,
the differences between di and ddat have to be taken into account (3rd column in
Table 6.1). Both the deterministic and the non—deterministic procedure provide the
most accurate estimates for Investigation III (.30 < diff(di, ddat) < .33) and the least
accurate estimates for Investigation I (.71 < diff(di,ddat) < .88). This result should be
viewed in consideration of the structure defined on each of the three sets of items. The
surmise relations between items (SRbI) in Investigations I, II, and III contain 42.33%
(381 out of 900), 36.44% (583 out of 1600), and 35.75% (143 out of 400) of all possible
pairs respectively . Thus, the order of accuracy corresponds to the percentage of pairs
contained in each of the relations. More generally, with an increasing number of pairs
in the surmise relation (or, correspondingly, with a decreasing number of knowledge
states) the number of assessment errors increases. This result is plausible, since each
additional pair in a surmise relation leads to an increase in the number of possible
inferences.

Deterministic versus non—deterministic accuracy results A comparison of the
deterministic and the non-deterministic algorithm with respect to accuracy yields
ambiguous results’. The deterministic procedure is more accurate for Investigation
I1, irrespective of the assumed noise probabilities and the chosen stopping criterion
in the non—deterministic procedure (diff(di, ddat) = .60 for the deterministic and
diff(di, ddat) > .74 for the non-deterministic procedure, see Table 6.1, third column).
For Investigation III the deterministic procedure is equally or more accurate than the
non—deterministic procedure for all but one probability specification. With probabil-
ities of n = .2, § = .10, and th = .7 the non—deterministic procedure shows slightly
better results (diff(di, ddat) = .30 versus .31 for the deterministic procedure). Thus,
regarding Investigations II and III, the deterministic procedure should be preferred
over the non-deterministic one?. However, for Investigation I the non-deterministic
procedure proved to be more accurate in five out of the six probability specifications.
Compared to a diff(di, ddat) value of .86 for the deterministic procedure, the five more
accurate non—deterministic assessments yielded values between .71 and .85. Thus, for
Investigation I, the non—deterministic procedure should be preferred over the deter-
ministic one, at least with respect to accuracy.

As one reason for the found ambiguity, C. Hockemeyer (personal communication,
February 25, 2003) suggests that the distribution of lucky guesses and careless errors
in the empirical data sets influence the accuracy of the non—deterministic algorithm’s
estimates. Regarding the symmetric distances between the data sets and the respective
knowledge spaces in the three investigations, the found proportions of careless errors to
lucky guesses (as far as they are contributing to the obtained distances) are as follows:
In Investigation I the relative frequency of careless errors per item and person amounts
to about five times the frequency of lucky guesses (5 = .084, n = .016). In Investiga-

!Because of the ambiguity of the results derived by the continous procedure, the discrete non—
deterministic algorithm was also tested. The results are similar to those found by Hockemeyer (2002),
namely that the discrete procedure is less accurate and less efficient than the continous procedure,
irrespective of the specified stopping criteria and noise level.

2Even with a specification of higher error probabilities, the accuracy of the non-deterministic
procedure does not improve, whereas the number of questions steadily increases.
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tion IT the relative frequency of careless errors equals that of lucky guesses (5 = .076,
n = .075) and in Investigation III there are one and a half times as many careless errors
than lucky guesses (3 = .070, n = .045)3. Thus, careless errors and lucky guesses are
distributed differently in the three investigation, whereas the specified values for the
non—deterministic algorithm are identical for all three investigations (except for 7 in
Investigation IIT). The influence of the high number of careless errors in Investigation
I is reflected by the rapid increase of the non—deterministic algorithm’s accuracy with
increasing (f—values. For the other two investigations, where the differences between
the two noise variables are much smaller, the larger error probabilities do not enhance
the accuracy of the estimates. Nevertheless, probability specifications on the basis
of the values found for the distances between the empirical answer patterns and the
knowledge spaces (see above) yield the same results as the assumed probabilities (with
thresholds of th = .7/.9, diff(di, ddat) = .89/.85, .75/.74, and .32/.32 for Investiga-
tions I, II, and III respectively). The results concerning the better performance of the
deterministic algorithm are still not resolved but under discussion.

Efficiency of the algorithms Looking at the efficiency of the two algorithms, the
deterministic procedure is always the more efficient one, meaning that it asked fewer
questions (4th column in Table 6.1) and therefore lead to greater savings in the number
of necessary questions (last column in Table 6.1). This result was expected, since
the deterministic procedure does not account for noise in the data, but interpretes
each given response as the true knowledge of the testee. With the non—deterministic
assessment the number of posed questions continuously increases (and the savings
decrease) with higher probability specifications for the noise variables or the stopping
criterion. Overall, the savings range from 65.93% to 72.23% for Investigation I, from
47.98% to 67.6% for Investigation II, and from 43.95% to 59.95% for Investigation
ITI. The order of the savings corresponds to the percentage of possible pairs in the
postulated relations (see above, accuracy of the algorithms). Overall, the application
of both algorithms leads to substantial reductions in the number of presented items.

One noteable point is the unexpected result that the specification of a stricter stopping
criterion (th = .9) does not necessarily lead to more accurate assessments, although
the number of questions increases. For example, in Investigation I the probability
specifications n = .16, § = .05, and th = .7 lead to an assessment with an average of
8.42 questions and a resulting distance di of 3.84 (diff(di, ddat) = .85). Keeping the
error and guessing probabilities, but using the stricter stopping criterion of th = .9 leads
to an assessment with 8.79 questions and a resulting distance di of 3.87 (diff(di, ddat)
= .88). Thus, with 1.23% less savings the accuracy of the algorithm decreases by
.03. Although this difference is very small, one would expect that a higher number of
questions should at least result in equally accurate assessments. For Investigations 11
and III, the higher threshold yields almost always the same accuracy but less savings.

Summarizing, the results of the adaptive assessments yield a slight preference for the
deterministic procedure, especially with regard to the trade—off between accuracy and
efficiency. With an always lower amount of presented items, the deterministic algorithm
yields results that are either more accurate (Investigations IT and III) or only slightly

3See footnote on page 104.
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below (Investigations I) the accuracy level reached with the non—deterministic proce-
dure. The overall estimation errors, by which the assessment algorithms contribute
to the distances between the empirical and the estimated response patterns (.30 <
diff(di, ddat) < .88), amount to less than one wronlgy assessed item per response pat-
tern). With savings up to 72.23% of all possible questions, also the efficiency of the
algorithms could be demonstrated.
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The purpose of this study was to develop a model for inductive reasoning tests, which
integrates various problem types and can be implemented into an adaptive testing
system. In order to reach these goals, the theory of knowledge spaces (see Chapter
3) was selected as the methodological framework throughout this study. The theory
proved to be suitable for several reasons.

First of all, by interpreting relationships among problems or tests as surmise or pre-
requisite relations, a set of problems can be structured by means of a partial order,
i.e. independencies between certain items are allowed. The use of partial orders be-
comes especially important when problems from different types of tests are integrated
into a common problem structure. The advantage of prerequisite relations is that the
correct or incorrect solution to a given set of problems can be inferred from previously
obtained answers. Most of the previous research on the establishment of surmise re-
lations covered exactly one domain of information or one test. In this study, problem
types that are usually presented in different tests or subtests have been related. Thus,
the approach of surmise relations between tests (SRbT') was applied (see Section 3.2).
This generalization of a surmise relation between items permits assumptions about the
relationships among sets of items, i.e. tests, and yields therefore more general predic-
tions. This means that it is possible to draw inferences from the solution behavior in
one test to the solution behavior in on or more other tests.

In all three of the reported investigations, the derived SRbT allowed predictions from
the obtained response patterns for one of the tests to the response patterns for the other
test(s). Regarding the results for the postulated SRbT in Investigations I through III,
the derived solution frequencies confirmed all of the postulated relationships between
tests (x? statistics showed that the differences for the respective reversed solution fre-
quencies were statistically not significant). Reconsidering the first scientific problem
(i) presented in Chapter 4, the obtained hypotheses and results show that it is possible
to define meaningful relationships between sets of tests and that the derived models
accurately predict participants’ solution behavior across tests. Thus, it can be con-
cluded that the establishment of surmise relations between tests is a suitable approach
to structure the domain of inductive reasoning.

A second reason for the selection of the applied methodology is that the knowledge
space theory provides approaches for the generation of theoretically founded item and
test structures (see Section 3.3). In order to determine not only the number of items
that are solved by the participants, but also which problem demands are met, the
componentwise ordering principle was chosen for the establishment of the test knowl-
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edge spaces (see Section 3.3.1). The specification of common components and their
attributes followed the psychological findings outlined in Chapter 2 (esp. Section 2.2)
and Section 3.5. By forming the Cartesian product of the components and by defin-
ing difficulty orders on the attributes of each component, a surmise relation between
items and tests was derived for the domain of inductive reasoning (see Section 5.1).
The thereby established hypothesis incorporates all possible attribute combinations
(item classes) and thus, represents the core of the three investigations. Demand anal-
yses of the presented problems show that each item can be assigned to exactly one
of the postulated item classes. Thus, for the first part of the scientific question (ii)
presented in Chapter 4, it can be concluded that various types of inductive reasoning
problems can be described by a set of common components and attributes. The de-
rived test knowledge spaces provide a set of empirically testable hypotheses and allow
precise predictions of individual response patterns. For the validation of the postu-
lated surmise relations and knowledge spaces, the knowledge space theory provides
several methods for each approach (see Section 3.4). The second part of question (ii)
inquires, whether the specified components, their attributes, and the postulated order
on the components and attributes are a valid representation of participants’ solution
behavior. To answer this question, the pairs contained in the postulated surmise re-
lations and the knowledge states contained in the postulated knowledge spaces have
been compared to the empirical response patterns of three investigations. Investigation
I and IIT clearly confirm the postulated model, whereas the results for Investigation II
are ambiguous. The methods via the surmise relation (percentage of correct solutions,
VC, and y-index, see Section 5.3.3.1) are in accordance with the hypothesis, but the
simulation studies on the postulated knowledge space indicate that either the model
assumptions are incorrect or that the noise rate in the data was underestimated (i.e.
B > 0.16 and/or n > 0.15). Considering that the basic model is the same for all three
investigations (see general hypothesis in Section 5.1) and that the participants in Inves-
tigation II were draftees and therefore probably not doing their best while processing
the items, a higher percentage of noise seems to be a reasonable explanation. Thus,
with respect to the second part of question (ii) (see above), it can be concluded that
the component based model accuratly represents the solution behavior of participants.

The final reason for the choice of the methodology is that there already exist algorithms
for adaptive assessments, which are based on knowledge space theory and therefore ac-
count for the theoretical model assumptions. The availability of adaptive assessment
programs facilitated a first implementation and evaluation of the postulated models.
The results (cf. Chapter 6) show that the derived model provides a good basis for the
applied adaptive assessment procedures. For both the deterministic and the proba-
bilistic assessment algorithm, the mean symmetric distances arising from the adaptive
assessments ranged between .30 and .89 items per response pattern, while the savings
ranged between 43.96% and 72.23% of the questions (see Table 6.1). Thus, the algo-
rithms constitute an efficient way to the assessment of knowledge with only very little
costs in the estimations’ accuracy, which answers question (iii) in Chapter 4.

Summarized, the general framework of knowledge space theory served in a variety of
areas, including the generation of hypotheses by establishing surmise relations between
inductive reasoning tests, the prediction of observable behavior, the validation of the
models, and the efficient diagnosis of knowledge within adaptive testing procedures. In
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the remaining part of this chapter, I will take up some issues concerning the selected
test model, the established classification scheme, the used validation methods, and
the applied adaptive assessment algorithms. A short outlook on further research will
conclude this report.

The test model There are two main factors distinguishing the non—numerical knowl-
ege space approach from other approaches to the investigation and assessment of induc-
tive reasoning problems and abilities (see Sections 2.2 and 2.4.2). Firstly, knowledge
space theory provides a framework, in which theoretically founded item and test struc-
tures can be represented without the requirement of homogeneous item sets. In classical
test theory, there are no explicit assumptions made on the factors that determine item
difficulty and the selection of items as well as the estimation of item parameters are
mostly based on an a posteriori analysis. Probabilistic test theory requires a set of
homogeneous items and it is therefore usually necessary to exclude some of the items
from the intended item pool. Moreover, a combination of different problem types seems
not appropriate, because the unidimensionality of items cannot be expected. Secondly,
knowledge space theory directly links the problem descriptions to the resulting in-
terindividual differences in performance. Both classical and probabilistic test theory
describe participants’ performance in the form of test scores or ability parameters,
i.e. the approaches are purly quantitative. The knowledge space approach directly
links the theoretically specified item demands (components or skills) to the observable
solution behavior of participants. That is, it provides, on the one hand, a formal de-
scription of the components that influence task difficulty and, one the other hand, a
formal description of the processes in which individuals differ (i.e. the ability to deal
with the specified problem components for each item). This connection between item
descriptions and empirical response patterns permits an evaluation of the assumed re-
quirements of inductive reasoning problems by providing falsifiable predictions about
the postulated response patterns. This means that a cognitive theory on the problem
components, which are required for the solution of an item, can be evaluated directly
by observing the compatibility of the theoretical knowledge states and the empirical
response patterns. Furthermore, the mentioned link renders not only quantitative but
also qualitative descriptions of participants’ performance on the test(s). The advan-
tage arising from the description of individuals as being in a certain performance state
instead of reaching a certain test score, is that the obtained diagnostic information is
detailed enough to be used for personalized adaptive testing as well as training. With
respect to personalized training, each diagnosed knoweldge state contains information
on the problem demands the testee was able to meet and those he or she is lacking and
therefore needs further training on.

The classification scheme Coming back to the main objective of this study, namely
the construction of a valid test knowledge space for inductive reasoning tests, some
remarks on the specified components are necessary. In order to develop a classification
scheme which integrates various types of inductive reasoning problems, the findings of
earlier research in this field (cf. Sections 2.2 and 3.5) have been considered to define
common components and attributes. Although the description of item classes was
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reduced to those aspects which are inherent in all problem types, the results showed
that the established difficulty order is able to explain the empirical data for the most
part.

In earlier analyses (Albert and Wesiak, 2002; Wesiak and Albert, 2001) of the tests,
we also differentiated between the constraint coming from the salience of the oper-
ations (i.e. the easiness to detect the relevant relations) and the constraint coming
from the set of answer alternatives (referred to as task ambiguity, i.e. the difficulty
or similarity of the alternatives). However, further investigations of the sets of tests
and data showed that the exclusion of the component task ambiguity renders a more
informative structure with a higher number of pairs in the relation (and fewer states
in the knowledge space) by simultaneously maintaining the goodness of fit for the de-
rived test structure. More exactly, the earlier model with six components resulted in
a surmise relation between items with 231 pairs and a corresponding knowledge space
with 553 states (as compared to 351 pairs and 293 states contained in the present
model). The differences in the structure are even more evident when considering that
the earlier model included only 27 instead of 30 items!. With respect to models’ fit,
the validation via the surmise relation yielded a global v—index of .28 for the earlier
model and .36 for the present model, the validation via the knowledge space resulted
in DA coefficients of .29 for the earlier and .30 for the present model. Thus the more
informative model with only five components shows a better fit with respect to the
surmise relation and only slight differences with respect to the knowledge space.

Coming back to classification scheme presented in this report, the results of the various
substructures in each of the investigations have to be taken into account in order to
decide which parts of the classification scheme contribute most to the found deviations.
Considering the obtained results via the surmise relation as well as via the knowledge
space for the investigations’ SRbI, SRxT, and SRwT, refinements of the hypothesis
appear necessary for problems of the type verbal analogy. The results obtained in all
three investigations yield most contradictions for this test. It is necessary to distinguish
between two aspects, namely (a) the comparability of verbal analogies with other types
of problems and (b) the difficulty orders within the analogy tests. With regard to
(a), the component number of operations (component B in the classification scheme)
is probably not as adequate to compare verbal material with other contents. For
numerical and geometric material, the number of operations is based on the varying
number of independent operations that need to be performed to solve the problems.
The terms of verbal analogy items are usually connected by only one semantic relation.
Variations in the number of operations are based on the rationale complexity, i.e. the
number of relevant concepts or elements in the relation (see Section 2.2.1). A better
correspondence for relevant concepts in a semantic relation might be found in the
number of constituent elements in geometric material (number of lines, forms, etc.),
while there are no corresponding features for numerical contents. A thinkable solution
to this discrepancy is to go back to a more general model which does not account for

Due to the different model assumptions the preediting of data and tests (see Section 5.2.3) resulted
in the elimination of 18 items, which lead to a final set of 12 items in the matrix test and 15 items
in the analogy test (as compared to 14 and 16 items in the present investigation). The simultaneous
elimination of incomplete response patterns resulted in a set of 809 patterns (as compared to the
present 572).



159

the number of operations, but only for operation difficulty. In this study, the more
specific variant was chosen, because several earlier studies (cf. Section 2.2) indicate
that the number of operations is an important factor contributing to item difficulty.
Another reason for the assumed comparability of the two kinds of relational complexity
(number of independent operations vs. elements in the semantic rationale) is that both
constitute problem features that influence working memory.

The second issue (b) concerns the item descriptions within the verbal analogy tests. In
Section 2.2.1 several factors that contribute to item difficulty but are not included in
the classification scheme have been reported. Included are word frequency, semantic
distance between the terms, and abstract versus concrete material. In order to find
out whether the components specified in the applied classification scheme need to
be supplemented by components that are specific to certain problem types, several
alternative models have been developed. The component abstract versus concrete
material was investigated for the problems presented in Investigations I and II. Word
frequency was incorporated into a model for Investigation III by specifying analogies
with at least one term of low frequency (less than 20 entries) as more difficult to solve.
The results show that neither the inclusion of abstract versus concrete material nor the
component word frequency improved the model. Of course, the adequacy of the only
available word statistic for German vocabulary (Meier, 1964) has to be questioned for
the language use of today’s participants. In addition, word frequency as contributing
factor to item difficulty has lost its importance in newer research (R. Muhr, personal
communication, June 22, 2001). A more prominent factor is the influence of semantic
distances and collocations. Unfortunately, there is no statistic available yet for German
collocations and a investigation of this component was therefore not possible. However,
these factors are important aspects for future research in this field.

Validation methods The results for the three investigations were obtained by ap-
plying two different methods, namely the validation via the surmise relation and via
the knowledge space. This has the advantage that not only the validity of the various
(sub)structures but also the validity of the applied methods is evaluated. In knowledge
space theory there exists a one-to—one correspondence between a knowledge space and
its respective surmise relation. Hence, the application of methods based on the knowl-
edge space should yield the same results as methods based on the surmise relation. In
addition, the empirical validation of surmise relations between tests requires a sepa-
rated analysis of the test knowledge structure and its substructures. Otherwise it is
not possible to determine in which way different parts of the structure contribute to
the results. Therefore, the validation procedures always included an evaluation of the
surmise relation between items, across, and within tests. Thus, for the two methods
of validation, it is expected that the results for the various structures are equivalent.
As already mentioned in Sections 5.2.4 and 5.3.4, all of the applied validation meth-
ods lead to the same results with respect to the relative fit of the four structures in
Investigations I and II. The same is true for the last investigation, except that the
analysis of relative solution frequencies yields better results for the verbal than for the
geometric analogies. This result is most likely due to the fact, that the analysis of
solution frequencies is the only method, which does not work on an individual level
and gives therefore only a rough estimation of a model’s fit.
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In Section 3.4, I pointed out that floor or ceiling effects can lead to an overestimation of
a model’s fit, because trivial response patterns as well as item pairs where either both
or none of the items are solved correctly are always in accordance with the hypothesis.
The results of the three investigations indicate that overestimations of the goodness
of fit occur mainly for the validation methods via the knowledge space. As already
discussed in Sections 5.3.4 and 5.4.4, the high solution frequencies in Investigation I
had a positive influence on the symmetric distances (cf. Section 5.2.3.2) but not on
the percentage of correct solutions, VC, or the y—index (cf. Section 5.2.3.1). As a
consequence, the model in Investigation I shows the best fitting knowledge space but
the least fitting surmise relation (including the substructures between items, across,
and within tests). Comparing the results of Investigations II and III, which are not
effected by a floor or ceiling effect, the various validation methods correspond to each
other. All of the measures via the surmise relation (Sections 5.3.3.1 and 5.4.3.1) and
via the knowledge space (Sections 5.3.3.2 and 5.4.3.2) indicate that the models between
items, across tests, and within the matrix test show a better fit in Investigation III,
while the model for the verbal analogy test shows always a better fit in Investigation
IT. Thus, it can be concluded, that the various validation methods applied for this
research lead to the same results as long as the respective data set does not contain
any floor or ceiling effects (in this study only a ceiling effect occured, but it is plausible
that floor effects influence the methods via the knowledge space in the same way as
ceiling effects do).

With regard to the surmise relation between tests, one problem of the approach is that
the only existing method to validate a postulated SRbOT is by means of the solution
frequencies, which constitutes the weakest method to validate knowledge space hy-
potheses. All of the remaining validation methods can only be applied to the derived
subrelations or substructures. They are, however, valuable measures to evaluate the
influence of these structures on the overall hypothesis. Thus, there is definitely more
research needed on the development of further validation methods for the SRbT. This
research should also include the development of methods for the statistical validation of
the obtained indices. As for now, only the y—index permits a statistical evaluation be
means of a y? test, but even this measure is rather weak because it only judges whether
the number of concordant pairs is significantly higher than the number of discordant
pairs. For the knowledge space, which renders a frequency distribution of the symmet-
ric distances, the obtained results have been constrasted with the results obtained via
the powersets and simulated data sets. Comparisons with the respective knowledge
spaces’ powersets and random data sets also constitute relatively weak measures, be-
cause the only implication is that the model explains the investigated domain better
than random knowledge structures. The simulations on the hypothesis (probability
simulations) are a much stronger test of the model and therefore a better indicator
for the model’s fit. However, the noise probabilities are unknown and can therefore
only be roughly estimated. The strictest test of the postulated knowledge spaces are
the frequency simulations which consider the solution frequencies of the items and
participants. In this study only the surmise relation between items of Investigation
I performed better than the simulated data matrices. This basically means, that for
all other knowledge spaces the frequencies are an equally well predictor for testee’s
solution behavior as the postulated knowledge states. However, this conclusion might
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be premature, because the postulated model still needs to be refined with respect to
part of its substructures (see above).

A last point concerning the validation methods is the fact that the application of
deterministic models usually leads to difficulties with regard to the interpretation of
deviating response patterns. The problem is that it is not possible to decide whether
contradicting response patterns are a consequence of false model predictions or a con-
sequence of noisy data, i.e. of lucky guesses or careless errors. There are two possible
solutions to this problem. One is the application of probabilistic models, which is up to
now difficult for larger sets of items, because the number of model parameters quickly
increases with the number of states and items (Doignon and Falmagne, 1999). Wickel-
maier (2002), for example, applied Doignon and Falmagne’s (1999, Chapter 7) simple
learning model for a probabilistic validation of the set of data and tests presented in
Investigation III. Based on a data—driven knowledge space with 438 states (derived
via item tree analyis by van Leeuwe, 1974, see Section 3.3) and the investigations’ 121
response patterns, Wickelmaier tried to estimate the probabilities for careless erros,
lucky guesses, and a learning parameter for each item, in order to obtain a probabilis-
tic knowledge space. The validation of the derived model (with 22 possible answer
vectors and 31 estimated parameters) was only possible by the deterministic method
of symmetric distances, whereas the intended probabilistic validation via a x? statistic
(distributed as a random variable) was not computable. Thus, with larger sets of items,
the application of probabilistic models is still problematic. Another approach to the
solution of this problem is the presentation of several items per attribute combination
(item class) combined with the definition of a threshold specifying the percentage of
items that has to be solved per item class. Thereby, it should be possible to determine
whether or not a person has the ability to master the given problem requirements.
In this study, the material was not self-constructed in order to make sure that the
items already proved to be aedequate representatives of the assessed ability domain.
Therefore, the number of items per class varied (between one and five items per item
class) and the described scoring method could not be applied.

Adaptive knowledge assessment In Chapter 6, I outlined several approaches to
the adaptive assessment of knowledge, focusing on two adaptive algorithms that are
based on knowledge space theory. The test knowledge spaces® established for the three
investigations were implemented into a deterministic and a non-deterministic adaptive
assessment algorithm (see Section 6.2). The results presented in Section 6.3.2 show
that the deterministic procedure surpasses the non—deterministic one in efficiency as
well as accuracy. Since this unexpected result is still unresolved, I will in the following
refer to both algorithms. In this research, the adaptive assessment was simulated by
using the already obtained response patterns. Thereby, an evaluation of the models
when applied to adaptive testing procedures was possible by comparing the estimated
patterns to the original ones. The estimation errors arising from the two algorithms
amounted to less than one item per response pattern, while the number of presented
problems was reduced by up to 72.23% (see Table 6.1). Thus, the administration of

2Note that the postulated surmise relation between tests is only considered indirectly by using the
relation across tests for inferences between the tests.
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adaptive tests instead of standard tests with fixed sets of items renders an efficient
approach to the assessment of inductive reasoning abilities.

Using adaptive procedures that are based on knowledge space theory, furthermore,
has the advantage that the assessed knowledge state exactly specifies, which require-
ments or problem demands a participant is able to meet. Knowledge of the specific
attribute combinations somebody is able to master allows for an eventual training that
can concentrate directly on the set of lacking skills. The combination of an efficient
computer—aided diagnosis of a person’s ability level and a precise feedback of the al-
ready acquired and the still lacking problem demands or skills, has the advantage that
personalized training can be delivered on individual demand and without the need of a
human tutor. With respect to the knowledge domain investigated in this research, the
importance of inductive reasoning abilities was also emphasized by Klauer (2001), who
pointed out that the training of inductive reasoning skills improves the development
of fluid intelligence as well as it facilitates learning in academic settings.

Outlook Before implementing the derived test knowledge space into a real diagnostic
system, the problems concerning the order on verbal analogies (see above for the dis-
cussion of the classification scheme) have to be resolved. Furthermore, the development
of a system that is able to diagnose the exact knowledge space of a testee, requires
an expansion of the set of items to an item pool, that covers all possible attribute
combinations.

Starting with the components and attributes used in this investigation, the classifica-
tion system could be generalized to include further materials (such as letters or picto-
rial material) and answer formats. Figure 7.1 illustrates such a classification scheme
in form of a mapping sentence, which corresponds to building the Cartesian product
of the componenents (see also footnote on page 28). The mapping sentence is based
on Klauer’s model of inductive reasoning (see Section 2.3.1, Figure 2.3), but addition-
ally specifies the differentiating requirements for items belonging to the same problem

types.

Based on the possible attribute combinations that are specified in Figure 7.1, the
method of systematical item construction (Albert and Held, 1994, 1999; Held, 1999)
could be applied to obtain a complete set of item classes with several representatives
per class. The presentation of more than one item per class has the advantage that
lucky guesses and careless errors can be accounted for by coding only those item classes
as mastered for which a minimal percentage of items has been answered correctly (e. g.,
two out of three). Such a coding system would of course decrease the efficiency of the
adaptive algorithm. A thinkable solution is to present several items belonging to the
same class only towards the end of the assessment in order to decide which of the
remaining knowledge states represents the true state of the testee. This procedure
is similar to the non-deterministic algorithms described in Section 6.2.2, but instead
of presenting the same item(s) once more, a new item of the same item class would
be presented. Furthermore, the diagnostic system should provide information on the
knowledge state of the person and specify the demands, for which further training is
needed. In addition, the assessment system could be connected to a tutorial system,
which provides immediate learning opportunities. It has already been shown that such
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The solution of inductive reasoning problems requires the extraction of
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Figure 7.1: Mapping sentence for the solution requirements of inductive reasoning
problems

a tutorial system can be implemented on the basis of knowledge space theory (Albert
and Hockemeyer, 1997; Doignon and Falmagne, 1999; Dowling et al., 1996; Hockemeyer,
Held, and Albert, 1998).

As mentioned above, further developments of the classification scheme, the correspond-
ing surmise relation between tests, and the set of items per test are necessary to imple-
ment the psychological findings into a comprehensive diagnostic and tutorial system.
In the reported study, the basic work for this research has been carried out. In order
to obtain more detailed information on the underlying processes participants use to
solve a problem, eye tracking data and verbal reports should be collected. Regarding
the results of the various surmise relations within tests, the model for the matrix test
was best fitting in all three of the investigations. The task analysis of the matrix items
followed for a great part the rules found by Carpenter et al. (1990), who also used
eye tracking data and verbal reports for the specification of the rules. Thus, similar
approaches for the remaining tests should also render more precise information on the
relevant components and their attributes. In the case of several tests, such an investi-
gation should of course include different problem types in order to compare the found
processes with each other.
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Concluding this report, I believe that the established surmise relation between induc-
tive reasoning tests and the first implementations of the three models into adaptive
assessment algorithms provide a promising foundation for further research in this area.
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Appendix A: Mathematical Basics

List of Symbols

A logic and

\ logic or (inclusive)
- negation

= implication

& equivalence

v for all

3 exists

€ is element of

¢ is not element of

U, U union of subsets

N, [\ intersection of subsets

C binary subset relation

C reflexive binary subset relation

AN set, difference

|z | floor of =, denotes the greatest integer less than or equal to x
Kq family of all knowledge states containing item ¢

B, family of all knowledge states containing item ¢ and some item b € B (B, := N[ K,)

179



180 Mathematical Basics

Relations and their properties

Relations are subsets of a Cartesian product, i.e. they are relating elements of sets to one
another. If an ordered pair (z,y) is part of the subset, we write (x,y) € R or xRy, while a
binary relation P is defined as P C AxB.

Properties of relations

Reflexivity Vze€ A[(z,z) € R ]
A relation is reflexive, iff any of its elements bear a relation to themselves.

Irreflexivity Vae A [(z,z) ¢ R ]
A relation is irreflexive, iff none it its elements bear a relation to themselves.

Symmetry Vaz,ye€ Al[(z,y) € R= (y,z) € R]
A relation is symmetric, iff zRy implies yRx for all z,y € A.

Asymmetry Vz,y€ Al(z,y) € R= (y,z) ¢ R]
A relation is asymmetric, iff x Ry implies —yRx for all z,y € A.

Antisymmetry Vz,y€ Al(x,y) € RA(y,z) e R=x=1y|
A relation is antisymmetric, iff x Ry and yRx imply that z = y.

Transitivity Vax,y,z€ A[(z,y) € RA(y,2) € R= (z,2) € R]
A relation is transitive, iff z Ry and yRz together imply xRz.

Connectedness Vz,y€ A [(z,y) € RV (y,x) € R |
A relation is connected, if all elements are related and therefore comparable.

Order relations

An order R is defined on a set @ of problems, such that the order forms the pair (@, R). Order
relations are defined by one or more of the properties presented above. However, orders are
always transitive. In the following, a few examples for order relations are presented together
with their descriptive properties.

e Linear orders, chains, or complete orders
are transitive, reflexive, antisymmetric, and connected.

e Partial orders
are transitive, reflexive, and antisymmetric.

e Antichains
are transitive, reflexive, symmetric, and antisymmetric.

e Quasi orders
are transitive and reflexive.



Appendix B: Material

B.1 Semantic rationales

Table B.1: Semantic rationales for the analogy items in Investigation I

Item class® Items Operation types® Rationales

O1LV4 21 PW B is part of A
26 Cp A causes B
O1LV5 15 CcO A is the opposite of B
17 CO A is the opposite of B
25 PW A is part of B
30 PW A is part of C
O1HV5 27 AT C is an attribute of A
29 AT C is an attribute of A
O2LV5 18 ST B is a device to protect A
O2HV5 22 ST B is an area located in A
24 ST B is a process of regulation in A
O3HV5 20 Cp A is a prerequisite action to undertake B
28 Cp B is art produced by a set of different As
D1LV5 16 SI B is a comparative of A
D1HV5 19 SI B is a comparative of A
D2LV5 23 SI B is a pleasant variant of A

Note. *The components for the description of the item classes (A through E) are ordered
alphabetically. " PW = part-whole, CP = cause purpose, CO = contrast, AT = attribute, ST
= space—time, SI = similar/comparative.
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B Material

Table B.2: Semantic rationales for the analogy items in Investigation II

Item class® Items Operation types® Rationales

O1LV5 21 ST B takes place in A
23 CcO A is the opposite of B

O1HV5 30 AT B is an action of A

O2LV5 36 PW A is a part of B that covers B

O2HV5 35 PW B is a marked off part of A

O3HV5 39 PW A is a part of B that connects other parts of B

D1LV5 22 CI A is a member of B
24 SI A is a coordinate of B
27 SI A is a coordinate of B

D1HV5 25 SI A is a coordinate of B
28 SI A is a comparative of B
32 SI A is a coordinate of B

D2LV5 26 SI B is a coordinate of A that follows A
29 SI A is a two—dimensional coordinate of B
34 SI A is a larger coordinate of B
37 SI A is a coordinate of B living in the same natural

environment

D2HV5 31 SI A is a form of B, which converts into B
33 SI B is a harmonic comparative of A
38 SI A is a more valuable coordinate of B
40 SI A is a consumable coordinate of B

Note. “The components for the description of the item classes (A through E) are ordered
alphabetically. "PW = part-whole, CO = contrast, AT = attribute, ST = space-time, CI =
class inclusion, SI = similar/comparative.

Table B.3: Semantic rationales for the verbal analogy items in Investigation III

Class® Items Operation types’ Rationales
O2HV5 1 Cp A’s purpose is to function as B
O3HV5 4 PW B is a part of A that adds zest to A
) PW B is a period in A occurring in the beginnings of A
D2LV5 2 SI B is a musical coordinate of A
D2HV5 3 SI B is an exaggerated coordinate of A

Note. *The components for the description of the item classes (A through E) are ordered

alphabetically. "PW = part-whole, CP — cause purpose, SI — similar/comparative.
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B.2 Items presented in Investigation III

Items 1-15 are taken from the “Berliner Intelligenzstruktur—Test” (BIS) by Jager et al. (1997),
items 16-20 from the “Wiener Matrizen—Test” (WMT) by Formann and Piswanger (1979). For
Items 11-15 answer alternatives have been added, for items 16-20 three of the eight original
answer alternatives have been removed. Table B.4 depicts the numbers of the original items
in the respective tests and subtests, the corresponding numbers for the present investigation,
and the modified answer formats for items 11-20.

Table B.4: Ttems and modified answer formats for Investigation III

Problem Test Original =~ Present Answer
type (Subtest) item No. item No. alternatives
1 1
3 2
ANy BIS (WA) 4 3
6 4
7 5
1 6
3 7
ANg BIS (AN) 4 8
6 9
7 10
1 11 a)12  b)17 ¢)13 d)14 e) 1l
4 12 a) 7 b) 4 c)b d)9 e) 36
SCy BIS (ZN) 5 13 a) 3 b) 16 ¢)24 d)8 e) 48
7 14 a) 286 b) 584 «¢) 146 d) 283 e) 1168
9 15 a) b84 b) 153 «¢) 292 d) 730 e) 876
C 16 a,b,d, e g
2 17 a, b,c, d, e
MTg WMT 9 18 a, b, c,d, e
22 19 a, b,c,d, e
23 20 a, b, c,d, e
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C.1 Instructions

Liebe Versuchsteilnehmerin, lieber Versuchsteilnehmer!

Gegenstand dieser Untersuchung ist die Strukturierung Induktiver Denktests. Dazu habe
ich einen Test mit 25 verschiedenen Aufgaben zusammengestellt. Je fiinf dieser Aufgaben
sind nach dem gleichen Prinzip zu 16sen. Ich méchte Sie bitten, die folgenden Aufgaben der
Reihe nach zu bearbeiten und zu versuchen, jede einzelne Aufgabe zu 16sen. Da fiir uns die
Beziehungen oder Zusammenhénge zwischen verschiedenen Aufgaben von Bedeutung sind, ist
es wichtig, dafs jede einzelne Aufgabe von Thnen bearbeitet wird. Sie haben insgesamt ca.
30 Minuten Zeit die Aufgaben zu l6sen. Da es sich um verschiedene Arten von Aufgaben
handelt, finden Sie am Anfang des Tests eine kurze Anleitung zum Losen der Aufgaben sowie
ein Beispiel mit bereits vorgegebener Losung.

Fiir statistische Zwecke bendtigen wir zuvor noch einige personliche Angaben sowie einen
von Thnen selbst gewéhlten Code (z.B. Geburtstag eines Elternteils), durch den Sie dann je
nach Wunsch Thre Ergebnisse richtig zuordnen kénnen. Alle Daten werden selbstversténdlich
vertraulich behandelt.

Code

Datum

Schultyp

Schulstufe
Alter
Geschlecht O méannlich O weiblich

Herzlichen Dank fiir Thre Unterstiitzung!!!
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Beispiel 1:

Links stehen die Gruppen A und B mit je sechs grafischen Mustern.

Rechts davon stehen drei Einzelmuster.

Bei jedem Einzelmuster sollen Sie entscheiden, ob es zu Gruppe A oder B gehort. Finden
Sie heraus, wodurch sich die Gruppen A und B unterscheiden. Es gibt immer eindeutige
Unterscheidungsmerkmale.

Streichen Sie dann unter jedem der drei Einzelmuster den Kennbuchstaben der Gruppe (A
oder B) durch, zu der es gehort.

Presentation of the first practice item in the subtest BG of the BIS test.

Beispiel 2:

Welche der Losungen a bis e ist anstelle des Fragezeichens einzusetzen, damit zwischen den
beiden Wortern im ersten Wortpaar dieselbe Beziehung besteht wie zwischen den beiden
Wortern im zweiten Wortpaar?

Streichen Sie den Buchstaben vor dem Losungswort durch.

Presentation of the second practice item in the subtest WA of the BIS test.

Beispiel 3:

Welche der Losungen a bis e ist anstelle des Fragezeichens einzusetzen, damit zwischen den
beiden Figuren hinter dem Gleichheitszeichen dieselbe Beziehung besteht wie zwischen
den beiden Figuren vor dem Gleichheitszeichen?

Streichen Sie den Buchstaben unter der richtigen Losung durch.

Presentation of the first practice item in the subtest AN of the BIS test.

Beispiel 4:

Jede der folgenden Zahlenreihen ist nach einer bestimmten Regel aufgebaut.
Welche der Losungen a bis e ist anstelle des Fragezeichens einzusetzen, um die Reihe nach
dieser Regel fortzusetzen?

Streichen Sie den Buchstaben vor der richtigen Losung durch.

Presentation of the first practice item in the subtest ZN of the BIS test with
following answer alternatives:

a)19 b)34 ¢)20 d)15 «¢)23
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Beispiel 5:

Die Figuren links in der Abbildung (eingerahmt) sind nach bestimmten Regeln geordnet.
Welche der Losungen a bis e ist anstelle des Fragezeichens einzusetzen, damit die Anordnung
sinnvoll vervollstandigt wird?

Streichen Sie den Buchstaben vor der richtigen Losung durch.

Presentation of the practice item A in the WMT without the answer alternatives
f, g, and h.

Es folgen nun pro Beispiel 5 Aufgaben, wobei die Reihenfolge der Aufgaben zufillig gewahlt
wurde. Bitte bearbeiten Sie die Aufgaben der Reihe nach und versuchen Sie fiir jede
Aufgabe eine Losung zu finden.

Streichen Sie entweder den Kennbuchstaben der Gruppe (Beispiel 1) oder den Buchstaben
vor /unter der richtigen Losung durch (Beispiele 2-5).

Presentation of the test items.
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Liebe Versuchsteilnehmerin, lieber Versuchsteilnehmer!

Bitte {iberpriifen Sie nochmals, ob Sie wirklich alle Aufgaben bearbeitet haben. Wenn ja,
nehmen Sie sich bitte noch kurz Zeit, um die folgenden Fragen zu beantworten.

Ich habe schon einmal einen Intelligenztest dieser Art durchgefiihrt. [ JA [ NEIN

Die Aufgaben der Art “Beispiel 1”7 waren fiir mich

O sehr leicht [ eher leicht O eher schwer  [O sehr schwer  zu l6sen.

Die Aufgaben der Art “Beispiel 2” waren fiir mich

O sehr leicht O eher leicht O eher schwer [ sehr schwer  zu losen.

Die Aufgaben der Art “Beispiel 3” waren fiir mich

O sehr leicht [ eher leicht O eher schwer  [O sehr schwer  zu l6sen.

Die Aufgaben der Art “Beispiel 4” waren fiir mich

O sehr leicht [ eher leicht O eher schwer  [O sehr schwer  zu l6sen.

Die Aufgaben der Art “Beispiel 5”7 waren fiir mich

O sehr leicht O eher leicht O eher schwer [ sehr schwer  zu losen.

Danke fiir Ihre Mitarbeit!!!

C.2 Randomization

The sequence of the 25 items (5 items per example) was randomized for four different groups.
Random orders were computed with the program permute by C. Hockemeyer.

Sequences:

A)196252032111158132212101623172524418149 17
B)14222395218121115619212410172034138116257
C)11918217624234112125131431622159251720108
D)31818162311192071217424101362215259211425



Appendix D: List of Programs

All programs used for this study are available at the Cognitive Science Section at the Uni-
versity of Graz. For a detailed description the reader is referred to Hockemeyer (2001),
Hockemeyer and Potzi (2001), Pétzi (2001), and Poétzi and Wesiak (2001).

Programs for the generation of hypotheses

e patt-statistics counts the number of complete response patterns for various numbers
of items

e delete-not-ans deletes a specified number of items and the remaining incomplete
response patterns (items are deleted in the reversed order of the number of provided
responses)

e bas2srbi transforms a base into a relation

e srbi-part2srbt computes a surmise relation between tests from a surmise relation
between items and a partition into tests

e tests-properties computes the properties of a surmise relation between tests (left—,
right—, and total-coveringness, antisymmetry, and connectedness)

Programs for the validation of hypotheses

e partitions computes, among other functions, the relative solution frequencies for each
item

e getca computes the index VC
e valid computes the index ~
e constr constructs the knowledge space for a given base

e distance computes the frequency distribution plus the mean, standard deviation, and
median for the minimal symmetric distances between a set of response patterns and a
knowledge space as well as the invalidity of items with respect to careless errors and
lucky guesses

e random-patterns computes random response patterns
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e simple-sim simulates response patterns under consideration of the knowledge space
and noise variables (careless errors and lucky guesses)

e polydif* simulates response patterns under consideration of the solution frequencies
for items and persons

Programs for the adaptive assessment algorithms

e space-assess deterministic adaptive assessment algorithm, which estimates response
patterns on the basis of a knowledge space

e halfsplit-assess non—deterministic adaptive assessment algorithm, which estimates
response patterns on the basis of a knowledge space under consideration of noise prob-
abilities

Other

e permute permutes a number sequence
e LaTeX typesetting system for the production of technical and scientific documentation
e Micrografx drawing and diagraming software

e Microsoft Visio drawing and diagraming software



Appendix E: Hypotheses

E.1 Relation files

Relation files for Investigation I

SRbI

SRxT

30

110101011111110101110111001110
010000011010110000010111000100
011101011111110101110111001110
000100011010110000010111000100
010111011111110101110111001110
000001011010110000110101000100
010101111111110101110111001110
000000010010110000010000000100
000000001010110000010000000100
000000011110110000010111000100
000000000010000000000000000000
000000011011110000010111000100
000000000000100000000000000000
000000000000010000000000000000
111111111111111101110111001110
000000000000010100100010000000
111111111111110111110111001110
010100011111110001010111000100
000000000000010000100000000000
000000000010100000010000000000
111111111111111111111111101111
000000011010110000010100000100
000000000000010000000010000000
000000011010110000010001000100
111111111111110101110111101110
111111111111111111110111111111
000001011010110000110101001100
000000000010100000000000000100
000001011010110000110101000110
111111111111110101110111001111

30

100000000000000101110111001110
010000000000000000010111000100
001000000000000101110111001110
000100000000000000010111000100
000010000000000101110111001110
000001000000000000110101000100
000000100000000101110111001110
000000010000000000010000000100
000000001000000000010000000100
000000000100000000010111000100
000000000010000000000000000000
000000000001000000010111000100
000000000000100000000000000000
000000000000010000000000000000
111111111111111000000000000000
000000000000010100000000000000
111111111111110010000000000000
010100011111110001000000000000
000000000000010000100000000000
000000000010100000010000000000
111111111111110000001000000000
000000011010110000000100000000
000000000000010000000010000000
000000011010110000000001000000
111111111111110000000000100000
111111111111110000000000010000
000001011010110000000000001000
000000000010100000000000000100
000001011010110000000000000010
111111111111110000000000000001
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E Hypothesis

SRwMT

SRwWAN

14

11010101111111
01000001101011
01110101111111
00010001101011
01011101111111
00000101101011
01010111111111
00000001001011
00000000101011
00000001111011
00000000001000
00000001101111
00000000000010
00000000000001

16

1101110111001110
0100100010000000
0111110111001110
0001010111000100
0000100000000000
0000010000000000
1111111111101111
0000010100000100
0000000010000000
0000010001000100
0101110111101110
1111110111111111
0000110101001100
0000000000000100
0000110101000110
0101110111001111




Relation files
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Relation files for Investigation II

SRbI

SRxT

40

1011110011111111111101011111111111111111
0111110011111111111101011111111111111111
0010000000000111111100001001001110100111
0001000000000111111100001001001110100111
0000100000001111111100000100101011101111
0000010000000111111100001001001110100111
0011111011111111111101011111111111111111
0011110111111111111101011111111111111111
0000000010001111111100000100101011101111
0000000001001111111100000100101011101111
0000000000101111111100000100101011101111
0000000000011111111100000100101011101111
0000000000001000010100000000001010000101
0000000000000100010100000000001010000111
0000000000000010010100000000001010000111
0000000000000001010100000000001010000111
0000000000000000110100000000001010000111
0000000000000000010100000000000000000000
0000000000000000011100000000001010000111
0000000000000000000100000000000000000000
1111111111111111111111011111111111111111
0000000000001000010101001101101111001101
1111111111111111111101111111111111111111
0000000000001000010100011101101111001101
0000000000000000010100001000001010000101
0000000000001000010100000100001010000101
0000000000001000010100001111101111001101
0000000000000000010100000001001010000101
0000000000001000010100000000101010000101
0011010000000111111100001001011110100111
0000000000000000010100000000001000000000
0000000000000000010100000000001110000101
0000000000000000010100000000000010000000
0000000000001000010100000000001011000101
0000000000000111111100000000001010100111
0000100011111111111100000100101011111111
0000000000001000010100000000001010001101
0000000000000000010100000000000000000100
0000000000000000000100000000000000000010
0000000000000000010100000000000000000001

40

1000000000000000000001011111111111111111
0100000000000000000001011111111111111111
0010000000000000000000001001001110100111
0001000000000000000000001001001110100111
0000100000000000000000000100101011101111
0000010000000000000000001001001110100111
0000001000000000000001011111111111111111
0000000100000000000001011111111111111111
0000000010000000000000000100101011101111
0000000001000000000000000100101011101111
0000000000100000000000000100101011101111
0000000000010000000000000100101011101111
0000000000001000000000000000001010000101
0000000000000100000000000000001010000111
0000000000000010000000000000001010000111
0000000000000001000000000000001010000111
0000000000000000100000000000001010000111
0000000000000000010000000000000000000000
0000000000000000001000000000001010000111
0000000000000000000100000000000000000000
1111111111111111111110000000000000000000
0000000000001000010101000000000000000000
1111111111111111111100100000000000000000
0000000000001000010100010000000000000000
0000000000000000010100001000000000000000
0000000000001000010100000100000000000000
0000000000001000010100000010000000000000
0000000000000000010100000001000000000000
0000000000001000010100000000100000000000
0011010000000111111100000000010000000000
0000000000000000010100000000001000000000
0000000000000000010100000000000100000000
0000000000000000010100000000000010000000
0000000000001000010100000000000001000000
0000000000000111111100000000000000100000
0000100011111111111100000000000000010000
0000000000001000010100000000000000001000
0000000000000000010100000000000000000100
0000000000000000000100000000000000000010
0000000000000000010100000000000000000001
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SRwMT

SRwWAN

20

10111100111111111111
01111100111111111111
00100000000001111111
00010000000001111111
00001000000011111111
00000100000001111111
00111110111111111111
00111101111111111111
00000000100011111111
00000000010011111111
00000000001011111111
00000000000111111111
00000000000010000101
00000000000001000101
00000000000000100101
00000000000000010101
00000000000000001101
00000000000000000101
00000000000000000111
00000000000000000001

20

11011111111111111111
01001101101111001101
01111111111111111111
00011101101111001101
00001000001010000101
00000100001010000101
00001111101111001101
00000001001010000101
00000000101010000101
00001001011110100111
00000000001000000000
00000000001110000101
00000000000010000000
00000000001011000101
00000000001010100111
00000100101011111111
00000000001010001101
00000000000000000100
00000000000000000010
00000000000000000001

Relation files for Investigation III

SRbI

SRxT

20

10111000100100100011
01100100110000100011
00100000100000000011
00010000000000000001
00001000000000000001
00100100110000100011
00100010100000100011
11111111111111111111
00000000100000000001
00000000010000000001
11111100111111101111
00000000000100000001
00011000010110000001
00100100110001100011
00000000100000100011
10111010100100110011
11111100110111101011
11111100110111100111
00000000000000000011
00000000000000000001

20

10000000100100100011
01000100110000100011
00100000100000000011
00010000000000000001
00001000000000000001
00100100000000100011
00100010000000100011
11111001001111111111
00000000100000000001
00000000010000000001
11111100111000001111
00000000000100000001
00011000010010000001
00100100110001000011
00000000100000100011
10111010100100110000
11111100110111101000
11111100110111100100
00000000000000000010
00000000000000000001
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SRwANy SRwANg SRwSCy SRwMTg

) ) 5

10111 10011 11111
01100 01010 01000
00100 11111 01100
00010 00010 00011
00001 00001 00001

)

10011
01011
00111
00011
00001

E.2 Base files

Base files for Investigation I

KSbI KSaxT
30 30
30 30

100000000000002020002000220002
212020200000002022002000220002
001000000000002020002000220002
202120200000002022002000220002
000010000000002020002000220002
202021200000002020002000222022
000000100000002020002000220002
222222210202002022002202222022
222222201202002022002202222022
202020200100002022002000220002
222222222212002022022202222222
202020200001002022002000220002
222222222202102022022202222222
222222222202012222202222222022
000000000000001000002000020000
202020200000002120002000220002
000000000000000010002000020000
202020200000002021002000220002
202022200000002220102000222022
222222222202002022012202222022
000000000000000000001000000000
222222200202002022002100222022
222220200202002222002010220002
222222200202002022002001222022
000000000000000000002000120000
000000000000000000000000010000
202020200000002020002000221002
222222222202002022002202222122
202020200000002020002000220012
000000000000000000002000020001

100000000000002020002000220002
010000000000002022002000220002
001000000000002020002000220002
000100000000002022002000220002
000010000000002020002000220002
000001000000002020002000222022
000000100000002020002000220002
000000010000002022002202222022
000000001000002022002202222022
000000000100002022002000220002
000000000010002022022202222222
000000000001002022002000220002
000000000000102022022202222222
000000000000012222202222222022
000000000000001000000000000000
202020200000000100000000000000
000000000000000010000000000000
202020200000000001000000000000
202022200000000000100000000000
222222222202000000010000000000
000000000000000000001000000000
222222200202000000000100000000
222220200202000000000010000000
222222200202000000000001000000
000000000000000000000000100000
000000000000000000000000010000
202020200000000000000000001000
222222222202000000000000000100
202020200000000000000000000010
000000000000000000000000000001
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E Hypothesis

KSwMT

KSwAN

14

14

10000000000000
21202020000000
00100000000000
20212020000000
00001000000000
20202120000000
00000010000000
22222221020200
22222220120200
20202020010000
22222222221200
20202020000100
22222222220210
22222222220201

16

16

1000002000020000
2120002000220002
0010002000020000
2021002000220002
2220102000222022
2022012202222022
0000001000000000
2022002100222022
2222002010220002
2022002001222022
0000002000120000
0000000000010000
2020002000221002
2022002202222122
2020002000220012
0000002000020001
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Base files for Investigation II

KSbI KSxT
40 40
40 40

1000000000000000000020200000000000000000
0100000000000000000020200000000000000000
2210002200000000000020200000020000000000
2201002200000000000020200000020000000000
2200102200000000000020200000000000020000
2200012200000000000020200000020000000000
0000001000000000000020200000000000000000
0000000100000000000020200000000000000000
2200002210000000000020200000000000020000
2200002201000000000020200000000000020000
2200002200100000000020200000000000020000
2200002200010000000020200000000000020000
2200202222221000000022220220200002022000
2222222222220100000020200000020000220000
2222222222220010000020200000020000220000
2222222222220001000020200000020000220000
2222222222220000100020200000020000220000
2222222222222222212022222222222222222202
2222222222220000001020200000020000220000
2222222222222222222122222222222222222222
0000000000000000000010000000000000000000
2200002200000000000021200000000000000000
0000000000000000000000100000000000000000
2200002200000000000020210000000000000000
2222022200000000000022221020020000000000
2200202222220000000022220120000000020000
2200002200000000000020200010000000000000
2222022200000000000022220021020000000000
2200202222220000000022220020100000020000
2200002200000000000020200000010000000000
2222222222222222202022222222221202222000
2222022200000000000022220020020100000000
2222222222222222202022222222220212222000
2200202222220000000022220020000001020000
2222222222220000000020200000020000120000
2200002200000000000020200000000000010000
2200202222220000000022220020000000021000
2222222222222222202022222222220202222100
2222222222220222202020200000020000220010
2222222222222222202022222222220202222001

1000000000000000000020200000000000000000
0100000000000000000020200000000000000000
0010000000000000000020200000020000000000
0001000000000000000020200000020000000000
0000100000000000000020200000000000020000
0000010000000000000020200000020000000000
0000001000000000000020200000000000000000
0000000100000000000020200000000000000000
0000000010000000000020200000000000020000
0000000001000000000020200000000000020000
0000000000100000000020200000000000020000
0000000000010000000020200000000000020000
0000000000001000000022220220200002022000
0000000000000100000020200000020000220000
0000000000000010000020200000020000220000
0000000000000001000020200000020000220000
0000000000000000100020200000020000220000
0000000000000000010022222222222222222202
0000000000000000001020200000020000220000
0000000000000000000122222222222222222222
0000000000000000000010000000000000000000
2200002200000000000001000000000000000000
0000000000000000000000100000000000000000
2200002200000000000000010000000000000000
2222022200000000000000001000000000000000
2200202222220000000000000100000000000000
2200002200000000000000000010000000000000
2222022200000000000000000001000000000000
2200202222220000000000000000100000000000
2200002200000000000000000000010000000000
2222222222222222202000000000001000000000
2222022200000000000000000000000100000000
2222222222222222202000000000000010000000
2200202222220000000000000000000001000000
2222222222220000000000000000000000100000
2200002200000000000000000000000000010000
2200202222220000000000000000000000001000
2222222222222222202000000000000000000100
2222222222220222202000000000000000000010
2222222222222222202000000000000000000001
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E Hypothesis

KSwMT

KSwAN

20

20

10000000000000000000
01000000000000000000
22100022000000000000
22010022000000000000
22001022000000000000
22000122000000000000
00000010000000000000
00000001000000000000
22000022100000000000
22000022010000000000
22000022001000000000
22000022000100000000
22002022222210000000
22222222222201000000
22222222222200100000
22222222222200010000
22222222222200001000
22222222222222222120
22222222222200000010
22222222222222222221

20

20

10000000000000000000
21200000000000000000
00100000000000000000
20210000000000000000
22221020020000000000
22220120000000020000
20200010000000000000
22220021020000000000
22220020100000020000
20200000010000000000
22222222221202222000
22220020020100000000
22222222220212222000
22220020000001020000
20200000020000120000
20200000000000010000
22220020000000021000
22222222220202222100
20200000020000220010
22222222220202222001

Base files for Investigation 111

KSbI

KSxT

20

20

10000002002000022200
01000002002000002200
22100222002002022200
20010002002020022200
20001002002020022200
02000102002002002200
00000012000000020000
00000001000000000000
22200222102002222200
02000202012022002200
00000002001000000000
20000002002120022200
00000002002010002200
00000002002001002200
22000222002002122200
00000002000000010000
00000002002000001000
00000002002000000100
22200222002002222210
22222222222222222221

20

20

10000002002000022200
01000002002000002200
00100222002002022200
00010002002020022200
00001002002020022200
02000100002002002200
00000010000000020000
00000001000000000000
22200000102002222200
02000000012022002200
00000002001000000000
20000002000100022200
00000002000010002200
00000002000001002200
22000222000000122200
00000002000000010000
00000002002000001000
00000002002000000100
22200222002002200010
22222222222222200001
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KSwANy KSwANg KSwSCy KSwMTq
5 5 5 5

5 5 5 5

10000 10200 10000 10000
01000 01200 21200 01000
22100 00100 20100 00100
20010 22210 20010 22210
20001 20201 20021 22221







Appendix F: Results

The data files for Investigations I and II are confidential and therefore only available after
consultation with the HPD in Vienna or the PDB in Bonn. The data file for Investigation 111
is available at the Cognitive Science Section, Department of Psychology, University of Graz.

F.1 Relative solution frequencies

Table F.1: Relative solution frequencies for items in Investigation I (N = 572)
Matrices Analogies

97.73 8 8217 |15 8776 22 84.44 29 88.46

93.71 9 8147 |16 8741 23 80.42 30 83.39

97.55 10 9091 | 17 7780 24 89.51

89.69 11 62.41 |18 89.34 25 89.51

99.48 12 79.02 |19 87.06 26 90.91

87.59 13 7238 |20 70.10 27 83.92

95.10 14 59.79 |21 89.86 28 70.98

N O U W N =

Table F.2: Relative solution frequencies for items in Investigation II (N = 2628)

Matrices Analogies

1 8421 6 7150 11 b54.15 16 1583 |21 82.84 26 61.68 31 31.85 36 55.25
2 9338 7 7561 12 65.03 17 36.04 | 22 96.35 27 71.39 32 50.68 37 45.09
3 7066 8 7553 13 2283 18 12.60 | 23 7835 28 49.35 33 23.63 38 25.19
4 7264 9 4456 14 3493 19 913 |24 7629 29 5392 34 4136 39 15.41
5 6598 10 53.69 15 2557 20 898 |25 44.60 30 61.26 35 38.70 40 28.77

Table F.3: Relative solution frequencies for items in Investigation III (N = 121)
ANy ANG SCx MTg

1 6116 | 6 6281 |11 93.39 |16 92.56
2 6281 | 7 76.86 |12 65.29 | 17 100

3 5372 | 8 90.08 |13 72.73 |18 87.60
4 2562 | 9 5289 |14 7438 |19 24.79
5 46.28 | 10 67.77 | 15 58.68 | 20 16.53
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F.2 y? Statistics for reversed solution frequencies

With the a—adjustment for item classes involved in multiple y? tests, the a-level should be
reduced. However, because the model postulates that there are no significant differences, the
a—adjustment would lead to a weaker test of the hypothesis and was therefore disregarded.

Table F.4: y? Statistics for reversed solution frequencies in Investigation I

Item pair Solution frequencies %
(0,1,H,V,5)/(0,2,H,V,5) 493/497 0.02, n.s.
(0,1,H,V,5)/(D,1,H,V,5) 493/498 0.03, n.s.
(0,1,L,V,5)/(0,1,H,V.5) 484/493 0.08, n.s.
(0,1,L,V,5)/(0,2,L.,V,5) 484 /511 0.73, n.s.
(0,1,L,V,5)/(D,1,L,V.5) 484 /500 0.26, n.s.
(0,1,L,V,5)/(0,2,H,V.5) 484 /497 0.19, n.s.
(0,1,L,V,5)/(D,1,H,V,5) 484 /498 0.20, n.s.
(0,1,H,G,8)/(0,1,H,V.5) 501/493 0.06, n.s.
(0,1,H,G,8)/(0,1,L,V,5) 501/484 0.29, n.s.
(0,2,L,G,8)/(0,1,L,V,5) 505/484 0.46, n.s.
(0,1,1,G,8)/(0,1,L,V,5) 558 /484 5.19, s.
(0,1,L,G,8)/(0,1,L,,V4) 558 /517 1.53, n.s.

Note. For all x? tests, df = 1; X%a:.05) = 3.84 and X%a:.Ol) = 6.63

Table F.5: x? Statistics for reversed solution frequencies in Investigation II

Item pair Solution frequencies %
(D,1,L,V,5)/(0,1,L,V,5) 2138/2118 0.09, n.s.
(0,1,L,G,8)/(0,1,L,V,5) 2160/2118 0.41, n.s.
(0,1,H,G,8)/(0,1,H,V,5) 1882/1610 21.19, s.s.
(0,2,,G,8)/(0,2,L,V,5) 1490/1452 0.49, n.s.
(D,2,H,V,5)/(D,2,L,G,8) 719/600 10.74, s.s.
(D,2,H,V,5)/(0,2,H,G,8) 719/639 4.76,  s.

Note. For all x? tests, df = 1; X%a:.05) = 3.84 and X(2a:.01) =6.63

Table F.6: x? Statistics for reversed solution frequencies in Investigation III

Item pair Solution frequencies %
AN(D,3,L,G)/AN(D2.L,G) 82/76 0.23, n.s.
AN(D,3,L,G)/AN(D,2,L,V) 82/76 0.23, n.s.
SC(0,3,H,N)/AN(0O,2,H,V) 79/74 0.16, n.s.
SC(0,2,L,N)/AN(0,1,L,G) 113/109 0.07, n.s.
MT(0,2,L,G)/AN(O,1,L,G) 114/109 0.09, n.s.
MT(O,1,H,G)/AN(O,1,L,G) 112/109 0.04, n.s.
MT(0,2,L,G)/SC(0,2,L,N) 114/113 0.01, n.s.

Note. For all x? tests, df = 1; X%a:.05) = 3.84 and X(za:.m) = 6.63
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F.3 Distance distributions

The powersets (dpot) for surmise relations with 30 or 40 items are based on 20,000 random
response patterns. For the probability simulations (dsim,,) the probabilities for lucky guesses
correspond to the respective number of answer alternatives (e.g., n = 0.2 for five alternatives)
and the probabilities for careless errors vary between 0.05 < 8 < 0.15.

Table F.7: Distance distributions for the surmise relations between items and across
tests in Investigation I

SRbI SRxT
div | ddat dpot dsim, dsim, dsim; | ddat dpot dsim, dsim, dsimy
0 53 0 0 22.07 55.04 81 1 0.02 82.35 90.39
1| 101 0 0 73.57 102.99 | 169 27 0.74 165.47 159.87
2| 117 2 0.03 121.33 108.58 | 166 169 4.85 161.56 163.26
3| 109 7 0.28 132.07 99.28 | 102 755 21.65 100.34 101.93
4 72 60 1.23 104.74  78.39 42 2118  60.03  44.24  40.94
5 44 152 4.73 65.54  51.75 7 4081 116.94 14.23  12.19
6 33 500 14.01  32.84 33.61 4 5429 154.29 3.28 2.91
7 24 1130 33.82 13.60 20.70 0 4497 129.95 0.47 0.46
8 7 2163  62.47 4.55  11.27 1 2287  65.07 0.06 0.06
9 5 3288  94.68 1.33 5.86 0 58 16.82 0.01 0.01
10 3 4029 113.39 0.29 2.67 0 50 1.62 0 0
11 3 3905 110.10 0.07 1.17 0 1 0.02 0 0
12 1 2868  82.10 0.01 0.35 0 0 0 0 0
13 0 1453  42.42 0 0.05 0 0 0 0 0
14 0 422 12.01 0 0.01 0 0 0 0 0
15 0 21 0.72 0 0 0 0 0 0 0

Note. The values for dsim,, dsim,, and dsimy; denote the averaged distances derived from
1000 data sets each (N = 572 per data set).

Table F.8: Distance distributions for the surmise relations within tests

Investigation I
Matrices Analogies

div | ddat dpot dsim, dsim, dsim; | ddat dpot  dsim, dsim, dsimy

0| 260 57 2.06 181.88 253.39 | 166 71 0.58 112.16 164.83

1 187 506 1777  222.53 188.97 | 182 743 6.53 186.00 178.07

2 89 1938  67.73 122.00 9745 | 114 3474  30.79 153.50 118.48

3 30 4087 143.02 37.65 27.53 61 9494  82.87 81.68  63.07

4 5 5068 175.89 7.12 4.33 30 16568 144.17  29.79 29.98

5) 1 3619 127.00 0.79 0.32 13 18620 162.96 7.60 13.12

6 0 1074  37.48 0.04 0.01 6 12508 108.34 1.16 3.92

7 0 35 1.12 0 0 0 3879 34.19 0.11 0.52

8 0 179 1.58 0 0.02

n

Note. The values for dsim,, dsim,, and dsim; denote the averaged distances derived from
1000 data sets each (N = 572 per data set).
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Table F.9: Distance distributions for the surmise relations between items and across
tests in Investigation II

SRbI SRxT
di | ddat dpot dsim, dsim, | ddat dpot dsim, dsim,
0 4 0 0 63.34 7 0 0 247.68
1 23 0 0 237.75 51 0 0.12 563.31
2 95 0 0 441.10 | 219 14 0.24 667.07
3| 196 1 0.08 553.77 | 436 54 4.24 545.23
4| 371 4 0.44 518.34 | 545 221  30.66 340.04
5| 407 13 1.57 383.75 | 538 788 101.20 169.39
6| 450 53 6.82 232.70 | 427 1929 245.78  67.50
71 396 136  20.44 117.33 | 250 3423 462.76  21.46
8| 298 373 50.44  50.77 | 108 4659 616.63 5.28
9| 207 851 113.53  18.37 40 4585 602.43 0.91
10 | 104 1534 201.60 5.67 6 2928 381.63 0.10
11 50 2327 305.19 1.58 1 1155 146.58 0.01
12 20 2950 398.10 3.05 0 233 29.37 0
13 4 3402 439.74 0.19 0 8 2.31 0
14 2 3155 404.48 0.09 0 3 0.05 0
15 0 2367 319.49 0.06 0 0 0 0
16 1 1604 206.66 0.04 0 0 0 0
17 0 854 108.27 0.04 0 0 0 0
18 0 284 3991 0.03 0 0 0 0
19 0 83  10.34 0.03 0 0 0 0
20 0 9 0.91 0.01 0 0 0 0

Note. The values for dsim, and dsim,, denote the averaged distances derived from 1000 data
sets each (N = 2628 per data set).

Table F.10: Distance distributions for the surmise relations

Investigation II

within tests

Matrices Analogies
di | ddat dpot  dsim, dsim, | ddat dpot  dsim, dsim,
0| 376 343 0.94 57227 | 141 484 1.42  435.12
1| 809 4188  10.08 925.03 | 522 5532  14.08 838.35
2] 763 23118 58.86 692.87 | 742 28570  72.80 745.43
3| 438 75807 190.52 315.06 | 678 87831 217.63 405.07
4| 170 163443 408.97 96.25 | 376 178174 447.94 152.49
5 59 242350 607.73  20.94 | 133 249633 625.18  41.69
6 11 250902 623.11 3.19 31 244653 614.20 8.45
7 2 179511 455.90 0.35 5 164766 411.71 1.25
8 0 84672 211.95 0.03 0 71678 179.24 0.13
9 0 22772  56.66 0.01 0 16529  42.08 0.01
10 0 1470 3.29 0.01 0 726 1.73 0

mn

Note. The values for dsim, and dsim, denote the averaged distances derived from 1000 data
sets each (N = 2628 per data set).
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Table F.11: Distance distributions for the surmise relations between items and across
tests in Investigation III

SRbI SRxT
di | ddat dpot  dsim, dsim, dsimy | ddat dpot dsim, dsim, dsimy
0 13 255 0.02 1740 9.83 15 484 0.04 18.10
1 20 3222 0.46 33.68 25.33 28 5810 0.74 36.54 11.91
2 37 18555 2.14  34.38  35.26 37 31154 3.63 35.10 31.37
3 31 64135 7.65 2142  29.06 28 98178 11.44 20.34  37.75
4 12 147361 16.94 9.34 15.26 7 200524  23.20 8.10  25.57
5 5 234974  26.64 3.33 5.01 5 274744  31.38 2.32  10.93
6 2 262215 30.13 1.13 1.12 1 250847  28.77 0.43 2.89
7 1 199331 23.13 0.32 0.13 0 143689 16.87 0.06 0.53
8 0 94605 11.00 0.02 0.01 0 40800 4.69 0.01 0.05
9 0 22685 2.77 0 0.01 0 2346 0.24 0 0.01
10 0 1238 0.14 0 0 0 0 0 0

Note. The values for dsim,, dsim,, and dsim; denote the averaged distances derived from
1000 data sets each (N = 121 per data set).

Table F.12: Distance distributions for the surmise relations within tests
Investigation III
ANy ANg
di | ddat dpot dsim, dsim, ddat dpot dsim, dsim, dsimg
0 81 14 52.92 96.13 71 9 34.15 84.58 71.72
1 38 15 56.72  23.63 43 16  60.40 32.57 42.94
2 2 3 11.54 1.24 7 7 26.46 3.85 6.34
SCy MTe
di | ddat dpot dsim, dsim, dsim; | ddat dpot dsim, dsim, dsimy
0 92 10  37.89 86.91 91.12 104 10 38.06 81.95 0.03
1 28 16  60.55 30.92 27.02 17 18 67.81 37.06 17.91
2 1 6 22.55 3.17 2.86 0 4 15.13 1.99 103.06

mn

Note. The values for dsim,, dsim,, and dsim; denote the averaged distances derived from
1000 data sets each (N = 121 per data set).
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F.4 Invalidity of items

Table F.13: Invalidity of items in Investigation I

Item Invalidity Guesses Errors
abs. rel. abs. rel. abs. rel.
1 11.50 0.020 0.00 0.000 11.50 0.020
2 30.50 0.053 0.50 0.001  30.00 0.052
3 13.50 0.024 0.50 0.001  13.00 0.023
4 49.50 0.087 0.50 0.001  49.00 0.086
5 2.50 0.004 0.50 0.001 2.00 0.003
6 60.17 0.105 5.00 0.009 55.17 0.096
7 26.50 0.046 0.00 0.000 26.50 0.046
8 7837 0.137 1290 0.023 65.47 0.114
9 7533 0.132 12.83 0.022 62.50 0.109
10 39.80 0.070 0.00 0.000 39.80 0.070
11 4777 0.084 47.77 0.084 0.00 0.000
12 108.80 0.190 0.00 0.000 108.80 0.190
13 57.58 0.101 57.58 0.101 0.00 0.000
14 56.80 0.099 56.80 0.099 0.00 0.000
15 68.50 0.120 0.00 0.000 68.50 0.120
16 53.17 0.093 0.50 0.001  52.67 0.092
17 12550 0.219 0.00 0.000 125.50 0.219
18 60.50 0.106 0.50 0.001  60.00 0.105
19 2383 0.042 13.17 0.023 10.67 0.019
20  94.03 0.164 1853 0.032 75.50 0.132
21 57.00 0.100 0.00 0.000  57.00 0.100
22 7487 0.131 9.20 0.016 65.67 0.115
23 25.73 0.045 7.37 0.013 18.37 0.032
24 4943 0.086 9.33 0.016 40.10 0.070
25 5850 0.102 0.00 0.000  58.50 0.102
26 50.50 0.088 0.00 0.000  50.50 0.088
27 79.50 0.139 0.50 0.001  79.00 0.138
28 85.82 0.150 18.17 0.032 67.65 0.118
29  53.00 0.093 0.00 0.000  53.00 0.093
30  93.50 0.163 0.00 0.000 93.50 0.163
M 57.067 0.100 9.072 0.016 47.996 0.084
SD 28.705 0.050 16.385 0.029 32.344 0.056
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Table F.14: Invalidity of items in Investigation II

Item Invalidity Guesses Errors
abs. rel. abs. rel. abs. rel.
1 346.58 0.132 2.50 0.001  344.08 0.131
2 142.08 0.054 15.83 0.006 126.25 0.048
3 289.70 0.110 35.64 0.014  254.06 0.097
4 263.07 0.100 42.83 0.016  220.24 0.084
5 28548 0.109 39.65 0.015 245.83 0.094
6 300.25 0.114 40.46 0.015  259.79 0.099
7 573.55 0.218 5.00 0.005  509.26 0.194
10 474.32 0.180 38.68 0.015 435.63 0.166
11 37247 0.142 14.95 0.002 568.55 0.216
8 576.63 0.219 3.50 0.001 573.13 0.218
9 52243 0.199 13.17 0.005  509.26 0.194
10 474.32 0.180 38.68 0.015 435.63 0.166
11 37247 0.142 14.95 0.006  357.52 0.136
1229091 0.111 45.62 0.017  245.30 0.093
13 45992 0.175 436.09 0.166 23.83 0.009
14 326.07 0.124 307.48 0.117 18.58 0.007
15 186.70 0.071 177.12 0.067 9.58 0.004
16 164.30 0.063 135.13 0.051 29.17 0.011
17 386.46 0.147 365.13 0.139 21.33 0.008
18 316.42 0.120 31542 0.120 1.00 0.000
19 133.69 0.051 86.86 0.033 46.83 0.018
20 229.58 0.087  229.58 0.087 0.00  0.000
21 411.17 0.156 0.00 0.000 411.17 0.156
22 79.88 0.030 57.62 0.022 22.27 0.008
23 523.50 0.199 0.00 0.000  523.50 0.199
24 300.96 0.115 34.12 0.013  266.85 0.102
25 169.92 0.065 166.59 0.063 3.33  0.001
26 557.22 0.212  542.22 0.206 15.00 0.006
27 226.83 0.086 18.58 0.007  208.25 0.079
28  208.39 0.079 206.89 0.079 1.50 0.001
29 470.71 0.179  442.68 0.168 28.02 0.011
30  872.58 0.332 23.67 0.009 84891 0.323
31 783.75 0.298  783.17 0.298 0.58 0.000
32 226.70 0.086 222.86 0.085 3.83 0.001
33  568.25 0.216  566.25 0.215 2.00 0.001
34 266.75 0.102  237.42 0.090 29.33 0.011
35  583.49 0.222  220.52 0.084 36297 0.138
36 975.10 0.371 13.00 0.005  962.10 0.366
37 408.78 0.156  372.67 0.142 36.11 0.014
38  606.50 0.231 604.17 0.230 2.33 0.001
39 360.42 0.137 358.75 0.137 1.67 0.001
40 723,50 0.275  717.58 0.273 5.92  0.002
M 399.125 0.152 198.485 0.075 200.640 0.076
SD 207.062 0.079 218.644 0.083 247.959 0.094
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Table F.15: Invalidity of items in Investigation III

[tem Invalidity Guesses Errors
abs. rel.  abs. rel.  abs. rel.
1 30.25 0.250 1.50 0.012 28.75 0.238
2 2733 0.226  0.50 0.004 26.83 0.222
3 1517 0.125 792 0.065 7.25 0.060
4 2.33 0.019 1.83 0.015 0.50 0.004
5 3.25 0.027 2.25 0.019 1.00 0.008
6 26.08 0.216 5.33 0.044 20.75 0.171
7 9.58 0.079 0.83 0.007 875 0.072
8 12.00 0.099 0.00 0.000 12.00 0.099
9 29.75 0.246 29.75 0.246 0.00 0.000
10 16.92 0.140 16.42 0.136  0.50 0.004
11 7.25 0.060 0.00 0.000 7.25 0.060
12 6.08 0.050  6.08 0.050  0.00 0.000
13 1717 0.142  0.00 0.000 17.17 0.142
14 1542 0.127  0.00 0.000 15.42 0.127
15 17.00 0.140 10.25 0.085 6.75 0.056
16 4.67 0.039 0.00 0.000 4.67 0.039
17 0.75 0.006 0.75 0.006 0.00 0.000
18 12,50 0.103  0.00 0.000 12.50 0.103
19 7.50 0.062 7.50 0.062 0.00 0.000
20 18.00 0.149 18.00 0.149 0.00 0.000
M 13.950 0.115 5.446 0.045 8.505 0.070
SD  9.100 0.075 7.905 0.065 9.216 0.076
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F.5 2 Statistics for the differences between the em-
pirical and the powersets’ distance distributions

Investigation I

Xicgpr(9, N = 1144) = 38,446.09;p < .001
X2 gor(T, N = 1144) = 30,654.76;p < .001
X guan(6, N = 1144) = 16,954.93;p < .001

Investigation 11

X5 (13, N =5256) = 264,596.99; p < .001
Xicsar (9, N = 5256) 68,170.92; p < .001
X5 sunrr(8, N = 5256) 132, 162.66; p < .001

Investigation III

Xeg (6, N =242) = 1945.75; p < .001
Xk sar (5, N = 242) 627.22; p < .001

Xkswan, (2N =242) = 28.75; p < .001
Xkswang (2, N =242) = 59.54; p < .001
Xkswscy (2N =242) = 115.84; p < .001

Xk swnrg (2N =242) = 169.29; p < .001



