Preparation

Load Dataframe

data <- read.csv2("data_project_917982_2022_11_15.csv",
                  na.strings = c("-66","-77","-99"),
                  encoding = "UFT-8")
View(data)
names(data)
##   [1] "lfdn"                "external_lfdn"       "tester"             
##   [4] "dispcode"            "lastpage"            "quality"            
##   [7] "duration"            "c_0001"              "p_0001"             
##  [10] "c_0002"              "c_0003"              "c_0004"             
##  [13] "v_1"                 "v_2"                 "v_3"                
##  [16] "v_4"                 "v_5"                 "v_7"                
##  [19] "v_8"                 "v_9"                 "v_10"               
##  [22] "v_11"                "v_47"                "v_48"               
##  [25] "v_49"                "v_12"                "v_14"               
##  [28] "v_16"                "v_71"                "v_17"               
##  [31] "v_18"                "v_19"                "v_20"               
##  [34] "v_21"                "v_115"               "v_116"              
##  [37] "v_117"               "v_22"                "v_23"               
##  [40] "v_24"                "v_25"                "v_26"               
##  [43] "v_120"               "v_27"                "v_28"               
##  [46] "v_29"                "v_30"                "v_31"               
##  [49] "v_121"               "v_32"                "v_33"               
##  [52] "v_34"                "v_35"                "v_36"               
##  [55] "v_122"               "v_37"                "v_38"               
##  [58] "v_39"                "v_40"                "v_41"               
##  [61] "v_123"               "v_124"               "v_42"               
##  [64] "v_43"                "v_44"                "v_45"               
##  [67] "v_46"                "v_125"               "v_72"               
##  [70] "v_73"                "v_74"                "v_75"               
##  [73] "v_76"                "v_77"                "v_79"               
##  [76] "v_81"                "v_83"                "v_126"              
##  [79] "v_127"               "v_128"               "v_129"              
##  [82] "v_130"               "v_131"               "v_132"              
##  [85] "v_133"               "v_134"               "v_135"              
##  [88] "v_136"               "v_137"               "v_138"              
##  [91] "v_139"               "v_140"               "v_141"              
##  [94] "v_142"               "v_143"               "v_144"              
##  [97] "v_145"               "v_146"               "v_147"              
## [100] "v_148"               "v_149"               "v_150"              
## [103] "v_151"               "v_152"               "v_153"              
## [106] "v_154"               "v_155"               "v_156"              
## [109] "v_157"               "v_158"               "v_159"              
## [112] "v_160"               "v_161"               "v_162"              
## [115] "v_163"               "v_164"               "v_50"               
## [118] "v_51"                "v_52"                "v_53"               
## [121] "v_54"                "v_165"               "v_166"              
## [124] "v_167"               "v_55"                "v_56"               
## [127] "v_57"                "v_58"                "v_401"              
## [130] "v_91"                "v_92"                "v_93"               
## [133] "v_94"                "v_95"                "v_96"               
## [136] "v_98"                "v_100"               "v_102"              
## [139] "v_235"               "v_236"               "v_237"              
## [142] "v_238"               "v_239"               "v_240"              
## [145] "v_241"               "v_242"               "v_243"              
## [148] "v_244"               "v_245"               "v_246"              
## [151] "v_247"               "v_248"               "v_249"              
## [154] "v_250"               "v_251"               "v_252"              
## [157] "v_253"               "v_254"               "v_255"              
## [160] "v_256"               "v_257"               "v_258"              
## [163] "v_259"               "v_313"               "v_314"              
## [166] "v_315"               "v_316"               "v_317"              
## [169] "v_323"               "v_324"               "v_325"              
## [172] "v_326"               "v_327"               "v_328"              
## [175] "v_329"               "v_330"               "v_331"              
## [178] "v_332"               "v_333"               "v_334"              
## [181] "v_335"               "v_336"               "v_337"              
## [184] "v_338"               "v_339"               "v_340"              
## [187] "v_341"               "v_342"               "v_343"              
## [190] "v_344"               "v_345"               "v_103"              
## [193] "v_104"               "v_105"               "v_106"              
## [196] "v_107"               "v_108"               "v_110"              
## [199] "v_112"               "v_114"               "v_274"              
## [202] "v_275"               "v_276"               "v_277"              
## [205] "v_278"               "v_279"               "v_280"              
## [208] "v_281"               "v_282"               "v_283"              
## [211] "v_284"               "v_285"               "v_286"              
## [214] "v_287"               "v_288"               "v_289"              
## [217] "v_290"               "v_291"               "v_292"              
## [220] "v_293"               "v_294"               "v_295"              
## [223] "v_296"               "v_297"               "v_298"              
## [226] "v_299"               "v_300"               "v_301"              
## [229] "v_302"               "v_303"               "v_304"              
## [232] "v_305"               "v_306"               "v_307"              
## [235] "v_308"               "v_309"               "v_310"              
## [238] "v_402"               "v_360"               "v_361"              
## [241] "v_362"               "v_363"               "v_364"              
## [244] "v_365"               "v_366"               "v_367"              
## [247] "v_368"               "v_369"               "v_370"              
## [250] "v_371"               "v_372"               "v_373"              
## [253] "v_374"               "v_375"               "v_376"              
## [256] "v_377"               "v_378"               "v_379"              
## [259] "v_380"               "v_381"               "v_382"              
## [262] "v_383"               "v_384"               "v_385"              
## [265] "v_386"               "v_387"               "v_388"              
## [268] "browser"             "referer"             "device_type"        
## [271] "quota"               "quota_assignment"    "quota_rejected_id"  
## [274] "page_history"        "hflip"               "vflip"              
## [277] "output_mode"         "javascript"          "flash"              
## [280] "session_id"          "language"            "cleaned"            
## [283] "ats"                 "datetime"            "date_of_last_access"
## [286] "date_of_first_mail"  "rts6018385"          "rts6018739"         
## [289] "rts6018818"          "rts6019080"          "rts6019089"         
## [292] "rts6021451"          "rts6021455"          "rts6023513"         
## [295] "rts6023515"          "rts6023627"          "rts6023655"         
## [298] "rts6023657"          "rts6023660"          "rts6023667"         
## [301] "rts6023676"          "rts6023679"          "rts6033975"
str(data)
## 'data.frame':    6706 obs. of  303 variables:
##  $ lfdn               : int  94 95 98 99 100 101 107 109 93 103 ...
##  $ external_lfdn      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ tester             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ dispcode           : int  37 37 37 37 37 37 37 37 31 22 ...
##  $ lastpage           : int  6018729 6018729 6018729 6018729 6018729 6018729 6018729 6018729 6018381 6023627 ...
##  $ quality            : logi  NA NA NA NA NA NA ...
##  $ duration           : int  23 57 19 25 23 37 30 38 779 68 ...
##  $ c_0001             : int  NA NA NA NA NA NA NA NA 3 2 ...
##  $ p_0001             : num  2.26e+14 2.26e+14 2.26e+14 2.26e+14 2.26e+14 ...
##  $ c_0002             : int  NA NA NA NA NA NA NA NA 3 2 ...
##  $ c_0003             : int  NA NA NA NA NA NA NA NA 1 2 ...
##  $ c_0004             : int  NA NA NA NA NA NA NA NA 2 2 ...
##  $ v_1                : int  2 1 2 1 2 1 1 2 2 2 ...
##  $ v_2                : int  48 19 55 55 33 44 64 43 31 42 ...
##  $ v_3                : int  1 1 2 2 1 1 3 3 2 2 ...
##  $ v_4                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ v_5                : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ v_7                : int  1 3 1 2 1 1 3 2 5 6 ...
##  $ v_8                : int  NA NA NA NA NA NA NA NA 1 1 ...
##  $ v_9                : chr  NA NA NA NA ...
##  $ v_10               : int  NA NA NA NA NA NA NA NA 4 NA ...
##  $ v_11               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_47               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_48               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_49               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_12               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_14               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_16               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_71               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_17               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_18               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_19               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_20               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_21               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_115              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_116              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_117              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_22               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_23               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_24               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_25               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_26               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_120              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_27               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_28               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_29               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_30               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_31               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_121              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_32               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_33               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_34               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_35               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_36               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_122              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_37               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_38               : int  NA NA NA NA NA NA NA NA 0 NA ...
##  $ v_39               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_40               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_41               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_123              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_124              : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_42               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_43               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_44               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_45               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_46               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_125              : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_72               : int  NA NA NA NA NA NA NA NA NA 6 ...
##  $ v_73               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_74               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_75               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_76               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_77               : int  NA NA NA NA NA NA NA NA NA 4 ...
##  $ v_79               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_81               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_83               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_126              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_127              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_128              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_129              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_130              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_131              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_132              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_133              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_134              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_135              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_136              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_137              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_138              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_139              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_140              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_141              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_142              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_143              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_144              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_145              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_146              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_147              : int  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
nrow(data)
## [1] 6706

Check Dispcodes

table(data$dispcode)
## 
##   20   22   31   32   36   37 
##   45 1039 1754  288 1474 2106
# 20 = Not started yet --> 45
# 22 = Interrupted --> 1039
# 37,38,39,40 = Screenout --> 2106
# 35,36,41 = Quota full --> 1474
# 31,32,33,34 = Finished --> 2042

# Check for multiple participations
x <- table(data$p_0001[data$dispcode==31|
                         data$dispcode==32])

code <- dimnames(x)[[1]]
code <- code[x>1]
code
## [1] "225951288721641"
#Case 225951288721641 participated twice. Exclude second participation.

data$lfdn[data$p_0001 == "225951288721641"]
## [1]   NA 1732 3192
data$datetime[data$p_0001 == "225951288721641"]
## [1] NA                    "2022-10-26 07:45:35" "2022-10-27 17:38:04"
data <- data[!data$lfdn == 3192,]

Recode Data

data$lfdn <- rank(rnorm(nrow(data)))
names(data)[1] <- "id"

data$id <- factor(data$id,levels = c(1:6705))

str(data)
## 'data.frame':    6705 obs. of  303 variables:
##  $ id                 : Factor w/ 6705 levels "1","2","3","4",..: 759 52 4690 3401 6194 1195 5513 1286 4692 193 ...
##  $ external_lfdn      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ tester             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ dispcode           : int  37 37 37 37 37 37 37 37 31 22 ...
##  $ lastpage           : int  6018729 6018729 6018729 6018729 6018729 6018729 6018729 6018729 6018381 6023627 ...
##  $ quality            : logi  NA NA NA NA NA NA ...
##  $ duration           : int  23 57 19 25 23 37 30 38 779 68 ...
##  $ c_0001             : int  NA NA NA NA NA NA NA NA 3 2 ...
##  $ p_0001             : num  2.26e+14 2.26e+14 2.26e+14 2.26e+14 2.26e+14 ...
##  $ c_0002             : int  NA NA NA NA NA NA NA NA 3 2 ...
##  $ c_0003             : int  NA NA NA NA NA NA NA NA 1 2 ...
##  $ c_0004             : int  NA NA NA NA NA NA NA NA 2 2 ...
##  $ v_1                : int  2 1 2 1 2 1 1 2 2 2 ...
##  $ v_2                : int  48 19 55 55 33 44 64 43 31 42 ...
##  $ v_3                : int  1 1 2 2 1 1 3 3 2 2 ...
##  $ v_4                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ v_5                : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ v_7                : int  1 3 1 2 1 1 3 2 5 6 ...
##  $ v_8                : int  NA NA NA NA NA NA NA NA 1 1 ...
##  $ v_9                : chr  NA NA NA NA ...
##  $ v_10               : int  NA NA NA NA NA NA NA NA 4 NA ...
##  $ v_11               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_47               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_48               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_49               : int  NA NA NA NA NA NA NA NA 6 NA ...
##  $ v_12               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_14               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_16               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_71               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_17               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_18               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_19               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_20               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_21               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_115              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_116              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_117              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_22               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_23               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_24               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_25               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_26               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_120              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_27               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_28               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_29               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_30               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_31               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_121              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_32               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_33               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_34               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_35               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_36               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_122              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_37               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_38               : int  NA NA NA NA NA NA NA NA 0 NA ...
##  $ v_39               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_40               : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_41               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_123              : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_124              : int  NA NA NA NA NA NA NA NA 2 NA ...
##  $ v_42               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_43               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_44               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_45               : int  NA NA NA NA NA NA NA NA 1 NA ...
##  $ v_46               : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_125              : int  NA NA NA NA NA NA NA NA 3 NA ...
##  $ v_72               : int  NA NA NA NA NA NA NA NA NA 6 ...
##  $ v_73               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_74               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_75               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_76               : int  NA NA NA NA NA NA NA NA NA 7 ...
##  $ v_77               : int  NA NA NA NA NA NA NA NA NA 4 ...
##  $ v_79               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_81               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_83               : int  NA NA NA NA NA NA NA NA NA 1 ...
##  $ v_126              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_127              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_128              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_129              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_130              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_131              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_132              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_133              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_134              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_135              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_136              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_137              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_138              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_139              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_140              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_141              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_142              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_143              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_144              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_145              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_146              : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ v_147              : int  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
data <- rename(data, condition = c_0001, text_order = c_0003,
               METI_target = c_0004)

data$condition <- factor(data$condition)

# Text presented first, 1 = Barth et al., 2 = Faerber et al.
data$text_order <- factor(data$text_order, levels = c(1,2), labels = 
                            c("Barth", "Faerber"))

data$METI_text <- ifelse(data$text_order == "Barth","Faerber","Barth")
data$METI_text <- factor(data$METI_text, levels = c("Barth","Faerber"))

data$summary1 <- data$text_order
data$summary2 <- data$METI_text

data$METI_target <- factor (data$METI_target, levels = c(1,2), labels =
                              c("Study Authors","Summary Authors"))

data <- rename(data, s_sex = v_1, s_age = v_2,
               s_school = v_3, s_german = v_4,
               s_psychology = v_5, s_interest = v_7,
               s_contact = v_8, s_field = v_9)

data$s_sex <- factor(data$s_sex, levels = c (1,2), labels = c("female","male"))
data$s_school <- factor(data$s_school, levels = c(1,2,3), 
                        labels = c("Haupt","Real","Abi"))

data$quota[data$quota == 0] <- NA
data$quota <- factor(data$quota)

Create Factor for Experimental Condition

data$version <- case_when(data$condition == 1 ~1,
                          data$condition == 2 ~1,
                          data$condition == 3 ~1,
                          data$condition == 4 ~1,
                          data$condition == 5 ~1,
                          data$condition == 6 ~0)

data$version <- factor(data$version, levels = c(0,1),
                       labels = c("old guideline","new guideline"))
summary(data$version)
## old guideline new guideline          NA's 
##           498          2492          3715
data$causality <- case_when(data$condition == 1 ~0,
                            data$condition == 2 ~0,
                            data$condition == 3 ~1,
                            data$condition == 4 ~1,
                            data$condition == 5 ~1,
                            data$condition == 6 ~0)
data$causality <- factor(data$causality, levels = c(0,1),
                         labels = c("no causality statement",
                                    "causality statement"))
summary(data$causality)
## no causality statement    causality statement                   NA's 
##                   1496                   1494                   3715
data$disclaimer <- case_when(data$condition == 1 ~0,
                             data$condition == 2 ~1,
                             data$condition == 3 ~0,
                             data$condition == 4 ~1,
                             data$condition == 5 ~1,
                             data$condition == 6 ~0)
data$disclaimer <- factor(data$disclaimer, levels = c(0,1),
                         labels = c("no disclaimer",
                                    "disclaimer"))
summary(data$disclaimer)
## no disclaimer    disclaimer          NA's 
##          1495          1495          3715
data$CAMA <- case_when(data$condition == 1 ~0,
                             data$condition == 2 ~0,
                             data$condition == 3 ~0,
                             data$condition == 4 ~0,
                             data$condition == 5 ~1,
                             data$condition == 6 ~0)
data$CAMA <- factor(data$CAMA, levels = c(0,1),
                          labels = c("no CAMA PLS",
                                     "CAMA PLS"))
summary(data$disclaimer)
## no disclaimer    disclaimer          NA's 
##          1495          1495          3715

Drop Unneeded Dispcodes

data <- data[data$dispcode == 22|data$dispcode == 31|data$dispcode == 32,]
length(unique(data$p_0001
              [data$dispcode==22|data$dispcode==31|data$dispcode==32]))
## [1] 3001

Dropout Analyses

By Condition

data$dropout <- data$dispcode == 22
data$dropout <- factor(data$dropout, c("FALSE","TRUE"),
                       labels = c("No Dropout", "Dropout"))

table(data$dropout, data$condition)
##             
##                1   2   3   4   5   6
##   No Dropout 334 345 336 341 328 357
##   Dropout    165 154 162 156 170 141
table(data$dropout,data$condition)[1,]/colSums(table(
  data$dropout,data$condition))*100
##        1        2        3        4        5        6 
## 66.93387 69.13828 67.46988 68.61167 65.86345 71.68675
chisq.test(data$dropout, data$condition)
## 
##  Pearson's Chi-squared test
## 
## data:  data$dropout and data$condition
## X-squared = 4.775, df = 5, p-value = 0.444

By Quota

table(data$dropout, data$quota)
##             
##                1   2   3   4   5   6   7   8   9  10  11  12
##   No Dropout 169 171 174 168 171 172 168 167 164 170 172 175
##   Dropout     88 112 131  93 124 143  33  44  36  63  90  74
table(data$dropout, data$quota)[1,]/colSums(table(
  data$dropout, data$quota))*100
##        1        2        3        4        5        6        7        8 
## 65.75875 60.42403 57.04918 64.36782 57.96610 54.60317 83.58209 79.14692 
##        9       10       11       12 
## 82.00000 72.96137 65.64885 70.28112
chisq.test(data$dropout,data$quota)
## 
##  Pearson's Chi-squared test
## 
## data:  data$dropout and data$quota
## X-squared = 116.16, df = 11, p-value < 2.2e-16

By Participants’ Gender

table(data$dropout, data$s_sex)
##             
##              female male
##   No Dropout   1028 1013
##   Dropout       587  446
table(data$dropout, data$s_sex)[1,]/colSums(table(data$dropout, data$s_sex))*100
##   female     male 
## 63.65325 69.43112
chisq.test(data$dropout,data$s_sex)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  data$dropout and data$s_sex
## X-squared = 11.211, df = 1, p-value = 0.0008129

By Participants’ Age

# Set single age value of 744 as NA
data$s_age[data$s_age == 744] <- NA

dropout_age <- glm(data$dropout ~ data$s_age, data = data, family = "binomial",
                   na.action = na.omit)
summary(dropout_age)
## 
## Call:
## glm(formula = data$dropout ~ data$s_age, family = "binomial", 
##     data = data, na.action = na.omit)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.992992   0.130678  -15.25   <2e-16 ***
## data$s_age   0.027108   0.002514   10.78   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3932.6  on 3076  degrees of freedom
## Residual deviance: 3810.8  on 3075  degrees of freedom
##   (3 Beobachtungen als fehlend gelöscht)
## AIC: 3814.8
## 
## Number of Fisher Scoring iterations: 4
exp(dropout_age$coefficients)
## (Intercept)  data$s_age 
##    0.136287    1.027478

By Participants’ Educational Background

table(data$dropout, data$s_school)
##             
##              Haupt Real Abi
##   No Dropout   685  681 675
##   Dropout      387  373 277
table(data$dropout, data$s_school)[1,]/colSums(
  table(data$dropout, data$s_school))*100
##    Haupt     Real      Abi 
## 63.89925 64.61101 70.90336
chisq.test(data$dropout,data$s_school)
## 
##  Pearson's Chi-squared test
## 
## data:  data$dropout and data$s_school
## X-squared = 13.142, df = 2, p-value = 0.001401
dropout_edu <- glm(data$dropout ~ data$s_school, data = data, family = "binomial",
                   na.action = na.omit)
summary(dropout_edu)
## 
## Call:
## glm(formula = data$dropout ~ data$s_school, family = "binomial", 
##     data = data, na.action = na.omit)
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -0.57099    0.06359  -8.979  < 2e-16 ***
## data$s_schoolReal -0.03099    0.09052  -0.342 0.732076    
## data$s_schoolAbi  -0.31970    0.09558  -3.345 0.000823 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3933.5  on 3077  degrees of freedom
## Residual deviance: 3920.1  on 3075  degrees of freedom
##   (2 Beobachtungen als fehlend gelöscht)
## AIC: 3926.1
## 
## Number of Fisher Scoring iterations: 4
exp(dropout_edu$coefficients)
##       (Intercept) data$s_schoolReal  data$s_schoolAbi 
##         0.5649635         0.9694855         0.7263662

Dropout Regression Analyses

dropout_logistic_1 <- glm(formula =  dropout ~ condition + quota, data = data, 
                        family = "binomial", na.action = na.omit)
summary(dropout_logistic_1)
## 
## Call:
## glm(formula = dropout ~ condition + quota, family = "binomial", 
##     data = data, na.action = na.omit)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.653151   0.163055  -4.006 6.18e-05 ***
## condition2  -0.140337   0.138830  -1.011 0.312085    
## condition3  -0.048597   0.138044  -0.352 0.724807    
## condition4  -0.122653   0.138728  -0.884 0.376629    
## condition5   0.007591   0.137135   0.055 0.955854    
## condition6  -0.257050   0.140745  -1.826 0.067798 .  
## quota2       0.220186   0.185468   1.187 0.235151    
## quota3       0.352223   0.180902   1.947 0.051530 .  
## quota4       0.136894   0.188245   0.727 0.467096    
## quota5       0.342825   0.182117   1.882 0.059776 .  
## quota6       0.487074   0.178462   2.729 0.006347 ** 
## quota7      -0.947738   0.238435  -3.975 7.04e-05 ***
## quota8      -0.825807   0.230417  -3.584 0.000338 ***
## quota9      -0.882218   0.236521  -3.730 0.000191 ***
## quota10     -0.334860   0.204088  -1.641 0.100846    
## quota11      0.035250   0.190172   0.185 0.852947    
## quota12     -0.162174   0.195749  -0.828 0.407400    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3734.5  on 2988  degrees of freedom
## Residual deviance: 3609.0  on 2972  degrees of freedom
##   (91 Beobachtungen als fehlend gelöscht)
## AIC: 3643
## 
## Number of Fisher Scoring iterations: 4
exp(dropout_logistic_1$coefficients)
## (Intercept)  condition2  condition3  condition4  condition5  condition6 
##   0.5204033   0.8690651   0.9525646   0.8845708   1.0076203   0.7733299 
##      quota2      quota3      quota4      quota5      quota6      quota7 
##   1.2463090   1.4222263   1.1467070   1.4089220   1.6275464   0.3876166 
##      quota8      quota9     quota10     quota11     quota12 
##   0.4378814   0.4138641   0.7154382   1.0358787   0.8502934
dropout_logistic_2 <- glm(formula =  dropout ~ s_sex + s_school + s_age,
                          data = data, family = "binomial", na.action = na.omit)
summary(dropout_logistic_2)
## 
## Call:
## glm(formula = dropout ~ s_sex + s_school + s_age, family = "binomial", 
##     data = data, na.action = na.omit)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.828571   0.147292 -12.415  < 2e-16 ***
## s_sexmale    -0.346953   0.079185  -4.382 1.18e-05 ***
## s_schoolReal  0.031970   0.092998   0.344   0.7310    
## s_schoolAbi  -0.222797   0.098232  -2.268   0.0233 *  
## s_age         0.028037   0.002556  10.971  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3919.6  on 3070  degrees of freedom
## Residual deviance: 3769.0  on 3066  degrees of freedom
##   (9 Beobachtungen als fehlend gelöscht)
## AIC: 3779
## 
## Number of Fisher Scoring iterations: 4
exp(dropout_logistic_2$coefficients)
##  (Intercept)    s_sexmale s_schoolReal  s_schoolAbi        s_age 
##    0.1606429    0.7068385    1.0324869    0.8002773    1.0284335

Merging Variables

Check for NAs in Demographic Variables

sum(is.na(data$s_sex))
## [1] 6
sum(is.na(data$s_age))
## [1] 3
sum(is.na(data$s_school))
## [1] 2
sum(is.na(data$s_german))
## [1] 0
sum(is.na(data$s_psychology))
## [1] 0
sum(is.na(data$s_interest))
## [1] 0
sum(is.na(data$s_contact))
## [1] 20
sum(is.na(data$s_field))
## [1] 2466

Merge T1 and T2 Variables

data$v_10[data$v_10 == 0] <- NA
data$v_72[data$v_72 == 0] <- NA
data$v_91[data$v_91 == 0] <- NA
data$v_103[data$v_103 == 0] <- NA
data$v_11[data$v_11 == 0] <- NA
data$v_73[data$v_73 == 0] <- NA
data$v_92[data$v_92 == 0] <- NA
data$v_104[data$v_104 == 0] <- NA
data$v_47[data$v_47 == 0] <- NA
data$v_74[data$v_74 == 0] <- NA
data$v_93[data$v_93 == 0] <- NA
data$v_105[data$v_105 == 0] <- NA
data$v_48[data$v_48 == 0] <- NA
data$v_75[data$v_75 == 0] <- NA
data$v_94[data$v_94 == 0] <- NA
data$v_106[data$v_106 == 0] <- NA
data$v_49[data$v_49 == 0] <- NA
data$v_76[data$v_76 == 0] <- NA
data$v_95[data$v_95 == 0] <- NA
data$v_107[data$v_107 == 0] <- NA
data$v_12[data$v_12 == 0] <- NA
data$v_77[data$v_77 == 0] <- NA
data$v_96[data$v_96 == 0] <- NA
data$v_108[data$v_108 == 0] <- NA
data$v_14[data$v_14 == 0] <- NA
data$v_79[data$v_79 == 0] <- NA
data$v_98[data$v_98 == 0] <- NA
data$v_110[data$v_110 == 0] <- NA
data$v_16[data$v_16 == 0] <- NA
data$v_81[data$v_81 == 0] <- NA
data$v_100[data$v_100 == 0] <- NA
data$v_112[data$v_112 == 0] <- NA
data$v_71[data$v_71 == 0] <- NA
data$v_83[data$v_83 == 0] <- NA
data$v_102[data$v_102 == 0] <- NA
data$v_114[data$v_114 == 0] <- NA

data$accessibility_1 <- coalesce(data$v_10, data$v_72)
table(data$accessibility_1)
## 
##   1   2   3   4   5   6   7   8 
##  52  82 192 353 425 527 409 471
data$accessibility_2 <- coalesce(data$v_91, data$v_103)
table(data$accessibility_2)
## 
##   1   2   3   4   5   6   7   8 
##  67  74 177 321 353 393 321 331
data$understanding_1 <- coalesce(data$v_11, data$v_73)
table(data$understanding_1)
## 
##   1   2   3   4   5   6   7   8 
##  30  55 151 342 446 576 458 445
data$understanding_2 <- coalesce(data$v_92, data$v_104)
table(data$understanding_2)
## 
##   1   2   3   4   5   6   7   8 
##  51  76 160 304 410 459 327 251
data$empowerment_1 <- coalesce(data$v_47, data$v_74)
table(data$empowerment_1)
## 
##   1   2   3   4   5   6   7   8 
## 125 137 315 468 566 469 227 190
data$empowerment_2 <- coalesce(data$v_93, data$v_105)
table(data$empowerment_2)
## 
##   1   2   3   4   5   6   7   8 
## 131 127 232 410 449 367 182 144
data$credibility_1 <- coalesce(data$v_48, data$v_75)
table(data$credibility_1)
## 
##   1   2   3   4   5   6   7   8 
##  12  29  87 344 469 601 487 470
data$credibility_2 <- coalesce(data$v_94, data$v_106)
table(data$credibility_2)
## 
##   1   2   3   4   5   6   7   8 
##  26  25  91 296 423 465 372 341
data$relevance_1 <- coalesce(data$v_49, data$v_76)
table(data$relevance_1)
## 
##   1   2   3   4   5   6   7   8 
##  17  30  62 231 327 559 466 808
data$relevance_2 <- coalesce(data$v_95, data$v_107)
table(data$relevance_2)
## 
##   1   2   3   4   5   6   7   8 
##  32  26  77 204 298 411 397 594
data$curiosity_1 <- coalesce(data$v_12, data$v_77)
table(data$curiosity_1)
## 
##   1   2   3   4   5 
## 162 414 773 816 345
data$curiosity_2 <- coalesce(data$v_96, data$v_108)
table(data$curiosity_2)
## 
##   1   2   3   4   5 
## 168 420 642 542 273
data$boredom_1 <- coalesce(data$v_14, data$v_79)
table(data$boredom_1)
## 
##    1    2    3    4    5 
## 1045  671  542  168   76
data$boredom_2 <- coalesce(data$v_98, data$v_110)
table(data$boredom_2)
## 
##   1   2   3   4   5 
## 881 507 424 150  81
data$confusion_1 <- coalesce(data$v_16, data$v_81)
table(data$confusion_1)
## 
##   1   2   3   4   5 
## 939 751 598 162  54
data$confusion_2 <- coalesce(data$v_100, data$v_112)
table(data$confusion_2)
## 
##   1   2   3   4   5 
## 733 582 493 169  68
data$frustration_1 <- coalesce(data$v_71, data$v_83)
table(data$frustration_1)
## 
##    1    2    3    4    5 
## 1486  451  419  107   36
data$frustration_2 <- coalesce(data$v_102, data$v_114)
table(data$frustration_2)
## 
##    1    2    3    4    5 
## 1136  392  355  104   58

Merge and Recode Relationship-Item

data$v_17[data$v_17 == 0] <- NA
data$v_126[data$v_126 == 0] <- NA
data$v_18[data$v_18 == 0] <- NA
data$v_127[data$v_127 == 0] <- NA
data$v_19[data$v_19 == 0] <- NA
data$v_128[data$v_128 == 0] <- NA
data$v_20[data$v_20 == 0] <- NA
data$v_129[data$v_129 == 0] <- NA
data$v_21[data$v_21 == 0] <- NA
data$v_130[data$v_130 == 0] <- NA
data$v_115[data$v_115 == 0] <- NA
data$v_131[data$v_131 == 0] <- NA
data$v_116[data$v_116 == 0] <- NA
data$v_132[data$v_132 == 0] <- NA
data$v_117[data$v_117 == 0] <- NA
data$v_133[data$v_133 == 0] <- NA

data$s_relationship_1 <- coalesce(data$v_17, data$v_126)
data$s_relationship_2 <- coalesce(data$v_18, data$v_127)
data$s_relationship_3 <- coalesce(data$v_19, data$v_128)
data$s_relationship_4 <- coalesce(data$v_20, data$v_129)
data$s_relationship_5 <- coalesce(data$v_21, data$v_130)
data$s_relationship_6 <- coalesce(data$v_115, data$v_131)
data$s_relationship_7 <- coalesce(data$v_116, data$v_132)
data$s_relationship_8 <- coalesce(data$v_117, data$v_133)

data$s_relationship_1 <- mapvalues(data$s_relationship_1, c(1,2,3), c(1,-1,0))
table(data$s_relationship_1)
## 
##   -1    0    1 
##  233  345 1690
data$s_relationship_2 <- mapvalues(data$s_relationship_2, c(1,2,3), c(-1,1,0))
table(data$s_relationship_2)
## 
##   -1    0    1 
## 1175  406  683
data$s_relationship_3 <- mapvalues(data$s_relationship_3, c(1,2,3), c(-1,1,0))
table(data$s_relationship_3)
## 
##  -1   0   1 
## 671 772 822
data$s_relationship_4 <- mapvalues(data$s_relationship_4, c(1,2,3), c(-1,1,0))
table(data$s_relationship_4)
## 
##  -1   0   1 
## 730 736 801
data$s_relationship_5 <- mapvalues(data$s_relationship_5, c(1,2,3), c(1,-1,0))
table(data$s_relationship_5)
## 
##   -1    0    1 
##  256  375 1638
data$s_relationship_6 <- mapvalues(data$s_relationship_6, c(1,2,3), c(-1,1,0))
table(data$s_relationship_6)
## 
##   -1    0    1 
## 1321  426  518
data$s_relationship_7 <- mapvalues(data$s_relationship_7, c(1,2,3), c(-1,1,0))
table(data$s_relationship_7)
## 
##   -1    0    1 
## 1349  448  467
data$s_relationship_8 <- mapvalues(data$s_relationship_8, c(1,2,3), c(-1,1,0))
table(data$s_relationship_8)
## 
##   -1    0    1 
## 1156  464  642

Merge and Recode Extent of Evaluation-Item

data$v_22[data$v_22 == 0] <- NA
data$v_134[data$v_134 == 0] <- NA
data$v_23[data$v_23 == 0] <- NA
data$v_135[data$v_135 == 0] <- NA
data$v_24[data$v_24 == 0] <- NA
data$v_136[data$v_136 == 0] <- NA
data$v_25[data$v_25 == 0] <- NA
data$v_137[data$v_137 == 0] <- NA
data$v_26[data$v_26 == 0] <- NA
data$v_138[data$v_138 == 0] <- NA
data$v_120[data$v_120 == 0] <- NA
data$v_139[data$v_139 == 0] <- NA

data$s_extent_1 <- coalesce(data$v_22, data$v_134)
data$s_extent_2 <- coalesce(data$v_23, data$v_135)
data$s_extent_3 <- coalesce(data$v_24, data$v_136)
data$s_extent_4 <- coalesce(data$v_25, data$v_137)
data$s_extent_5 <- coalesce(data$v_26, data$v_138)
data$s_extent_6 <- coalesce(data$v_120, data$v_139)

data$s_extent_1 <- mapvalues(data$s_extent_1, c(1,2,3), c(-1,1,0))
table(data$s_extent_1)
## 
##  -1   0   1 
## 663 773 832
data$s_extent_2 <- mapvalues(data$s_extent_2, c(1,2,3), c(-1,1,0))
table(data$s_extent_2)
## 
##  -1   0   1 
## 931 585 750
data$s_extent_3 <- mapvalues(data$s_extent_3, c(1,2,3), c(-1,1,0))
table(data$s_extent_3)
## 
##   -1    0    1 
## 1035  740  488
data$s_extent_4 <- mapvalues(data$s_extent_4, c(1,2,3), c(-1,1,0))
table(data$s_extent_4)
## 
##  -1   0   1 
## 968 763 533
data$s_extent_5 <- mapvalues(data$s_extent_5, c(1,2,3), c(1,-1,0))
table(data$s_extent_5)
## 
##   -1    0    1 
##  317  535 1411
data$s_extent_6 <- mapvalues(data$s_extent_6, c(1,2,3), c(1,-1,0))
table(data$s_extent_6)
## 
##   -1    0    1 
##  380  497 1393

Merge and Recode Differentiation-Item

# Caution: Due to an error (wrong answers provided during experiment), all values for Faerber et al. are NA. Only answers for Barth et al. can be considered for analysis

data$v_27[data$v_27 == 0] <- NA
data$v_28[data$v_28 == 0] <- NA
data$v_29[data$v_29 == 0] <- NA
data$v_30[data$v_30 == 0] <- NA
data$v_31[data$v_31 == 0] <- NA
data$v_121[data$v_121 == 0] <- NA

data$v_140 <- NA
data$v_141 <- NA
data$v_142 <- NA
data$v_143 <- NA
data$v_144 <- NA
data$v_145 <- NA

data$v_235[data$v_235 == 0] <- NA
data$v_236[data$v_236 == 0] <- NA
data$v_237[data$v_237 == 0] <- NA
data$v_238[data$v_238 == 0] <- NA
data$v_239[data$v_239 == 0] <- NA
data$v_240[data$v_240 == 0] <- NA

data$v_274 <- NA
data$v_275 <- NA
data$v_276 <- NA
data$v_277 <- NA
data$v_278 <- NA
data$v_279 <- NA

#Values only need to be mapped for the items from Barth et al.
data$v_27 <- mapvalues(data$v_27, c(1,2,3),c(-1,1,0))
table(data$v_27)
## 
##  -1   0   1 
## 529 305 305
data$v_28 <- mapvalues(data$v_28, c(1,2,3),c(-1,1,0))
table(data$v_28)
## 
##  -1   0   1 
## 561 297 284
data$v_29 <- mapvalues(data$v_29, c(1,2,3),c(1,-1,0))
table(data$v_29)
## 
##  -1   0   1 
## 371 321 447
data$v_30 <- mapvalues(data$v_30, c(1,2,3),c(-1,1,0))
table(data$v_30)
## 
##  -1   0   1 
## 373 298 467
data$v_31 <- mapvalues(data$v_31, c(1,2,3),c(1,-1,0))
table(data$v_31)
## 
##  -1   0   1 
## 262 404 474
data$v_121 <- mapvalues(data$v_121, c(1,2,3),c(1,-1,0))
table(data$v_121)
## 
##  -1   0   1 
## 317 343 483
data$v_235 <- mapvalues(data$v_235, c(1,2,3),c(-1,1,0))
table(data$v_235)
## 
##  -1   0   1 
## 386 229 397
data$v_236 <- mapvalues(data$v_236, c(1,2,3),c(-1,1,0))
table(data$v_236)
## 
##  -1   0   1 
## 415 255 344
data$v_237 <- mapvalues(data$v_237, c(1,2,3),c(1,-1,0))
table(data$v_237)
## 
##  -1   0   1 
## 376 255 377
data$v_238 <- mapvalues(data$v_238, c(1,2,3),c(-1,1,0))
table(data$v_238)
## 
##  -1   0   1 
## 282 252 481
data$v_239 <- mapvalues(data$v_239, c(1,2,3),c(1,-1,0))
table(data$v_239)
## 
##  -1   0   1 
## 259 250 500
data$v_240 <- mapvalues(data$v_240, c(1,2,3),c(1,-1,0))
table(data$v_240)
## 
##  -1   0   1 
## 311 255 446
#Merge for T1
data$s_diff_1_1 <- coalesce(data$v_27, data$v_140)
table(data$s_diff_1_1)
## 
##  -1   0   1 
## 529 305 305
data$s_diff_1_2 <- coalesce(data$v_28, data$v_141)
table(data$s_diff_1_2)
## 
##  -1   0   1 
## 561 297 284
data$s_diff_1_3 <- coalesce(data$v_29, data$v_142)
table(data$s_diff_1_3)
## 
##  -1   0   1 
## 371 321 447
data$s_diff_1_4 <- coalesce(data$v_30, data$v_143)
table(data$s_diff_1_4)
## 
##  -1   0   1 
## 373 298 467
data$s_diff_1_5 <- coalesce(data$v_31, data$v_144)
table(data$s_diff_1_5)
## 
##  -1   0   1 
## 262 404 474
data$s_diff_1_6 <- coalesce(data$v_121, data$v_145)
table(data$s_diff_1_6)
## 
##  -1   0   1 
## 317 343 483
#Merge for T2
data$s_diff_2_1 <- coalesce(data$v_235, data$v_274)
table(data$s_diff_2_1)
## 
##  -1   0   1 
## 386 229 397
data$s_diff_2_2 <- coalesce(data$v_236, data$v_275)
table(data$s_diff_2_2)
## 
##  -1   0   1 
## 415 255 344
data$s_diff_2_3 <- coalesce(data$v_237, data$v_276)
table(data$s_diff_2_3)
## 
##  -1   0   1 
## 376 255 377
data$s_diff_2_4 <- coalesce(data$v_238, data$v_277)
table(data$s_diff_2_4)
## 
##  -1   0   1 
## 282 252 481
data$s_diff_2_5 <- coalesce(data$v_239, data$v_278)
table(data$s_diff_2_5)
## 
##  -1   0   1 
## 259 250 500
data$s_diff_2_6 <- coalesce(data$v_240, data$v_279)
table(data$s_diff_2_6)
## 
##  -1   0   1 
## 311 255 446

Merge and Recode Funding-Item

data$v_32[data$v_32 == 0] <- NA
data$v_33[data$v_33 == 0] <- NA
data$v_34[data$v_34 == 0] <- NA
data$v_35[data$v_35 == 0] <- NA
data$v_36[data$v_36 == 0] <- NA
data$v_122[data$v_122 == 0] <- NA

data$v_146[data$v_146 == 0] <- NA
data$v_147[data$v_147 == 0] <- NA
data$v_148[data$v_148 == 0] <- NA
data$v_149[data$v_149 == 0] <- NA
data$v_150[data$v_150 == 0] <- NA
data$v_151[data$v_151 == 0] <- NA

data$v_241[data$v_241 == 0] <- NA
data$v_242[data$v_242 == 0] <- NA
data$v_243[data$v_243 == 0] <- NA
data$v_244[data$v_244 == 0] <- NA
data$v_245[data$v_245 == 0] <- NA
data$v_246[data$v_246 == 0] <- NA

data$v_280[data$v_280 == 0] <- NA
data$v_281[data$v_281 == 0] <- NA
data$v_282[data$v_282 == 0] <- NA
data$v_283[data$v_283 == 0] <- NA
data$v_284[data$v_284 == 0] <- NA
data$v_285[data$v_285 == 0] <- NA

data$v_32 <- mapvalues(data$v_32, c(1,2,3), c(-1,1,0))
table(data$v_32)
## 
##  -1   0   1 
## 363 418 357
data$v_33 <- mapvalues(data$v_33, c(1,2,3), c(-1,1,0))
table(data$v_33)
## 
##  -1   0   1 
## 335 406 401
data$v_34 <- mapvalues(data$v_34, c(1,2,3), c(-1,1,0))
table(data$v_34)
## 
##  -1   0   1 
## 283 333 524
data$v_35 <- mapvalues(data$v_35, c(1,2,3), c(-1,1,0))
table(data$v_35)
## 
##  -1   0   1 
## 316 452 374
data$v_36 <- mapvalues(data$v_36, c(1,2,3), c(-1,1,0))
table(data$v_36)
## 
##  -1   0   1 
## 341 434 367
data$v_122 <- mapvalues(data$v_122, c(1,2,3), c(1,-1,0))
table(data$v_122)
## 
##  -1   0   1 
## 240 400 501
data$v_146 <- mapvalues(data$v_146, c(1,2,3), c(-1,1,0))
table(data$v_122)
## 
##  -1   0   1 
## 240 400 501
data$v_147 <- mapvalues(data$v_147, c(1,2,3), c(-1,1,0))
table(data$v_147)
## 
##  -1   0   1 
## 311 396 420
data$v_148 <- mapvalues(data$v_148, c(1,2,3), c(-1,1,0))
table(data$v_148)
## 
##  -1   0   1 
## 200 443 480
data$v_149 <- mapvalues(data$v_149, c(1,2,3), c(1,-1,0))
table(data$v_149)
## 
##  -1   0   1 
## 241 324 559
data$v_150 <- mapvalues(data$v_150, c(1,2,3), c(-1,1,0))
table(data$v_150)
## 
##  -1   0   1 
## 226 437 460
data$v_151 <- mapvalues(data$v_151, c(1,2,3), c(-1,1,0))
table(data$v_151)
## 
##  -1   0   1 
## 249 405 465
data$v_241 <- mapvalues(data$v_241, c(1,2,3), c(-1,1,0))
table(data$v_241)
## 
##  -1   0   1 
## 223 257 533
data$v_242 <- mapvalues(data$v_242, c(1,2,3), c(-1,1,0))
table(data$v_242)
## 
##  -1   0   1 
## 227 277 508
data$v_243 <- mapvalues(data$v_243, c(1,2,3), c(-1,1,0))
table(data$v_243)
## 
##  -1   0   1 
## 193 234 590
data$v_244 <- mapvalues(data$v_244, c(1,2,3), c(-1,1,0))
table(data$v_244)
## 
##  -1   0   1 
## 310 274 431
data$v_245 <- mapvalues(data$v_245, c(1,2,3), c(-1,1,0))
table(data$v_245)
## 
##  -1   0   1 
## 307 257 450
data$v_246 <- mapvalues(data$v_246, c(1,2,3), c(1,-1,0))
table(data$v_246)
## 
##  -1   0   1 
## 192 240 585
data$v_280 <- mapvalues(data$v_280, c(1,2,3), c(-1,1,0))
table(data$v_280)
## 
##  -1   0   1 
## 263 276 487
data$v_281 <- mapvalues(data$v_281, c(1,2,3), c(-1,1,0))
table(data$v_281)
## 
##  -1   0   1 
## 239 279 507
data$v_282 <- mapvalues(data$v_282, c(1,2,3), c(-1,1,0))
table(data$v_282)
## 
##  -1   0   1 
## 212 307 506
data$v_283 <- mapvalues(data$v_283, c(1,2,3), c(1,-1,0))
table(data$v_283)
## 
##  -1   0   1 
## 197 259 572
data$v_284 <- mapvalues(data$v_284, c(1,2,3), c(-1,1,0))
table(data$v_284)
## 
##  -1   0   1 
## 230 296 501
data$v_285 <- mapvalues(data$v_285, c(1,2,3), c(-1,1,0))
table(data$v_285)
## 
##  -1   0   1 
## 185 311 527
# Merge for T1
data$s_funding_1_1 <- coalesce(data$v_32, data$v_146)
table(data$s_funding_1_1)
## 
##  -1   0   1 
## 716 797 749
data$s_funding_1_2 <- coalesce(data$v_33, data$v_147)
table(data$s_funding_1_2)
## 
##  -1   0   1 
## 646 802 821
data$s_funding_1_3 <- coalesce(data$v_34, data$v_148)
table(data$s_funding_1_3)
## 
##   -1    0    1 
##  483  776 1004
data$s_funding_1_4 <- coalesce(data$v_35, data$v_149)
table(data$s_funding_1_4)
## 
##  -1   0   1 
## 557 776 933
data$s_funding_1_5 <- coalesce(data$v_36, data$v_150)
table(data$s_funding_1_5)
## 
##  -1   0   1 
## 567 871 827
data$s_funding_1_6 <- coalesce(data$v_122, data$v_151)
table(data$s_funding_1_6)
## 
##  -1   0   1 
## 489 805 966
# Merge for T2
data$s_funding_2_1 <- coalesce(data$v_241, data$v_280)
table(data$s_funding_2_1)
## 
##   -1    0    1 
##  486  533 1020
data$s_funding_2_2 <- coalesce(data$v_242, data$v_281)
table(data$s_funding_2_2)
## 
##   -1    0    1 
##  466  556 1015
data$s_funding_2_3 <- coalesce(data$v_243, data$v_282)
table(data$s_funding_2_3)
## 
##   -1    0    1 
##  405  541 1096
data$s_funding_2_4 <- coalesce(data$v_244, data$v_283)
table(data$s_funding_2_4)
## 
##   -1    0    1 
##  507  533 1003
data$s_funding_2_5 <- coalesce(data$v_245, data$v_284)
table(data$s_funding_2_5)
## 
##  -1   0   1 
## 537 553 951
data$s_funding_2_6 <- coalesce(data$v_246, data$v_285)
table(data$s_funding_2_6)
## 
##   -1    0    1 
##  377  551 1112

Merge and Recode COI-Item

data$v_37[data$v_37 == 0] <- NA
data$v_38[data$v_38 == 0] <- NA
data$v_39[data$v_39 == 0] <- NA
data$v_40[data$v_40 == 0] <- NA
data$v_41[data$v_41 == 0] <- NA
data$v_123[data$v_123 == 0] <- NA
data$v_124[data$v_124 == 0] <- NA

data$v_152[data$v_152 == 0] <- NA
data$v_153[data$v_153 == 0] <- NA
data$v_154[data$v_154 == 0] <- NA
data$v_155[data$v_155 == 0] <- NA
data$v_156[data$v_156 == 0] <- NA
data$v_157[data$v_157 == 0] <- NA
data$v_158[data$v_158 == 0] <- NA

data$v_247[data$v_247 == 0] <- NA
data$v_248[data$v_248 == 0] <- NA
data$v_249[data$v_249 == 0] <- NA
data$v_250[data$v_250 == 0] <- NA
data$v_251[data$v_251 == 0] <- NA
data$v_252[data$v_252 == 0] <- NA
data$v_253[data$v_253 == 0] <- NA

data$v_286[data$v_286 == 0] <- NA
data$v_287[data$v_287 == 0] <- NA
data$v_288[data$v_288 == 0] <- NA
data$v_289[data$v_289 == 0] <- NA
data$v_290[data$v_290 == 0] <- NA
data$v_291[data$v_291 == 0] <- NA
data$v_292[data$v_292 == 0] <- NA

data$v_37 <- mapvalues(data$v_37,c(1,2,3),c(-1,1,0))
table(data$v_37)
## 
##  -1   0   1 
## 360 388 393
data$v_38 <- mapvalues(data$v_38,c(1,2,3),c(-1,1,0))
table(data$v_38)
## 
##  -1   0   1 
## 356 360 417
data$v_39 <- mapvalues(data$v_39,c(1,2,3),c(-1,1,0))
table(data$v_39)
## 
##  -1   0   1 
## 328 386 414
data$v_40 <- mapvalues(data$v_40,c(1,2,3),c(-1,1,0))
table(data$v_40)
## 
##  -1   0   1 
## 385 389 367
data$v_41 <- mapvalues(data$v_41,c(1,2,3),c(-1,1,0))
table(data$v_41)
## 
##  -1   0   1 
## 309 388 437
data$v_123 <- mapvalues(data$v_123,c(1,2,3),c(1,-1,0))
table(data$v_42)
## 
##   0   1   2   3 
##   9 542 339 257
data$v_124 <- mapvalues(data$v_124,c(1,2,3),c(-1,1,0))
table(data$v_124)
## 
##  -1   0   1 
## 345 395 397
data$v_152 <- mapvalues(data$v_152,c(1,2,3),c(-1,1,0))
table(data$v_152)
## 
##  -1   0   1 
## 306 371 446
data$v_153 <- mapvalues(data$v_153,c(1,2,3),c(-1,1,0))
table(data$v_153)
## 
##  -1   0   1 
## 270 380 469
data$v_154 <- mapvalues(data$v_154,c(1,2,3),c(-1,1,0))
table(data$v_154)
## 
##  -1   0   1 
## 302 366 452
data$v_155 <- mapvalues(data$v_155,c(1,2,3),c(-1,1,0))
table(data$v_155)
## 
##  -1   0   1 
## 317 379 428
data$v_156 <- mapvalues(data$v_156,c(1,2,3),c(-1,1,0))
table(data$v_156)
## 
##  -1   0   1 
## 265 375 482
data$v_157 <- mapvalues(data$v_157,c(1,2,3),c(-1,1,0))
table(data$v_157)
## 
##  -1   0   1 
## 276 378 467
data$v_158 <- mapvalues(data$v_158,c(1,2,3),c(1,-1,0))
table(data$v_158)
## 
##  -1   0   1 
## 293 377 453
data$v_247 <- mapvalues(data$v_247,c(1,2,3),c(-1,1,0))
table(data$v_247)
## 
##  -1   0   1 
## 316 265 436
data$v_248 <- mapvalues(data$v_248,c(1,2,3),c(-1,1,0))
table(data$v_248)
## 
##  -1   0   1 
## 276 287 451
data$v_249 <- mapvalues(data$v_249,c(1,2,3),c(-1,1,0))
table(data$v_249)
## 
##  -1   0   1 
## 269 293 452
data$v_250 <- mapvalues(data$v_250,c(1,2,3),c(-1,1,0))
table(data$v_250)
## 
##  -1   0   1 
## 312 301 403
data$v_251 <- mapvalues(data$v_251,c(1,2,3),c(-1,1,0))
table(data$v_251)
## 
##  -1   0   1 
## 261 300 455
data$v_252 <- mapvalues(data$v_252,c(1,2,3),c(1,-1,0))
table(data$v_252)
## 
##  -1   0   1 
## 375 301 336
data$v_253 <- mapvalues(data$v_253,c(1,2,3),c(-1,1,0))
table(data$v_253)
## 
##  -1   0   1 
## 255 307 453
data$v_286 <- mapvalues(data$v_286,c(1,2,3),c(-1,1,0))
table(data$v_286)
## 
##  -1   0   1 
## 246 270 511
data$v_287 <- mapvalues(data$v_287,c(1,2,3),c(-1,1,0))
table(data$v_287)
## 
##  -1   0   1 
## 260 284 482
data$v_288 <- mapvalues(data$v_288,c(1,2,3),c(-1,1,0))
table(data$v_288)
## 
##  -1   0   1 
## 247 260 518
data$v_289 <- mapvalues(data$v_289,c(1,2,3),c(-1,1,0))
table(data$v_289)
## 
##  -1   0   1 
## 238 283 505
data$v_290 <- mapvalues(data$v_290,c(1,2,3),c(-1,1,0))
table(data$v_290)
## 
##  -1   0   1 
## 241 272 513
data$v_291 <- mapvalues(data$v_291,c(1,2,3),c(-1,1,0))
table(data$v_291)
## 
##  -1   0   1 
## 231 282 513
data$v_292 <- mapvalues(data$v_292,c(1,2,3),c(1,-1,0))
table(data$v_292)
## 
##  -1   0   1 
## 316 266 443
# Merge for T1
data$s_coi_1_1 <- coalesce(data$v_37, data$v_152)
table(data$s_coi_1_1)
## 
##  -1   0   1 
## 666 759 839
data$s_coi_1_2 <- coalesce(data$v_38, data$v_153)
table(data$s_coi_1_2)
## 
##  -1   0   1 
## 626 740 886
data$s_coi_1_3 <- coalesce(data$v_39, data$v_154)
table(data$s_coi_1_3)
## 
##  -1   0   1 
## 630 752 866
data$s_coi_1_4 <- coalesce(data$v_40, data$v_155)
table(data$s_coi_1_4)
## 
##  -1   0   1 
## 702 768 795
data$s_coi_1_5 <- coalesce(data$v_41, data$v_156)
table(data$s_coi_1_5)
## 
##  -1   0   1 
## 574 763 919
data$s_coi_1_6 <- coalesce(data$v_123, data$v_157)
table(data$s_coi_1_6)
## 
##  -1   0   1 
## 644 765 854
data$s_coi_1_7 <- coalesce(data$v_124, data$v_158)
table(data$s_coi_1_7)
## 
##  -1   0   1 
## 638 772 850
# Merge for T2
data$s_coi_2_1 <- coalesce(data$v_247, data$v_286)
table(data$s_coi_2_1)
## 
##  -1   0   1 
## 562 535 947
data$s_coi_2_2 <- coalesce(data$v_248, data$v_287)
table(data$s_coi_2_2)
## 
##  -1   0   1 
## 536 571 933
data$s_coi_2_3 <- coalesce(data$v_249, data$v_288)
table(data$s_coi_2_3)
## 
##  -1   0   1 
## 516 553 970
data$s_coi_2_4 <- coalesce(data$v_250, data$v_289)
table(data$s_coi_2_4)
## 
##  -1   0   1 
## 550 584 908
data$s_coi_2_5 <- coalesce(data$v_251, data$v_290)
table(data$s_coi_2_5)
## 
##  -1   0   1 
## 502 572 968
data$s_coi_2_6 <- coalesce(data$v_252, data$v_291)
table(data$s_coi_2_6)
## 
##  -1   0   1 
## 606 583 849
data$s_coi_2_7 <- coalesce(data$v_253, data$v_292)
table(data$s_coi_2_7)
## 
##  -1   0   1 
## 571 573 896

Merge and Recode Causality-Item

data$v_42[data$v_42 == 0] <- NA
data$v_43[data$v_43 == 0] <- NA
data$v_44[data$v_44 == 0] <- NA
data$v_45[data$v_45 == 0] <- NA
data$v_46[data$v_46 == 0] <- NA
data$v_125[data$v_125 == 0] <- NA

data$v_159[data$v_159 == 0] <- NA
data$v_160[data$v_160 == 0] <- NA
data$v_161[data$v_161 == 0] <- NA
data$v_162[data$v_162 == 0] <- NA
data$v_163[data$v_163 == 0] <- NA
data$v_164[data$v_164 == 0] <- NA

data$v_254[data$v_254 == 0] <- NA
data$v_255[data$v_255 == 0] <- NA
data$v_256[data$v_256 == 0] <- NA
data$v_257[data$v_257 == 0] <- NA
data$v_258[data$v_258 == 0] <- NA
data$v_259[data$v_259 == 0] <- NA

data$v_293[data$v_293 == 0] <- NA
data$v_294[data$v_294 == 0] <- NA
data$v_295[data$v_295 == 0] <- NA
data$v_296[data$v_296 == 0] <- NA
data$v_297[data$v_297 == 0] <- NA
data$v_298[data$v_298 == 0] <- NA

data$v_42 <- mapvalues(data$v_42, c(1,2,3), c(1,-1,0))
table(data$v_42)
## 
##  -1   0   1 
## 339 257 542
data$v_43 <- mapvalues(data$v_43, c(1,2,3), c(-1,1,0))
table(data$v_43)
## 
##  -1   0   1 
## 512 273 358
data$v_44 <- mapvalues(data$v_44, c(1,2,3), c(-1,1,0))
table(data$v_44)
## 
##  -1   0   1 
## 406 373 361
data$v_45 <- mapvalues(data$v_45, c(1,2,3), c(-1,1,0))
table(data$v_45)
## 
##  -1   0   1 
## 423 382 337
data$v_46 <- mapvalues(data$v_46, c(1,2,3), c(-1,1,0))
table(data$v_46)
## 
##  -1   0   1 
## 476 313 353
data$v_125 <- mapvalues(data$v_125, c(1,2,3), c(-1,1,0))
table(data$v_125)
## 
##  -1   0   1 
## 505 342 294
data$v_159 <- mapvalues(data$v_159, c(1,2,3), c(1,-1,0))
table(data$v_159)
## 
##  -1   0   1 
## 115 186 824
data$v_160 <- mapvalues(data$v_160, c(1,2,3), c(-1,1,0))
table(data$v_160)
## 
##  -1   0   1 
## 555 266 301
data$v_161 <- mapvalues(data$v_161, c(1,2,3), c(-1,1,0))
table(data$v_161)
## 
##  -1   0   1 
## 642 224 257
data$v_162 <- mapvalues(data$v_162, c(1,2,3), c(-1,1,0))
table(data$v_162)
## 
##  -1   0   1 
## 686 217 219
data$v_163 <- mapvalues(data$v_163, c(1,2,3), c(-1,1,0))
table(data$v_163)
## 
##  -1   0   1 
## 455 314 352
data$v_164 <- mapvalues(data$v_164, c(1,2,3), c(-1,1,0))
table(data$v_164)
## 
##  -1   0   1 
## 438 314 371
data$v_254 <- mapvalues(data$v_254, c(1,2,3), c(1,-1,0))
table(data$v_254)
## 
##  -1   0   1 
## 305 234 475
data$v_255 <- mapvalues(data$v_255, c(1,2,3), c(-1,1,0))
table(data$v_255)
## 
##  -1   0   1 
## 416 255 341
data$v_256 <- mapvalues(data$v_256, c(1,2,3), c(-1,1,0))
table(data$v_256)
## 
##  -1   0   1 
## 347 330 339
data$v_257 <- mapvalues(data$v_257, c(1,2,3), c(-1,1,0))
table(data$v_257)
## 
##  -1   0   1 
## 341 344 323
data$v_258 <- mapvalues(data$v_258, c(1,2,3), c(-1,1,0))
table(data$v_258)
## 
##  -1   0   1 
## 392 295 328
data$v_259 <- mapvalues(data$v_259, c(1,2,3), c(-1,1,0))
table(data$v_259)
## 
##  -1   0   1 
## 392 293 330
data$v_293 <- mapvalues(data$v_293, c(1,2,3), c(1,-1,0))
table(data$v_293)
## 
##  -1   0   1 
## 124 204 698
data$v_294 <- mapvalues(data$v_294, c(1,2,3), c(-1,1,0))
table(data$v_294)
## 
##  -1   0   1 
## 436 295 292
data$v_295 <- mapvalues(data$v_295, c(1,2,3), c(-1,1,0))
table(data$v_295)
## 
##  -1   0   1 
## 535 231 261
data$v_296 <- mapvalues(data$v_296, c(1,2,3), c(-1,1,0))
table(data$v_296)
## 
##  -1   0   1 
## 597 240 185
data$v_297 <- mapvalues(data$v_297, c(1,2,3), c(-1,1,0))
table(data$v_297)
## 
##  -1   0   1 
## 384 311 331
data$v_298 <- mapvalues(data$v_298, c(1,2,3), c(-1,1,0))
table(data$v_298)
## 
##  -1   0   1 
## 383 312 328
# Merge for T1
data$s_causality_1_1 <- coalesce(data$v_42, data$v_159)
table(data$s_causality_1_1)
## 
##   -1    0    1 
##  454  443 1366
data$s_causality_1_2 <- coalesce(data$v_43, data$v_160)
table(data$s_causality_1_2)
## 
##   -1    0    1 
## 1067  539  659
data$s_causality_1_3 <- coalesce(data$v_44, data$v_161)
table(data$s_causality_1_3)
## 
##   -1    0    1 
## 1048  597  618
data$s_causality_1_4 <- coalesce(data$v_45, data$v_162)
table(data$s_causality_1_4)
## 
##   -1    0    1 
## 1109  599  556
data$s_causality_1_5 <- coalesce(data$v_46, data$v_163)
table(data$s_causality_1_5)
## 
##  -1   0   1 
## 931 627 705
data$s_causality_1_6 <- coalesce(data$v_125, data$v_164)
table(data$s_causality_1_6)
## 
##  -1   0   1 
## 943 656 665
# Merge for T2
data$s_causality_2_1 <- coalesce(data$v_254, data$v_293)
table(data$s_causality_2_1)
## 
##   -1    0    1 
##  429  438 1173
data$s_causality_2_2 <- coalesce(data$v_255, data$v_294)
table(data$s_causality_2_2)
## 
##  -1   0   1 
## 852 550 633
data$s_causality_2_3 <- coalesce(data$v_256, data$v_295)
table(data$s_causality_2_3)
## 
##  -1   0   1 
## 882 561 600
data$s_causality_2_4 <- coalesce(data$v_257, data$v_296)
table(data$s_causality_2_4)
## 
##  -1   0   1 
## 938 584 508
data$s_causality_2_5 <- coalesce(data$v_258, data$v_297)
table(data$s_causality_2_5)
## 
##  -1   0   1 
## 776 606 659
data$s_causality_2_6 <- coalesce(data$v_259, data$v_298)
table(data$s_causality_2_6)
## 
##  -1   0   1 
## 775 605 658

Merge and Recode CAMA-Items

data$v_50[data$v_50 == 0] <- NA
data$v_51[data$v_51 == 0] <- NA
data$v_52[data$v_52 == 0] <- NA
data$v_53[data$v_53 == 0] <- NA
data$v_54[data$v_54 == 0] <- NA
data$v_165[data$v_165 == 0] <- NA
data$v_166[data$v_166 == 0] <- NA
data$v_167[data$v_167 == 0] <- NA

data$v_55[data$v_55 == 0] <- NA
data$v_56[data$v_56 == 0] <- NA
data$v_57[data$v_57 == 0] <- NA
data$v_58[data$v_58 == 0] <- NA

data$v_401[data$v_401 == 0] <- NA

data$v_299[data$v_299 == 0] <- NA
data$v_300[data$v_300 == 0] <- NA
data$v_301[data$v_301 == 0] <- NA
data$v_302[data$v_302 == 0] <- NA
data$v_303[data$v_303 == 0] <- NA
data$v_304[data$v_304 == 0] <- NA
data$v_305[data$v_305 == 0] <- NA
data$v_306[data$v_306 == 0] <- NA

data$v_307[data$v_307 == 0] <- NA
data$v_308[data$v_308 == 0] <- NA
data$v_309[data$v_309 == 0] <- NA
data$v_310[data$v_310 == 0] <- NA

data$v_402[data$v_402 == 0] <- NA

# Caution: For v_401 and v_402, coding is dependent on condition. Items is correct in condition 5, incorrect in conditions 4 and 6.

data$v_50 <- mapvalues(data$v_50, c(1,2,3), c(1,-1,0))
table(data$v_50)
## 
##  -1   0   1 
##  65 179 284
data$v_51 <- mapvalues(data$v_51, c(1,2,3), c(-1,1,0))
table(data$v_51)
## 
##  -1   0   1 
## 129 188 211
data$v_52 <- mapvalues(data$v_52, c(1,2,3), c(-1,1,0))
table(data$v_52)
## 
##  -1   0   1 
## 203 217 111
data$v_53 <- mapvalues(data$v_53, c(1,2,3), c(-1,1,0))
table(data$v_53)
## 
##  -1   0   1 
## 221 204 100
data$v_54 <- mapvalues(data$v_54, c(1,2,3), c(1,-1,0))
table(data$v_54)
## 
##  -1   0   1 
##  81 246 202
data$v_165 <- mapvalues(data$v_165, c(1,2,3), c(-1,1,0))
table(data$v_165)
## 
##  -1   0   1 
## 130 297 102
data$v_166 <- mapvalues(data$v_166, c(1,2,3), c(-1,1,0))
table(data$v_166)
## 
##  -1   0   1 
##  99 225 206
data$v_167 <- mapvalues(data$v_167, c(1,2,3), c(-1,1,0))
table(data$v_167)
## 
##  -1   0   1 
##  98 282 150
data$v_55 <- mapvalues(data$v_55, c(1,2,3), c(-1,1,0))
table(data$v_55)
## 
##  -1   0   1 
## 256 191  83
data$v_56 <- mapvalues(data$v_56, c(1,2,3), c(1,-1,0))
table(data$v_56)
## 
##  -1   0   1 
## 120 243 166
data$v_57 <- mapvalues(data$v_57, c(1,2,3), c(-1,1,0))
table(data$v_57)
## 
##  -1   0   1 
## 155 238 138
data$v_58 <- mapvalues(data$v_58, c(1,2,3), c(-1,1,0))
table(data$v_58)
## 
##  -1   0   1 
## 171 226 133
data$v_401_n <- NA
data$v_401_n <- ifelse(data$condition == 4 & data$v_401 == 1, -1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 4 & data$v_401 == 2, 1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 4 & data$v_401 == 3, 0, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 5 & data$v_401 == 1, 1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 5 & data$v_401 == 2, -1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 5 & data$v_401 == 3, 0, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 6 & data$v_401 == 1, -1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 6 & data$v_401 == 2, 1, data$v_401_n)
data$v_401_n <- ifelse(data$condition == 6 & data$v_401 == 3, 0, data$v_401_n)
table(data$v_401_n)
## 
##  -1   0   1 
## 176 193 163
data$v_299 <- mapvalues(data$v_299, c(1,2,3), c(1,-1,0))
table(data$v_299)
## 
##  -1   0   1 
##  88 177 263
data$v_300 <- mapvalues(data$v_300, c(1,2,3), c(-1,1,0))
table(data$v_300)
## 
##  -1   0   1 
## 116 209 202
data$v_301 <- mapvalues(data$v_301, c(1,2,3), c(-1,1,0))
table(data$v_301)
## 
##  -1   0   1 
## 181 229 118
data$v_302 <- mapvalues(data$v_302, c(1,2,3), c(-1,1,0))
table(data$v_302)
## 
##  -1   0   1 
## 185 217 126
data$v_303 <- mapvalues(data$v_303, c(1,2,3), c(1,-1,0))
table(data$v_303)
## 
##  -1   0   1 
##  85 238 203
data$v_304 <- mapvalues(data$v_304, c(1,2,3), c(-1,1,0))
table(data$v_304)
## 
##  -1   0   1 
## 134 266 122
data$v_305 <- mapvalues(data$v_305, c(1,2,3), c(-1,1,0))
table(data$v_305)
## 
##  -1   0   1 
## 108 208 210
data$v_306 <- mapvalues(data$v_306, c(1,2,3), c(-1,1,0))
table(data$v_306)
## 
##  -1   0   1 
## 113 256 159
data$v_307 <- mapvalues(data$v_307, c(1,2,3), c(-1,1,0))
table(data$v_307)
## 
##  -1   0   1 
## 211 170 147
data$v_308 <- mapvalues(data$v_308, c(1,2,3), c(1,-1,0))
table(data$v_308)
## 
##  -1   0   1 
## 143 219 166
data$v_309 <- mapvalues(data$v_309, c(1,2,3), c(-1,1,0))
table(data$v_309)
## 
##  -1   0   1 
## 170 213 145
data$v_310 <- mapvalues(data$v_310, c(1,2,3), c(-1,1,0))
table(data$v_310)
## 
##  -1   0   1 
## 193 201 135
data$v_402_n <- NA
data$v_402_n <- ifelse(data$condition == 4 & data$v_402 == 1, -1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 4 & data$v_402 == 2, 1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 4 & data$v_402 == 3, 0, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 5 & data$v_402 == 1, 1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 5 & data$v_402 == 2, -1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 5 & data$v_402 == 3, 0, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 6 & data$v_402 == 1, -1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 6 & data$v_402 == 2, 1, data$v_402_n)
data$v_402_n <- ifelse(data$condition == 6 & data$v_402 == 3, 0, data$v_402_n)
table(data$v_402_n)
## 
##  -1   0   1 
## 141 217 172
data <- rename(data, s_CAMA_1_1_1 = v_50, s_CAMA_1_1_2 = v_51, s_CAMA_1_1_3 =
                 v_52, s_CAMA_1_1_4 = v_53, s_CAMA_1_1_5 = v_54, s_CAMA_1_1_6 =
                 v_165, s_CAMA_1_1_7 = v_166, s_CAMA_1_1_8 = v_167, 
               s_CAMA_1_2_1 = v_55, s_CAMA_1_2_2 = v_56, s_CAMA_1_2_3 = v_57,
               s_CAMA_1_2_4 = v_58, s_CAMA_1_3 = v_401_n, s_CAMA_2_1_1 = v_299,
               s_CAMA_2_1_2 = v_300, s_CAMA_2_1_3 = v_301, s_CAMA_2_1_4 = v_302,
               s_CAMA_2_1_5 = v_303, s_CAMA_2_1_6 = v_304, s_CAMA_2_1_7 = v_305,
               s_CAMA_2_1_8 = v_306, s_CAMA_2_2_1 = v_307, s_CAMA_2_2_2 = v_308,
               s_CAMA_2_2_3 = v_309, s_CAMA_2_2_4 = v_310, s_CAMA_2_3 = v_402_n)

data$s_CAMA_1_1 <- coalesce(data$s_CAMA_1_1_1, data$s_CAMA_2_1_1)
table(data$s_CAMA_1_1)
## 
##  -1   0   1 
## 153 356 547
data$s_CAMA_1_2 <- coalesce(data$s_CAMA_1_1_2, data$s_CAMA_2_1_2)
table(data$s_CAMA_1_2)
## 
##  -1   0   1 
## 245 397 413
data$s_CAMA_1_3 <- coalesce(data$s_CAMA_1_1_3, data$s_CAMA_2_1_3)
table(data$s_CAMA_1_3)
## 
##  -1   0   1 
## 384 446 229
data$s_CAMA_1_4 <- coalesce(data$s_CAMA_1_1_4, data$s_CAMA_2_1_4)
table(data$s_CAMA_1_4)
## 
##  -1   0   1 
## 406 421 226
data$s_CAMA_1_5 <- coalesce(data$s_CAMA_1_1_5, data$s_CAMA_2_1_5)
table(data$s_CAMA_1_5)
## 
##  -1   0   1 
## 166 484 405
data$s_CAMA_1_6 <- coalesce(data$s_CAMA_1_1_6, data$s_CAMA_2_1_6)
table(data$s_CAMA_1_6)
## 
##  -1   0   1 
## 264 563 224
data$s_CAMA_1_7 <- coalesce(data$s_CAMA_1_1_7, data$s_CAMA_2_1_7)
table(data$s_CAMA_1_7)
## 
##  -1   0   1 
## 207 433 416
data$s_CAMA_1_8 <- coalesce(data$s_CAMA_1_1_8, data$s_CAMA_2_1_8)
table(data$s_CAMA_1_8)
## 
##  -1   0   1 
## 211 538 309
data$s_CAMA_2_1 <- coalesce(data$s_CAMA_1_2_1,data$s_CAMA_2_2_1)
table(data$s_CAMA_2_1)
## 
##  -1   0   1 
## 467 361 230
data$s_CAMA_2_2 <- coalesce(data$s_CAMA_1_2_2,data$s_CAMA_2_2_2)
table(data$s_CAMA_2_2)
## 
##  -1   0   1 
## 263 462 332
data$s_CAMA_2_3 <- coalesce(data$s_CAMA_1_2_3,data$s_CAMA_2_2_3)
table(data$s_CAMA_2_3)
## 
##  -1   0   1 
## 325 451 283
data$s_CAMA_2_4 <- coalesce(data$s_CAMA_1_2_1,data$s_CAMA_2_2_4)
table(data$s_CAMA_2_4)
## 
##  -1   0   1 
## 449 392 218
data$s_CAMA_3 <- coalesce(data$s_CAMA_1_3, data$s_CAMA_2_3)
table(data$s_CAMA_3)
## 
##  -1   0   1 
## 385 446 231

Merge and Recode METI

data$v_313[data$v_313 == 0] <- NA
data$v_314[data$v_314 == 0] <- NA
data$v_315[data$v_315 == 0] <- NA
data$v_316[data$v_316 == 0] <- NA
data$v_317[data$v_317 == 0] <- NA
data$v_323[data$v_323 == 0] <- NA
data$v_324[data$v_324 == 0] <- NA
data$v_325[data$v_325 == 0] <- NA
data$v_326[data$v_326 == 0] <- NA
data$v_327[data$v_327 == 0] <- NA
data$v_328[data$v_328 == 0] <- NA
data$v_329[data$v_329 == 0] <- NA
data$v_330[data$v_330 == 0] <- NA
data$v_331[data$v_331 == 0] <- NA

data$v_360[data$v_360 == 0] <- NA
data$v_361[data$v_361 == 0] <- NA
data$v_362[data$v_362 == 0] <- NA
data$v_363[data$v_363 == 0] <- NA
data$v_364[data$v_364 == 0] <- NA
data$v_365[data$v_365 == 0] <- NA
data$v_366[data$v_366 == 0] <- NA
data$v_367[data$v_367 == 0] <- NA
data$v_368[data$v_368 == 0] <- NA
data$v_369[data$v_369 == 0] <- NA
data$v_370[data$v_370 == 0] <- NA
data$v_371[data$v_371 == 0] <- NA
data$v_372[data$v_372 == 0] <- NA
data$v_373[data$v_373 == 0] <- NA

data$v_332[data$v_332 == 0] <- NA
data$v_333[data$v_333 == 0] <- NA
data$v_334[data$v_334 == 0] <- NA
data$v_335[data$v_335 == 0] <- NA
data$v_336[data$v_336 == 0] <- NA
data$v_337[data$v_337 == 0] <- NA
data$v_338[data$v_338 == 0] <- NA
data$v_339[data$v_339 == 0] <- NA
data$v_340[data$v_340 == 0] <- NA
data$v_341[data$v_341 == 0] <- NA
data$v_342[data$v_342 == 0] <- NA
data$v_343[data$v_343 == 0] <- NA
data$v_344[data$v_344 == 0] <- NA
data$v_345[data$v_345 == 0] <- NA

data$v_374[data$v_374 == 0] <- NA
data$v_375[data$v_375 == 0] <- NA
data$v_376[data$v_376 == 0] <- NA
data$v_377[data$v_377 == 0] <- NA
data$v_378[data$v_378 == 0] <- NA
data$v_379[data$v_379 == 0] <- NA
data$v_380[data$v_380 == 0] <- NA
data$v_381[data$v_381 == 0] <- NA
data$v_382[data$v_382 == 0] <- NA
data$v_383[data$v_383 == 0] <- NA
data$v_384[data$v_384 == 0] <- NA
data$v_385[data$v_385 == 0] <- NA
data$v_386[data$v_386 == 0] <- NA
data$v_387[data$v_387 == 0] <- NA

data <- rename(data, s_METI_1_Res_exp_1 = v_313, s_METI_1_Res_int_1 = v_314,
               s_METI_1_Res_ben_1 = v_315, s_METI_1_Res_ben_2 = v_316,
               s_METI_1_Res_ben_3 = v_317, s_METI_1_Res_int_2 = v_323, 
               s_METI_1_Res_exp_2 = v_324, s_METI_1_Res_exp_3 = v_325,
               s_METI_1_Res_exp_4 = v_326, s_METI_1_Res_exp_5 = v_327,
               s_METI_1_Res_ben_4 = v_328, s_METI_1_Res_int_3 = v_329,
               s_METI_1_Res_exp_6 = v_330, s_METI_1_Res_int_4 = v_331)

data <- rename(data, s_METI_2_Res_exp_1 = v_360, s_METI_2_Res_int_1 = v_361,
               s_METI_2_Res_ben_1 = v_362, s_METI_2_Res_ben_2 = v_363,
               s_METI_2_Res_ben_3 = v_364, s_METI_2_Res_int_2 = v_365, 
               s_METI_2_Res_exp_2 = v_366, s_METI_2_Res_exp_3 = v_367,
               s_METI_2_Res_exp_4 = v_368, s_METI_2_Res_exp_5 = v_369,
               s_METI_2_Res_ben_4 = v_370, s_METI_2_Res_int_3 = v_371,
               s_METI_2_Res_exp_6 = v_372, s_METI_2_Res_int_4 = v_373)

data <- rename(data, s_METI_1_Auth_exp_1 = v_332, s_METI_1_Auth_int_1 = v_333,
               s_METI_1_Auth_ben_1 = v_334, s_METI_1_Auth_ben_2 = v_335,
               s_METI_1_Auth_ben_3 = v_336, s_METI_1_Auth_int_2 = v_337, 
               s_METI_1_Auth_exp_2 = v_338, s_METI_1_Auth_exp_3 = v_339,
               s_METI_1_Auth_exp_4 = v_340, s_METI_1_Auth_exp_5 = v_341,
               s_METI_1_Auth_ben_4 = v_342, s_METI_1_Auth_int_3 = v_343,
               s_METI_1_Auth_exp_6 = v_344, s_METI_1_Auth_int_4 = v_345)

data <- rename(data, s_METI_2_Auth_exp_1 = v_374, s_METI_2_Auth_int_1 = v_375,
               s_METI_2_Auth_ben_1 = v_376, s_METI_2_Auth_ben_2 = v_377,
               s_METI_2_Auth_ben_3 = v_378, s_METI_2_Auth_int_2 = v_379, 
               s_METI_2_Auth_exp_2 = v_380, s_METI_2_Auth_exp_3 = v_381,
               s_METI_2_Auth_exp_4 = v_382, s_METI_2_Auth_exp_5 = v_383,
               s_METI_2_Auth_ben_4 = v_384, s_METI_2_Auth_int_3 = v_385,
               s_METI_2_Auth_exp_6 = v_386, s_METI_2_Auth_int_4 = v_387)

data$s_METI_1_exp_1 <- coalesce(data$s_METI_1_Res_exp_1,
                                data$s_METI_1_Auth_exp_1)
data$s_METI_1_int_1 <- coalesce(data$s_METI_1_Res_int_1,
                                data$s_METI_1_Auth_int_1)
data$s_METI_1_ben_1 <- coalesce(data$s_METI_1_Res_ben_1,
                                data$s_METI_1_Auth_ben_1)
data$s_METI_1_ben_2 <- coalesce(data$s_METI_1_Res_ben_2,
                                data$s_METI_1_Auth_ben_2)
data$s_METI_1_ben_3 <- coalesce(data$s_METI_1_Res_ben_3,
                                data$s_METI_1_Auth_ben_3)
data$s_METI_1_int_2 <- coalesce(data$s_METI_1_Res_int_2,
                                data$s_METI_1_Auth_int_2)
data$s_METI_1_exp_2 <- coalesce(data$s_METI_1_Res_exp_2,
                                data$s_METI_1_Auth_exp_2)
data$s_METI_1_exp_3 <- coalesce(data$s_METI_1_Res_exp_3,
                                data$s_METI_1_Auth_exp_3)
data$s_METI_1_exp_4 <- coalesce(data$s_METI_1_Res_exp_4,
                                data$s_METI_1_Auth_exp_4)
data$s_METI_1_exp_5 <- coalesce(data$s_METI_1_Res_exp_5,
                                data$s_METI_1_Auth_exp_5)
data$s_METI_1_ben_4 <- coalesce(data$s_METI_1_Res_ben_4,
                                data$s_METI_1_Auth_ben_4)
data$s_METI_1_int_3 <- coalesce(data$s_METI_1_Res_int_3,
                                data$s_METI_1_Auth_int_3)
data$s_METI_1_exp_6 <- coalesce(data$s_METI_1_Res_exp_6,
                                data$s_METI_1_Auth_exp_6)
data$s_METI_1_int_4 <- coalesce(data$s_METI_1_Res_int_4,
                                data$s_METI_1_Auth_int_4)

data$s_METI_2_exp_1 <- coalesce(data$s_METI_2_Res_exp_1,
                                data$s_METI_2_Auth_exp_1)
data$s_METI_2_int_1 <- coalesce(data$s_METI_2_Res_int_1,
                                data$s_METI_2_Auth_int_1)
data$s_METI_2_ben_1 <- coalesce(data$s_METI_2_Res_ben_1,
                                data$s_METI_2_Auth_ben_1)
data$s_METI_2_ben_2 <- coalesce(data$s_METI_2_Res_ben_2,
                                data$s_METI_2_Auth_ben_2)
data$s_METI_2_ben_3 <- coalesce(data$s_METI_2_Res_ben_3,
                                data$s_METI_2_Auth_ben_3)
data$s_METI_2_int_2 <- coalesce(data$s_METI_2_Res_int_2,
                                data$s_METI_2_Auth_int_2)
data$s_METI_2_exp_2 <- coalesce(data$s_METI_2_Res_exp_2,
                                data$s_METI_2_Auth_exp_2)
data$s_METI_2_exp_3 <- coalesce(data$s_METI_2_Res_exp_3,
                                data$s_METI_2_Auth_exp_3)
data$s_METI_2_exp_4 <- coalesce(data$s_METI_2_Res_exp_4,
                                data$s_METI_2_Auth_exp_4)
data$s_METI_2_exp_5 <- coalesce(data$s_METI_2_Res_exp_5,
                                data$s_METI_2_Auth_exp_5)
data$s_METI_2_ben_4 <- coalesce(data$s_METI_2_Res_ben_4,
                                data$s_METI_2_Auth_ben_4)
data$s_METI_2_int_3 <- coalesce(data$s_METI_2_Res_int_3,
                                data$s_METI_2_Auth_int_3)
data$s_METI_2_exp_6 <- coalesce(data$s_METI_2_Res_exp_6,
                                data$s_METI_2_Auth_exp_6)
data$s_METI_2_int_4 <- coalesce(data$s_METI_2_Res_int_4,
                                data$s_METI_2_Auth_int_4)

data$s_METI_exp_1 <- coalesce(data$s_METI_1_exp_1,data$s_METI_2_exp_1)
table(data$s_METI_exp_1)
## 
##   1   2   3   4   5   6   7 
##  33  42  68 366 362 561 598
data$s_METI_int_1 <- coalesce(data$s_METI_1_int_1,data$s_METI_2_int_1)
table(data$s_METI_int_1)
## 
##   1   2   3   4   5   6   7 
##  27  42  62 464 400 548 490
data$s_METI_ben_1 <- coalesce(data$s_METI_1_ben_1,data$s_METI_2_ben_1)
table(data$s_METI_ben_1)
## 
##   1   2   3   4   5   6   7 
##  25  34  89 468 399 521 491
data$s_METI_ben_2 <- coalesce(data$s_METI_1_ben_2,data$s_METI_2_ben_2)
table(data$s_METI_ben_2)
## 
##   1   2   3   4   5   6   7 
##  37  31  88 444 397 530 504
data$s_METI_ben_3 <- coalesce(data$s_METI_1_ben_3,data$s_METI_2_ben_3)
table(data$s_METI_ben_3)
## 
##   1   2   3   4   5   6   7 
##  35  33  76 377 386 558 567
data$s_METI_int_2 <- coalesce(data$s_METI_1_int_2,data$s_METI_2_int_2)
table(data$s_METI_int_2)
## 
##   1   2   3   4   5   6   7 
##  37  36  84 428 375 545 523
data$s_METI_exp_2 <- coalesce(data$s_METI_1_exp_2,data$s_METI_2_exp_2)
table(data$s_METI_exp_2)
## 
##   1   2   3   4   5   6   7 
##  33  33  72 356 364 587 589
data$s_METI_exp_3 <- coalesce(data$s_METI_1_exp_3,data$s_METI_2_exp_3)
table(data$s_METI_exp_3)
## 
##   1   2   3   4   5   6   7 
##  24  51 102 427 398 525 507
data$s_METI_exp_4 <- coalesce(data$s_METI_1_exp_4,data$s_METI_2_exp_4)
table(data$s_METI_exp_4)
## 
##   1   2   3   4   5   6   7 
##  27  45  78 385 375 565 560
data$s_METI_exp_5 <- coalesce(data$s_METI_1_exp_5,data$s_METI_2_exp_5)
table(data$s_METI_exp_5)
## 
##   1   2   3   4   5   6   7 
##  28  46  72 375 359 593 556
data$s_METI_ben_4 <- coalesce(data$s_METI_1_ben_4,data$s_METI_2_ben_4)
table(data$s_METI_ben_4)
## 
##   1   2   3   4   5   6   7 
##  33  36  83 462 402 528 479
data$s_METI_int_3 <- coalesce(data$s_METI_1_int_3,data$s_METI_2_int_3)
table(data$s_METI_int_3)
## 
##   1   2   3   4   5   6   7 
##  25  44  83 385 343 581 568
data$s_METI_exp_6 <- coalesce(data$s_METI_1_exp_6,data$s_METI_2_exp_6)
table(data$s_METI_exp_6)
## 
##   1   2   3   4   5   6   7 
##  24  33  74 364 370 583 586
data$s_METI_int_4 <- coalesce(data$s_METI_1_int_4,data$s_METI_2_int_4)
table(data$s_METI_int_4)
## 
##   1   2   3   4   5   6   7 
##  30  36  86 382 386 561 543

Recode Awareness Check

data <- plyr::rename(data, c("v_388" = "s_awareness"))
data$s_awareness <- mapvalues(data$s_awareness, c(0,1,2,3,4,5,6,7,8,9),
                              c(1,0,0,0,0,0,0,0,0,0))
data$s_awareness <- factor(data$s_awareness, c(0,1),
                           labels = c("fail","pass"))
table(data$s_awareness)
## 
## fail pass 
##  658 1383
prop.table(table(data$s_awareness))
## 
##     fail     pass 
## 0.322391 0.677609

Study Duration Analyses

data2 <- data[!data$dispcode == 22,]
length(unique(data$p_0001[data$dispcode == 31| data$dispcode == 32]))
## [1] 2041
View(data2)

data2$duration_minutes <- data2$duration/60
data2$duration_minutes[data2$duration_minutes <= 0] <- NA

psych::describe(data2$duration_minutes)
##    vars    n mean    sd median trimmed  mad  min    max range skew kurtosis
## X1    1 1753 21.9 11.91  18.45   19.93 8.06 8.02 104.83 96.82 2.05     6.21
##      se
## X1 0.28
hist.duration <- ggplot (data2, aes(duration_minutes)) + 
  theme(legend.position = "none") + geom_histogram(aes(y = after_stat(density)),
                                                   colour = "black",
                                                   fill = "white") +
  labs(x = "Duration in Minutes", y = "Density")

hist.duration + stat_function(fun = dnorm,
                              args = list(mean = mean(data2$duration_minutes,
                                                      na.rm = TRUE),
                                          sd = sd(data2$duration_minutes,
                                                  na.rm = TRUE)),
                              colour = "blue", size = 1)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 288 rows containing non-finite values (`stat_bin()`).

Duration by Condition (Boxplot)

conditionBox <- ggplot(data2, aes(condition, duration_minutes)) +
  geom_boxplot() + labs (x = "Condtion", y = "Duration in Minutes")
conditionBox
## Warning: Removed 288 rows containing non-finite values (`stat_boxplot()`).

conditionModel <- lm(duration_minutes ~ condition, data = data2)
summary(conditionModel)
## 
## Call:
## lm(formula = duration_minutes ~ condition, data = data2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.304  -7.995  -3.432   4.294  81.029 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  20.3892     0.7146  28.534  < 2e-16 ***
## condition2    0.8452     0.9840   0.859 0.390484    
## condition3    0.7425     0.9958   0.746 0.455988    
## condition4    2.5062     0.9933   2.523 0.011722 *  
## condition5    3.4150     1.0143   3.367 0.000776 ***
## condition6    1.6277     0.9840   1.654 0.098248 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.87 on 1747 degrees of freedom
##   (288 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.008949,   Adjusted R-squared:  0.006113 
## F-statistic: 3.155 on 5 and 1747 DF,  p-value: 0.007696

Duration by Quota (Boxplot)

quotaBox <- ggplot(data2, aes(quota, duration_minutes)) +
  geom_boxplot() + labs (x = "Quota", y = "Duration in Minutes")
quotaBox
## Warning: Removed 288 rows containing non-finite values (`stat_boxplot()`).

quotaModel <- lm(duration_minutes ~ quota, data = data2)
summary(quotaModel)
## 
## Call:
## lm(formula = duration_minutes ~ quota, data = data2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.507  -7.772  -3.212   4.205  79.393 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  24.5913     0.9541  25.773  < 2e-16 ***
## quota2       -3.3109     1.3342  -2.481 0.013178 *  
## quota3       -1.5023     1.3586  -1.106 0.268974    
## quota4        0.8492     1.3810   0.615 0.538703    
## quota5        0.2674     1.3610   0.196 0.844256    
## quota6       -2.2524     1.3384  -1.683 0.092582 .  
## quota7       -5.8959     1.3610  -4.332 1.56e-05 ***
## quota8       -4.7178     1.3494  -3.496 0.000484 ***
## quota9       -6.6560     1.3733  -4.847 1.37e-06 ***
## quota10      -1.6808     1.3758  -1.222 0.221997    
## quota11      -1.3459     1.3562  -0.992 0.321162    
## quota12      -6.0378     1.3682  -4.413 1.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.69 on 1741 degrees of freedom
##   (288 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.04297,    Adjusted R-squared:  0.03692 
## F-statistic: 7.106 on 11 and 1741 DF,  p-value: 6.521e-12

Duration by Awareness Check (Boxplot)

summary(data2$s_awareness)
## fail pass 
##  658 1383
awarenessBox <- ggplot(data = data2, aes(s_awareness, duration_minutes)) +
  geom_boxplot() + labs(x = "Awarenes Check", y = "Duration in Minutes")
awarenessBox
## Warning: Removed 288 rows containing non-finite values (`stat_boxplot()`).

awarenessModel <- lm(duration_minutes ~ s_awareness, data = data2)
summary(awarenessModel)
## 
## Call:
## lm(formula = duration_minutes ~ s_awareness, data = data2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.837  -7.821  -3.371   3.996  81.213 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      18.3032     0.4892  37.416   <2e-16 ***
## s_awarenesspass   5.3176     0.5947   8.941   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.65 on 1751 degrees of freedom
##   (288 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.04366,    Adjusted R-squared:  0.04312 
## F-statistic: 79.95 on 1 and 1751 DF,  p-value: < 2.2e-16

Duration by Age (Scatterplot)

describe(data$s_age)
##    vars    n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 3077 47.46 15.89     48   47.47 19.27  18  90    72 -0.01    -0.99 0.29
describe(data2$s_age)
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 2040 45.22 15.23     45   45.01 17.79  18  90    72 0.12    -0.96 0.34
scatter.age <- ggplot(data2, aes(s_age,duration_minutes)) +
  geom_point() + geom_smooth(method = "lm", se = F) + 
  labs(x = "Age", y = "Duration in minutes")
scatter.age
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 289 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 289 rows containing missing values (`geom_point()`).

cor.test(data2$s_age, data2$duration_minutes)
## 
##  Pearson's product-moment correlation
## 
## data:  data2$s_age and data2$duration_minutes
## t = 6.5843, df = 1750, p-value = 6.025e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1094461 0.2008492
## sample estimates:
##       cor 
## 0.1554804

Duration by Gender (Boxplot)

genderBox <- ggplot(data = data2, aes(s_sex, duration_minutes)) +
  geom_boxplot() + labs(x = "Subject Gender", y = "Duration in Minutes")
genderBox
## Warning: Removed 288 rows containing non-finite values (`stat_boxplot()`).

genderModel <- lm(duration_minutes ~ s_sex, data = data2)
summary(genderModel)
## 
## Call:
## lm(formula = duration_minutes ~ s_sex, data = data2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.377  -7.994  -3.410   4.273  81.956 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  22.8771     0.4037  56.674  < 2e-16 ***
## s_sexmale    -1.9271     0.5672  -3.398 0.000694 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.87 on 1751 degrees of freedom
##   (288 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.00655,    Adjusted R-squared:  0.005983 
## F-statistic: 11.55 on 1 and 1751 DF,  p-value: 0.0006944

Duration by Educational Background (Boxplot)

schoolBox <- ggplot(data = data2, aes(s_school, duration_minutes)) +
  geom_boxplot() +labs(x = "Education Level", y = "Duration in Minutes")
schoolBox
## Warning: Removed 288 rows containing non-finite values (`stat_boxplot()`).

schoolModel <- lm(duration_minutes ~ s_school, data = data2)
summary(schoolModel)
## 
## Call:
## lm(formula = duration_minutes ~ s_school, data = data2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.872  -8.014  -3.464   4.473  81.945 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   20.5473     0.4917  41.784  < 2e-16 ***
## s_schoolReal   1.7293     0.6908   2.503 0.012393 *  
## s_schoolAbi    2.3414     0.6991   3.349 0.000828 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.87 on 1750 degrees of freedom
##   (288 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.006883,   Adjusted R-squared:  0.005748 
## F-statistic: 6.064 on 2 and 1750 DF,  p-value: 0.002374

Clean Wide-Format Dataset

names(data)
##   [1] "id"                  "external_lfdn"       "tester"             
##   [4] "dispcode"            "lastpage"            "quality"            
##   [7] "duration"            "condition"           "p_0001"             
##  [10] "c_0002"              "text_order"          "METI_target"        
##  [13] "s_sex"               "s_age"               "s_school"           
##  [16] "s_german"            "s_psychology"        "s_interest"         
##  [19] "s_contact"           "s_field"             "v_10"               
##  [22] "v_11"                "v_47"                "v_48"               
##  [25] "v_49"                "v_12"                "v_14"               
##  [28] "v_16"                "v_71"                "v_17"               
##  [31] "v_18"                "v_19"                "v_20"               
##  [34] "v_21"                "v_115"               "v_116"              
##  [37] "v_117"               "v_22"                "v_23"               
##  [40] "v_24"                "v_25"                "v_26"               
##  [43] "v_120"               "v_27"                "v_28"               
##  [46] "v_29"                "v_30"                "v_31"               
##  [49] "v_121"               "v_32"                "v_33"               
##  [52] "v_34"                "v_35"                "v_36"               
##  [55] "v_122"               "v_37"                "v_38"               
##  [58] "v_39"                "v_40"                "v_41"               
##  [61] "v_123"               "v_124"               "v_42"               
##  [64] "v_43"                "v_44"                "v_45"               
##  [67] "v_46"                "v_125"               "v_72"               
##  [70] "v_73"                "v_74"                "v_75"               
##  [73] "v_76"                "v_77"                "v_79"               
##  [76] "v_81"                "v_83"                "v_126"              
##  [79] "v_127"               "v_128"               "v_129"              
##  [82] "v_130"               "v_131"               "v_132"              
##  [85] "v_133"               "v_134"               "v_135"              
##  [88] "v_136"               "v_137"               "v_138"              
##  [91] "v_139"               "v_140"               "v_141"              
##  [94] "v_142"               "v_143"               "v_144"              
##  [97] "v_145"               "v_146"               "v_147"              
## [100] "v_148"               "v_149"               "v_150"              
## [103] "v_151"               "v_152"               "v_153"              
## [106] "v_154"               "v_155"               "v_156"              
## [109] "v_157"               "v_158"               "v_159"              
## [112] "v_160"               "v_161"               "v_162"              
## [115] "v_163"               "v_164"               "s_CAMA_1_1_1"       
## [118] "s_CAMA_1_1_2"        "s_CAMA_1_1_3"        "s_CAMA_1_1_4"       
## [121] "s_CAMA_1_1_5"        "s_CAMA_1_1_6"        "s_CAMA_1_1_7"       
## [124] "s_CAMA_1_1_8"        "s_CAMA_1_2_1"        "s_CAMA_1_2_2"       
## [127] "s_CAMA_1_2_3"        "s_CAMA_1_2_4"        "v_401"              
## [130] "v_91"                "v_92"                "v_93"               
## [133] "v_94"                "v_95"                "v_96"               
## [136] "v_98"                "v_100"               "v_102"              
## [139] "v_235"               "v_236"               "v_237"              
## [142] "v_238"               "v_239"               "v_240"              
## [145] "v_241"               "v_242"               "v_243"              
## [148] "v_244"               "v_245"               "v_246"              
## [151] "v_247"               "v_248"               "v_249"              
## [154] "v_250"               "v_251"               "v_252"              
## [157] "v_253"               "v_254"               "v_255"              
## [160] "v_256"               "v_257"               "v_258"              
## [163] "v_259"               "s_METI_1_Res_exp_1"  "s_METI_1_Res_int_1" 
## [166] "s_METI_1_Res_ben_1"  "s_METI_1_Res_ben_2"  "s_METI_1_Res_ben_3" 
## [169] "s_METI_1_Res_int_2"  "s_METI_1_Res_exp_2"  "s_METI_1_Res_exp_3" 
## [172] "s_METI_1_Res_exp_4"  "s_METI_1_Res_exp_5"  "s_METI_1_Res_ben_4" 
## [175] "s_METI_1_Res_int_3"  "s_METI_1_Res_exp_6"  "s_METI_1_Res_int_4" 
## [178] "s_METI_1_Auth_exp_1" "s_METI_1_Auth_int_1" "s_METI_1_Auth_ben_1"
## [181] "s_METI_1_Auth_ben_2" "s_METI_1_Auth_ben_3" "s_METI_1_Auth_int_2"
## [184] "s_METI_1_Auth_exp_2" "s_METI_1_Auth_exp_3" "s_METI_1_Auth_exp_4"
## [187] "s_METI_1_Auth_exp_5" "s_METI_1_Auth_ben_4" "s_METI_1_Auth_int_3"
## [190] "s_METI_1_Auth_exp_6" "s_METI_1_Auth_int_4" "v_103"              
## [193] "v_104"               "v_105"               "v_106"              
## [196] "v_107"               "v_108"               "v_110"              
## [199] "v_112"               "v_114"               "v_274"              
## [202] "v_275"               "v_276"               "v_277"              
## [205] "v_278"               "v_279"               "v_280"              
## [208] "v_281"               "v_282"               "v_283"              
## [211] "v_284"               "v_285"               "v_286"              
## [214] "v_287"               "v_288"               "v_289"              
## [217] "v_290"               "v_291"               "v_292"              
## [220] "v_293"               "v_294"               "v_295"              
## [223] "v_296"               "v_297"               "v_298"              
## [226] "s_CAMA_2_1_1"        "s_CAMA_2_1_2"        "s_CAMA_2_1_3"       
## [229] "s_CAMA_2_1_4"        "s_CAMA_2_1_5"        "s_CAMA_2_1_6"       
## [232] "s_CAMA_2_1_7"        "s_CAMA_2_1_8"        "s_CAMA_2_2_1"       
## [235] "s_CAMA_2_2_2"        "s_CAMA_2_2_3"        "s_CAMA_2_2_4"       
## [238] "v_402"               "s_METI_2_Res_exp_1"  "s_METI_2_Res_int_1" 
## [241] "s_METI_2_Res_ben_1"  "s_METI_2_Res_ben_2"  "s_METI_2_Res_ben_3" 
## [244] "s_METI_2_Res_int_2"  "s_METI_2_Res_exp_2"  "s_METI_2_Res_exp_3" 
## [247] "s_METI_2_Res_exp_4"  "s_METI_2_Res_exp_5"  "s_METI_2_Res_ben_4" 
## [250] "s_METI_2_Res_int_3"  "s_METI_2_Res_exp_6"  "s_METI_2_Res_int_4" 
## [253] "s_METI_2_Auth_exp_1" "s_METI_2_Auth_int_1" "s_METI_2_Auth_ben_1"
## [256] "s_METI_2_Auth_ben_2" "s_METI_2_Auth_ben_3" "s_METI_2_Auth_int_2"
## [259] "s_METI_2_Auth_exp_2" "s_METI_2_Auth_exp_3" "s_METI_2_Auth_exp_4"
## [262] "s_METI_2_Auth_exp_5" "s_METI_2_Auth_ben_4" "s_METI_2_Auth_int_3"
## [265] "s_METI_2_Auth_exp_6" "s_METI_2_Auth_int_4" "s_awareness"        
## [268] "browser"             "referer"             "device_type"        
## [271] "quota"               "quota_assignment"    "quota_rejected_id"  
## [274] "page_history"        "hflip"               "vflip"              
## [277] "output_mode"         "javascript"          "flash"              
## [280] "session_id"          "language"            "cleaned"            
## [283] "ats"                 "datetime"            "date_of_last_access"
## [286] "date_of_first_mail"  "rts6018385"          "rts6018739"         
## [289] "rts6018818"          "rts6019080"          "rts6019089"         
## [292] "rts6021451"          "rts6021455"          "rts6023513"         
## [295] "rts6023515"          "rts6023627"          "rts6023655"         
## [298] "rts6023657"          "rts6023660"          "rts6023667"         
## [301] "rts6023676"          "rts6023679"          "rts6033975"         
## [304] "METI_text"           "summary1"            "summary2"           
## [307] "version"             "causality"           "disclaimer"         
## [310] "CAMA"                "dropout"             "accessibility_1"    
## [313] "accessibility_2"     "understanding_1"     "understanding_2"    
## [316] "empowerment_1"       "empowerment_2"       "credibility_1"      
## [319] "credibility_2"       "relevance_1"         "relevance_2"        
## [322] "curiosity_1"         "curiosity_2"         "boredom_1"          
## [325] "boredom_2"           "confusion_1"         "confusion_2"        
## [328] "frustration_1"       "frustration_2"       "s_relationship_1"   
## [331] "s_relationship_2"    "s_relationship_3"    "s_relationship_4"   
## [334] "s_relationship_5"    "s_relationship_6"    "s_relationship_7"   
## [337] "s_relationship_8"    "s_extent_1"          "s_extent_2"         
## [340] "s_extent_3"          "s_extent_4"          "s_extent_5"         
## [343] "s_extent_6"          "s_diff_1_1"          "s_diff_1_2"         
## [346] "s_diff_1_3"          "s_diff_1_4"          "s_diff_1_5"         
## [349] "s_diff_1_6"          "s_diff_2_1"          "s_diff_2_2"         
## [352] "s_diff_2_3"          "s_diff_2_4"          "s_diff_2_5"         
## [355] "s_diff_2_6"          "s_funding_1_1"       "s_funding_1_2"      
## [358] "s_funding_1_3"       "s_funding_1_4"       "s_funding_1_5"      
## [361] "s_funding_1_6"       "s_funding_2_1"       "s_funding_2_2"      
## [364] "s_funding_2_3"       "s_funding_2_4"       "s_funding_2_5"      
## [367] "s_funding_2_6"       "s_coi_1_1"           "s_coi_1_2"          
## [370] "s_coi_1_3"           "s_coi_1_4"           "s_coi_1_5"          
## [373] "s_coi_1_6"           "s_coi_1_7"           "s_coi_2_1"          
## [376] "s_coi_2_2"           "s_coi_2_3"           "s_coi_2_4"          
## [379] "s_coi_2_5"           "s_coi_2_6"           "s_coi_2_7"          
## [382] "s_causality_1_1"     "s_causality_1_2"     "s_causality_1_3"    
## [385] "s_causality_1_4"     "s_causality_1_5"     "s_causality_1_6"    
## [388] "s_causality_2_1"     "s_causality_2_2"     "s_causality_2_3"    
## [391] "s_causality_2_4"     "s_causality_2_5"     "s_causality_2_6"    
## [394] "s_CAMA_1_3"          "s_CAMA_2_3"          "s_CAMA_1_1"         
## [397] "s_CAMA_1_2"          "s_CAMA_1_4"          "s_CAMA_1_5"         
## [400] "s_CAMA_1_6"          "s_CAMA_1_7"          "s_CAMA_1_8"         
## [403] "s_CAMA_2_1"          "s_CAMA_2_2"          "s_CAMA_2_4"         
## [406] "s_CAMA_3"            "s_METI_1_exp_1"      "s_METI_1_int_1"     
## [409] "s_METI_1_ben_1"      "s_METI_1_ben_2"      "s_METI_1_ben_3"     
## [412] "s_METI_1_int_2"      "s_METI_1_exp_2"      "s_METI_1_exp_3"     
## [415] "s_METI_1_exp_4"      "s_METI_1_exp_5"      "s_METI_1_ben_4"     
## [418] "s_METI_1_int_3"      "s_METI_1_exp_6"      "s_METI_1_int_4"     
## [421] "s_METI_2_exp_1"      "s_METI_2_int_1"      "s_METI_2_ben_1"     
## [424] "s_METI_2_ben_2"      "s_METI_2_ben_3"      "s_METI_2_int_2"     
## [427] "s_METI_2_exp_2"      "s_METI_2_exp_3"      "s_METI_2_exp_4"     
## [430] "s_METI_2_exp_5"      "s_METI_2_ben_4"      "s_METI_2_int_3"     
## [433] "s_METI_2_exp_6"      "s_METI_2_int_4"      "s_METI_exp_1"       
## [436] "s_METI_int_1"        "s_METI_ben_1"        "s_METI_ben_2"       
## [439] "s_METI_ben_3"        "s_METI_int_2"        "s_METI_exp_2"       
## [442] "s_METI_exp_3"        "s_METI_exp_4"        "s_METI_exp_5"       
## [445] "s_METI_ben_4"        "s_METI_int_3"        "s_METI_exp_6"       
## [448] "s_METI_int_4"
data_wide <- data[,!names(data) %in% c("external_lfdn","tester","lastpage",
                                       "quality","p_0001","c_0002","browser",
                                       "referer","device_type",
                                       "quota_assignment","quota_rejected_id",
                                       "page_history","hflip","vflip",
                                       "output_mode","javascript","flash",
                                       "session_id","language","cleaned","ats",
                                       "datetime","date_of_last_access",
                                       "day_of_first_mail","rts6018385",
                                       "rts6018739","rts6018818","rts6019080",
                                       "rts6019089","rts6021451","rts6021455",
                                       "rts6023513","rts6023515","rts6023627",
                                       "rts6023655","rts6023657","rts6023660",
                                       "rts6023667","rts6023676","rts6023679",
                                       "rts6033975")]
names(data_wide)
##   [1] "id"                  "dispcode"            "duration"           
##   [4] "condition"           "text_order"          "METI_target"        
##   [7] "s_sex"               "s_age"               "s_school"           
##  [10] "s_german"            "s_psychology"        "s_interest"         
##  [13] "s_contact"           "s_field"             "v_10"               
##  [16] "v_11"                "v_47"                "v_48"               
##  [19] "v_49"                "v_12"                "v_14"               
##  [22] "v_16"                "v_71"                "v_17"               
##  [25] "v_18"                "v_19"                "v_20"               
##  [28] "v_21"                "v_115"               "v_116"              
##  [31] "v_117"               "v_22"                "v_23"               
##  [34] "v_24"                "v_25"                "v_26"               
##  [37] "v_120"               "v_27"                "v_28"               
##  [40] "v_29"                "v_30"                "v_31"               
##  [43] "v_121"               "v_32"                "v_33"               
##  [46] "v_34"                "v_35"                "v_36"               
##  [49] "v_122"               "v_37"                "v_38"               
##  [52] "v_39"                "v_40"                "v_41"               
##  [55] "v_123"               "v_124"               "v_42"               
##  [58] "v_43"                "v_44"                "v_45"               
##  [61] "v_46"                "v_125"               "v_72"               
##  [64] "v_73"                "v_74"                "v_75"               
##  [67] "v_76"                "v_77"                "v_79"               
##  [70] "v_81"                "v_83"                "v_126"              
##  [73] "v_127"               "v_128"               "v_129"              
##  [76] "v_130"               "v_131"               "v_132"              
##  [79] "v_133"               "v_134"               "v_135"              
##  [82] "v_136"               "v_137"               "v_138"              
##  [85] "v_139"               "v_140"               "v_141"              
##  [88] "v_142"               "v_143"               "v_144"              
##  [91] "v_145"               "v_146"               "v_147"              
##  [94] "v_148"               "v_149"               "v_150"              
##  [97] "v_151"               "v_152"               "v_153"              
## [100] "v_154"               "v_155"               "v_156"              
## [103] "v_157"               "v_158"               "v_159"              
## [106] "v_160"               "v_161"               "v_162"              
## [109] "v_163"               "v_164"               "s_CAMA_1_1_1"       
## [112] "s_CAMA_1_1_2"        "s_CAMA_1_1_3"        "s_CAMA_1_1_4"       
## [115] "s_CAMA_1_1_5"        "s_CAMA_1_1_6"        "s_CAMA_1_1_7"       
## [118] "s_CAMA_1_1_8"        "s_CAMA_1_2_1"        "s_CAMA_1_2_2"       
## [121] "s_CAMA_1_2_3"        "s_CAMA_1_2_4"        "v_401"              
## [124] "v_91"                "v_92"                "v_93"               
## [127] "v_94"                "v_95"                "v_96"               
## [130] "v_98"                "v_100"               "v_102"              
## [133] "v_235"               "v_236"               "v_237"              
## [136] "v_238"               "v_239"               "v_240"              
## [139] "v_241"               "v_242"               "v_243"              
## [142] "v_244"               "v_245"               "v_246"              
## [145] "v_247"               "v_248"               "v_249"              
## [148] "v_250"               "v_251"               "v_252"              
## [151] "v_253"               "v_254"               "v_255"              
## [154] "v_256"               "v_257"               "v_258"              
## [157] "v_259"               "s_METI_1_Res_exp_1"  "s_METI_1_Res_int_1" 
## [160] "s_METI_1_Res_ben_1"  "s_METI_1_Res_ben_2"  "s_METI_1_Res_ben_3" 
## [163] "s_METI_1_Res_int_2"  "s_METI_1_Res_exp_2"  "s_METI_1_Res_exp_3" 
## [166] "s_METI_1_Res_exp_4"  "s_METI_1_Res_exp_5"  "s_METI_1_Res_ben_4" 
## [169] "s_METI_1_Res_int_3"  "s_METI_1_Res_exp_6"  "s_METI_1_Res_int_4" 
## [172] "s_METI_1_Auth_exp_1" "s_METI_1_Auth_int_1" "s_METI_1_Auth_ben_1"
## [175] "s_METI_1_Auth_ben_2" "s_METI_1_Auth_ben_3" "s_METI_1_Auth_int_2"
## [178] "s_METI_1_Auth_exp_2" "s_METI_1_Auth_exp_3" "s_METI_1_Auth_exp_4"
## [181] "s_METI_1_Auth_exp_5" "s_METI_1_Auth_ben_4" "s_METI_1_Auth_int_3"
## [184] "s_METI_1_Auth_exp_6" "s_METI_1_Auth_int_4" "v_103"              
## [187] "v_104"               "v_105"               "v_106"              
## [190] "v_107"               "v_108"               "v_110"              
## [193] "v_112"               "v_114"               "v_274"              
## [196] "v_275"               "v_276"               "v_277"              
## [199] "v_278"               "v_279"               "v_280"              
## [202] "v_281"               "v_282"               "v_283"              
## [205] "v_284"               "v_285"               "v_286"              
## [208] "v_287"               "v_288"               "v_289"              
## [211] "v_290"               "v_291"               "v_292"              
## [214] "v_293"               "v_294"               "v_295"              
## [217] "v_296"               "v_297"               "v_298"              
## [220] "s_CAMA_2_1_1"        "s_CAMA_2_1_2"        "s_CAMA_2_1_3"       
## [223] "s_CAMA_2_1_4"        "s_CAMA_2_1_5"        "s_CAMA_2_1_6"       
## [226] "s_CAMA_2_1_7"        "s_CAMA_2_1_8"        "s_CAMA_2_2_1"       
## [229] "s_CAMA_2_2_2"        "s_CAMA_2_2_3"        "s_CAMA_2_2_4"       
## [232] "v_402"               "s_METI_2_Res_exp_1"  "s_METI_2_Res_int_1" 
## [235] "s_METI_2_Res_ben_1"  "s_METI_2_Res_ben_2"  "s_METI_2_Res_ben_3" 
## [238] "s_METI_2_Res_int_2"  "s_METI_2_Res_exp_2"  "s_METI_2_Res_exp_3" 
## [241] "s_METI_2_Res_exp_4"  "s_METI_2_Res_exp_5"  "s_METI_2_Res_ben_4" 
## [244] "s_METI_2_Res_int_3"  "s_METI_2_Res_exp_6"  "s_METI_2_Res_int_4" 
## [247] "s_METI_2_Auth_exp_1" "s_METI_2_Auth_int_1" "s_METI_2_Auth_ben_1"
## [250] "s_METI_2_Auth_ben_2" "s_METI_2_Auth_ben_3" "s_METI_2_Auth_int_2"
## [253] "s_METI_2_Auth_exp_2" "s_METI_2_Auth_exp_3" "s_METI_2_Auth_exp_4"
## [256] "s_METI_2_Auth_exp_5" "s_METI_2_Auth_ben_4" "s_METI_2_Auth_int_3"
## [259] "s_METI_2_Auth_exp_6" "s_METI_2_Auth_int_4" "s_awareness"        
## [262] "quota"               "date_of_first_mail"  "METI_text"          
## [265] "summary1"            "summary2"            "version"            
## [268] "causality"           "disclaimer"          "CAMA"               
## [271] "dropout"             "accessibility_1"     "accessibility_2"    
## [274] "understanding_1"     "understanding_2"     "empowerment_1"      
## [277] "empowerment_2"       "credibility_1"       "credibility_2"      
## [280] "relevance_1"         "relevance_2"         "curiosity_1"        
## [283] "curiosity_2"         "boredom_1"           "boredom_2"          
## [286] "confusion_1"         "confusion_2"         "frustration_1"      
## [289] "frustration_2"       "s_relationship_1"    "s_relationship_2"   
## [292] "s_relationship_3"    "s_relationship_4"    "s_relationship_5"   
## [295] "s_relationship_6"    "s_relationship_7"    "s_relationship_8"   
## [298] "s_extent_1"          "s_extent_2"          "s_extent_3"         
## [301] "s_extent_4"          "s_extent_5"          "s_extent_6"         
## [304] "s_diff_1_1"          "s_diff_1_2"          "s_diff_1_3"         
## [307] "s_diff_1_4"          "s_diff_1_5"          "s_diff_1_6"         
## [310] "s_diff_2_1"          "s_diff_2_2"          "s_diff_2_3"         
## [313] "s_diff_2_4"          "s_diff_2_5"          "s_diff_2_6"         
## [316] "s_funding_1_1"       "s_funding_1_2"       "s_funding_1_3"      
## [319] "s_funding_1_4"       "s_funding_1_5"       "s_funding_1_6"      
## [322] "s_funding_2_1"       "s_funding_2_2"       "s_funding_2_3"      
## [325] "s_funding_2_4"       "s_funding_2_5"       "s_funding_2_6"      
## [328] "s_coi_1_1"           "s_coi_1_2"           "s_coi_1_3"          
## [331] "s_coi_1_4"           "s_coi_1_5"           "s_coi_1_6"          
## [334] "s_coi_1_7"           "s_coi_2_1"           "s_coi_2_2"          
## [337] "s_coi_2_3"           "s_coi_2_4"           "s_coi_2_5"          
## [340] "s_coi_2_6"           "s_coi_2_7"           "s_causality_1_1"    
## [343] "s_causality_1_2"     "s_causality_1_3"     "s_causality_1_4"    
## [346] "s_causality_1_5"     "s_causality_1_6"     "s_causality_2_1"    
## [349] "s_causality_2_2"     "s_causality_2_3"     "s_causality_2_4"    
## [352] "s_causality_2_5"     "s_causality_2_6"     "s_CAMA_1_3"         
## [355] "s_CAMA_2_3"          "s_CAMA_1_1"          "s_CAMA_1_2"         
## [358] "s_CAMA_1_4"          "s_CAMA_1_5"          "s_CAMA_1_6"         
## [361] "s_CAMA_1_7"          "s_CAMA_1_8"          "s_CAMA_2_1"         
## [364] "s_CAMA_2_2"          "s_CAMA_2_4"          "s_CAMA_3"           
## [367] "s_METI_1_exp_1"      "s_METI_1_int_1"      "s_METI_1_ben_1"     
## [370] "s_METI_1_ben_2"      "s_METI_1_ben_3"      "s_METI_1_int_2"     
## [373] "s_METI_1_exp_2"      "s_METI_1_exp_3"      "s_METI_1_exp_4"     
## [376] "s_METI_1_exp_5"      "s_METI_1_ben_4"      "s_METI_1_int_3"     
## [379] "s_METI_1_exp_6"      "s_METI_1_int_4"      "s_METI_2_exp_1"     
## [382] "s_METI_2_int_1"      "s_METI_2_ben_1"      "s_METI_2_ben_2"     
## [385] "s_METI_2_ben_3"      "s_METI_2_int_2"      "s_METI_2_exp_2"     
## [388] "s_METI_2_exp_3"      "s_METI_2_exp_4"      "s_METI_2_exp_5"     
## [391] "s_METI_2_ben_4"      "s_METI_2_int_3"      "s_METI_2_exp_6"     
## [394] "s_METI_2_int_4"      "s_METI_exp_1"        "s_METI_int_1"       
## [397] "s_METI_ben_1"        "s_METI_ben_2"        "s_METI_ben_3"       
## [400] "s_METI_int_2"        "s_METI_exp_2"        "s_METI_exp_3"       
## [403] "s_METI_exp_4"        "s_METI_exp_5"        "s_METI_ben_4"       
## [406] "s_METI_int_3"        "s_METI_exp_6"        "s_METI_int_4"
str(data_wide)
## 'data.frame':    3080 obs. of  408 variables:
##  $ id                 : Factor w/ 6705 levels "1","2","3","4",..: 4692 193 4223 5452 5207 3121 4700 3926 6230 6074 ...
##  $ dispcode           : int  31 22 22 31 22 31 31 31 31 31 ...
##  $ duration           : int  779 68 19 1043 36 546 746 938 568 1094 ...
##  $ condition          : Factor w/ 6 levels "1","2","3","4",..: 3 2 NA 4 5 3 5 6 2 1 ...
##  $ text_order         : Factor w/ 2 levels "Barth","Faerber": 1 2 NA 2 2 1 2 1 1 2 ...
##  $ METI_target        : Factor w/ 2 levels "Study Authors",..: 2 2 NA 1 2 2 1 2 1 2 ...
##  $ s_sex              : Factor w/ 2 levels "female","male": 2 2 2 1 2 2 1 2 1 1 ...
##  $ s_age              : int  31 42 25 31 47 54 45 43 51 57 ...
##  $ s_school           : Factor w/ 3 levels "Haupt","Real",..: 2 2 1 1 1 1 2 3 2 3 ...
##  $ s_german           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ s_psychology       : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ s_interest         : int  5 6 5 5 5 5 4 7 7 8 ...
##  $ s_contact          : int  1 1 2 1 1 1 2 2 5 3 ...
##  $ s_field            : chr  NA NA NA NA ...
##  $ v_10               : int  4 NA NA NA NA 3 NA 5 NA NA ...
##  $ v_11               : int  6 NA NA NA NA 2 NA 7 6 NA ...
##  $ v_47               : int  3 NA NA NA NA 3 NA 7 6 NA ...
##  $ v_48               : int  6 NA NA NA NA 3 NA 7 NA NA ...
##  $ v_49               : int  6 NA NA NA NA 5 NA 7 NA NA ...
##  $ v_12               : int  2 NA NA NA NA 3 NA 4 2 NA ...
##  $ v_14               : int  1 NA NA NA NA 2 NA 1 4 NA ...
##  $ v_16               : int  3 NA NA NA NA 4 NA 1 2 NA ...
##  $ v_71               : int  3 NA NA NA NA 2 NA 1 3 NA ...
##  $ v_17               : int  1 NA NA NA NA 3 NA 1 2 NA ...
##  $ v_18               : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_19               : int  2 NA NA NA NA 3 NA 1 3 NA ...
##  $ v_20               : int  2 NA NA NA NA 3 NA 1 2 NA ...
##  $ v_21               : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_115              : int  1 NA NA NA NA 3 NA 1 NA NA ...
##  $ v_116              : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_117              : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_22               : int  3 NA NA NA NA 3 NA 1 3 NA ...
##  $ v_23               : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_24               : int  1 NA NA NA NA 3 NA 3 2 NA ...
##  $ v_25               : int  1 NA NA NA NA 3 NA 1 1 NA ...
##  $ v_26               : int  1 NA NA NA NA 3 NA 1 3 NA ...
##  $ v_120              : int  1 NA NA NA NA 3 NA 1 2 NA ...
##  $ v_27               : num  1 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_28               : num  1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_29               : num  -1 NA NA NA NA 0 NA 1 -1 NA ...
##  $ v_30               : num  1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_31               : num  1 NA NA NA NA 0 NA 1 0 NA ...
##  $ v_121              : num  1 NA NA NA NA 0 NA 1 -1 NA ...
##  $ v_32               : num  1 NA NA NA NA 0 NA -1 0 NA ...
##  $ v_33               : num  1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_34               : num  1 NA NA NA NA 0 NA -1 0 NA ...
##  $ v_35               : num  1 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_36               : num  1 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_122              : num  1 NA NA NA NA 0 NA 1 -1 NA ...
##  $ v_37               : num  1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_38               : num  NA NA NA NA NA 0 NA 0 1 NA ...
##  $ v_39               : num  1 NA NA NA NA 0 NA 0 NA NA ...
##  $ v_40               : num  1 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_41               : num  -1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_123              : num  1 NA NA NA NA 0 NA 1 1 NA ...
##  $ v_124              : num  1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_42               : num  0 NA NA NA NA 0 NA 1 0 NA ...
##  $ v_43               : num  -1 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_44               : num  0 NA NA NA NA 0 NA -1 1 NA ...
##  $ v_45               : num  -1 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_46               : num  0 NA NA NA NA 0 NA 1 -1 NA ...
##  $ v_125              : num  0 NA NA NA NA 0 NA -1 -1 NA ...
##  $ v_72               : int  NA 6 NA 4 NA NA 4 NA NA 8 ...
##  $ v_73               : int  NA 7 NA 5 NA NA 3 NA NA 8 ...
##  $ v_74               : int  NA 7 NA 5 NA NA 3 NA NA 8 ...
##  $ v_75               : int  NA 7 NA 6 NA NA 4 NA NA 8 ...
##  $ v_76               : int  NA 7 NA 8 NA NA 6 NA NA 8 ...
##  $ v_77               : int  NA 4 NA 4 NA NA 3 NA NA 5 ...
##  $ v_79               : int  NA 1 NA 3 NA NA 2 NA NA 1 ...
##  $ v_81               : int  NA 1 NA 1 NA NA 4 NA NA 1 ...
##  $ v_83               : int  NA 1 NA 2 NA NA 2 NA NA 1 ...
##  $ v_126              : int  NA NA NA 1 NA NA 3 NA NA 1 ...
##  $ v_127              : int  NA NA NA 1 NA NA 3 NA NA 1 ...
##  $ v_128              : int  NA NA NA 3 NA NA 3 NA NA 2 ...
##  $ v_129              : int  NA NA NA 3 NA NA 3 NA NA 2 ...
##  $ v_130              : int  NA NA NA 2 NA NA 3 NA NA 1 ...
##  $ v_131              : int  NA NA NA 1 NA NA 1 NA NA 1 ...
##  $ v_132              : int  NA NA NA 1 NA NA 1 NA NA 1 ...
##  $ v_133              : int  NA NA NA 2 NA NA 3 NA NA 1 ...
##  $ v_134              : int  NA NA NA 1 NA NA 3 NA NA 1 ...
##  $ v_135              : int  NA NA NA 2 NA NA 3 NA NA 1 ...
##  $ v_136              : int  NA NA NA 1 NA NA 1 NA NA 1 ...
##  $ v_137              : int  NA NA NA 2 NA NA 2 NA NA 1 ...
##  $ v_138              : int  NA NA NA 1 NA NA 3 NA NA 1 ...
##  $ v_139              : int  NA NA NA 1 NA NA 3 NA NA 1 ...
##  $ v_140              : logi  NA NA NA NA NA NA ...
##  $ v_141              : logi  NA NA NA NA NA NA ...
##  $ v_142              : logi  NA NA NA NA NA NA ...
##  $ v_143              : logi  NA NA NA NA NA NA ...
##  $ v_144              : logi  NA NA NA NA NA NA ...
##  $ v_145              : logi  NA NA NA NA NA NA ...
##  $ v_146              : num  NA NA NA -1 NA NA -1 NA NA -1 ...
##  $ v_147              : num  NA NA NA -1 NA NA -1 NA NA -1 ...
##  $ v_148              : num  NA NA NA 1 NA NA -1 NA NA 0 ...
##  $ v_149              : num  NA NA NA -1 NA NA 0 NA NA 0 ...
##  $ v_150              : num  NA NA NA 0 NA NA NA NA NA 0 ...
##  $ v_151              : num  NA NA NA -1 NA NA 1 NA NA 1 ...
##  $ v_152              : num  NA NA NA -1 NA NA 0 NA NA -1 ...
##  $ v_153              : num  NA NA NA -1 NA NA 1 NA NA -1 ...
##   [list output truncated]
View(data_wide)

data2_wide <- data2[,!names(data2) %in% c("external_lfdn","tester","lastpage",
                                       "quality","p_0001","c_0002","browser",
                                       "referer","device_type",
                                       "quota_assignment","quota_rejected_id",
                                       "page_history","hflip","vflip",
                                       "output_mode","javascript","flash",
                                       "session_id","language","cleaned","ats",
                                       "datetime","date_of_last_access",
                                       "day_of_first_mail","rts6018385",
                                       "rts6018739","rts6018818","rts6019080",
                                       "rts6019089","rts6021451","rts6021455",
                                       "rts6023513","rts6023515","rts6023627",
                                       "rts6023655","rts6023657","rts6023660",
                                       "rts6023667","rts6023676","rts6023679",
                                       "rts6033975")]
names(data2_wide)
##   [1] "id"                  "dispcode"            "duration"           
##   [4] "condition"           "text_order"          "METI_target"        
##   [7] "s_sex"               "s_age"               "s_school"           
##  [10] "s_german"            "s_psychology"        "s_interest"         
##  [13] "s_contact"           "s_field"             "v_10"               
##  [16] "v_11"                "v_47"                "v_48"               
##  [19] "v_49"                "v_12"                "v_14"               
##  [22] "v_16"                "v_71"                "v_17"               
##  [25] "v_18"                "v_19"                "v_20"               
##  [28] "v_21"                "v_115"               "v_116"              
##  [31] "v_117"               "v_22"                "v_23"               
##  [34] "v_24"                "v_25"                "v_26"               
##  [37] "v_120"               "v_27"                "v_28"               
##  [40] "v_29"                "v_30"                "v_31"               
##  [43] "v_121"               "v_32"                "v_33"               
##  [46] "v_34"                "v_35"                "v_36"               
##  [49] "v_122"               "v_37"                "v_38"               
##  [52] "v_39"                "v_40"                "v_41"               
##  [55] "v_123"               "v_124"               "v_42"               
##  [58] "v_43"                "v_44"                "v_45"               
##  [61] "v_46"                "v_125"               "v_72"               
##  [64] "v_73"                "v_74"                "v_75"               
##  [67] "v_76"                "v_77"                "v_79"               
##  [70] "v_81"                "v_83"                "v_126"              
##  [73] "v_127"               "v_128"               "v_129"              
##  [76] "v_130"               "v_131"               "v_132"              
##  [79] "v_133"               "v_134"               "v_135"              
##  [82] "v_136"               "v_137"               "v_138"              
##  [85] "v_139"               "v_140"               "v_141"              
##  [88] "v_142"               "v_143"               "v_144"              
##  [91] "v_145"               "v_146"               "v_147"              
##  [94] "v_148"               "v_149"               "v_150"              
##  [97] "v_151"               "v_152"               "v_153"              
## [100] "v_154"               "v_155"               "v_156"              
## [103] "v_157"               "v_158"               "v_159"              
## [106] "v_160"               "v_161"               "v_162"              
## [109] "v_163"               "v_164"               "s_CAMA_1_1_1"       
## [112] "s_CAMA_1_1_2"        "s_CAMA_1_1_3"        "s_CAMA_1_1_4"       
## [115] "s_CAMA_1_1_5"        "s_CAMA_1_1_6"        "s_CAMA_1_1_7"       
## [118] "s_CAMA_1_1_8"        "s_CAMA_1_2_1"        "s_CAMA_1_2_2"       
## [121] "s_CAMA_1_2_3"        "s_CAMA_1_2_4"        "v_401"              
## [124] "v_91"                "v_92"                "v_93"               
## [127] "v_94"                "v_95"                "v_96"               
## [130] "v_98"                "v_100"               "v_102"              
## [133] "v_235"               "v_236"               "v_237"              
## [136] "v_238"               "v_239"               "v_240"              
## [139] "v_241"               "v_242"               "v_243"              
## [142] "v_244"               "v_245"               "v_246"              
## [145] "v_247"               "v_248"               "v_249"              
## [148] "v_250"               "v_251"               "v_252"              
## [151] "v_253"               "v_254"               "v_255"              
## [154] "v_256"               "v_257"               "v_258"              
## [157] "v_259"               "s_METI_1_Res_exp_1"  "s_METI_1_Res_int_1" 
## [160] "s_METI_1_Res_ben_1"  "s_METI_1_Res_ben_2"  "s_METI_1_Res_ben_3" 
## [163] "s_METI_1_Res_int_2"  "s_METI_1_Res_exp_2"  "s_METI_1_Res_exp_3" 
## [166] "s_METI_1_Res_exp_4"  "s_METI_1_Res_exp_5"  "s_METI_1_Res_ben_4" 
## [169] "s_METI_1_Res_int_3"  "s_METI_1_Res_exp_6"  "s_METI_1_Res_int_4" 
## [172] "s_METI_1_Auth_exp_1" "s_METI_1_Auth_int_1" "s_METI_1_Auth_ben_1"
## [175] "s_METI_1_Auth_ben_2" "s_METI_1_Auth_ben_3" "s_METI_1_Auth_int_2"
## [178] "s_METI_1_Auth_exp_2" "s_METI_1_Auth_exp_3" "s_METI_1_Auth_exp_4"
## [181] "s_METI_1_Auth_exp_5" "s_METI_1_Auth_ben_4" "s_METI_1_Auth_int_3"
## [184] "s_METI_1_Auth_exp_6" "s_METI_1_Auth_int_4" "v_103"              
## [187] "v_104"               "v_105"               "v_106"              
## [190] "v_107"               "v_108"               "v_110"              
## [193] "v_112"               "v_114"               "v_274"              
## [196] "v_275"               "v_276"               "v_277"              
## [199] "v_278"               "v_279"               "v_280"              
## [202] "v_281"               "v_282"               "v_283"              
## [205] "v_284"               "v_285"               "v_286"              
## [208] "v_287"               "v_288"               "v_289"              
## [211] "v_290"               "v_291"               "v_292"              
## [214] "v_293"               "v_294"               "v_295"              
## [217] "v_296"               "v_297"               "v_298"              
## [220] "s_CAMA_2_1_1"        "s_CAMA_2_1_2"        "s_CAMA_2_1_3"       
## [223] "s_CAMA_2_1_4"        "s_CAMA_2_1_5"        "s_CAMA_2_1_6"       
## [226] "s_CAMA_2_1_7"        "s_CAMA_2_1_8"        "s_CAMA_2_2_1"       
## [229] "s_CAMA_2_2_2"        "s_CAMA_2_2_3"        "s_CAMA_2_2_4"       
## [232] "v_402"               "s_METI_2_Res_exp_1"  "s_METI_2_Res_int_1" 
## [235] "s_METI_2_Res_ben_1"  "s_METI_2_Res_ben_2"  "s_METI_2_Res_ben_3" 
## [238] "s_METI_2_Res_int_2"  "s_METI_2_Res_exp_2"  "s_METI_2_Res_exp_3" 
## [241] "s_METI_2_Res_exp_4"  "s_METI_2_Res_exp_5"  "s_METI_2_Res_ben_4" 
## [244] "s_METI_2_Res_int_3"  "s_METI_2_Res_exp_6"  "s_METI_2_Res_int_4" 
## [247] "s_METI_2_Auth_exp_1" "s_METI_2_Auth_int_1" "s_METI_2_Auth_ben_1"
## [250] "s_METI_2_Auth_ben_2" "s_METI_2_Auth_ben_3" "s_METI_2_Auth_int_2"
## [253] "s_METI_2_Auth_exp_2" "s_METI_2_Auth_exp_3" "s_METI_2_Auth_exp_4"
## [256] "s_METI_2_Auth_exp_5" "s_METI_2_Auth_ben_4" "s_METI_2_Auth_int_3"
## [259] "s_METI_2_Auth_exp_6" "s_METI_2_Auth_int_4" "s_awareness"        
## [262] "quota"               "date_of_first_mail"  "METI_text"          
## [265] "summary1"            "summary2"            "version"            
## [268] "causality"           "disclaimer"          "CAMA"               
## [271] "dropout"             "accessibility_1"     "accessibility_2"    
## [274] "understanding_1"     "understanding_2"     "empowerment_1"      
## [277] "empowerment_2"       "credibility_1"       "credibility_2"      
## [280] "relevance_1"         "relevance_2"         "curiosity_1"        
## [283] "curiosity_2"         "boredom_1"           "boredom_2"          
## [286] "confusion_1"         "confusion_2"         "frustration_1"      
## [289] "frustration_2"       "s_relationship_1"    "s_relationship_2"   
## [292] "s_relationship_3"    "s_relationship_4"    "s_relationship_5"   
## [295] "s_relationship_6"    "s_relationship_7"    "s_relationship_8"   
## [298] "s_extent_1"          "s_extent_2"          "s_extent_3"         
## [301] "s_extent_4"          "s_extent_5"          "s_extent_6"         
## [304] "s_diff_1_1"          "s_diff_1_2"          "s_diff_1_3"         
## [307] "s_diff_1_4"          "s_diff_1_5"          "s_diff_1_6"         
## [310] "s_diff_2_1"          "s_diff_2_2"          "s_diff_2_3"         
## [313] "s_diff_2_4"          "s_diff_2_5"          "s_diff_2_6"         
## [316] "s_funding_1_1"       "s_funding_1_2"       "s_funding_1_3"      
## [319] "s_funding_1_4"       "s_funding_1_5"       "s_funding_1_6"      
## [322] "s_funding_2_1"       "s_funding_2_2"       "s_funding_2_3"      
## [325] "s_funding_2_4"       "s_funding_2_5"       "s_funding_2_6"      
## [328] "s_coi_1_1"           "s_coi_1_2"           "s_coi_1_3"          
## [331] "s_coi_1_4"           "s_coi_1_5"           "s_coi_1_6"          
## [334] "s_coi_1_7"           "s_coi_2_1"           "s_coi_2_2"          
## [337] "s_coi_2_3"           "s_coi_2_4"           "s_coi_2_5"          
## [340] "s_coi_2_6"           "s_coi_2_7"           "s_causality_1_1"    
## [343] "s_causality_1_2"     "s_causality_1_3"     "s_causality_1_4"    
## [346] "s_causality_1_5"     "s_causality_1_6"     "s_causality_2_1"    
## [349] "s_causality_2_2"     "s_causality_2_3"     "s_causality_2_4"    
## [352] "s_causality_2_5"     "s_causality_2_6"     "s_CAMA_1_3"         
## [355] "s_CAMA_2_3"          "s_CAMA_1_1"          "s_CAMA_1_2"         
## [358] "s_CAMA_1_4"          "s_CAMA_1_5"          "s_CAMA_1_6"         
## [361] "s_CAMA_1_7"          "s_CAMA_1_8"          "s_CAMA_2_1"         
## [364] "s_CAMA_2_2"          "s_CAMA_2_4"          "s_CAMA_3"           
## [367] "s_METI_1_exp_1"      "s_METI_1_int_1"      "s_METI_1_ben_1"     
## [370] "s_METI_1_ben_2"      "s_METI_1_ben_3"      "s_METI_1_int_2"     
## [373] "s_METI_1_exp_2"      "s_METI_1_exp_3"      "s_METI_1_exp_4"     
## [376] "s_METI_1_exp_5"      "s_METI_1_ben_4"      "s_METI_1_int_3"     
## [379] "s_METI_1_exp_6"      "s_METI_1_int_4"      "s_METI_2_exp_1"     
## [382] "s_METI_2_int_1"      "s_METI_2_ben_1"      "s_METI_2_ben_2"     
## [385] "s_METI_2_ben_3"      "s_METI_2_int_2"      "s_METI_2_exp_2"     
## [388] "s_METI_2_exp_3"      "s_METI_2_exp_4"      "s_METI_2_exp_5"     
## [391] "s_METI_2_ben_4"      "s_METI_2_int_3"      "s_METI_2_exp_6"     
## [394] "s_METI_2_int_4"      "s_METI_exp_1"        "s_METI_int_1"       
## [397] "s_METI_ben_1"        "s_METI_ben_2"        "s_METI_ben_3"       
## [400] "s_METI_int_2"        "s_METI_exp_2"        "s_METI_exp_3"       
## [403] "s_METI_exp_4"        "s_METI_exp_5"        "s_METI_ben_4"       
## [406] "s_METI_int_3"        "s_METI_exp_6"        "s_METI_int_4"       
## [409] "duration_minutes"
str(data2_wide)
## 'data.frame':    2041 obs. of  409 variables:
##  $ id                 : Factor w/ 6705 levels "1","2","3","4",..: 4692 5452 3121 4700 3926 6230 6074 2675 160 402 ...
##  $ dispcode           : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ duration           : int  779 1043 546 746 938 568 1094 1246 662 1298 ...
##  $ condition          : Factor w/ 6 levels "1","2","3","4",..: 3 4 3 5 6 2 1 6 4 4 ...
##  $ text_order         : Factor w/ 2 levels "Barth","Faerber": 1 2 1 2 1 1 2 1 1 2 ...
##  $ METI_target        : Factor w/ 2 levels "Study Authors",..: 2 1 2 1 2 1 2 1 1 1 ...
##  $ s_sex              : Factor w/ 2 levels "female","male": 2 1 2 1 2 1 1 1 2 2 ...
##  $ s_age              : int  31 31 54 45 43 51 57 26 50 35 ...
##  $ s_school           : Factor w/ 3 levels "Haupt","Real",..: 2 1 1 2 3 2 3 2 1 3 ...
##  $ s_german           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ s_psychology       : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ s_interest         : int  5 5 5 4 7 7 8 7 5 5 ...
##  $ s_contact          : int  1 1 1 2 2 5 3 1 5 1 ...
##  $ s_field            : chr  NA NA NA NA ...
##  $ v_10               : int  4 NA 3 NA 5 NA NA 5 7 NA ...
##  $ v_11               : int  6 NA 2 NA 7 6 NA 7 6 NA ...
##  $ v_47               : int  3 NA 3 NA 7 6 NA 6 5 NA ...
##  $ v_48               : int  6 NA 3 NA 7 NA NA 7 5 NA ...
##  $ v_49               : int  6 NA 5 NA 7 NA NA 7 7 NA ...
##  $ v_12               : int  2 NA 3 NA 4 2 NA 3 4 NA ...
##  $ v_14               : int  1 NA 2 NA 1 4 NA 1 3 NA ...
##  $ v_16               : int  3 NA 4 NA 1 2 NA 1 3 NA ...
##  $ v_71               : int  3 NA 2 NA 1 3 NA 1 4 NA ...
##  $ v_17               : int  1 NA 3 NA 1 2 NA 1 3 NA ...
##  $ v_18               : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_19               : int  2 NA 3 NA 1 3 NA 3 3 NA ...
##  $ v_20               : int  2 NA 3 NA 1 2 NA 2 1 NA ...
##  $ v_21               : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_115              : int  1 NA 3 NA 1 NA NA 1 1 NA ...
##  $ v_116              : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_117              : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_22               : int  3 NA 3 NA 1 3 NA 2 1 NA ...
##  $ v_23               : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_24               : int  1 NA 3 NA 3 2 NA 1 1 NA ...
##  $ v_25               : int  1 NA 3 NA 1 1 NA 1 1 NA ...
##  $ v_26               : int  1 NA 3 NA 1 3 NA 3 1 NA ...
##  $ v_120              : int  1 NA 3 NA 1 2 NA 1 1 NA ...
##  $ v_27               : num  1 NA 0 NA -1 -1 NA 1 -1 NA ...
##  $ v_28               : num  1 NA 0 NA -1 1 NA -1 0 NA ...
##  $ v_29               : num  -1 NA 0 NA 1 -1 NA 1 1 NA ...
##  $ v_30               : num  1 NA 0 NA -1 1 NA -1 -1 NA ...
##  $ v_31               : num  1 NA 0 NA 1 0 NA 1 1 NA ...
##  $ v_121              : num  1 NA 0 NA 1 -1 NA -1 1 NA ...
##  $ v_32               : num  1 NA 0 NA -1 0 NA 0 -1 NA ...
##  $ v_33               : num  1 NA 0 NA -1 1 NA -1 -1 NA ...
##  $ v_34               : num  1 NA 0 NA -1 0 NA 0 -1 NA ...
##  $ v_35               : num  1 NA 0 NA -1 -1 NA -1 -1 NA ...
##  $ v_36               : num  1 NA 0 NA -1 -1 NA 0 -1 NA ...
##  $ v_122              : num  1 NA 0 NA 1 -1 NA 0 1 NA ...
##  $ v_37               : num  1 NA 0 NA -1 1 NA 1 -1 NA ...
##  $ v_38               : num  NA NA 0 NA 0 1 NA 0 0 NA ...
##  $ v_39               : num  1 NA 0 NA 0 NA NA -1 0 NA ...
##  $ v_40               : num  1 NA 0 NA -1 -1 NA -1 0 NA ...
##  $ v_41               : num  -1 NA 0 NA -1 1 NA -1 1 NA ...
##  $ v_123              : num  1 NA 0 NA 1 1 NA -1 0 NA ...
##  $ v_124              : num  1 NA 0 NA -1 1 NA 1 -1 NA ...
##  $ v_42               : num  0 NA 0 NA 1 0 NA 0 -1 NA ...
##  $ v_43               : num  -1 NA 0 NA -1 1 NA 0 0 NA ...
##  $ v_44               : num  0 NA 0 NA -1 1 NA 0 -1 NA ...
##  $ v_45               : num  -1 NA 0 NA -1 -1 NA -1 -1 NA ...
##  $ v_46               : num  0 NA 0 NA 1 -1 NA -1 0 NA ...
##  $ v_125              : num  0 NA 0 NA -1 -1 NA -1 0 NA ...
##  $ v_72               : int  NA 4 NA 4 NA NA 8 NA NA 3 ...
##  $ v_73               : int  NA 5 NA 3 NA NA 8 NA NA 5 ...
##  $ v_74               : int  NA 5 NA 3 NA NA 8 NA NA 3 ...
##  $ v_75               : int  NA 6 NA 4 NA NA 8 NA NA 8 ...
##  $ v_76               : int  NA 8 NA 6 NA NA 8 NA NA 4 ...
##  $ v_77               : int  NA 4 NA 3 NA NA 5 NA NA 2 ...
##  $ v_79               : int  NA 3 NA 2 NA NA 1 NA NA 2 ...
##  $ v_81               : int  NA 1 NA 4 NA NA 1 NA NA 2 ...
##  $ v_83               : int  NA 2 NA 2 NA NA 1 NA NA 1 ...
##  $ v_126              : int  NA 1 NA 3 NA NA 1 NA NA 1 ...
##  $ v_127              : int  NA 1 NA 3 NA NA 1 NA NA 2 ...
##  $ v_128              : int  NA 3 NA 3 NA NA 2 NA NA 2 ...
##  $ v_129              : int  NA 3 NA 3 NA NA 2 NA NA 2 ...
##  $ v_130              : int  NA 2 NA 3 NA NA 1 NA NA 1 ...
##  $ v_131              : int  NA 1 NA 1 NA NA 1 NA NA 1 ...
##  $ v_132              : int  NA 1 NA 1 NA NA 1 NA NA 2 ...
##  $ v_133              : int  NA 2 NA 3 NA NA 1 NA NA 2 ...
##  $ v_134              : int  NA 1 NA 3 NA NA 1 NA NA 2 ...
##  $ v_135              : int  NA 2 NA 3 NA NA 1 NA NA 2 ...
##  $ v_136              : int  NA 1 NA 1 NA NA 1 NA NA 2 ...
##  $ v_137              : int  NA 2 NA 2 NA NA 1 NA NA 2 ...
##  $ v_138              : int  NA 1 NA 3 NA NA 1 NA NA 2 ...
##  $ v_139              : int  NA 1 NA 3 NA NA 1 NA NA 1 ...
##  $ v_140              : logi  NA NA NA NA NA NA ...
##  $ v_141              : logi  NA NA NA NA NA NA ...
##  $ v_142              : logi  NA NA NA NA NA NA ...
##  $ v_143              : logi  NA NA NA NA NA NA ...
##  $ v_144              : logi  NA NA NA NA NA NA ...
##  $ v_145              : logi  NA NA NA NA NA NA ...
##  $ v_146              : num  NA -1 NA -1 NA NA -1 NA NA 1 ...
##  $ v_147              : num  NA -1 NA -1 NA NA -1 NA NA 1 ...
##  $ v_148              : num  NA 1 NA -1 NA NA 0 NA NA 1 ...
##  $ v_149              : num  NA -1 NA 0 NA NA 0 NA NA 1 ...
##  $ v_150              : num  NA 0 NA NA NA NA 0 NA NA 1 ...
##  $ v_151              : num  NA -1 NA 1 NA NA 1 NA NA 1 ...
##  $ v_152              : num  NA -1 NA 0 NA NA -1 NA NA 1 ...
##  $ v_153              : num  NA -1 NA 1 NA NA -1 NA NA 1 ...
##   [list output truncated]
View(data2_wide)

#Wide Dataset including only complete cases

METI Scale Generation

psych::alpha(data2_wide[,c("s_METI_exp_1","s_METI_exp_2","s_METI_exp_3", "s_METI_exp_4", "s_METI_exp_5","s_METI_exp_6")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide[, c("s_METI_exp_1", "s_METI_exp_2", 
##     "s_METI_exp_3", "s_METI_exp_4", "s_METI_exp_5", "s_METI_exp_6")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.93      0.72  16 0.0021  5.5 1.2     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.94  0.94  0.94
## Duhachek  0.94  0.94  0.94
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_exp_1      0.93      0.93    0.92      0.73  13   0.0024 0.00042  0.73
## s_METI_exp_2      0.93      0.93    0.91      0.72  13   0.0025 0.00057  0.72
## s_METI_exp_3      0.93      0.93    0.92      0.73  14   0.0024 0.00024  0.73
## s_METI_exp_4      0.93      0.93    0.91      0.72  13   0.0026 0.00062  0.73
## s_METI_exp_5      0.93      0.93    0.91      0.72  13   0.0026 0.00076  0.72
## s_METI_exp_6      0.93      0.93    0.91      0.72  13   0.0025 0.00082  0.73
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_exp_1 2030  0.87  0.87  0.83   0.80  5.5 1.4
## s_METI_exp_2 2034  0.88  0.88  0.85   0.82  5.5 1.4
## s_METI_exp_3 2034  0.86  0.86  0.82   0.79  5.3 1.4
## s_METI_exp_4 2035  0.89  0.89  0.86   0.83  5.4 1.4
## s_METI_exp_5 2029  0.89  0.89  0.86   0.83  5.5 1.4
## s_METI_exp_6 2034  0.88  0.88  0.86   0.83  5.5 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_exp_1 0.02 0.02 0.03 0.18 0.18 0.28 0.29 0.01
## s_METI_exp_2 0.02 0.02 0.04 0.18 0.18 0.29 0.29 0.00
## s_METI_exp_3 0.01 0.03 0.05 0.21 0.20 0.26 0.25 0.00
## s_METI_exp_4 0.01 0.02 0.04 0.19 0.18 0.28 0.28 0.00
## s_METI_exp_5 0.01 0.02 0.04 0.18 0.18 0.29 0.27 0.01
## s_METI_exp_6 0.01 0.02 0.04 0.18 0.18 0.29 0.29 0.00
psych::alpha(data2_wide[,c("s_METI_int_1","s_METI_int_2","s_METI_int_3", "s_METI_int_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide[, c("s_METI_int_1", "s_METI_int_2", 
##     "s_METI_int_3", "s_METI_int_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.91      0.91    0.88      0.71 9.6 0.0034  5.4 1.2     0.71
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.91
## Duhachek   0.9  0.91  0.91
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_int_1      0.88      0.89    0.84      0.72 7.7   0.0044 4.5e-04  0.71
## s_METI_int_2      0.88      0.88    0.83      0.70 7.1   0.0047 1.8e-03  0.71
## s_METI_int_3      0.88      0.88    0.83      0.71 7.4   0.0046 3.7e-05  0.71
## s_METI_int_4      0.87      0.87    0.82      0.69 6.8   0.0049 9.9e-04  0.71
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_int_1 2033  0.87  0.87  0.81   0.77  5.3 1.4
## s_METI_int_2 2028  0.89  0.89  0.83   0.79  5.4 1.4
## s_METI_int_3 2029  0.88  0.88  0.83   0.78  5.5 1.4
## s_METI_int_4 2024  0.89  0.89  0.85   0.81  5.4 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_int_1 0.01 0.02 0.03 0.23 0.20 0.27 0.24 0.00
## s_METI_int_2 0.02 0.02 0.04 0.21 0.18 0.27 0.26 0.01
## s_METI_int_3 0.01 0.02 0.04 0.19 0.17 0.29 0.28 0.01
## s_METI_int_4 0.01 0.02 0.04 0.19 0.19 0.28 0.27 0.01
psych::alpha(data2_wide[,c("s_METI_ben_1","s_METI_ben_2","s_METI_ben_3", "s_METI_ben_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide[, c("s_METI_ben_1", "s_METI_ben_2", 
##     "s_METI_ben_3", "s_METI_ben_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.91      0.91    0.88      0.71 9.6 0.0034  5.4 1.2     0.71
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.91
## Duhachek   0.9  0.91  0.91
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_ben_1      0.87      0.87    0.82      0.70 7.0   0.0048 1.0e-04  0.70
## s_METI_ben_2      0.88      0.88    0.83      0.71 7.2   0.0047 1.6e-04  0.70
## s_METI_ben_3      0.88      0.88    0.83      0.72 7.6   0.0045 2.7e-05  0.72
## s_METI_ben_4      0.88      0.88    0.83      0.70 7.1   0.0047 1.5e-04  0.70
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_ben_1 2027  0.89  0.89  0.84   0.80  5.3 1.4
## s_METI_ben_2 2031  0.88  0.88  0.83   0.79  5.3 1.4
## s_METI_ben_3 2032  0.88  0.88  0.81   0.77  5.5 1.4
## s_METI_ben_4 2023  0.89  0.89  0.83   0.79  5.3 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_ben_1 0.01 0.02 0.04 0.23 0.20 0.26 0.24 0.01
## s_METI_ben_2 0.02 0.02 0.04 0.22 0.20 0.26 0.25 0.00
## s_METI_ben_3 0.02 0.02 0.04 0.19 0.19 0.27 0.28 0.00
## s_METI_ben_4 0.02 0.02 0.04 0.23 0.20 0.26 0.24 0.01
data2_wide$s_METI_exp <- rowMeans(data2_wide[,c("s_METI_exp_1","s_METI_exp_2",                               "s_METI_exp_3","s_METI_exp_4",                               "s_METI_exp_5","s_METI_exp_6")])
data2_wide$s_METI_int <- rowMeans(data2_wide[,c("s_METI_int_1","s_METI_int_2",                               "s_METI_int_3","s_METI_int_4")])
data2_wide$s_METI_ben <- rowMeans(data2_wide[,c("s_METI_ben_1","s_METI_ben_2",
                       "s_METI_ben_3","s_METI_ben_4")])

describe(data2_wide$s_METI_exp)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1997 5.45 1.22   5.67    5.54 1.48   1   7     6 -0.64     0.03 0.03
describe(data2_wide$s_METI_int)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1999  5.4 1.23    5.5    5.48 1.48   1   7     6 -0.56    -0.04 0.03
describe(data2_wide$s_METI_ben)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1996 5.35 1.23    5.5    5.42 1.48   1   7     6 -0.55     0.12 0.03
# METI Scale Reliabilities when targeting Summary Authors
data2_wide_summary_authors <- subset(data2_wide, METI_target == 
                                       "Summary Authors")

psych::alpha(data2_wide_summary_authors[,c("s_METI_exp_1","s_METI_exp_2",
                                           "s_METI_exp_3", "s_METI_exp_4",
                                           "s_METI_exp_5","s_METI_exp_6")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_summary_authors[, c("s_METI_exp_1", 
##     "s_METI_exp_2", "s_METI_exp_3", "s_METI_exp_4", "s_METI_exp_5", 
##     "s_METI_exp_6")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.94      0.94    0.93      0.73  16 0.0028  5.5 1.2     0.74
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.94  0.94  0.95
## Duhachek  0.94  0.94  0.95
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_exp_1      0.93      0.94    0.92      0.74  14   0.0032 0.00074  0.75
## s_METI_exp_2      0.93      0.93    0.92      0.73  13   0.0035 0.00086  0.73
## s_METI_exp_3      0.93      0.94    0.92      0.74  14   0.0032 0.00067  0.75
## s_METI_exp_4      0.93      0.93    0.92      0.72  13   0.0035 0.00100  0.73
## s_METI_exp_5      0.93      0.93    0.91      0.72  13   0.0036 0.00128  0.72
## s_METI_exp_6      0.93      0.93    0.92      0.72  13   0.0035 0.00129  0.73
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_exp_1 1009  0.86  0.86  0.82   0.79  5.5 1.4
## s_METI_exp_2 1012  0.88  0.88  0.86   0.83  5.5 1.4
## s_METI_exp_3 1012  0.86  0.86  0.82   0.79  5.3 1.4
## s_METI_exp_4 1010  0.89  0.89  0.87   0.84  5.4 1.4
## s_METI_exp_5 1008  0.90  0.90  0.87   0.85  5.5 1.4
## s_METI_exp_6 1009  0.89  0.89  0.87   0.84  5.5 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_exp_1 0.01 0.02 0.04 0.18 0.17 0.26 0.31 0.00
## s_METI_exp_2 0.02 0.01 0.04 0.17 0.18 0.28 0.29 0.00
## s_METI_exp_3 0.01 0.03 0.05 0.21 0.19 0.25 0.25 0.00
## s_METI_exp_4 0.01 0.02 0.04 0.19 0.18 0.27 0.28 0.00
## s_METI_exp_5 0.01 0.02 0.04 0.19 0.18 0.28 0.27 0.01
## s_METI_exp_6 0.01 0.02 0.04 0.18 0.19 0.27 0.29 0.00
psych::alpha(data2_wide_summary_authors[,c("s_METI_int_1","s_METI_int_2",
                                           "s_METI_int_3", "s_METI_int_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_summary_authors[, c("s_METI_int_1", 
##     "s_METI_int_2", "s_METI_int_3", "s_METI_int_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.91      0.91    0.89      0.72  10 0.0045  5.4 1.3     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.92
## Duhachek   0.9  0.91  0.92
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_int_1      0.89      0.89    0.84      0.73 8.1   0.0060 7.0e-05  0.73
## s_METI_int_2      0.88      0.88    0.84      0.72 7.6   0.0063 1.0e-03  0.73
## s_METI_int_3      0.89      0.89    0.84      0.73 8.0   0.0060 2.1e-05  0.73
## s_METI_int_4      0.88      0.88    0.83      0.71 7.4   0.0064 7.4e-04  0.73
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_int_1 1012  0.88  0.88  0.83   0.79  5.4 1.4
## s_METI_int_2 1008  0.89  0.89  0.84   0.81  5.4 1.4
## s_METI_int_3 1009  0.89  0.88  0.83   0.79  5.5 1.4
## s_METI_int_4 1005  0.90  0.90  0.85   0.81  5.5 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_int_1 0.01 0.02 0.03 0.23 0.18 0.26 0.26 0.00
## s_METI_int_2 0.02 0.02 0.05 0.21 0.17 0.24 0.29 0.01
## s_METI_int_3 0.01 0.02 0.04 0.19 0.16 0.28 0.30 0.00
## s_METI_int_4 0.01 0.02 0.04 0.18 0.19 0.26 0.29 0.01
psych::alpha(data2_wide_summary_authors[,c("s_METI_ben_1","s_METI_ben_2",
                                           "s_METI_ben_3", "s_METI_ben_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_summary_authors[, c("s_METI_ben_1", 
##     "s_METI_ben_2", "s_METI_ben_3", "s_METI_ben_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.91      0.91    0.89      0.72  10 0.0045  5.4 1.2     0.73
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.92
## Duhachek   0.9  0.91  0.92
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_ben_1      0.88      0.88    0.84      0.72 7.7   0.0063 2.3e-04  0.73
## s_METI_ben_2      0.88      0.88    0.84      0.72 7.6   0.0064 2.2e-04  0.72
## s_METI_ben_3      0.89      0.89    0.84      0.73 8.1   0.0060 2.3e-05  0.73
## s_METI_ben_4      0.89      0.89    0.84      0.73 8.0   0.0060 7.7e-05  0.73
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_ben_1 1008  0.89  0.89  0.85   0.81  5.4 1.4
## s_METI_ben_2 1010  0.90  0.90  0.85   0.81  5.3 1.4
## s_METI_ben_3 1011  0.88  0.88  0.83   0.79  5.5 1.4
## s_METI_ben_4 1005  0.89  0.89  0.83   0.79  5.3 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_ben_1 0.01 0.01 0.05 0.22 0.20 0.25 0.25 0.01
## s_METI_ben_2 0.01 0.02 0.05 0.21 0.19 0.26 0.26 0.00
## s_METI_ben_3 0.02 0.01 0.04 0.18 0.19 0.28 0.27 0.00
## s_METI_ben_4 0.02 0.02 0.04 0.23 0.19 0.25 0.25 0.01
# METI Scale Reliabilities when targeting Study Authors
data2_wide_study_authors <- subset(data2_wide, METI_target == "Study Authors")

psych::alpha(data2_wide_study_authors[,c("s_METI_exp_1","s_METI_exp_2",
                                           "s_METI_exp_3", "s_METI_exp_4",
                                           "s_METI_exp_5","s_METI_exp_6")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_study_authors[, c("s_METI_exp_1", 
##     "s_METI_exp_2", "s_METI_exp_3", "s_METI_exp_4", "s_METI_exp_5", 
##     "s_METI_exp_6")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.94      0.94    0.93      0.72  15 0.003  5.5 1.2     0.72
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.94
## Duhachek  0.93  0.94  0.94
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_exp_1      0.93      0.93    0.91      0.72  13   0.0036 0.00032  0.72
## s_METI_exp_2      0.93      0.93    0.91      0.71  13   0.0037 0.00044  0.72
## s_METI_exp_3      0.93      0.93    0.91      0.72  13   0.0035 0.00035  0.72
## s_METI_exp_4      0.92      0.93    0.91      0.71  12   0.0037 0.00076  0.71
## s_METI_exp_5      0.93      0.93    0.91      0.71  12   0.0037 0.00074  0.71
## s_METI_exp_6      0.93      0.93    0.91      0.72  13   0.0037 0.00084  0.72
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_exp_1 1021  0.87  0.87  0.84   0.81  5.5 1.4
## s_METI_exp_2 1022  0.88  0.88  0.85   0.82  5.5 1.4
## s_METI_exp_3 1022  0.86  0.86  0.82   0.79  5.3 1.4
## s_METI_exp_4 1025  0.88  0.88  0.85   0.83  5.4 1.4
## s_METI_exp_5 1021  0.88  0.88  0.85   0.82  5.5 1.4
## s_METI_exp_6 1025  0.87  0.87  0.84   0.82  5.5 1.3
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_exp_1 0.02 0.02 0.03 0.18 0.19 0.29 0.28 0.01
## s_METI_exp_2 0.02 0.02 0.03 0.18 0.17 0.29 0.29 0.00
## s_METI_exp_3 0.01 0.02 0.05 0.21 0.20 0.26 0.24 0.00
## s_METI_exp_4 0.01 0.02 0.03 0.19 0.19 0.29 0.27 0.00
## s_METI_exp_5 0.01 0.03 0.03 0.18 0.17 0.30 0.27 0.01
## s_METI_exp_6 0.01 0.02 0.03 0.18 0.18 0.30 0.29 0.00
psych::alpha(data2_wide_study_authors[,c("s_METI_int_1","s_METI_int_2",
                                           "s_METI_int_3", "s_METI_int_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_study_authors[, c("s_METI_int_1", 
##     "s_METI_int_2", "s_METI_int_3", "s_METI_int_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##        0.9       0.9    0.87      0.69 8.9 0.0052  5.4 1.2     0.69
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.89   0.9  0.91
## Duhachek  0.89   0.9  0.91
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## s_METI_int_1      0.88      0.88    0.83      0.71 7.3   0.0066 0.0012  0.69
## s_METI_int_2      0.87      0.87    0.82      0.69 6.6   0.0071 0.0033  0.68
## s_METI_int_3      0.87      0.87    0.82      0.69 6.7   0.0070 0.0002  0.69
## s_METI_int_4      0.86      0.86    0.81      0.68 6.2   0.0075 0.0013  0.69
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_int_1 1021  0.86  0.86  0.79   0.75  5.3 1.3
## s_METI_int_2 1020  0.88  0.88  0.82   0.78  5.3 1.4
## s_METI_int_3 1020  0.88  0.88  0.82   0.77  5.4 1.4
## s_METI_int_4 1019  0.89  0.89  0.84   0.80  5.4 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_int_1 0.01 0.02 0.03 0.22 0.22 0.28 0.22 0.01
## s_METI_int_2 0.02 0.02 0.03 0.21 0.20 0.29 0.23 0.01
## s_METI_int_3 0.01 0.02 0.04 0.19 0.18 0.30 0.26 0.01
## s_METI_int_4 0.02 0.01 0.04 0.20 0.19 0.30 0.25 0.01
psych::alpha(data2_wide_study_authors[,c("s_METI_ben_1","s_METI_ben_2",
                                           "s_METI_ben_3", "s_METI_ben_4")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_wide_study_authors[, c("s_METI_ben_1", 
##     "s_METI_ben_2", "s_METI_ben_3", "s_METI_ben_4")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##        0.9       0.9    0.87      0.69 8.9 0.0052  5.3 1.2     0.69
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.89   0.9  0.91
## Duhachek  0.89   0.9  0.91
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## s_METI_ben_1      0.86      0.86    0.81      0.68 6.4   0.0073 5.6e-04  0.69
## s_METI_ben_2      0.87      0.87    0.82      0.70 6.9   0.0068 1.3e-04  0.69
## s_METI_ben_3      0.88      0.88    0.82      0.70 7.0   0.0067 8.3e-05  0.70
## s_METI_ben_4      0.86      0.86    0.81      0.68 6.4   0.0073 5.7e-04  0.69
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## s_METI_ben_1 1019  0.88  0.88  0.83   0.79  5.3 1.4
## s_METI_ben_2 1021  0.87  0.87  0.80   0.76  5.3 1.4
## s_METI_ben_3 1021  0.87  0.87  0.80   0.76  5.5 1.4
## s_METI_ben_4 1018  0.88  0.88  0.83   0.79  5.3 1.4
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## s_METI_ben_1 0.01 0.02 0.04 0.24 0.19 0.26 0.23 0.01
## s_METI_ben_2 0.02 0.01 0.03 0.23 0.20 0.27 0.24 0.01
## s_METI_ben_3 0.02 0.02 0.04 0.19 0.19 0.27 0.28 0.01
## s_METI_ben_4 0.02 0.02 0.04 0.22 0.21 0.27 0.23 0.01

CFA METI

meti_mod1 <- "trust =~ s_METI_exp_1 + s_METI_exp_2 + s_METI_exp_3 + s_METI_exp_4
+ s_METI_exp_5 + s_METI_exp_6 + s_METI_int_1 + s_METI_int_2 + s_METI_int_3 +
s_METI_int_4 + s_METI_ben_1 + s_METI_ben_2 + s_METI_ben_3 + s_METI_ben_4"
meti_fit1 <- cfa(meti_mod1, data = data2_wide)
fit_1 <- fitmeasures(meti_fit1)[c("chisq","df","tli","cfi","rmsea","srmr")]

meti_mod2 <- "exp =~ s_METI_exp_1 + s_METI_exp_2 + s_METI_exp_3 + s_METI_exp_4
+ s_METI_exp_5 + s_METI_exp_6
intben =~ s_METI_int_1 + s_METI_int_2 + s_METI_int_3 +
s_METI_int_4 + s_METI_ben_1 + s_METI_ben_2 + s_METI_ben_3 + s_METI_ben_4"
meti_fit2 <- cfa(meti_mod2, data = data2_wide)
fit_2 <- fitmeasures(meti_fit2)[c("chisq","df","tli","cfi","rmsea","srmr")]

meti_mod3 <- "exp =~ s_METI_exp_1 + s_METI_exp_2 + s_METI_exp_3 + s_METI_exp_4
+ s_METI_exp_5 + s_METI_exp_6
int =~ s_METI_int_1 + s_METI_int_2 + s_METI_int_3 + s_METI_int_4
ben =~ s_METI_ben_1 + s_METI_ben_2 + s_METI_ben_3 + s_METI_ben_4"
meti_fit3 <- cfa(meti_mod3, data = data2_wide)
fit_3 <- fitmeasures(meti_fit3)[c("chisq","df","tli","cfi","rmsea","srmr")]

anova(meti_fit1,meti_fit2,meti_fit3)
## 
## Chi-Squared Difference Test
## 
##           Df   AIC   BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## meti_fit3 74 69189 69361 341.85                                          
## meti_fit2 76 69208 69369 364.96      23.11 0.07382       2  9.588e-06 ***
## meti_fit1 77 69437 69593 595.90     230.94 0.34454       1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Create Overall Scores for Knowledge Items

Relationship-Item

data2_wide$s_relationship <- rowSums(data2_wide[,c("s_relationship_1",
                                                   "s_relationship_2",
                                                   "s_relationship_3",
                                                   "s_relationship_4",
                                                   "s_relationship_5",
                                                   "s_relationship_6",
                                                   "s_relationship_7",
                                                   "s_relationship_8")])
describe(data2_wide$s_relationship)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1979 0.23 3.22      0    0.02 2.97  -8   8    16 0.45    -0.37 0.07
table(data2_wide$s_relationship)
## 
##  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8 
##   4   1  20  20 247 110 251 163 425 112 192  67 141  30 135  17  44

Extent of Evaluation-Item

data2_wide$s_extent <- rowSums(data2_wide[,c("s_extent_1","s_extent_2",                                   "s_extent_3","s_extent_4",                                   "s_extent_5","s_extent_6")])
describe(data2_wide$s_extent)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1999 0.52 2.28      0    0.41 2.97  -6   6    12 0.35    -0.28 0.05
table(data2_wide$s_extent)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##   4   2  45  52 345 180 533 179 281 118 168  35  57

Differentiation-Item

data2_wide$s_diff_1 <- rowSums(data2_wide[,c("s_diff_1_1","s_diff_1_2",                                       "s_diff_1_3","s_diff_1_4",
                      "s_diff_1_5","s_diff_1_6")])
describe(data2_wide$s_diff_1)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 997 0.07 1.83      0    0.05 1.48  -6   6    12 0.14     0.68 0.06
table(data2_wide$s_diff_1)
## 
##  -6  -4  -3  -2  -1   0   1   2   3   4   5   6 
##   3  33  22 145 103 360 117 146  22  33   7   6
data2_wide$s_diff_2 <- rowSums(data2_wide[,c("s_diff_2_1","s_diff_2_2",                                       "s_diff_2_3","s_diff_2_4",
                      "s_diff_2_5","s_diff_2_6")])
describe(data2_wide$s_diff_2)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 981 0.52 2.07      0    0.46 2.97  -6   6    12 0.15     0.23 0.07
table(data2_wide$s_diff_2)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##   2   3  29  15 123  61 343  82 191  31  74  10  17

Funding-Item

data2_wide$s_funding_1 <- rowSums(data2_wide[,c("s_funding_1_1","s_funding_1_2",
                      "s_funding_1_3","s_funding_1_4",                             "s_funding_1_5","s_funding_1_6")])
describe(data2_wide$s_funding_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1994 0.87 3.05      0    0.84 2.97  -6   6    12 0.26    -0.74 0.07
table(data2_wide$s_funding_1)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##  13  10 152  54 215 175 511 140 181  84 115  48 296
data2_wide$s_funding_2 <- rowSums(data2_wide[,c("s_funding_2_1","s_funding_2_2",
                      "s_funding_2_3","s_funding_2_4",
                      "s_funding_2_5","s_funding_2_6")])
describe(data2_wide$s_funding_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2010 1.67 3.22      1    1.82 4.45  -6   6    12 -0.07    -1.03 0.07
table(data2_wide$s_funding_2)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##  12  12 119  46 157 103 474 118 206  59 177  48 479

COI-Item

data2_wide$s_coi_1 <- rowSums(data2_wide[,c("s_coi_1_1","s_coi_1_2",
                      "s_coi_1_3","s_coi_1_4",
                      "s_coi_1_5","s_coi_1_6", "s_coi_1_7")])
describe(data2_wide$s_coi_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1955 0.72 3.33      0    0.66 2.97  -7   7    14 0.19     -0.5 0.08
table(data2_wide$s_coi_1)
## 
##  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7 
##   9   8 137  51 133 101 182 467 208  83 187  47 148  22 172
data2_wide$s_coi_2 <- rowSums(data2_wide[,c("s_coi_2_1","s_coi_2_2",
                      "s_coi_2_3","s_coi_2_4",                                     "s_coi_2_5","s_coi_2_6","s_coi_2_7")])
describe(data2_wide$s_coi_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1993  1.3 3.56      1    1.36 2.97  -7   7    14 -0.01    -0.75 0.08
table(data2_wide$s_coi_2)
## 
##  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7 
##  18  14 114  37 123  72 182 407 201  69 207  33 235  22 259

Causality-Item

data2_wide$s_causality_1 <- rowSums(data2_wide[,c("s_causality_1_1","s_causality_1_2",
                      "s_causality_1_3","s_causality_1_4",
                      "s_causality_1_5","s_causality_1_6")])
describe(data2_wide$s_causality_1)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1989 -0.43 2.45      0   -0.52 2.97  -6   6    12  0.2    -0.56 0.06
table(data2_wide$s_causality_1)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##   8   7 297 112 295 173 493 116 266  68 121  14  19
data2_wide$s_causality_2 <- rowSums(data2_wide[,c("s_causality_2_1","s_causality_2_2",
                      "s_causality_2_3","s_causality_2_4",
                      "s_causality_2_5","s_causality_2_6")])
describe(data2_wide$s_causality_2)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1995 -0.21 2.45      0   -0.29 2.97  -6   6    12 0.21    -0.31 0.05
table(data2_wide$s_causality_2)
## 
##  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6 
##   8   7 247 100 267 173 541 149 263  59 131   9  41

CAMA-Items

data2_wide$s_CAMA_1 <- rowSums(data2_wide[,c("s_CAMA_1_1","s_CAMA_1_2",
                      "s_CAMA_1_3","s_CAMA_1_4",
                      "s_CAMA_1_5","s_CAMA_1_6",
                      "s_CAMA_1_7","s_CAMA_1_8")])
describe(data2_wide$s_CAMA_1)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 984  0.7 2.66      0    0.68 2.97  -7   8    15 0.16    -0.02 0.08
table(data2_wide$s_CAMA_1)
## 
##  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8 
##   1   5   5  69  38  66  46 318 100 110  61  85  25  41   7   7
data2_wide$s_CAMA_2 <- rowSums(data2_wide[,c("s_CAMA_2_1","s_CAMA_2_2",
                      "s_CAMA_2_3","s_CAMA_2_4")])
describe(data2_wide$s_CAMA_2)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1015 -0.4 1.62      0   -0.44 1.48  -4   4     8 0.18     0.05 0.05
table(data2_wide$s_CAMA_2)
## 
##  -4  -3  -2  -1   0   1   2   3   4 
##  32  36 239  99 397  67 112  14  19
describe(data2_wide$s_CAMA_3)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1026 -0.14 0.75      0   -0.17 1.48  -1   1     2 0.23    -1.21 0.02
table(data2_wide$s_CAMA_3)
## 
##  -1   0   1 
## 369 428 229
data2_wide$s_CAMA <- rowSums(data2_wide[,c("s_CAMA_1","s_CAMA_2","s_CAMA_3")])
describe(data2_wide$s_CAMA)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 975 0.17 3.73      0    0.17 2.97 -11  13    24 0.09     0.13 0.12
table(data2_wide$s_CAMA)
## 
## -11  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9 
##   1   4   1  50  26  43  25  49  68  93 230  89  50  67  49  55  23  26   8  12 
##  10  11  12  13 
##   1   3   1   1

Melt Dataframe into Long Format

data2_long <- melt.data.table(setDT(data2_wide),measure.vars = 
                                list(c("summary1","summary2"),
                                     c("accessibility_1","accessibility_2"),
                                     c("understanding_1","understanding_2"),
                                     c("empowerment_1","empowerment_2"),
                                     c("credibility_1","credibility_2"),
                                     c("relevance_1","relevance_2"),
                                     c("curiosity_1","curiosity_2"),
                                     c("boredom_1","boredom_2"),
                                     c("frustration_1","frustration_2"),
                                     c("confusion_1","confusion_2"),
                                     c("s_funding_1","s_funding_2"),
                                     c("s_coi_1","s_coi_2"),
c("s_diff_1","s_diff_2"),                                     c("s_causality_1","s_causality_2")),
                              value.name = c("summary","accessibility",
                                             "understanding","empowerment",
                                             "credibility","relevance",
                                             "curiosity",
                                             "boredom","frustration",
                                             "confusion","s_funding",                                             "s_coi","s_diff","s_causality"),
                              variable.name = "Time_point")

View(data2_long)

data2_long <- dplyr::select(data2_long, -c(15:260,263))
View(data2_long)

data2_long$summary <- factor(data2_long$summary, levels = c("Barth","Faerber"))

User Experience Scale Generation

psych::alpha(data2_long[,c("accessibility","understanding","empowerment")])
## 
## Reliability analysis   
## Call: psych::alpha(x = data2_long[, c("accessibility", "understanding", 
##     "empowerment")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.83      0.83    0.77      0.62   5 0.0046  5.3 1.5     0.66
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.83  0.84
## Duhachek  0.82  0.83  0.84
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## accessibility      0.79      0.79    0.66      0.66 3.8   0.0065    NA  0.66
## understanding      0.72      0.72    0.56      0.56 2.5   0.0089    NA  0.56
## empowerment        0.79      0.79    0.66      0.66 3.8   0.0065    NA  0.66
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean  sd
## accessibility 4045  0.86  0.85  0.73   0.67  5.5 1.8
## understanding 4038  0.89  0.89  0.82   0.74  5.6 1.7
## empowerment   4039  0.85  0.85  0.73   0.67  4.8 1.8
## 
## Non missing response frequency for each item
##                  1    2    3    4    5    6    7    8 miss
## accessibility 0.03 0.03 0.08 0.15 0.17 0.20 0.16 0.18 0.01
## understanding 0.02 0.03 0.07 0.14 0.19 0.22 0.17 0.15 0.01
## empowerment   0.06 0.06 0.12 0.19 0.22 0.19 0.09 0.08 0.01

CFA User Experience

UEmodel <- "outcome =~ c(a)*accessibility + c(a)*understanding + c(a)*empowerment
accessibility ~~ c(b)*empowerment"

UEfit <- sem(UEmodel, data = data2_long, estimator = "MLR", missing = "ML",
             std.lv = T, fixed.x = F, group = "summary")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   718 1417 1965 2985 3986
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   1975
## Warning in lavaanify(model = FLAT, constraints = constraints, varTable = DataOV, : lavaan WARNING: using a single label per parameter in a multiple group
##   setting implies imposing equality constraints across all the groups;
##   If this is not intended, either remove the label(s), or use a vector
##   of labels (one for each group);
##   See the Multiple groups section in the man page of model.syntax.
summary(UEfit, standardized = T)
## lavaan 0.6.16 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        20
##   Number of equality constraints                     6
## 
##   Number of observations per group:               Used       Total
##     Barth                                         2036        2041
##     Faerber                                       2040        2041
##   Number of missing patterns per group:                           
##     Barth                                            6            
##     Faerber                                          7            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 3.534       3.167
##   Degrees of freedom                                 4           4
##   P-value (Chi-square)                           0.473       0.530
##   Scaling correction factor                                  1.116
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     Barth                                        1.326       1.188
##     Faerber                                      2.208       1.978
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [Barth]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   outcome =~                                                            
##     accessblty (a)    1.428    0.018   78.985    0.000    1.428    0.782
##     undrstndng (a)    1.428    0.018   78.985    0.000    1.428    0.834
##     empowermnt (a)    1.428    0.018   78.985    0.000    1.428    0.789
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .accessibility ~~                                                      
##    .empowermnt (b)   -0.204    0.039   -5.276    0.000   -0.204   -0.161
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .accessibility     5.543    0.040  137.942    0.000    5.543    3.034
##    .understanding     5.646    0.037  150.746    0.000    5.646    3.295
##    .empowerment       4.839    0.040  121.599    0.000    4.839    2.674
##     outcome           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .accessibility     1.299    0.072   18.046    0.000    1.299    0.389
##    .understanding     0.896    0.057   15.604    0.000    0.896    0.305
##    .empowerment       1.236    0.071   17.419    0.000    1.236    0.377
##     outcome           1.000                               1.000    1.000
## 
## 
## Group 2 [Faerber]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   outcome =~                                                            
##     accessblty (a)    1.428    0.018   78.985    0.000    1.428    0.787
##     undrstndng (a)    1.428    0.018   78.985    0.000    1.428    0.838
##     empowermnt (a)    1.428    0.018   78.985    0.000    1.428    0.786
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .accessibility ~~                                                      
##    .empowermnt (b)   -0.204    0.039   -5.276    0.000   -0.204   -0.162
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .accessibility     5.528    0.041  135.085    0.000    5.528    3.045
##    .understanding     5.528    0.038  143.776    0.000    5.528    3.242
##    .empowerment       4.717    0.040  116.604    0.000    4.717    2.597
##     outcome           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .accessibility     1.256    0.074   17.074    0.000    1.256    0.381
##    .understanding     0.867    0.050   17.364    0.000    0.867    0.298
##    .empowerment       1.261    0.068   18.628    0.000    1.261    0.382
##     outcome           1.000                               1.000    1.000
modificationindices(UEfit)
##              lhs op           rhs block group level    mi    epc sepc.lv
## 8        outcome ~~       outcome     1     1     1 1.962 -0.073  -1.000
## 20       outcome ~~       outcome     2     2     1 1.962  0.073   1.000
## 31 accessibility ~~ understanding     1     1     1 0.337 -0.034  -0.034
## 32 understanding ~~   empowerment     1     1     1 0.425 -0.038  -0.038
## 33 accessibility ~~ understanding     2     2     1 2.234  0.086   0.086
## 34 understanding ~~   empowerment     2     2     1 0.072 -0.016  -0.016
##    sepc.all sepc.nox
## 8    -1.000   -1.000
## 20    1.000    1.000
## 31   -0.031   -0.031
## 32   -0.036   -0.036
## 33    0.083    0.083
## 34   -0.015   -0.015
fitmeasures(UEfit)
##                          npar                          fmin 
##                        14.000                         0.000 
##                         chisq                            df 
##                         3.534                         4.000 
##                        pvalue                  chisq.scaled 
##                         0.473                         3.167 
##                     df.scaled                 pvalue.scaled 
##                         4.000                         0.530 
##          chisq.scaling.factor                baseline.chisq 
##                         1.116                      4732.569 
##                   baseline.df               baseline.pvalue 
##                         6.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                      2413.601                         6.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         1.961 
##                           cfi                           tli 
##                         1.000                         1.000 
##                    cfi.scaled                    tli.scaled 
##                         1.000                         1.001 
##                    cfi.robust                    tli.robust 
##                         1.000                         1.000 
##                          nnfi                           rfi 
##                         1.000                         0.999 
##                           nfi                          pnfi 
##                         0.999                         0.666 
##                           ifi                           rni 
##                         1.000                         1.000 
##                   nnfi.scaled                    rfi.scaled 
##                         1.001                         0.998 
##                    nfi.scaled                   pnfi.scaled 
##                         0.999                         0.666 
##                    ifi.scaled                    rni.scaled 
##                         1.000                         1.000 
##                   nnfi.robust                    rni.robust 
##                         1.000                         1.000 
##                          logl             unrestricted.logl 
##                    -21827.855                    -21826.088 
##                           aic                           bic 
##                     43683.710                     43772.090 
##                        ntotal                          bic2 
##                      4076.000                     43727.604 
##             scaling.factor.h1             scaling.factor.h0 
##                         1.245                         0.898 
##                         rmsea                rmsea.ci.lower 
##                         0.000                         0.000 
##                rmsea.ci.upper                rmsea.ci.level 
##                         0.032                         0.900 
##                  rmsea.pvalue                rmsea.close.h0 
##                         0.999                         0.050 
##         rmsea.notclose.pvalue             rmsea.notclose.h0 
##                         0.000                         0.080 
##                  rmsea.scaled         rmsea.ci.lower.scaled 
##                         0.000                         0.000 
##         rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
##                         0.029                         1.000 
##  rmsea.notclose.pvalue.scaled                  rmsea.robust 
##                         0.000                         0.000 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.000                         0.032 
##           rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
##                         0.999                         0.000 
##                           rmr                    rmr_nomean 
##                         0.062                         0.076 
##                          srmr                  srmr_bentler 
##                         0.020                         0.020 
##           srmr_bentler_nomean                          crmr 
##                         0.024                         0.006 
##                   crmr_nomean                    srmr_mplus 
##                         0.009                         0.027 
##             srmr_mplus_nomean                         cn_05 
##                         0.019                     10943.881 
##                         cn_01                           gfi 
##                     15313.979                         1.000 
##                          agfi                          pgfi 
##                         1.000                         0.222 
##                           mfi                          ecvi 
##                         1.000                         0.008

Descriptive Analyses

Participants’ Gender

table(data2_wide$s_sex)
## 
## female   male 
##   1028   1013
prop.table(table(data2_wide$s_sex))
## 
##    female      male 
## 0.5036747 0.4963253

Participants’ Age

describe(data2_wide$s_age)
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 2040 45.22 15.23     45   45.01 17.79  18  90    72 0.12    -0.96 0.34
age.hist <- ggplot(data2_wide, aes(s_age)) + geom_histogram(colour = "black",
                                                            fill = "white")+
  labs(x = "Age", y = "Frequency")
age.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

data2_wide$age_group <- ifelse(data2_wide$s_age < 45, "low", "high")
data2_wide$age_group <- as.factor(data2_wide$age_group)
table(data2_wide$age_group)
## 
## high  low 
## 1024 1016
prop.table(table(data2_wide$age_group))
## 
##      high       low 
## 0.5019608 0.4980392

Participant’s Educational Background

table(data2_wide$s_school)
## 
## Haupt  Real   Abi 
##   685   681   675
prop.table(table(data2_wide$s_school))
## 
##     Haupt      Real       Abi 
## 0.3356198 0.3336600 0.3307202

Quota

table(data2_wide$quota)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12 
## 169 171 174 168 171 172 168 167 164 170 172 175

Awareness Check

table(data2_wide$s_awareness)
## 
## fail pass 
##  658 1383
prop.table(table(data2_wide$s_awareness))
## 
##     fail     pass 
## 0.322391 0.677609
table(data2_wide$s_awareness, data2_wide$condition)
##       
##          1   2   3   4   5   6
##   fail 113  94 116 135  90 110
##   pass 221 251 220 206 238 247
awareness_bar <- ggplot(data2_wide, aes(x = condition, fill = s_awareness))
awareness_bar <- awareness_bar + geom_bar() + theme_classic() + theme(
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  text = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "Number of Cases", fill = "Awareness Check") +
  scale_fill_brewer(palette = "Blues")
awareness_bar

CrossTable(data2_wide$condition, data2_wide$s_awareness,
           chisq = TRUE, expected = TRUE, sresid = TRUE, format = "SPSS")
## 
##    Cell Contents
## |-------------------------|
## |                   Count |
## |         Expected Values |
## | Chi-square contribution |
## |             Row Percent |
## |          Column Percent |
## |           Total Percent |
## |            Std Residual |
## |-------------------------|
## 
## Total Observations in Table:  2041 
## 
##                      | data2_wide$s_awareness 
## data2_wide$condition |     fail  |     pass  | Row Total | 
## ---------------------|-----------|-----------|-----------|
##                    1 |      113  |      221  |      334  | 
##                      |  107.679  |  226.321  |           | 
##                      |    0.263  |    0.125  |           | 
##                      |   33.832% |   66.168% |   16.365% | 
##                      |   17.173% |   15.980% |           | 
##                      |    5.537% |   10.828% |           | 
##                      |    0.513  |   -0.354  |           | 
## ---------------------|-----------|-----------|-----------|
##                    2 |       94  |      251  |      345  | 
##                      |  111.225  |  233.775  |           | 
##                      |    2.668  |    1.269  |           | 
##                      |   27.246% |   72.754% |   16.903% | 
##                      |   14.286% |   18.149% |           | 
##                      |    4.606% |   12.298% |           | 
##                      |   -1.633  |    1.127  |           | 
## ---------------------|-----------|-----------|-----------|
##                    3 |      116  |      220  |      336  | 
##                      |  108.323  |  227.677  |           | 
##                      |    0.544  |    0.259  |           | 
##                      |   34.524% |   65.476% |   16.463% | 
##                      |   17.629% |   15.907% |           | 
##                      |    5.683% |   10.779% |           | 
##                      |    0.738  |   -0.509  |           | 
## ---------------------|-----------|-----------|-----------|
##                    4 |      135  |      206  |      341  | 
##                      |  109.935  |  231.065  |           | 
##                      |    5.715  |    2.719  |           | 
##                      |   39.589% |   60.411% |   16.707% | 
##                      |   20.517% |   14.895% |           | 
##                      |    6.614% |   10.093% |           | 
##                      |    2.391  |   -1.649  |           | 
## ---------------------|-----------|-----------|-----------|
##                    5 |       90  |      238  |      328  | 
##                      |  105.744  |  222.256  |           | 
##                      |    2.344  |    1.115  |           | 
##                      |   27.439% |   72.561% |   16.071% | 
##                      |   13.678% |   17.209% |           | 
##                      |    4.410% |   11.661% |           | 
##                      |   -1.531  |    1.056  |           | 
## ---------------------|-----------|-----------|-----------|
##                    6 |      110  |      247  |      357  | 
##                      |  115.094  |  241.906  |           | 
##                      |    0.225  |    0.107  |           | 
##                      |   30.812% |   69.188% |   17.491% | 
##                      |   16.717% |   17.860% |           | 
##                      |    5.390% |   12.102% |           | 
##                      |   -0.475  |    0.327  |           | 
## ---------------------|-----------|-----------|-----------|
##         Column Total |      658  |     1383  |     2041  | 
##                      |   32.239% |   67.761% |           | 
## ---------------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  17.35328     d.f. =  5     p =  0.003876309 
## 
## 
##  
##        Minimum expected frequency: 105.7442
fisher.test(data2_wide$condition, data2_wide$s_awareness, workspace = 2e8)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  data2_wide$condition and data2_wide$s_awareness
## p-value = 0.004063
## alternative hypothesis: two.sided
CrossTable(data2_wide$s_sex, data2_wide$s_awareness,
           chisq = TRUE, expected = TRUE, sresid = TRUE, format = "SPSS")
## 
##    Cell Contents
## |-------------------------|
## |                   Count |
## |         Expected Values |
## | Chi-square contribution |
## |             Row Percent |
## |          Column Percent |
## |           Total Percent |
## |            Std Residual |
## |-------------------------|
## 
## Total Observations in Table:  2041 
## 
##                  | data2_wide$s_awareness 
## data2_wide$s_sex |     fail  |     pass  | Row Total | 
## -----------------|-----------|-----------|-----------|
##           female |      301  |      727  |     1028  | 
##                  |  331.418  |  696.582  |           | 
##                  |    2.792  |    1.328  |           | 
##                  |   29.280% |   70.720% |   50.367% | 
##                  |   45.745% |   52.567% |           | 
##                  |   14.748% |   35.620% |           | 
##                  |   -1.671  |    1.153  |           | 
## -----------------|-----------|-----------|-----------|
##             male |      357  |      656  |     1013  | 
##                  |  326.582  |  686.418  |           | 
##                  |    2.833  |    1.348  |           | 
##                  |   35.242% |   64.758% |   49.633% | 
##                  |   54.255% |   47.433% |           | 
##                  |   17.491% |   32.141% |           | 
##                  |    1.683  |   -1.161  |           | 
## -----------------|-----------|-----------|-----------|
##     Column Total |      658  |     1383  |     2041  | 
##                  |   32.239% |   67.761% |           | 
## -----------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  8.30114     d.f. =  1     p =  0.003962019 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  8.030481     d.f. =  1     p =  0.004599664 
## 
##  
##        Minimum expected frequency: 326.5821
fisher.test(data2_wide$s_sex, data2_wide$s_awareness, workspace = 2e8)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  data2_wide$s_sex and data2_wide$s_awareness
## p-value = 0.004472
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.6287428 0.9204853
## sample estimates:
## odds ratio 
##  0.7609049
data2_wide$s_age_1 <- ifelse(data2_wide$s_age < 45, 0, 1)
age_hist <- ggplot(data2_wide, aes(x = s_age, fill = s_awareness, color = s_awareness))
age_hist <- age_hist + geom_histogram(alpha = 0.1, position = "identity") + theme_classic() + theme(
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  text = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Age", y = "Number of Cases", fill = "Awareness Check", color = "Awareness Check") + 
  scale_fill_brewer(palette = "Dark2") + scale_color_brewer(palette = "Dark2")
age_hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

CrossTable(data2_wide$s_age_1, data2_wide$s_awareness,
           chisq = TRUE, expected = TRUE, sresid = TRUE, format = "SPSS")
## 
##    Cell Contents
## |-------------------------|
## |                   Count |
## |         Expected Values |
## | Chi-square contribution |
## |             Row Percent |
## |          Column Percent |
## |           Total Percent |
## |            Std Residual |
## |-------------------------|
## 
## Total Observations in Table:  2040 
## 
##                    | data2_wide$s_awareness 
## data2_wide$s_age_1 |     fail  |     pass  | Row Total | 
## -------------------|-----------|-----------|-----------|
##                  0 |      411  |      605  |     1016  | 
##                    |  327.710  |  688.290  |           | 
##                    |   21.169  |   10.079  |           | 
##                    |   40.453% |   59.547% |   49.804% | 
##                    |   62.462% |   43.777% |           | 
##                    |   20.147% |   29.657% |           | 
##                    |    4.601  |   -3.175  |           | 
## -------------------|-----------|-----------|-----------|
##                  1 |      247  |      777  |     1024  | 
##                    |  330.290  |  693.710  |           | 
##                    |   21.004  |   10.000  |           | 
##                    |   24.121% |   75.879% |   50.196% | 
##                    |   37.538% |   56.223% |           | 
##                    |   12.108% |   38.088% |           | 
##                    |   -4.583  |    3.162  |           | 
## -------------------|-----------|-----------|-----------|
##       Column Total |      658  |     1382  |     2040  | 
##                    |   32.255% |   67.745% |           | 
## -------------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  62.25162     d.f. =  1     p =  3.022599e-15 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  61.50646     d.f. =  1     p =  4.412932e-15 
## 
##  
##        Minimum expected frequency: 327.7098
fisher.test(data2_wide$s_age_1, data2_wide$s_awareness, workspace = 2e8)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  data2_wide$s_age_1 and data2_wide$s_awareness
## p-value = 2.97e-15
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  1.759109 2.597653
## sample estimates:
## odds ratio 
##   2.136236
school_bar <- ggplot(data2_wide,aes(x = s_school, fill = s_awareness))
school_bar <- school_bar +  geom_bar() + theme_classic() + theme(
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  text = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Schooltype", y = "Number of Cases", fill = "Awareness Check") +
  scale_fill_brewer(palette = "Blues")
school_bar

CrossTable(data2_wide$s_school, data2_wide$s_awareness,
           chisq = TRUE, expected = TRUE, sresid = TRUE, format = "SPSS")
## 
##    Cell Contents
## |-------------------------|
## |                   Count |
## |         Expected Values |
## | Chi-square contribution |
## |             Row Percent |
## |          Column Percent |
## |           Total Percent |
## |            Std Residual |
## |-------------------------|
## 
## Total Observations in Table:  2041 
## 
##                     | data2_wide$s_awareness 
## data2_wide$s_school |     fail  |     pass  | Row Total | 
## --------------------|-----------|-----------|-----------|
##               Haupt |      270  |      415  |      685  | 
##                     |  220.838  |  464.162  |           | 
##                     |   10.944  |    5.207  |           | 
##                     |   39.416% |   60.584% |   33.562% | 
##                     |   41.033% |   30.007% |           | 
##                     |   13.229% |   20.333% |           | 
##                     |    3.308  |   -2.282  |           | 
## --------------------|-----------|-----------|-----------|
##                Real |      220  |      461  |      681  | 
##                     |  219.548  |  461.452  |           | 
##                     |    0.001  |    0.000  |           | 
##                     |   32.305% |   67.695% |   33.366% | 
##                     |   33.435% |   33.333% |           | 
##                     |   10.779% |   22.587% |           | 
##                     |    0.030  |   -0.021  |           | 
## --------------------|-----------|-----------|-----------|
##                 Abi |      168  |      507  |      675  | 
##                     |  217.614  |  457.386  |           | 
##                     |   11.312  |    5.382  |           | 
##                     |   24.889% |   75.111% |   33.072% | 
##                     |   25.532% |   36.659% |           | 
##                     |    8.231% |   24.841% |           | 
##                     |   -3.363  |    2.320  |           | 
## --------------------|-----------|-----------|-----------|
##        Column Total |      658  |     1383  |     2041  | 
##                     |   32.239% |   67.761% |           | 
## --------------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  32.84601     d.f. =  2     p =  7.371908e-08 
## 
## 
##  
##        Minimum expected frequency: 217.6139
fisher.test(data2_wide$s_school, data2_wide$s_awareness, workspace = 2e8)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  data2_wide$s_school and data2_wide$s_awareness
## p-value = 6.61e-08
## alternative hypothesis: two.sided

Accessibility

describe(data2_wide$accessibility_1)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2029 5.64 1.79      6    5.77 1.48   1   8     7 -0.45    -0.52 0.04
describe(data2_wide$accessibility_2)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2016 5.43 1.86      6    5.54 1.48   1   8     7 -0.4    -0.55 0.04
dep.access.test <- wilcox.test(data2_wide$accessibility_1,
                               data2_wide$accessibility_2,
                               paired = TRUE,
                               correct = TRUE)
dep.access.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$accessibility_1 and data2_wide$accessibility_2
## V = 486685, p-value = 1.394e-09
## alternative hypothesis: true location shift is not equal to 0
data2_wide$accessibility <- rowMeans(data2_wide[,c("accessibility_1",
                                                   "accessibility_2")])
describe(data2_wide$accessibility)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2005 5.54 1.64    5.5    5.61 1.48   1   8     7 -0.37    -0.43 0.04
access.hist <- ggplot(data2_wide, aes(accessibility)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Accessibility",
                                                          y = "Frequency")
access.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 36 rows containing non-finite values (`stat_bin()`).

Understanding

describe(data2_wide$understanding_1)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2021 5.78 1.66      6    5.89 1.48   1   8     7 -0.47    -0.36 0.04
describe(data2_wide$understanding_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2017 5.41 1.73      6    5.49 1.48   1   8     7 -0.42    -0.34 0.04
dep.understand.test <- wilcox.test(data2_wide$understanding_1,
                               data2_wide$understanding_2,
                               paired = TRUE,
                               correct = TRUE)
dep.understand.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$understanding_1 and data2_wide$understanding_2
## V = 571930, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
data2_wide$understanding <- rowMeans(data2_wide[,c("understanding_1",
                                                   "understanding_2")])
describe(data2_wide$understanding)
##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1998  5.6 1.5    5.5    5.66 1.48   1   8     7 -0.4    -0.28 0.03
understand.hist <- ggplot(data2_wide, aes(understanding)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Understanding",
                                                          y = "Frequency")
understand.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 43 rows containing non-finite values (`stat_bin()`).

Empowerment

describe(data2_wide$empowerment_1)
##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2018 4.85 1.8      5    4.89 1.48   1   8     7 -0.19    -0.48 0.04
describe(data2_wide$empowerment_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2021 4.71 1.82      5    4.75 1.48   1   8     7 -0.18    -0.48 0.04
dep.emp.test <- wilcox.test(data2_wide$empowerment_1,
                            data2_wide$empowerment_2,
                            paired = TRUE,
                            correct = TRUE)
dep.emp.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$empowerment_1 and data2_wide$empowerment_2
## V = 475021, p-value = 0.0001433
## alternative hypothesis: true location shift is not equal to 0
data2_wide$empowerment <- rowMeans(data2_wide[,c("empowerment_1",
                                                 "empowerment_2")])
describe(data2_wide$empowerment)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2000 4.77 1.63      5    4.81 1.48   1   8     7 -0.18    -0.35 0.04
empower.hist <- ggplot(data2_wide, aes(empowerment)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Empowerment",
                                                          y = "Frequency")
empower.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 41 rows containing non-finite values (`stat_bin()`).

Credibility

data2_wide$credibility <- rowMeans(data2_wide[,c("credibility_1",
                                                 "credibility_2")])

describe(data2_wide$credibility_1)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2020 5.91 1.52      6    5.97 1.48   1   8     7 -0.35    -0.48 0.03
describe(data2_wide$credibility_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2018 5.77 1.58      6    5.85 1.48   1   8     7 -0.43    -0.17 0.04
dep.credible.test <- wilcox.test(data2_wide$credibility_1,
                               data2_wide$credibility_2,
                               paired = TRUE,
                               correct = TRUE)
dep.credible.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$credibility_1 and data2_wide$credibility_2
## V = 391005, p-value = 0.0001058
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$credibility)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1997 5.84 1.37      6    5.87 1.48   1   8     7 -0.25    -0.47 0.03
credible.hist <- ggplot(data2_wide, aes(credibility)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Credibility",
                                                          y = "Frequency")
credible.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 44 rows containing non-finite values (`stat_bin()`).

Relevance

data2_wide$relevance <- rowMeans(data2_wide[,c("relevance_1","relevance_2")])
describe(data2_wide$relevance_1)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2024 6.33 1.58      7    6.51 1.48   1   8     7 -0.78     0.06 0.04
describe(data2_wide$relevance_2)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2019 6.19 1.67      6    6.37 1.48   1   8     7 -0.8     0.15 0.04
dep.relevance.test <- wilcox.test(data2_wide$relevance_1,
                                 data2_wide$relevance_2,
                                 paired = TRUE,
                                 correct = TRUE)
dep.relevance.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$relevance_1 and data2_wide$relevance_2
## V = 383964, p-value = 5.793e-05
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$relevance)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2003 6.26 1.42    6.5    6.39 1.48   1   8     7 -0.62    -0.14 0.03
relevance.hist <- ggplot(data2_wide, aes(relevance)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Relevance",
                                                          y = "Frequency")
relevance.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 38 rows containing non-finite values (`stat_bin()`).

Curiosity

data2_wide$curiosity <- rowMeans(data2_wide[,c("curiosity_1",
                                               "curiosity_2")])
describe(data2_wide$curiosity_1)
##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2030 3.32 1.1      3    3.36 1.48   1   5     4 -0.29    -0.58 0.02
describe(data2_wide$curiosity_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2025 3.16 1.15      3    3.18 1.48   1   5     4 -0.12    -0.77 0.03
dep.curiosity.test <- wilcox.test(data2_wide$curiosity_1,
                                  data2_wide$curiosity_2,
                                  paired = TRUE,
                                  correct = TRUE)
dep.curiosity.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$curiosity_1 and data2_wide$curiosity_2
## V = 313831, p-value = 1.291e-12
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$curiosity)
##    vars    n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2014 3.24  1      3    3.25 1.48   1   5     4 -0.12    -0.54 0.02
curiosity.hist <- ggplot(data2_wide, aes(curiosity)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Curiosity",
                                                          y = "Frequency")
curiosity.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 27 rows containing non-finite values (`stat_bin()`).

Boredom

data2_wide$boredom <- rowMeans(data2_wide[,c("boredom_1",
                                             "boredom_2")])
describe(data2_wide$boredom_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2023 2.04 1.09      2    1.89 1.48   1   5     4 0.82    -0.08 0.02
describe(data2_wide$boredom_2)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2022 2.04 1.14      2    1.88 1.48   1   5     4 0.87    -0.11 0.03
dep.boredom.test <- wilcox.test(data2_wide$boredom_1,
                                  data2_wide$boredom_2,
                                  paired = TRUE,
                                  correct = TRUE)
dep.boredom.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$boredom_1 and data2_wide$boredom_2
## V = 181847, p-value = 0.6904
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$boredom)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2006 2.04 0.99      2    1.92 1.48   1   5     4 0.81     0.12 0.02
boredom.hist <- ggplot(data2_wide, aes(boredom)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Boredom",
                                                          y = "Frequency")
boredom.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 35 rows containing non-finite values (`stat_bin()`).

Confusion

data2_wide$confusion <- rowMeans(data2_wide[,c("confusion_1",
                                             "confusion_2")])
describe(data2_wide$confusion_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2025  2.1 1.05      2    1.97 1.48   1   5     4 0.67    -0.25 0.02
describe(data2_wide$confusion_2)
##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2024 2.15 1.1      2    2.02 1.48   1   5     4 0.69     -0.3 0.02
dep.confusion.test <- wilcox.test(data2_wide$confusion_1,
                                data2_wide$confusion_2,
                                paired = TRUE,
                                correct = TRUE)
dep.confusion.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$confusion_1 and data2_wide$confusion_2
## V = 246237, p-value = 0.1284
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$confusion)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2008 2.12 0.93      2    2.03 0.74   1   5     4 0.61    -0.17 0.02
confusion.hist <- ggplot(data2_wide, aes(confusion)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Confusion",
                                                          y = "Frequency")
confusion.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 33 rows containing non-finite values (`stat_bin()`).

Frustration

data2_wide$frustration <- rowMeans(data2_wide[,c("frustration_1",
                                               "frustration_2")])
describe(data2_wide$frustration_1)
##    vars    n mean sd median trimmed mad min max range skew kurtosis   se
## X1    1 2020 1.72  1      1    1.55   0   1   5     4 1.22     0.62 0.02
describe(data2_wide$frustration_2)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 2024  1.8 1.07      1    1.62   0   1   5     4  1.2     0.58 0.02
dep.frustration.test <- wilcox.test(data2_wide$frustration_1,
                                  data2_wide$frustration_2,
                                  paired = TRUE,
                                  correct = TRUE)
dep.frustration.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$frustration_1 and data2_wide$frustration_2
## V = 122672, p-value = 0.001244
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$frustration)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 2004 1.76 0.91    1.5    1.62 0.74   1   5     4 1.11     0.55 0.02
frustration.hist <- ggplot(data2_wide, aes(frustration)) + 
  geom_histogram(colour = "black", fill = "white") + labs(x = "Mean Frustration",
                                                          y = "Frequency")
frustration.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 37 rows containing non-finite values (`stat_bin()`).

Relationship Knowledge-Item

describe(data2_wide$s_relationship)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1979 0.23 3.22      0    0.02 2.97  -8   8    16 0.45    -0.37 0.07
table(data2_wide$s_relationship)
## 
##  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8 
##   4   1  20  20 247 110 251 163 425 112 192  67 141  30 135  17  44
relationship.hist <- ggplot(data2_wide, aes(s_relationship)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean Relationship Knowledge Score", y = "Frequency") +
  scale_x_continuous(breaks = seq(-8,8,1))
relationship.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 62 rows containing non-finite values (`stat_bin()`).

Extent of Evaluation Knowledge-Item

describe(data2_wide$s_extent)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1999 0.52 2.28      0    0.41 2.97  -6   6    12 0.35    -0.28 0.05
extent.hist <- ggplot(data2_wide, aes(s_extent)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean Extent Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-6,6,1))
extent.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 42 rows containing non-finite values (`stat_bin()`).

Differentiation Knowledge-Item

data2_wide$s_diff <- coalesce(data2_wide$s_diff_1,data2_wide$s_diff_2)
describe(data2_wide$s_diff_1)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 997 0.07 1.83      0    0.05 1.48  -6   6    12 0.14     0.68 0.06
describe(data2_wide$s_diff_2)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 981 0.52 2.07      0    0.46 2.97  -6   6    12 0.15     0.23 0.07
dep.diff.test <- wilcox.test(data2_wide$s_diff_1,
                                data2_wide$s_diff_2,
                                    paired = FALSE,
                                    correct = TRUE)
dep.diff.test
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  data2_wide$s_diff_1 and data2_wide$s_diff_2
## W = 428088, p-value = 8.067e-07
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$s_diff)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1978 0.29 1.97      0    0.23 1.48  -6   6    12 0.19     0.46 0.04
diff.hist <- ggplot(data2_wide, aes(s_diff)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean Differentiation Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-6,6,1))
diff.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 63 rows containing non-finite values (`stat_bin()`).

Funding Knowledge-Item

data2_wide$s_funding <- rowSums(data2_wide[,c("s_funding_1",
                                               "s_funding_2")])
describe(data2_wide$s_funding_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1994 0.87 3.05      0    0.84 2.97  -6   6    12 0.26    -0.74 0.07
describe(data2_wide$s_funding_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2010 1.67 3.22      1    1.82 4.45  -6   6    12 -0.07    -1.03 0.07
dep.funding.test <- wilcox.test(data2_wide$s_funding_1,
                                data2_wide$s_funding_2,
                                    paired = TRUE,
                                    correct = TRUE)
dep.funding.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$s_funding_1 and data2_wide$s_funding_2
## V = 321887, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$s_funding)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1965 2.55 5.42      2    2.53 5.93 -12  12    24 0.07    -0.74 0.12
funding.hist <- ggplot(data2_wide, aes(s_funding)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean Funding Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-12,12,1))
funding.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 76 rows containing non-finite values (`stat_bin()`).

COI Knowledge-Item

data2_wide$s_coi <- rowSums(data2_wide[,c("s_coi_1",
                                               "s_coi_2")])
describe(data2_wide$s_coi_1)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1955 0.72 3.33      0    0.66 2.97  -7   7    14 0.19     -0.5 0.08
describe(data2_wide$s_coi_2)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1993  1.3 3.56      1    1.36 2.97  -7   7    14 -0.01    -0.75 0.08
dep.coi.test <- wilcox.test(data2_wide$s_coi_1,
                                data2_wide$s_coi_2,
                                paired = TRUE,
                                correct = TRUE)
dep.coi.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$s_coi_1 and data2_wide$s_coi_2
## V = 401472, p-value = 1.122e-12
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$s_coi)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1914 2.02 5.88      1    2.13 5.93 -13  14    27 -0.05    -0.59 0.13
coi.hist <- ggplot(data2_wide, aes(s_coi)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean COI Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-14,14,1))
coi.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 127 rows containing non-finite values (`stat_bin()`).

Causality Knowledge-Item

data2_wide$s_causality <- rowSums(data2_wide[,c("s_causality_1",
                                                 "s_causality_2")])
describe(data2_wide$s_causality_1)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1989 -0.43 2.45      0   -0.52 2.97  -6   6    12  0.2    -0.56 0.06
describe(data2_wide$s_causality_2)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1995 -0.21 2.45      0   -0.29 2.97  -6   6    12 0.21    -0.31 0.05
dep.causality.test <- wilcox.test(data2_wide$s_causality_1,
                            data2_wide$s_causality_2,
                            paired = TRUE,
                            correct = TRUE)
dep.causality.test
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  data2_wide$s_causality_1 and data2_wide$s_causality_2
## V = 486523, p-value = 0.0008355
## alternative hypothesis: true location shift is not equal to 0
describe(data2_wide$s_causality)
##    vars    n  mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1949 -0.64 3.9      0   -0.67 2.97 -12  12    24  0.1    -0.15 0.09
causality.hist <- ggplot(data2_wide, aes(s_causality)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean Causality Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-12,12,1))
causality.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 92 rows containing non-finite values (`stat_bin()`).

CAMA Knowledge-Items

describe(data2_wide$s_CAMA_1)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 984  0.7 2.66      0    0.68 2.97  -7   8    15 0.16    -0.02 0.08
describe(data2_wide$s_CAMA_2)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1015 -0.4 1.62      0   -0.44 1.48  -4   4     8 0.18     0.05 0.05
describe(data2_wide$s_CAMA_3)
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1026 -0.14 0.75      0   -0.17 1.48  -1   1     2 0.23    -1.21 0.02
describe(data2_wide$s_CAMA)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 975 0.17 3.73      0    0.17 2.97 -11  13    24 0.09     0.13 0.12
CAMA1.hist <- ggplot(data2_wide, aes(s_CAMA_1)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean CAMA Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-8,8,1))
CAMA1.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1057 rows containing non-finite values (`stat_bin()`).

CAMA2.hist <- ggplot(data2_wide, aes(s_CAMA_2)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean CAMA Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-4,4,1))
CAMA2.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1026 rows containing non-finite values (`stat_bin()`).

CAMA3.hist <- ggplot(data2_wide, aes(s_CAMA_3)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean CAMA Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-1,1,1))
CAMA3.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1015 rows containing non-finite values (`stat_bin()`).

CAMA_oa.hist <- ggplot(data2_wide, aes(s_CAMA)) + 
  geom_histogram(colour = "black", fill = "white") + labs(
    x = "Mean CAMA Knowledge Score",
    y = "Frequency") +
  scale_x_continuous(breaks = seq(-13,13,1))
CAMA_oa.hist
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1066 rows containing non-finite values (`stat_bin()`).

Hypotheses-Testing

H1

H1a

H1a <- subset(data2_wide, condition == 2|condition == 4|condition == 6)
View(H1a)
describeBy(H1a$s_relationship,H1a$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 346 0.06 2.91      0   -0.05 2.97  -8   8    16 0.28    -0.22 0.16
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 668 0.39 3.45      0    0.16 2.97  -8   8    16 0.48    -0.53 0.13
wilcox.test(s_relationship~disclaimer, data = H1a, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 112365, p-value = 0.4656
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -2.622830e-05  2.762469e-05
## sample estimates:
## difference in location 
##          -6.597433e-05

H1a post hoc

H1a_1 <- subset(data2_wide, condition ==2| condition == 6)
View(H1a_1)
describeBy(H1a_1$s_relationship, H1a_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 346 0.06 2.91      0   -0.05 2.97  -8   8    16 0.28    -0.22 0.16
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.24 3.44      0   -0.04 2.97  -6   8    14 0.57    -0.55 0.19
wilcox.test(s_relationship~disclaimer, data = H1a_1, exaxct = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 58323, p-value = 0.9392
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.084067e-05  5.691002e-05
## sample estimates:
## difference in location 
##           2.295351e-05
H1a_2 <- subset(data2_wide, condition ==4| condition == 6)
View(H1a_2)
describeBy(H1a_2$s_relationship, H1a_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 346 0.06 2.91      0   -0.05 2.97  -8   8    16 0.28    -0.22 0.16
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 332 0.53 3.45      0    0.37 2.97  -8   8    16  0.4     -0.5 0.19
wilcox.test(s_relationship~disclaimer, data = H1a_2, exaxct = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 54042, p-value = 0.1789
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999601e-01  5.534757e-05
## sample estimates:
## difference in location 
##          -2.700176e-05

H1b

H1b <- subset(data2_wide, condition == 1|condition == 2|condition == 3|
                condition == 4)
View(H1b)
describeBy(H1b$s_relationship,H1b$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 646 0.07 3.08      0   -0.08 2.97  -8   8    16 0.34    -0.37 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 668 0.39 3.45      0    0.16 2.97  -8   8    16 0.48    -0.53 0.13
wilcox.test(s_relationship~disclaimer, data = H1b, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 208967, p-value = 0.3191
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -3.794751e-05  3.878243e-05
## sample estimates:
## difference in location 
##          -6.124734e-06

H1b post hoc

H1b_1 <- subset(data2_wide, condition == 1|condition == 2)
View(H1b_1)
describeBy(H1b_1$s_relationship,H1b_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 322 0.22 3.11      0    0.12 2.97  -8   8    16 0.18    -0.53 0.17
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.24 3.44      0   -0.04 2.97  -6   8    14 0.57    -0.55 0.19
wilcox.test(s_relationship~disclaimer, data = H1b_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 55565, p-value = 0.5441
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -6.470564e-05  9.999129e-01
## sample estimates:
## difference in location 
##           1.755468e-05
H1b_2 <- subset(data2_wide, condition == 3|condition == 4)
View(H1b_2)
describeBy(H1b_2$s_relationship,H1b_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 324 -0.08 3.06      0   -0.29 2.97  -6   8    14  0.5    -0.17 0.17
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 332 0.53 3.45      0    0.37 2.97  -8   8    16  0.4     -0.5 0.19
wilcox.test(s_relationship~disclaimer, data = H1b_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 48896, p-value = 0.04208
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999832e-01 -7.580566e-05
## sample estimates:
## difference in location 
##          -2.674227e-05
H1b_3 <- subset(data2_wide, condition == 1|condition == 4)
View(H1b_3)
describeBy(H1b_3$s_relationship,H1b_3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 322 0.22 3.11      0    0.12 2.97  -8   8    16 0.18    -0.53 0.17
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 332 0.53 3.45      0    0.37 2.97  -8   8    16  0.4     -0.5 0.19
wilcox.test(s_relationship~disclaimer, data = H1b_3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 51756, p-value = 0.4789
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999557e-01  3.933794e-05
## sample estimates:
## difference in location 
##          -8.397794e-06
H1b_4 <- subset(data2_wide, condition == 2|condition == 3)
View(H1b_4)
describeBy(H1b_4$s_relationship,H1b_4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 324 -0.08 3.06      0   -0.29 2.97  -6   8    14  0.5    -0.17 0.17
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.24 3.44      0   -0.04 2.97  -6   8    14 0.57    -0.55 0.19
wilcox.test(s_relationship~disclaimer, data = H1b_4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 52751, p-value = 0.4892
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999562e-01  5.642902e-05
## sample estimates:
## difference in location 
##          -3.622986e-06

H1 Logistic Regression

# Exclude NAs for stepwise testing
sum(is.na(data2_wide$disclaimer))
## [1] 0
sum(is.na(data2_wide$s_awareness))
## [1] 0
sum(is.na(data2_wide$text_order))
## [1] 0
sum(is.na(data2_wide$s_age))
## [1] 1
data2_wide <- data2_wide %>% drop_na(s_age)
sum(is.na(data2_wide$s_sex))
## [1] 0
sum(is.na(data2_wide$s_school))
## [1] 0
sum(is.na(data2_wide$s_interest))
## [1] 0
data2_wide$H1_interaction <- interaction(data2_wide$disclaimer,
                                         data2_wide$version)
data2_wide$H1_interaction <- droplevels(data2_wide$H1_interaction)
table(data2_wide$H1_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         357                         670 
##    disclaimer.new guideline 
##                        1013
data2_wide_reg <- subset(data2_wide, condition != 5)
View(data2_wide_reg)

relationship_null <- clm(as.factor(s_relationship)~1, data = data2_wide_reg,
                         link = "logit")

relationship_model1 <- clm(as.factor(s_relationship)~ H1_interaction,
                           data = data2_wide_reg, link = "logit")
anova(relationship_null,relationship_model1)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                   link: threshold:
## relationship_null   as.factor(s_relationship) ~ 1              logit flexible  
## relationship_model1 as.factor(s_relationship) ~ H1_interaction logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_null       16 8008.9 -3988.4                      
## relationship_model1     18 8011.7 -3987.9  1.1372  2     0.5663
relationship_model2 <- clm(as.factor(s_relationship)~ H1_interaction +
                             s_awareness, data = data2_wide_reg, link = "logit")
anova(relationship_null,relationship_model2)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                
## relationship_null   as.factor(s_relationship) ~ 1                           
## relationship_model2 as.factor(s_relationship) ~ H1_interaction + s_awareness
##                     link: threshold:
## relationship_null   logit flexible  
## relationship_model2 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## relationship_null       16 8008.9 -3988.4                          
## relationship_model2     19 7959.4 -3960.7  55.441  3  5.529e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model3 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness, data = data2_wide_reg,
                           link = "logit")
anova(relationship_model2,relationship_model3)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                
## relationship_model2 as.factor(s_relationship) ~ H1_interaction + s_awareness
## relationship_model3 as.factor(s_relationship) ~ H1_interaction * s_awareness
##                     link: threshold:
## relationship_model2 logit flexible  
## relationship_model3 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_model2     19 7959.4 -3960.7                      
## relationship_model3     21 7962.5 -3960.2  0.9571  2     0.6197
relationship_model4 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1, 
                           data = data2_wide_reg, link = "logit")
anova(relationship_model3,relationship_model4)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                           
## relationship_model3 as.factor(s_relationship) ~ H1_interaction * s_awareness           
## relationship_model4 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1
##                     link: threshold:
## relationship_model3 logit flexible  
## relationship_model4 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_model3     21 7962.5 -3960.2                      
## relationship_model4     22 7963.6 -3959.8  0.8892  1     0.3457
relationship_model5 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 
                           + s_age, data = data2_wide_reg,
                           link = "logit")
anova(relationship_model4,relationship_model5)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                   
## relationship_model4 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1        
## relationship_model5 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age
##                     link: threshold:
## relationship_model4 logit flexible  
## relationship_model5 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## relationship_model4     22 7963.6 -3959.8                          
## relationship_model5     23 7879.4 -3916.7  86.179  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model6 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 
                           + s_age + s_sex, data = data2_wide_reg,
                           link = "logit")
anova(relationship_model5,relationship_model6)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                           
## relationship_model5 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age        
## relationship_model6 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex
##                     link: threshold:
## relationship_model5 logit flexible  
## relationship_model6 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_model5     23 7879.4 -3916.7                      
## relationship_model6     24 7881.1 -3916.6  0.2543  1     0.6141
relationship_model7 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 +
                             s_age + s_sex + s_school, 
                           data = data2_wide_reg, link = "logit")
anova(relationship_model5,relationship_model7)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                                      
## relationship_model5 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age                   
## relationship_model7 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school
##                     link: threshold:
## relationship_model5 logit flexible  
## relationship_model7 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## relationship_model5     23 7879.4 -3916.7                          
## relationship_model7     26 7821.7 -3884.8  63.735  3   9.35e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model8 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_reg,
                           link = "logit")
anova(relationship_model7,relationship_model8)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                                                              
## relationship_model7 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school                        
## relationship_model8 as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
##                     link: threshold:
## relationship_model7 logit flexible  
## relationship_model8 logit flexible  
## 
##                     no.par    AIC  logLik LR.stat df Pr(>Chisq)   
## relationship_model7     26 7821.7 -3884.8                         
## relationship_model8     30 7811.3 -3875.7  18.351  4   0.001054 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(relationship_model8)
## formula: 
## as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1660 -3875.66 7811.31 9(2)  2.45e-12 1.3e+06
## 
## Coefficients:
##                                                            Estimate Std. Error
## H1_interactionno disclaimer.new guideline                  0.092030   0.200646
## H1_interactiondisclaimer.new guideline                     0.037610   0.200875
## s_awarenesspass                                            0.770701   0.200424
## summary1Faerber                                            0.084563   0.086509
## s_age                                                     -0.025094   0.002932
## s_sexmale                                                 -0.077937   0.087012
## s_schoolReal                                               0.309928   0.106545
## s_schoolAbi                                                0.873053   0.109980
## as.factor(s_interest)5                                     0.049578   0.132980
## as.factor(s_interest)6                                     0.072247   0.134347
## as.factor(s_interest)7                                    -0.029943   0.147005
## as.factor(s_interest)8                                    -0.442159   0.140765
## H1_interactionno disclaimer.new guideline:s_awarenesspass -0.163416   0.244856
## H1_interactiondisclaimer.new guideline:s_awarenesspass     0.078636   0.245433
##                                                           z value Pr(>|z|)    
## H1_interactionno disclaimer.new guideline                   0.459  0.64647    
## H1_interactiondisclaimer.new guideline                      0.187  0.85148    
## s_awarenesspass                                             3.845  0.00012 ***
## summary1Faerber                                             0.978  0.32832    
## s_age                                                      -8.560  < 2e-16 ***
## s_sexmale                                                  -0.896  0.37041    
## s_schoolReal                                                2.909  0.00363 ** 
## s_schoolAbi                                                 7.938 2.05e-15 ***
## as.factor(s_interest)5                                      0.373  0.70928    
## as.factor(s_interest)6                                      0.538  0.59074    
## as.factor(s_interest)7                                     -0.204  0.83860    
## as.factor(s_interest)8                                     -3.141  0.00168 ** 
## H1_interactionno disclaimer.new guideline:s_awarenesspass  -0.667  0.50452    
## H1_interactiondisclaimer.new guideline:s_awarenesspass      0.320  0.74867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -8|-7  -6.4870     0.5528 -11.734
## -7|-6  -6.2629     0.5056 -12.387
## -6|-5  -4.6803     0.3119 -15.008
## -5|-4  -4.0833     0.2807 -14.544
## -4|-3  -2.1374     0.2430  -8.797
## -3|-2  -1.7452     0.2402  -7.265
## -2|-1  -1.0550     0.2368  -4.455
## -1|0   -0.6615     0.2357  -2.807
## 0|1     0.2832     0.2352   1.204
## 1|2     0.5721     0.2355   2.429
## 2|3     1.1302     0.2372   4.766
## 3|4     1.3659     0.2383   5.731
## 4|5     1.9967     0.2432   8.211
## 5|6     2.2015     0.2454   8.970
## 6|7     3.4525     0.2726  12.665
## 7|8     3.8351     0.2887  13.284
## (53 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model8))
##                                                     -8|-7 
##                                               0.001523149 
##                                                     -7|-6 
##                                               0.001905707 
##                                                     -6|-5 
##                                               0.009275961 
##                                                     -5|-4 
##                                               0.016851824 
##                                                     -4|-3 
##                                               0.117966144 
##                                                     -3|-2 
##                                               0.174614003 
##                                                     -2|-1 
##                                               0.348181844 
##                                                      -1|0 
##                                               0.516085165 
##                                                       0|1 
##                                               1.327412450 
##                                                       1|2 
##                                               1.772012006 
##                                                       2|3 
##                                               3.096338894 
##                                                       3|4 
##                                               3.919213259 
##                                                       4|5 
##                                               7.364671907 
##                                                       5|6 
##                                               9.038596464 
##                                                       6|7 
##                                              31.579103646 
##                                                       7|8 
##                                              46.299122481 
##                 H1_interactionno disclaimer.new guideline 
##                                               1.096397874 
##                    H1_interactiondisclaimer.new guideline 
##                                               1.038326697 
##                                           s_awarenesspass 
##                                               2.161281741 
##                                           summary1Faerber 
##                                               1.088240988 
##                                                     s_age 
##                                               0.975217751 
##                                                 s_sexmale 
##                                               0.925022568 
##                                              s_schoolReal 
##                                               1.363327598 
##                                               s_schoolAbi 
##                                               2.394209013 
##                                    as.factor(s_interest)5 
##                                               1.050827415 
##                                    as.factor(s_interest)6 
##                                               1.074920924 
##                                    as.factor(s_interest)7 
##                                               0.970500604 
##                                    as.factor(s_interest)8 
##                                               0.642647248 
## H1_interactionno disclaimer.new guideline:s_awarenesspass 
##                                               0.849237482 
##    H1_interactiondisclaimer.new guideline:s_awarenesspass 
##                                               1.081809934
exp(confint(relationship_model8))
##                                                               2.5 %    97.5 %
## H1_interactionno disclaimer.new guideline                 0.7401323 1.6258461
## H1_interactiondisclaimer.new guideline                    0.7005461 1.5402705
## s_awarenesspass                                           1.4602271 3.2048311
## summary1Faerber                                           0.9185364 1.2893974
## s_age                                                     0.9696156 0.9808249
## s_sexmale                                                 0.7799476 1.0970176
## s_schoolReal                                              1.1065267 1.6802455
## s_schoolAbi                                               1.9307086 2.9715029
## as.factor(s_interest)5                                    0.8096677 1.3637648
## as.factor(s_interest)6                                    0.8260495 1.3988328
## as.factor(s_interest)7                                    0.7275112 1.2946699
## as.factor(s_interest)8                                    0.4875840 0.8467208
## H1_interactionno disclaimer.new guideline:s_awarenesspass 0.5252687 1.3719833
## H1_interactiondisclaimer.new guideline:s_awarenesspass    0.6684317 1.7498793
nagelkerke(fit = relationship_model8, null = relationship_null)
## $Models
##                                                                                                                                                            
## Model: "clm, as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_reg, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0282758
## Cox and Snell (ML)                  0.1270480
## Nagelkerke (Cragg and Uhler)        0.1280970
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -14     -112.78 225.55 3.1725e-40
## 
## $Number.of.observations
##            
## Model: 1660
## Null:  1660
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test = emmeans(relationship_model8, ~ H1_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H1test, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline  -0.0103 0.122 Inf
##  no disclaimer.old guideline - disclaimer.new guideline     -0.0769 0.123 Inf
##  no disclaimer.new guideline - disclaimer.new guideline     -0.0666 0.102 Inf
##  z.ratio p.value
##   -0.084  0.9961
##   -0.627  0.8053
##   -0.652  0.7914
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H1test, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.341 0.122 Inf     0.102     0.580  a    
##  no disclaimer.new guideline  0.351 0.101 Inf     0.153     0.549  a    
##  disclaimer.new guideline     0.418 0.101 Inf     0.220     0.616  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_reg1 <- subset(data2_wide_reg, condition == 2 | condition == 6)
View(data2_wide_reg1)

relationship_null_1 <- clm(as.factor(s_relationship)~1, data = data2_wide_reg1, link = "logit")

relationship_model8_1 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_reg1, link = "logit")

summary(relationship_model8_1)
## formula: 
## as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg1
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  682  -1576.31 3208.62 8(1)  9.08e-08 1.0e+06
## 
## Coefficients:
##                                                         Estimate Std. Error
## H1_interactiondisclaimer.new guideline                 -0.020159   0.245631
## s_awarenesspass                                         0.783550   0.204978
## summary1Faerber                                         0.042646   0.135944
## s_age                                                  -0.028157   0.004545
## s_sexmale                                              -0.113214   0.137419
## s_schoolReal                                            0.173119   0.168318
## s_schoolAbi                                             0.831686   0.170260
## as.factor(s_interest)5                                  0.189489   0.208166
## as.factor(s_interest)6                                  0.311041   0.213707
## as.factor(s_interest)7                                 -0.015489   0.226762
## as.factor(s_interest)8                                 -0.362711   0.216145
## H1_interactiondisclaimer.new guideline:s_awarenesspass -0.047810   0.294064
##                                                        z value Pr(>|z|)    
## H1_interactiondisclaimer.new guideline                  -0.082 0.934592    
## s_awarenesspass                                          3.823 0.000132 ***
## summary1Faerber                                          0.314 0.753748    
## s_age                                                   -6.196 5.80e-10 ***
## s_sexmale                                               -0.824 0.410022    
## s_schoolReal                                             1.029 0.303706    
## s_schoolAbi                                              4.885 1.04e-06 ***
## as.factor(s_interest)5                                   0.910 0.362676    
## as.factor(s_interest)6                                   1.455 0.145544    
## as.factor(s_interest)7                                  -0.068 0.945544    
## as.factor(s_interest)8                                  -1.678 0.093329 .  
## H1_interactiondisclaimer.new guideline:s_awarenesspass  -0.163 0.870846    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -8|-7  -7.1682     1.0459  -6.853
## -7|-6  -6.4740     0.7707  -8.400
## -6|-5  -5.3712     0.5105 -10.521
## -5|-4  -4.5115     0.4064 -11.100
## -4|-3  -2.2391     0.3170  -7.064
## -3|-2  -1.9020     0.3124  -6.088
## -2|-1  -1.2149     0.3053  -3.979
## -1|0   -0.7608     0.3024  -2.516
## 0|1     0.1479     0.3015   0.491
## 1|2     0.4680     0.3026   1.546
## 2|3     0.9964     0.3059   3.257
## 3|4     1.2663     0.3084   4.106
## 4|5     1.9165     0.3179   6.029
## 5|6     2.0589     0.3208   6.418
## 6|7     3.2745     0.3675   8.910
## 7|8     3.6994     0.3988   9.277
## (20 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model8_1))
##                                                  -8|-7 
##                                           7.706807e-04 
##                                                  -7|-6 
##                                           1.543060e-03 
##                                                  -6|-5 
##                                           4.648423e-03 
##                                                  -5|-4 
##                                           1.098187e-02 
##                                                  -4|-3 
##                                           1.065539e-01 
##                                                  -3|-2 
##                                           1.492630e-01 
##                                                  -2|-1 
##                                           2.967463e-01 
##                                                   -1|0 
##                                           4.672734e-01 
##                                                    0|1 
##                                           1.159442e+00 
##                                                    1|2 
##                                           1.596801e+00 
##                                                    2|3 
##                                           2.708518e+00 
##                                                    3|4 
##                                           3.547668e+00 
##                                                    4|5 
##                                           6.797181e+00 
##                                                    5|6 
##                                           7.837718e+00 
##                                                    6|7 
##                                           2.643053e+01 
##                                                    7|8 
##                                           4.042181e+01 
##                 H1_interactiondisclaimer.new guideline 
##                                           9.800432e-01 
##                                        s_awarenesspass 
##                                           2.189229e+00 
##                                        summary1Faerber 
##                                           1.043568e+00 
##                                                  s_age 
##                                           9.722360e-01 
##                                              s_sexmale 
##                                           8.929600e-01 
##                                           s_schoolReal 
##                                           1.189007e+00 
##                                            s_schoolAbi 
##                                           2.297188e+00 
##                                 as.factor(s_interest)5 
##                                           1.208631e+00 
##                                 as.factor(s_interest)6 
##                                           1.364845e+00 
##                                 as.factor(s_interest)7 
##                                           9.846307e-01 
##                                 as.factor(s_interest)8 
##                                           6.957877e-01 
## H1_interactiondisclaimer.new guideline:s_awarenesspass 
##                                           9.533150e-01
exp(confint(relationship_model8_1))
##                                                            2.5 %    97.5 %
## H1_interactiondisclaimer.new guideline                 0.6051809 1.5861761
## s_awarenesspass                                        1.4669237 3.2777771
## summary1Faerber                                        0.7994342 1.3623371
## s_age                                                  0.9635723 0.9808995
## s_sexmale                                              0.6820071 1.1689774
## s_schoolReal                                           0.8550335 1.6544106
## s_schoolAbi                                            1.6467673 3.2106536
## as.factor(s_interest)5                                 0.8034120 1.8176163
## as.factor(s_interest)6                                 0.8978204 2.0758112
## as.factor(s_interest)7                                 0.6311712 1.5360710
## as.factor(s_interest)8                                 0.4551834 1.0625466
## H1_interactiondisclaimer.new guideline:s_awarenesspass 0.5355740 1.6968891
nagelkerke(fit = relationship_model8_1, null = relationship_null_1)
## $Models
##                                                                                                                                                             
## Model: "clm, as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg1, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_reg1, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0314367
## Cox and Snell (ML)                  0.1393230
## Nagelkerke (Cragg and Uhler)        0.1405110
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -51.162 102.32 1.9488e-16
## 
## $Number.of.observations
##           
## Model: 682
## Null:  682
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test_1 = emmeans(relationship_model8_1, ~ H1_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H1test_1, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   0.0441 0.147 Inf
##  z.ratio p.value
##    0.299  0.7648
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H1test_1, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.369 0.165 Inf    0.0460     0.691  a    
##  no disclaimer.old guideline  0.413 0.160 Inf    0.0991     0.726  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_reg2 <- subset(data2_wide_reg, condition == 4 | condition == 6)
View(data2_wide_reg2)

relationship_null_2 <- clm(as.factor(s_relationship)~1, data = data2_wide_reg2, link = "logit")

relationship_model8_2 <- clm(as.factor(s_relationship)~ 
                             H1_interaction*s_awareness + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_reg2, link = "logit")

summary(relationship_model8_2)
## formula: 
## as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg2
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  678  -1541.94 3139.88 10(3) 7.66e-13 8.9e+05
## 
## Coefficients:
##                                                         Estimate Std. Error
## H1_interactiondisclaimer.new guideline                  0.084544   0.226310
## s_awarenesspass                                         0.765877   0.205953
## summary1Faerber                                        -0.144396   0.136669
## s_age                                                  -0.024623   0.004634
## s_sexmale                                              -0.293743   0.136998
## s_schoolReal                                            0.316078   0.170422
## s_schoolAbi                                             0.827959   0.172419
## as.factor(s_interest)5                                  0.384884   0.206182
## as.factor(s_interest)6                                  0.168480   0.210609
## as.factor(s_interest)7                                  0.127651   0.229816
## as.factor(s_interest)8                                 -0.221542   0.215441
## H1_interactiondisclaimer.new guideline:s_awarenesspass  0.273848   0.284203
##                                                        z value Pr(>|z|)    
## H1_interactiondisclaimer.new guideline                   0.374   0.7087    
## s_awarenesspass                                          3.719   0.0002 ***
## summary1Faerber                                         -1.057   0.2907    
## s_age                                                   -5.313 1.08e-07 ***
## s_sexmale                                               -2.144   0.0320 *  
## s_schoolReal                                             1.855   0.0636 .  
## s_schoolAbi                                              4.802 1.57e-06 ***
## as.factor(s_interest)5                                   1.867   0.0619 .  
## as.factor(s_interest)6                                   0.800   0.4237    
## as.factor(s_interest)7                                   0.555   0.5786    
## as.factor(s_interest)8                                  -1.028   0.3038    
## H1_interactiondisclaimer.new guideline:s_awarenesspass   0.964   0.3353    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -8|-7  -5.8942     0.6563  -8.981
## -7|-6  -5.6047     0.5894  -9.509
## -6|-5  -4.6779     0.4443 -10.528
## -5|-4  -4.1980     0.4000 -10.494
## -4|-3  -2.2286     0.3259  -6.838
## -3|-2  -1.8900     0.3209  -5.890
## -2|-1  -1.2040     0.3145  -3.828
## -1|0   -0.7364     0.3122  -2.359
## 0|1     0.3383     0.3112   1.087
## 1|2     0.6017     0.3119   1.929
## 2|3     1.1157     0.3143   3.550
## 3|4     1.3163     0.3158   4.168
## 4|5     1.9935     0.3242   6.149
## 5|6     2.1967     0.3280   6.697
## 6|7     3.6948     0.3900   9.475
## 7|8     3.7583     0.3947   9.523
## (20 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model8_2))
##                                                  -8|-7 
##                                            0.002755475 
##                                                  -7|-6 
##                                            0.003680616 
##                                                  -6|-5 
##                                            0.009298112 
##                                                  -5|-4 
##                                            0.015025709 
##                                                  -4|-3 
##                                            0.107679996 
##                                                  -3|-2 
##                                            0.151078243 
##                                                  -2|-1 
##                                            0.300002446 
##                                                   -1|0 
##                                            0.478824031 
##                                                    0|1 
##                                            1.402616547 
##                                                    1|2 
##                                            1.825187195 
##                                                    2|3 
##                                            3.051692428 
##                                                    3|4 
##                                            3.729733831 
##                                                    4|5 
##                                            7.340845989 
##                                                    5|6 
##                                            8.994906282 
##                                                    6|7 
##                                           40.236028259 
##                                                    7|8 
##                                           42.875244825 
##                 H1_interactiondisclaimer.new guideline 
##                                            1.088220611 
##                                        s_awarenesspass 
##                                            2.150879910 
##                                        summary1Faerber 
##                                            0.865544592 
##                                                  s_age 
##                                            0.975677234 
##                                              s_sexmale 
##                                            0.745467766 
##                                           s_schoolReal 
##                                            1.371737722 
##                                            s_schoolAbi 
##                                            2.288643582 
##                                 as.factor(s_interest)5 
##                                            1.469444424 
##                                 as.factor(s_interest)6 
##                                            1.183504958 
##                                 as.factor(s_interest)7 
##                                            1.136155948 
##                                 as.factor(s_interest)8 
##                                            0.801281937 
## H1_interactiondisclaimer.new guideline:s_awarenesspass 
##                                            1.315015242
exp(confint(relationship_model8_2))
##                                                            2.5 %    97.5 %
## H1_interactiondisclaimer.new guideline                 0.6982941 1.6964609
## s_awarenesspass                                        1.4382646 3.2260124
## summary1Faerber                                        0.6619509 1.1312632
## s_age                                                  0.9668233 0.9845555
## s_sexmale                                              0.5696816 0.9748339
## s_schoolReal                                           0.9825409 1.9168710
## s_schoolAbi                                            1.6338480 3.2125670
## as.factor(s_interest)5                                 0.9808999 2.2019295
## as.factor(s_interest)6                                 0.7832071 1.7889544
## as.factor(s_interest)7                                 0.7240196 1.7832371
## as.factor(s_interest)8                                 0.5250900 1.2223317
## H1_interactiondisclaimer.new guideline:s_awarenesspass 0.7533457 2.2961469
nagelkerke(fit = relationship_model8_2, null = relationship_null_2)
## $Models
##                                                                                                                                                             
## Model: "clm, as.factor(s_relationship) ~ H1_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg2, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_reg2, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0343714
## Cox and Snell (ML)                  0.1494760
## Nagelkerke (Cragg and Uhler)        0.1508340
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -54.885 109.77 6.6442e-18
## 
## $Number.of.observations
##           
## Model: 678
## Null:  678
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test_2 = emmeans(relationship_model8_2, ~ H1_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H1test_2, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   -0.221 0.142 Inf
##  z.ratio p.value
##   -1.558  0.1191
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H1test_2, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.222 0.137 Inf   -0.0456      0.49  a    
##  disclaimer.new guideline     0.444 0.136 Inf    0.1774      0.71  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H2

H2a

H2a <- subset(data2_wide, condition == 2|condition == 4|condition == 6)
View(H2a)

describeBy(H2a$s_extent,H2a$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 349 0.52 2.23      0    0.42 2.97  -6   6    12 0.33    -0.23 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 676 0.62 2.4      0    0.54 2.97  -6   6    12 0.26     -0.5 0.09
wilcox.test(s_extent~disclaimer, data = H2a, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 115603, p-value = 0.5948
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -7.469212e-05  8.124448e-05
## sample estimates:
## difference in location 
##          -4.862757e-05

H2a post hoc

H2a_1 <- subset(data2_wide, condition == 2|condition == 6)
View(H2a_1)

describeBy(H2a_1$s_extent,H2a_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 349 0.52 2.23      0    0.42 2.97  -6   6    12 0.33    -0.23 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 340 0.52 2.38      0    0.44 2.97  -6   6    12 0.22    -0.49 0.13
wilcox.test(s_extent~disclaimer, data = H2a_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 59589, p-value = 0.9201
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.344322e-05  2.640857e-05
## sample estimates:
## difference in location 
##           7.842257e-05
H2a_2 <- subset(data2_wide, condition == 4|condition == 6)
View(H2a_2)

describeBy(H2a_2$s_extent,H2a_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 349 0.52 2.23      0    0.42 2.97  -6   6    12 0.33    -0.23 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.73 2.42      0    0.63 2.97  -4   6    10 0.31    -0.54 0.13
wilcox.test(s_extent~disclaimer, data = H2a_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 56014, p-value = 0.3053
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.918730e-05  3.332259e-05
## sample estimates:
## difference in location 
##          -3.546894e-05

H2b

H2b <- subset(data2_wide, condition == 1| condition == 2| condition == 3|
                condition == 4)
View(H2b)

describeBy(H2b$s_extent,H2b$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 654 0.41 2.15      0    0.29 2.97  -6   6    12 0.33    -0.19 0.08
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 676 0.62 2.4      0    0.54 2.97  -6   6    12 0.26     -0.5 0.09
wilcox.test(s_extent~disclaimer, data = H2b, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 211224, p-value = 0.1547
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -5.113093e-05  3.383239e-05
## sample estimates:
## difference in location 
##          -9.912606e-05

H2b post hoc

H2b_1 <- subset(data2_wide, condition == 1| condition == 2)
View(H2b_1)
describeBy(H2b_1$s_extent,H2b_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 327 0.51 2.21      0    0.43 2.97  -4   6    10 0.25    -0.46 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 340 0.52 2.38      0    0.44 2.97  -6   6    12 0.22    -0.49 0.13
wilcox.test(s_extent~disclaimer, data = H2b_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 55838, p-value = 0.9198
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.851467e-05  3.167506e-05
## sample estimates:
## difference in location 
##           4.181901e-05
H2b_2 <- subset(data2_wide, condition == 3| condition == 4)
View(H2b_2)
describeBy(H2b_2$s_extent,H2b_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 327  0.3 2.08      0    0.17 2.97  -6   6    12 0.41     0.14 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.73 2.42      0    0.63 2.97  -4   6    10 0.31    -0.54 0.13
wilcox.test(s_extent~disclaimer, data = H2b_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 49672, p-value = 0.02996
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999459e-01 -1.088538e-05
## sample estimates:
## difference in location 
##          -2.476233e-05
H2b_3 <- subset(data2_wide, condition == 1| condition == 4)
View(H2b_3)
describeBy(H2b_3$s_extent,H2b_3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 327 0.51 2.21      0    0.43 2.97  -4   6    10 0.25    -0.46 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 336 0.73 2.42      0    0.63 2.97  -4   6    10 0.31    -0.54 0.13
wilcox.test(s_extent~disclaimer, data = H2b_3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 52652, p-value = 0.3482
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -2.863540e-05  3.467322e-05
## sample estimates:
## difference in location 
##          -3.262128e-05
H2b_4 <- subset(data2_wide, condition == 2| condition == 3)
View(H2b_4)
describeBy(H2b_4$s_extent,H2b_4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 327  0.3 2.08      0    0.17 2.97  -6   6    12 0.41     0.14 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 340 0.52 2.38      0    0.44 2.97  -6   6    12 0.22    -0.49 0.13
wilcox.test(s_extent~disclaimer, data = H2b_4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 53062, p-value = 0.3021
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -5.449799e-05  3.884504e-05
## sample estimates:
## difference in location 
##          -6.112496e-05

H2 Logistic Regression

data2_wide$H2_interaction <- data2_wide$H1_interaction
table(data2_wide$H2_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         357                         670 
##    disclaimer.new guideline 
##                        1013
data2_wide_reg <- subset(data2_wide, condition != 5)
View(data2_wide_reg)

extent_null <- clm(as.factor(s_extent) ~ 1, data = data2_wide_reg, link = "logit")

extent_model1 <- clm(as.factor(s_extent) ~ H2_interaction, data = data2_wide_reg,
                     link = "logit")
anova(extent_null,extent_model1)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                             link: threshold:
## extent_null   as.factor(s_extent) ~ 1              logit flexible  
## extent_model1 as.factor(s_extent) ~ H2_interaction logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_null       12 7114.2 -3545.1                      
## extent_model1     14 7116.2 -3544.1  2.0399  2     0.3606
extent_model2 <- clm(as.factor(s_extent) ~ H2_interaction + s_awareness,
                     data = data2_wide_reg, link = "logit")
anova(extent_null,extent_model2)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                           link:
## extent_null   as.factor(s_extent) ~ 1                            logit
## extent_model2 as.factor(s_extent) ~ H2_interaction + s_awareness logit
##               threshold:
## extent_null   flexible  
## extent_model2 flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_null       12 7114.2 -3545.1                          
## extent_model2     15 7028.5 -3499.3  91.681  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model3 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness,
                     data = data2_wide_reg, link = "logit")
anova(extent_model2,extent_model3)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                           link:
## extent_model2 as.factor(s_extent) ~ H2_interaction + s_awareness logit
## extent_model3 as.factor(s_extent) ~ H2_interaction * s_awareness logit
##               threshold:
## extent_model2 flexible  
## extent_model3 flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_model2     15 7028.5 -3499.3                      
## extent_model3     17 7028.8 -3497.4  3.7023  2     0.1571
extent_model4 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + summary1,
                     data = data2_wide_reg, link = "logit")
anova(extent_model2,extent_model4)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                                     
## extent_model2 as.factor(s_extent) ~ H2_interaction + s_awareness           
## extent_model4 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1
##               link: threshold:
## extent_model2 logit flexible  
## extent_model4 logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_model2     15 7028.5 -3499.3                      
## extent_model4     18 7030.6 -3497.3  3.9089  3     0.2715
extent_model5 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age, data = data2_wide_reg, 
                     link = "logit")
anova(extent_model2,extent_model5)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                                             
## extent_model2 as.factor(s_extent) ~ H2_interaction + s_awareness                   
## extent_model5 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age
##               link: threshold:
## extent_model2 logit flexible  
## extent_model5 logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_model2     15 7028.5 -3499.3                          
## extent_model5     19 7007.7 -3484.8  28.866  4  8.323e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model6 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age + s_sex, 
                     data = data2_wide_reg, link = "logit")
anova(extent_model5,extent_model6)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                                                     
## extent_model5 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age        
## extent_model6 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex
##               link: threshold:
## extent_model5 logit flexible  
## extent_model6 logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## extent_model5     19 7007.7 -3484.8                        
## extent_model6     20 7006.4 -3483.2  3.2613  1    0.07093 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model7 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age + s_sex +
                       s_school, data = data2_wide_reg, 
                     link = "logit")
anova(extent_model5,extent_model7)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                                                                
## extent_model5 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age                   
## extent_model7 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school
##               link: threshold:
## extent_model5 logit flexible  
## extent_model7 logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_model5     19 7007.7 -3484.8                          
## extent_model7     22 6949.4 -3452.7  64.252  3  7.249e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model8 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg, 
                     link = "logit")
anova(extent_model7,extent_model8)
## Likelihood ratio tests of cumulative link models:
##  
##               formula:                                                                                                        
## extent_model7 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school                        
## extent_model8 as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
##               link: threshold:
## extent_model7 logit flexible  
## extent_model8 logit flexible  
## 
##               no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_model7     22 6949.4 -3452.7                          
## extent_model8     26 6931.2 -3439.6  26.217  4  2.861e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(extent_model8)
## formula: 
## as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1679 -3439.60 6931.20 8(2)  5.73e-08 1.1e+06
## 
## Coefficients:
##                                                            Estimate Std. Error
## H2_interactionno disclaimer.new guideline                  0.182468   0.198635
## H2_interactiondisclaimer.new guideline                     0.036018   0.200742
## s_awarenesspass                                            0.966097   0.201849
## summary1Faerber                                           -0.023117   0.086318
## s_age                                                     -0.013140   0.002876
## s_sexmale                                                  0.119397   0.086817
## s_schoolReal                                               0.333643   0.106849
## s_schoolAbi                                                0.894282   0.110627
## as.factor(s_interest)5                                    -0.053340   0.133711
## as.factor(s_interest)6                                    -0.084149   0.134700
## as.factor(s_interest)7                                    -0.244367   0.146398
## as.factor(s_interest)8                                    -0.631426   0.142375
## H2_interactionno disclaimer.new guideline:s_awarenesspass -0.349353   0.244601
## H2_interactiondisclaimer.new guideline:s_awarenesspass     0.091748   0.246248
##                                                           z value Pr(>|z|)    
## H2_interactionno disclaimer.new guideline                   0.919  0.35830    
## H2_interactiondisclaimer.new guideline                      0.179  0.85760    
## s_awarenesspass                                             4.786 1.70e-06 ***
## summary1Faerber                                            -0.268  0.78884    
## s_age                                                      -4.568 4.92e-06 ***
## s_sexmale                                                   1.375  0.16905    
## s_schoolReal                                                3.123  0.00179 ** 
## s_schoolAbi                                                 8.084 6.28e-16 ***
## as.factor(s_interest)5                                     -0.399  0.68995    
## as.factor(s_interest)6                                     -0.625  0.53216    
## as.factor(s_interest)7                                     -1.669  0.09508 .  
## as.factor(s_interest)8                                     -4.435 9.21e-06 ***
## H2_interactionno disclaimer.new guideline:s_awarenesspass  -1.428  0.15322    
## H2_interactiondisclaimer.new guideline:s_awarenesspass      0.373  0.70946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -5.9015     0.5508 -10.715
## -5|-4  -5.6779     0.5034 -11.280
## -4|-3  -3.4992     0.2769 -12.636
## -3|-2  -2.7627     0.2548 -10.841
## -2|-1  -1.0233     0.2359  -4.338
## -1|0   -0.5311     0.2341  -2.268
## 0|1     0.6439     0.2349   2.742
## 1|2     1.0904     0.2363   4.615
## 2|3     1.9107     0.2397   7.971
## 3|4     2.3852     0.2429   9.818
## 4|5     3.6795     0.2631  13.984
## 5|6     4.1761     0.2793  14.953
## (34 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model8))
##                                                     -6|-5 
##                                               0.002735333 
##                                                     -5|-4 
##                                               0.003420693 
##                                                     -4|-3 
##                                               0.030222339 
##                                                     -3|-2 
##                                               0.063122584 
##                                                     -2|-1 
##                                               0.359412666 
##                                                      -1|0 
##                                               0.587975715 
##                                                       0|1 
##                                               1.903977695 
##                                                       1|2 
##                                               2.975582789 
##                                                       2|3 
##                                               6.757910660 
##                                                       3|4 
##                                              10.860749671 
##                                                       4|5 
##                                              39.624729456 
##                                                       5|6 
##                                              65.110563255 
##                 H2_interactionno disclaimer.new guideline 
##                                               1.200175969 
##                    H2_interactiondisclaimer.new guideline 
##                                               1.036674672 
##                                           s_awarenesspass 
##                                               2.627668410 
##                                           summary1Faerber 
##                                               0.977148237 
##                                                     s_age 
##                                               0.986945602 
##                                                 s_sexmale 
##                                               1.126816965 
##                                              s_schoolReal 
##                                               1.396044342 
##                                               s_schoolAbi 
##                                               2.445580033 
##                                    as.factor(s_interest)5 
##                                               0.948057705 
##                                    as.factor(s_interest)6 
##                                               0.919294267 
##                                    as.factor(s_interest)7 
##                                               0.783199790 
##                                    as.factor(s_interest)8 
##                                               0.531833048 
## H2_interactionno disclaimer.new guideline:s_awarenesspass 
##                                               0.705144234 
##    H2_interactiondisclaimer.new guideline:s_awarenesspass 
##                                               1.096088417
exp(confint(extent_model8))
##                                                               2.5 %    97.5 %
## H2_interactionno disclaimer.new guideline                 0.8132562 1.7724428
## H2_interactiondisclaimer.new guideline                    0.6994857 1.5371276
## s_awarenesspass                                           1.7699782 3.9063695
## summary1Faerber                                           0.8250335 1.1572776
## s_age                                                     0.9813900 0.9925205
## s_sexmale                                                 0.9505479 1.3359513
## s_schoolReal                                              1.1324070 1.7216000
## s_schoolAbi                                               1.9696324 3.0391186
## as.factor(s_interest)5                                    0.7294092 1.2321070
## as.factor(s_interest)6                                    0.7058946 1.1970182
## as.factor(s_interest)7                                    0.5877056 1.0433855
## as.factor(s_interest)8                                    0.4021808 0.7028348
## H2_interactionno disclaimer.new guideline:s_awarenesspass 0.4363978 1.1387123
## H2_interactiondisclaimer.new guideline:s_awarenesspass    0.6762817 1.7760872
nagelkerke(fit = extent_model8, null = extent_null)
## $Models
##                                                                                                                                                      
## Model: "clm, as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_reg, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0297617
## Cox and Snell (ML)                  0.1181030
## Nagelkerke (Cragg and Uhler)        0.1198600
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq   p.value
##      -14     -105.51 211.02 3.061e-37
## 
## $Number.of.observations
##            
## Model: 1679
## Null:  1679
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test = emmeans(extent_model8, ~ H2_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H2test, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline -0.00779 0.122 Inf
##  no disclaimer.old guideline - disclaimer.new guideline    -0.08189 0.123 Inf
##  no disclaimer.new guideline - disclaimer.new guideline    -0.07410 0.102 Inf
##  z.ratio p.value
##   -0.064  0.9978
##   -0.665  0.7837
##   -0.730  0.7459
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H2test, Letters = letters)
##  H2_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.599 0.131 Inf     0.343     0.856  a    
##  no disclaimer.new guideline  0.607 0.111 Inf     0.389     0.825  a    
##  disclaimer.new guideline     0.681 0.111 Inf     0.463     0.900  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_reg3 <- subset(data2_wide, condition == 2| condition == 6)
View(data2_wide_reg3)

extent_null_1 <- clm(as.factor(s_extent) ~ 1, data = data2_wide_reg3, link = "logit")

extent_model8_1 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg3, 
                     link = "logit")

summary(extent_model8_1)
## formula: 
## as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg3
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  689  -1418.80 2883.60 7(0)  1.27e-12 6.0e+05
## 
## Coefficients:
##                                                         Estimate Std. Error
## H2_interactiondisclaimer.new guideline                 -0.090892   0.246319
## s_awarenesspass                                         1.000818   0.205758
## summary1Faerber                                         0.002191   0.136022
## s_age                                                  -0.016205   0.004450
## s_sexmale                                               0.217967   0.136897
## s_schoolReal                                            0.388165   0.170128
## s_schoolAbi                                             0.924417   0.171772
## as.factor(s_interest)5                                 -0.403292   0.214225
## as.factor(s_interest)6                                 -0.219034   0.214824
## as.factor(s_interest)7                                 -0.532376   0.231988
## as.factor(s_interest)8                                 -1.015751   0.221343
## H2_interactiondisclaimer.new guideline:s_awarenesspass  0.056550   0.293925
##                                                        z value Pr(>|z|)    
## H2_interactiondisclaimer.new guideline                  -0.369 0.712125    
## s_awarenesspass                                          4.864 1.15e-06 ***
## summary1Faerber                                          0.016 0.987147    
## s_age                                                   -3.642 0.000271 ***
## s_sexmale                                                1.592 0.111342    
## s_schoolReal                                             2.282 0.022513 *  
## s_schoolAbi                                              5.382 7.38e-08 ***
## as.factor(s_interest)5                                  -1.883 0.059760 .  
## as.factor(s_interest)6                                  -1.020 0.307918    
## as.factor(s_interest)7                                  -2.295 0.021742 *  
## as.factor(s_interest)8                                  -4.589 4.45e-06 ***
## H2_interactiondisclaimer.new guideline:s_awarenesspass   0.192 0.847432    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-4  -5.6172     0.6516  -8.620
## -4|-3  -3.8535     0.3873  -9.949
## -3|-2  -2.9814     0.3416  -8.728
## -2|-1  -1.3050     0.3084  -4.231
## -1|0   -0.7459     0.3040  -2.453
## 0|1     0.3914     0.3045   1.285
## 1|2     0.7784     0.3068   2.537
## 2|3     1.5571     0.3129   4.977
## 3|4     2.1805     0.3201   6.813
## 4|5     3.4604     0.3552   9.741
## 5|6     3.9278     0.3818  10.288
## (13 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model8_1))
##                                                  -6|-4 
##                                            0.003634913 
##                                                  -4|-3 
##                                            0.021204999 
##                                                  -3|-2 
##                                            0.050720376 
##                                                  -2|-1 
##                                            0.271181252 
##                                                   -1|0 
##                                            0.474330351 
##                                                    0|1 
##                                            1.479098750 
##                                                    1|2 
##                                            2.177951598 
##                                                    2|3 
##                                            4.744824003 
##                                                    3|4 
##                                            8.850299130 
##                                                    4|5 
##                                           31.829325891 
##                                                    5|6 
##                                           50.794024402 
##                 H2_interactiondisclaimer.new guideline 
##                                            0.913115874 
##                                        s_awarenesspass 
##                                            2.720506151 
##                                        summary1Faerber 
##                                            1.002193681 
##                                                  s_age 
##                                            0.983925341 
##                                              s_sexmale 
##                                            1.243545409 
##                                           s_schoolReal 
##                                            1.474273412 
##                                            s_schoolAbi 
##                                            2.520399443 
##                                 as.factor(s_interest)5 
##                                            0.668117009 
##                                 as.factor(s_interest)6 
##                                            0.803294277 
##                                 as.factor(s_interest)7 
##                                            0.587208322 
##                                 as.factor(s_interest)8 
##                                            0.362130527 
## H2_interactiondisclaimer.new guideline:s_awarenesspass 
##                                            1.058179674
exp(confint(extent_model8_1))
##                                                            2.5 %    97.5 %
## H2_interactiondisclaimer.new guideline                 0.5629969 1.4795765
## s_awarenesspass                                        1.8197702 4.0786198
## summary1Faerber                                        0.7676102 1.3085061
## s_age                                                  0.9753589 0.9925287
## s_sexmale                                              0.9510733 1.6268243
## s_schoolReal                                           1.0566895 2.0591538
## s_schoolAbi                                            1.8018552 3.5339262
## as.factor(s_interest)5                                 0.4386213 1.0161700
## as.factor(s_interest)6                                 0.5268458 1.2234120
## as.factor(s_interest)7                                 0.3723557 0.9249113
## as.factor(s_interest)8                                 0.2342871 0.5581544
## H2_interactiondisclaimer.new guideline:s_awarenesspass 0.5947637 1.8833968
nagelkerke(fit = extent_model8_1, null = extent_null_1)
## $Models
##                                                                                                                                                       
## Model: "clm, as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg3, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_reg3, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0359274
## Cox and Snell (ML)                  0.1422810
## Nagelkerke (Cragg and Uhler)        0.1442950
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -52.873 105.75 4.1364e-17
## 
## $Number.of.observations
##           
## Model: 689
## Null:  689
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test_1 = emmeans(extent_model8_1, ~ H2_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H2test_1, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   0.0626 0.148 Inf
##  z.ratio p.value
##    0.424  0.6715
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H2test_1, Letters = letters)
##  H2_interaction               emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline    0.00715 0.132 Inf    -0.251     0.266  a    
##  no disclaimer.old guideline 0.06977 0.125 Inf    -0.176     0.316  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_reg4 <- subset(data2_wide, condition == 4| condition == 6)
View(data2_wide_reg4)

extent_null_2 <- clm(as.factor(s_extent) ~ 1, data = data2_wide_reg4, link = "logit")

extent_model8_2 <- clm(as.factor(s_extent) ~ H2_interaction*s_awareness + 
                       summary1 + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg4, 
                     link = "logit")

summary(extent_model8_2)
## formula: 
## as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg4
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  685  -1403.90 2853.80 7(0)  7.90e-09 7.1e+05
## 
## Coefficients:
##                                                         Estimate Std. Error
## H2_interactiondisclaimer.new guideline                  0.127107   0.223031
## s_awarenesspass                                         0.938388   0.205758
## summary1Faerber                                        -0.162547   0.136466
## s_age                                                  -0.008477   0.004532
## s_sexmale                                              -0.019523   0.136157
## s_schoolReal                                            0.121688   0.171059
## s_schoolAbi                                             0.801180   0.169996
## as.factor(s_interest)5                                 -0.062240   0.208630
## as.factor(s_interest)6                                  0.081036   0.211852
## as.factor(s_interest)7                                 -0.314890   0.228084
## as.factor(s_interest)8                                 -0.876385   0.220413
## H2_interactiondisclaimer.new guideline:s_awarenesspass  0.179769   0.281711
##                                                        z value Pr(>|z|)    
## H2_interactiondisclaimer.new guideline                   0.570   0.5687    
## s_awarenesspass                                          4.561 5.10e-06 ***
## summary1Faerber                                         -1.191   0.2336    
## s_age                                                   -1.870   0.0614 .  
## s_sexmale                                               -0.143   0.8860    
## s_schoolReal                                             0.711   0.4768    
## s_schoolAbi                                              4.713 2.44e-06 ***
## as.factor(s_interest)5                                  -0.298   0.7655    
## as.factor(s_interest)6                                   0.383   0.7021    
## as.factor(s_interest)7                                  -1.381   0.1674    
## as.factor(s_interest)8                                  -3.976 7.01e-05 ***
## H2_interactiondisclaimer.new guideline:s_awarenesspass   0.638   0.5234    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-4  -6.4502     1.0459  -6.167
## -4|-3  -3.5783     0.3906  -9.162
## -3|-2  -2.7572     0.3471  -7.945
## -2|-1  -1.1149     0.3123  -3.570
## -1|0   -0.6131     0.3079  -1.992
## 0|1     0.6156     0.3089   1.993
## 1|2     1.0569     0.3119   3.389
## 2|3     1.8305     0.3178   5.760
## 3|4     2.3326     0.3234   7.212
## 4|5     3.5177     0.3526   9.976
## 5|6     3.9199     0.3710  10.565
## (13 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model8_2))
##                                                  -6|-4 
##                                            0.001580161 
##                                                  -4|-3 
##                                            0.027922329 
##                                                  -3|-2 
##                                            0.063466214 
##                                                  -2|-1 
##                                            0.327932501 
##                                                   -1|0 
##                                            0.541656975 
##                                                    0|1 
##                                            1.850831433 
##                                                    1|2 
##                                            2.877462036 
##                                                    2|3 
##                                            6.236700238 
##                                                    3|4 
##                                           10.304665335 
##                                                    4|5 
##                                           33.707327868 
##                                                    5|6 
##                                           50.397042812 
##                 H2_interactiondisclaimer.new guideline 
##                                            1.135538128 
##                                        s_awarenesspass 
##                                            2.555859088 
##                                        summary1Faerber 
##                                            0.849976130 
##                                                  s_age 
##                                            0.991558983 
##                                              s_sexmale 
##                                            0.980666181 
##                                           s_schoolReal 
##                                            1.129401904 
##                                            s_schoolAbi 
##                                            2.228168254 
##                                 as.factor(s_interest)5 
##                                            0.939657635 
##                                 as.factor(s_interest)6 
##                                            1.084409468 
##                                 as.factor(s_interest)7 
##                                            0.729868975 
##                                 as.factor(s_interest)8 
##                                            0.416285213 
## H2_interactiondisclaimer.new guideline:s_awarenesspass 
##                                            1.196941256
exp(confint(extent_model8_2))
##                                                            2.5 %    97.5 %
## H2_interactiondisclaimer.new guideline                 0.7334265 1.7590529
## s_awarenesspass                                        1.7093048 3.8310222
## summary1Faerber                                        0.6502987 1.1104647
## s_age                                                  0.9827759 1.0003991
## s_sexmale                                              0.7509191 1.2807341
## s_schoolReal                                           0.8076441 1.5796077
## s_schoolAbi                                            1.5980104 3.1124011
## as.factor(s_interest)5                                 0.6241000 1.4144816
## as.factor(s_interest)6                                 0.7158071 1.6429696
## as.factor(s_interest)7                                 0.4665580 1.1413396
## as.factor(s_interest)8                                 0.2699372 0.6407366
## H2_interactiondisclaimer.new guideline:s_awarenesspass 0.6889916 2.0795712
nagelkerke(fit = extent_model8_2, null = extent_null_2)
## $Models
##                                                                                                                                                       
## Model: "clm, as.factor(s_extent) ~ H2_interaction * s_awareness + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg4, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_reg4, logit"                                                                                         
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0378383
## Cox and Snell (ML)                  0.1488760
## Nagelkerke (Cragg and Uhler)        0.1510090
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12      -55.21 110.42 4.9409e-18
## 
## $Number.of.observations
##           
## Model: 685
## Null:  685
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test_2 = emmeans(extent_model8_2, ~ H2_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H2test_2, adjust = "tukey")
##  contrast                                               estimate   SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   -0.217 0.14 Inf
##  z.ratio p.value
##   -1.546  0.1222
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H2test_2, Letters = letters)
##  H2_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.176 0.145 Inf    -0.108     0.460  a    
##  disclaimer.new guideline     0.393 0.144 Inf     0.111     0.674  a    
## 
## Results are averaged over the levels of: s_awareness, summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H3

H3a

H3a <- subset(data2_wide, condition == 2|condition == 4|condition == 6)
View(H3a)

describeBy(H3a$s_diff,H3a$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 345 0.37 1.93      0    0.37 1.48  -6   6    12 -0.1     0.46 0.1
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 660 0.27 1.94      0    0.18 1.48  -6   6    12 0.39     0.61 0.08
wilcox.test(s_diff~disclaimer, data = H3a, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 120378, p-value = 0.1249
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -7.590539e-05  2.125303e-05
## sample estimates:
## difference in location 
##           5.661916e-06

H3a post hoc

H3a_1 <- subset(data2_wide, condition == 2|condition == 6)
View(H3a_1)
describeBy(H3a_1$s_diff,H3a_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 345 0.37 1.93      0    0.37 1.48  -6   6    12 -0.1     0.46 0.1
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.12 1.94      0    0.03 1.48  -4   6    10 0.34     0.13 0.11
wilcox.test(s_diff~disclaimer, data = H3a_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 62522, p-value = 0.02371
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  0.0000133882 0.9999363469
## sample estimates:
## difference in location 
##            6.73205e-06
H3a_2 <- subset(data2_wide, condition == 4|condition == 6)
View(H3a_2)
describeBy(H3a_2$s_diff,H3a_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 345 0.37 1.93      0    0.37 1.48  -6   6    12 -0.1     0.46 0.1
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.42 1.94      0    0.32 1.48  -6   6    12 0.44     1.04 0.11
wilcox.test(s_diff~disclaimer, data = H3a_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 57857, p-value = 0.7051
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.302679e-05  3.720242e-05
## sample estimates:
## difference in location 
##           2.559738e-05

H3b

H3b <- subset(data2_wide, condition == 1| condition == 2| condition == 3|
                condition == 4)
View(H3b)

describeBy(H3b$s_diff,H3b$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 652 0.27 2.02      0    0.22 1.48  -6   6    12 0.12     0.33 0.08
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 660 0.27 1.94      0    0.18 1.48  -6   6    12 0.39     0.61 0.08
wilcox.test(s_diff~disclaimer, data = H3b, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 217553, p-value = 0.72
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -7.205325e-06  3.457267e-05
## sample estimates:
## difference in location 
##           3.252272e-05

H3b post hoc

H3b_1 <- subset(data2_wide, condition == 1| condition == 2)
View(H3b_1)
describeBy(H3b_1$s_diff,H3b_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 321 0.19 2.04      0    0.17 1.48  -6   6    12 0.02     0.16 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.12 1.94      0    0.03 1.48  -4   6    10 0.34     0.13 0.11
wilcox.test(s_diff~disclaimer, data = H3b_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 54841, p-value = 0.4232
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.356082e-05  2.575015e-05
## sample estimates:
## difference in location 
##           3.936834e-05
H3b_2 <- subset(data2_wide, condition == 3| condition == 4)
View(H3b_2)
describeBy(H3b_2$s_diff,H3b_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 331 0.35 2.01      0    0.27 1.48  -6   6    12 0.21     0.47 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.42 1.94      0    0.32 1.48  -6   6    12 0.44     1.04 0.11
wilcox.test(s_diff~disclaimer, data = H3b_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 53775, p-value = 0.7238
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -3.910076e-05  3.441754e-05
## sample estimates:
## difference in location 
##          -5.465709e-05
H3b_3 <- subset(data2_wide, condition == 2| condition == 3)
View(H3b_3)
describeBy(H3b_3$s_diff,H3b_3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 331 0.35 2.01      0    0.27 1.48  -6   6    12 0.21     0.47 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.12 1.94      0    0.03 1.48  -4   6    10 0.34     0.13 0.11
wilcox.test(s_diff~disclaimer, data = H3b_3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 58499, p-value = 0.1045
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.456446e-05  6.645169e-05
## sample estimates:
## difference in location 
##           4.662093e-05
H3b_4 <- subset(data2_wide, condition == 1| condition == 4)
View(H3b_4)
describeBy(H3b_4$s_diff,H3b_4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 321 0.19 2.04      0    0.17 1.48  -6   6    12 0.02     0.16 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 330 0.42 1.94      0    0.32 1.48  -6   6    12 0.44     1.04 0.11
wilcox.test(s_diff~disclaimer, data = H3b_4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 50439, p-value = 0.2779
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.565384e-05  5.297947e-05
## sample estimates:
## difference in location 
##           -1.49841e-07

H3 Logistic Regression

data2_wide$H3_interaction <- data2_wide$H2_interaction
table(data2_wide$H3_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         357                         670 
##    disclaimer.new guideline 
##                        1013
data2_wide_reg <- subset(data2_wide, condition != 5)
View(data2_wide_reg)

diff_null <- clm(as.factor(s_diff) ~ 1, data = data2_wide_reg, link = "logit")

diff_model1 <- clm(as.factor(s_diff) ~ H3_interaction, data = data2_wide_reg,
                     link = "logit")
anova(diff_null,diff_model1)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                           link: threshold:
## diff_null   as.factor(s_diff) ~ 1              logit flexible  
## diff_model1 as.factor(s_diff) ~ H3_interaction logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_null       12 6444.3 -3210.2                      
## diff_model1     14 6445.9 -3209.0   2.381  2     0.3041
diff_model2 <- clm(as.factor(s_diff) ~ H3_interaction + s_awareness,
                     data = data2_wide_reg, link = "logit")
anova(diff_null,diff_model2)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                         link: threshold:
## diff_null   as.factor(s_diff) ~ 1                            logit flexible  
## diff_model2 as.factor(s_diff) ~ H3_interaction + s_awareness logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## diff_null       12 6444.3 -3210.2                          
## diff_model2     15 6427.8 -3198.9  22.545  3  5.023e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model3 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness,
                     data = data2_wide_reg, link = "logit")
anova(diff_model2,diff_model3)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                         link: threshold:
## diff_model2 as.factor(s_diff) ~ H3_interaction + s_awareness logit flexible  
## diff_model3 as.factor(s_diff) ~ H3_interaction * s_awareness logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model2     15 6427.8 -3198.9                      
## diff_model3     17 6430.8 -3198.4  0.9476  2     0.6226
diff_model4 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness + text_order, data = data2_wide_reg, link = "logit")
anova(diff_model2,diff_model4)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                      link:
## diff_model2 as.factor(s_diff) ~ H3_interaction + s_awareness              logit
## diff_model4 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order logit
##             threshold:
## diff_model2 flexible  
## diff_model4 flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## diff_model2     15 6427.8 -3198.9                          
## diff_model4     18 6411.5 -3187.7  22.271  3   5.73e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model5 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness + text_order + s_age, data = data2_wide_reg, 
                     link = "logit")
anova(diff_model4,diff_model5)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                             
## diff_model4 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order        
## diff_model5 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age
##             link: threshold:
## diff_model4 logit flexible  
## diff_model5 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## diff_model4     18 6411.5 -3187.7                        
## diff_model5     19 6407.8 -3184.9  5.7455  1    0.01653 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model6 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness + text_order + s_age + s_sex, 
                   data = data2_wide_reg, 
                     link = "logit")
anova(diff_model5,diff_model6)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                     
## diff_model5 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age        
## diff_model6 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex
##             link: threshold:
## diff_model5 logit flexible  
## diff_model6 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model5     19 6407.8 -3184.9                      
## diff_model6     20 6407.1 -3183.6  2.6343  1     0.1046
diff_model7 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness + text_order + s_age + s_sex +
                       s_school, data = data2_wide_reg, 
                     link = "logit")
anova(diff_model5,diff_model7)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                                
## diff_model5 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age                   
## diff_model7 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school
##             link: threshold:
## diff_model5 logit flexible  
## diff_model7 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model5     19 6407.8 -3184.9                      
## diff_model7     22 6409.2 -3182.6  4.5365  3     0.2091
diff_model8 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness  + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg, 
                     link = "logit")
anova(diff_model5,diff_model8)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                                                        
## diff_model5 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age                                           
## diff_model8 as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
##             link: threshold:
## diff_model5 logit flexible  
## diff_model8 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model5     19 6407.8 -3184.9                      
## diff_model8     26 6413.1 -3180.6  8.6496  7     0.2788
summary(diff_model8)
## formula: 
## as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1657 -3180.55 6413.10 7(0)  1.10e-09 1.0e+06
## 
## Coefficients:
##                                                            Estimate Std. Error
## H3_interactionno disclaimer.new guideline                 -0.004203   0.205288
## H3_interactiondisclaimer.new guideline                    -0.095444   0.203037
## s_awarenesspass                                            0.540993   0.205231
## text_orderFaerber                                          0.410684   0.088321
## s_age                                                     -0.006246   0.002890
## s_sexmale                                                 -0.143024   0.088332
## s_schoolReal                                               0.026193   0.108341
## s_schoolAbi                                                0.134485   0.110133
## as.factor(s_interest)5                                     0.175235   0.135269
## as.factor(s_interest)6                                     0.100804   0.137713
## as.factor(s_interest)7                                     0.120144   0.148907
## as.factor(s_interest)8                                    -0.074686   0.142485
## H3_interactionno disclaimer.new guideline:s_awarenesspass -0.207895   0.251160
## H3_interactiondisclaimer.new guideline:s_awarenesspass    -0.120352   0.248928
##                                                           z value Pr(>|z|)    
## H3_interactionno disclaimer.new guideline                  -0.020  0.98367    
## H3_interactiondisclaimer.new guideline                     -0.470  0.63830    
## s_awarenesspass                                             2.636  0.00839 ** 
## text_orderFaerber                                           4.650 3.32e-06 ***
## s_age                                                      -2.162  0.03066 *  
## s_sexmale                                                  -1.619  0.10541    
## s_schoolReal                                                0.242  0.80897    
## s_schoolAbi                                                 1.221  0.22205    
## as.factor(s_interest)5                                      1.295  0.19516    
## as.factor(s_interest)6                                      0.732  0.46418    
## as.factor(s_interest)7                                      0.807  0.41976    
## as.factor(s_interest)8                                     -0.524  0.60016    
## H3_interactionno disclaimer.new guideline:s_awarenesspass  -0.828  0.40782    
## H3_interactiondisclaimer.new guideline:s_awarenesspass     -0.483  0.62875    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -5.8680     0.5520 -10.630
## -5|-4  -5.3066     0.4445 -11.939
## -4|-3  -3.1082     0.2669 -11.648
## -3|-2  -2.7127     0.2571 -10.550
## -2|-1  -1.2796     0.2412  -5.306
## -1|0   -0.8168     0.2393  -3.413
## 0|1     0.7005     0.2387   2.935
## 1|2     1.2036     0.2399   5.017
## 2|3     2.4419     0.2482   9.840
## 3|4     2.7840     0.2526  11.020
## 4|5     4.1303     0.2919  14.152
## 5|6     4.6722     0.3253  14.364
## (56 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model8))
##                                                     -6|-5 
##                                              2.828484e-03 
##                                                     -5|-4 
##                                              4.958672e-03 
##                                                     -4|-3 
##                                              4.468047e-02 
##                                                     -3|-2 
##                                              6.635460e-02 
##                                                     -2|-1 
##                                              2.781520e-01 
##                                                      -1|0 
##                                              4.418229e-01 
##                                                       0|1 
##                                              2.014721e+00 
##                                                       1|2 
##                                              3.332141e+00 
##                                                       2|3 
##                                              1.149435e+01 
##                                                       3|4 
##                                              1.618335e+01 
##                                                       4|5 
##                                              6.219571e+01 
##                                                       5|6 
##                                              1.069331e+02 
##                 H3_interactionno disclaimer.new guideline 
##                                              9.958063e-01 
##                    H3_interactiondisclaimer.new guideline 
##                                              9.089693e-01 
##                                           s_awarenesspass 
##                                              1.717712e+00 
##                                         text_orderFaerber 
##                                              1.507849e+00 
##                                                     s_age 
##                                              9.937735e-01 
##                                                 s_sexmale 
##                                              8.667330e-01 
##                                              s_schoolReal 
##                                              1.026539e+00 
##                                               s_schoolAbi 
##                                              1.143947e+00 
##                                    as.factor(s_interest)5 
##                                              1.191526e+00 
##                                    as.factor(s_interest)6 
##                                              1.106059e+00 
##                                    as.factor(s_interest)7 
##                                              1.127659e+00 
##                                    as.factor(s_interest)8 
##                                              9.280352e-01 
## H3_interactionno disclaimer.new guideline:s_awarenesspass 
##                                              8.122921e-01 
##    H3_interactiondisclaimer.new guideline:s_awarenesspass 
##                                              8.866080e-01
exp(confint((diff_model8)))
##                                                               2.5 %    97.5 %
## H3_interactionno disclaimer.new guideline                 0.6660817 1.4899877
## H3_interactiondisclaimer.new guideline                    0.6106643 1.3540269
## s_awarenesspass                                           1.1494258 2.5706104
## text_orderFaerber                                         1.2684280 1.7932661
## s_age                                                     0.9881554 0.9994142
## s_sexmale                                                 0.7288709 1.0305012
## s_schoolReal                                              0.8301181 1.2694337
## s_schoolAbi                                               0.9219047 1.4197396
## as.factor(s_interest)5                                    0.9140985 1.5535360
## as.factor(s_interest)6                                    0.8444120 1.4489208
## as.factor(s_interest)7                                    0.8422136 1.5100043
## as.factor(s_interest)8                                    0.7017732 1.2269163
## H3_interactionno disclaimer.new guideline:s_awarenesspass 0.4962519 1.3286122
## H3_interactiondisclaimer.new guideline:s_awarenesspass    0.5440616 1.4439228
nagelkerke(fit = diff_model8, null = diff_null)
## $Models
##                                                                                                                                                      
## Model: "clm, as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_reg, logit"                                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00922245
## Cox and Snell (ML)                 0.03510290
## Nagelkerke (Cragg and Uhler)       0.03584720
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -14     -29.605 59.211 1.6126e-07
## 
## $Number.of.observations
##            
## Model: 1657
## Null:  1657
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H3test = emmeans(diff_model8, ~ H3_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H3test, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline   0.1082 0.126 Inf
##  no disclaimer.old guideline - disclaimer.new guideline      0.1556 0.125 Inf
##  no disclaimer.new guideline - disclaimer.new guideline      0.0475 0.103 Inf
##  z.ratio p.value
##    0.861  0.6649
##    1.248  0.4251
##    0.459  0.8904
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H3test, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.347 0.109 Inf     0.134     0.560  a    
##  no disclaimer.new guideline  0.394 0.110 Inf     0.179     0.610  a    
##  no disclaimer.old guideline  0.502 0.130 Inf     0.247     0.758  a    
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_reg5 <- subset(data2_wide, condition == 2 | condition == 6)
View(data2_wide_reg5)

diff_null_1 <- clm(as.factor(s_diff) ~ 1, data = data2_wide_reg5, link = "logit")

diff_model8_1 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness  + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg5, 
                     link = "logit")

summary(diff_model8_1)
## formula: 
## as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg5
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  675  -1297.88 2643.77 7(0)  6.50e-08 9.0e+05
## 
## Coefficients:
##                                                         Estimate Std. Error
## H3_interactiondisclaimer.new guideline                 -0.162461   0.248468
## s_awarenesspass                                         0.511903   0.208378
## text_orderFaerber                                       0.427983   0.139018
## s_age                                                  -0.004515   0.004535
## s_sexmale                                              -0.178657   0.139614
## s_schoolReal                                            0.237719   0.171886
## s_schoolAbi                                             0.469633   0.173103
## as.factor(s_interest)5                                  0.097727   0.212803
## as.factor(s_interest)6                                 -0.265737   0.219007
## as.factor(s_interest)7                                  0.126662   0.233023
## as.factor(s_interest)8                                 -0.145705   0.222113
## H3_interactiondisclaimer.new guideline:s_awarenesspass -0.250421   0.297342
##                                                        z value Pr(>|z|)   
## H3_interactiondisclaimer.new guideline                  -0.654  0.51321   
## s_awarenesspass                                          2.457  0.01403 * 
## text_orderFaerber                                        3.079  0.00208 **
## s_age                                                   -0.996  0.31941   
## s_sexmale                                               -1.280  0.20067   
## s_schoolReal                                             1.383  0.16666   
## s_schoolAbi                                              2.713  0.00667 **
## as.factor(s_interest)5                                   0.459  0.64606   
## as.factor(s_interest)6                                  -1.213  0.22499   
## as.factor(s_interest)7                                   0.544  0.58674   
## as.factor(s_interest)8                                  -0.656  0.51183   
## H3_interactiondisclaimer.new guideline:s_awarenesspass  -0.842  0.39968   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -6.2882     1.0444  -6.021
## -5|-4  -5.5936     0.7686  -7.278
## -4|-3  -3.0738     0.3640  -8.445
## -3|-2  -2.5910     0.3423  -7.568
## -2|-1  -1.1443     0.3136  -3.648
## -1|0   -0.6486     0.3103  -2.090
## 0|1     0.7799     0.3108   2.509
## 1|2     1.3353     0.3141   4.251
## 2|3     2.6480     0.3318   7.982
## 3|4     3.0441     0.3420   8.900
## 4|5     4.5942     0.4407  10.424
## 5|6     5.2972     0.5425   9.765
## (27 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model8_1))
##                                                  -6|-5 
##                                           1.858041e-03 
##                                                  -5|-4 
##                                           3.721608e-03 
##                                                  -4|-3 
##                                           4.624488e-02 
##                                                  -3|-2 
##                                           7.494329e-02 
##                                                  -2|-1 
##                                           3.184457e-01 
##                                                   -1|0 
##                                           5.227530e-01 
##                                                    0|1 
##                                           2.181147e+00 
##                                                    1|2 
##                                           3.801060e+00 
##                                                    2|3 
##                                           1.412593e+01 
##                                                    3|4 
##                                           2.099076e+01 
##                                                    4|5 
##                                           9.891049e+01 
##                                                    5|6 
##                                           1.997747e+02 
##                 H3_interactiondisclaimer.new guideline 
##                                           8.500493e-01 
##                                        s_awarenesspass 
##                                           1.668464e+00 
##                                      text_orderFaerber 
##                                           1.534160e+00 
##                                                  s_age 
##                                           9.954951e-01 
##                                              s_sexmale 
##                                           8.363931e-01 
##                                           s_schoolReal 
##                                           1.268353e+00 
##                                            s_schoolAbi 
##                                           1.599407e+00 
##                                 as.factor(s_interest)5 
##                                           1.102662e+00 
##                                 as.factor(s_interest)6 
##                                           7.666406e-01 
##                                 as.factor(s_interest)7 
##                                           1.135033e+00 
##                                 as.factor(s_interest)8 
##                                           8.644129e-01 
## H3_interactiondisclaimer.new guideline:s_awarenesspass 
##                                           7.784728e-01
exp(confint((diff_model8_1)))
##                                                            2.5 %   97.5 %
## H3_interactiondisclaimer.new guideline                 0.5222945 1.384156
## s_awarenesspass                                        1.1098621 2.513249
## text_orderFaerber                                      1.1688067 2.015979
## s_age                                                  0.9866743 1.004379
## s_sexmale                                              0.6359648 1.099494
## s_schoolReal                                           0.9056480 1.777042
## s_schoolAbi                                            1.1398880 2.247363
## as.factor(s_interest)5                                 0.7266725 1.674175
## as.factor(s_interest)6                                 0.4988425 1.177568
## as.factor(s_interest)7                                 0.7188252 1.792827
## as.factor(s_interest)8                                 0.5588914 1.335544
## H3_interactiondisclaimer.new guideline:s_awarenesspass 0.4342797 1.393749
nagelkerke(fit = diff_model8_1, null = diff_null_1)
## $Models
##                                                                                                                                                       
## Model: "clm, as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg5, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_reg5, logit"                                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0137674
## Cox and Snell (ML)                  0.0522672
## Nagelkerke (Cragg and Uhler)        0.0533478
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -18.118 36.236 0.00029689
## 
## $Number.of.observations
##           
## Model: 675
## Null:  675
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H3test_1 = emmeans(diff_model8_1, ~ H3_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H3test_1, adjust = "tukey")
##  contrast                                               estimate   SE  df
##  no disclaimer.old guideline - disclaimer.new guideline    0.288 0.15 Inf
##  z.ratio p.value
##    1.914  0.0556
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H3test_1, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.221 0.187 Inf    -0.146     0.589  a    
##  no disclaimer.old guideline  0.509 0.184 Inf     0.148     0.870  a    
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_reg6 <- subset(data2_wide, condition == 4 | condition == 6)
View(data2_wide_reg6)

diff_null_2 <- clm(as.factor(s_diff) ~ 1, data = data2_wide_reg6, link = "logit")

diff_model8_2 <- clm(as.factor(s_diff) ~ H3_interaction*s_awareness  + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_reg6, 
                     link = "logit")

summary(diff_model8_2)
## formula: 
## as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_reg6
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  675  -1265.62 2579.23 7(0)  5.63e-12 7.2e+05
## 
## Coefficients:
##                                                         Estimate Std. Error
## H3_interactiondisclaimer.new guideline                 -0.018587   0.227338
## s_awarenesspass                                         0.587635   0.211885
## text_orderFaerber                                       0.448846   0.139860
## s_age                                                  -0.003001   0.004543
## s_sexmale                                              -0.092249   0.139324
## s_schoolReal                                            0.154994   0.176163
## s_schoolAbi                                             0.271576   0.171963
## as.factor(s_interest)5                                  0.136431   0.213510
## as.factor(s_interest)6                                 -0.153997   0.221819
## as.factor(s_interest)7                                 -0.263025   0.234743
## as.factor(s_interest)8                                 -0.404837   0.220637
## H3_interactiondisclaimer.new guideline:s_awarenesspass  0.065429   0.288117
##                                                        z value Pr(>|z|)   
## H3_interactiondisclaimer.new guideline                  -0.082  0.93484   
## s_awarenesspass                                          2.773  0.00555 **
## text_orderFaerber                                        3.209  0.00133 **
## s_age                                                   -0.661  0.50888   
## s_sexmale                                               -0.662  0.50789   
## s_schoolReal                                             0.880  0.37895   
## s_schoolAbi                                              1.579  0.11427   
## as.factor(s_interest)5                                   0.639  0.52283   
## as.factor(s_interest)6                                  -0.694  0.48753   
## as.factor(s_interest)7                                  -1.120  0.26251   
## as.factor(s_interest)8                                  -1.835  0.06653 . 
## H3_interactiondisclaimer.new guideline:s_awarenesspass   0.227  0.82035   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -5.4581     0.7708  -7.081
## -5|-4  -4.7623     0.5865  -8.119
## -4|-3  -3.0741     0.3768  -8.158
## -3|-2  -2.6679     0.3561  -7.491
## -2|-1  -1.2626     0.3236  -3.902
## -1|0   -0.7669     0.3200  -2.397
## 0|1     0.8411     0.3199   2.629
## 1|2     1.4047     0.3229   4.350
## 2|3     2.7948     0.3407   8.203
## 3|4     3.0315     0.3463   8.754
## 4|5     4.2642     0.4040  10.555
## 5|6     4.7466     0.4482  10.591
## (23 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model8_2))
##                                                  -6|-5 
##                                           4.261512e-03 
##                                                  -5|-4 
##                                           8.546240e-03 
##                                                  -4|-3 
##                                           4.623109e-02 
##                                                  -3|-2 
##                                           6.939741e-02 
##                                                  -2|-1 
##                                           2.829156e-01 
##                                                   -1|0 
##                                           4.644447e-01 
##                                                    0|1 
##                                           2.319009e+00 
##                                                    1|2 
##                                           4.074329e+00 
##                                                    2|3 
##                                           1.635989e+01 
##                                                    3|4 
##                                           2.072832e+01 
##                                                    4|5 
##                                           7.110448e+01 
##                                                    5|6 
##                                           1.151946e+02 
##                 H3_interactiondisclaimer.new guideline 
##                                           9.815845e-01 
##                                        s_awarenesspass 
##                                           1.799726e+00 
##                                      text_orderFaerber 
##                                           1.566504e+00 
##                                                  s_age 
##                                           9.970034e-01 
##                                              s_sexmale 
##                                           9.118778e-01 
##                                           s_schoolReal 
##                                           1.167651e+00 
##                                            s_schoolAbi 
##                                           1.312031e+00 
##                                 as.factor(s_interest)5 
##                                           1.146176e+00 
##                                 as.factor(s_interest)6 
##                                           8.572742e-01 
##                                 as.factor(s_interest)7 
##                                           7.687225e-01 
##                                 as.factor(s_interest)8 
##                                           6.670855e-01 
## H3_interactiondisclaimer.new guideline:s_awarenesspass 
##                                           1.067616e+00
exp(confint((diff_model8_2)))
##                                                            2.5 %   97.5 %
## H3_interactiondisclaimer.new guideline                 0.6286427 1.533369
## s_awarenesspass                                        1.1892117 2.730148
## text_orderFaerber                                      1.1915187 2.061965
## s_age                                                  0.9881505 1.005915
## s_sexmale                                              0.6938016 1.198123
## s_schoolReal                                           0.8267911 1.649756
## s_schoolAbi                                            0.9369872 1.839099
## as.factor(s_interest)5                                 0.7542635 1.742525
## as.factor(s_interest)6                                 0.5546588 1.323845
## as.factor(s_interest)7                                 0.4849169 1.217616
## as.factor(s_interest)8                                 0.4324511 1.027397
## H3_interactiondisclaimer.new guideline:s_awarenesspass 0.6067614 1.877996
nagelkerke(fit = diff_model8_2, null = diff_null_1)
## $Models
##                                                                                                                                                       
## Model: "clm, as.factor(s_diff) ~ H3_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_reg6, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_reg5, logit"                                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0382867
## Cox and Snell (ML)                  0.1386810
## Nagelkerke (Cragg and Uhler)        0.1415480
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -50.385 100.77 3.9323e-16
## 
## $Number.of.observations
##           
## Model: 675
## Null:  675
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H3test_2 = emmeans(diff_model8_2, ~ H3_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H3test_2, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline  -0.0141 0.144 Inf
##  z.ratio p.value
##   -0.098  0.9218
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H3test_2, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.416 0.156 Inf     0.110     0.722  a    
##  disclaimer.new guideline     0.430 0.153 Inf     0.129     0.731  a    
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H4

H4a

H4a <- subset(data2_wide, condition == 3| condition == 4| condition == 6) 
View(H4a)

describeBy(H4a$s_causality, H4a$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 342 -0.43 3.91      0   -0.46 4.45 -10  10    20 0.12    -0.23 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 645 -0.49 3.95      0   -0.54 2.97 -10  12    22  0.1    -0.19 0.16
wilcox.test(s_causality~causality, data = H4a, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 110914, p-value = 0.8841
## alternative hypothesis: true location shift is not equal to 0

H4a post hoc

H4a_1 <- subset(data2_wide, condition == 3| condition == 6) 
View(H4a_1)
describeBy(H4a_1$s_causality, H4a_1$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 342 -0.43 3.91      0   -0.46 4.45 -10  10    20 0.12    -0.23 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 320 -0.6 3.9      0   -0.67 2.97  -9  10    19 0.16    -0.21 0.22
wilcox.test(s_causality~causality, data = H4a_1, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 56246, p-value = 0.5331
## alternative hypothesis: true location shift is not equal to 0
H4a_2 <- subset(data2_wide, condition == 4| condition == 6) 
View(H4a_2)
describeBy(H4a_2$s_causality, H4a_2$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 342 -0.43 3.91      0   -0.46 4.45 -10  10    20 0.12    -0.23 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 325 -0.39 4.01      0   -0.41 2.97 -10  12    22 0.04    -0.19 0.22
wilcox.test(s_causality~causality, data = H4a_2, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 54668, p-value = 0.7139
## alternative hypothesis: true location shift is not equal to 0

H4b

H4b <- subset(data2_wide, condition == 1| condition == 2|
                condition == 3| condition == 4)
View(H4b)

describeBy(H4b$s_causality, H4b$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 652 -0.65 3.84      0   -0.69 2.97 -10  10    20 0.11    -0.23 0.15
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 645 -0.49 3.95      0   -0.54 2.97 -10  12    22  0.1    -0.19 0.16
wilcox.test(s_causality~causality, data = H4b, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 205540, p-value = 0.481
## alternative hypothesis: true location shift is not equal to 0

H4b post hoc

H4b_1 <- subset(data2_wide, condition == 1|condition == 3)
View(H4b_1)
describeBy(H4b_1$s_causality, H4b_1$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 323 -0.28 3.79      0   -0.33 2.97  -8  10    18 0.15    -0.21 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 320 -0.6 3.9      0   -0.67 2.97  -9  10    19 0.16    -0.21 0.22
wilcox.test(s_causality~causality, data = H4b_1, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 54201, p-value = 0.2822
## alternative hypothesis: true location shift is not equal to 0
H4b_2 <- subset(data2_wide, condition == 2|condition == 4)
View(H4b_2)
describeBy(H4b_2$s_causality, H4b_2$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 329 -1.02 3.87     -1   -1.05 4.45 -10  10    20 0.09     -0.3 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 325 -0.39 4.01      0   -0.41 2.97 -10  12    22 0.04    -0.19 0.22
wilcox.test(s_causality~causality, data = H4b_2, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 48566, p-value = 0.0416
## alternative hypothesis: true location shift is not equal to 0
H4b_3 <- subset(data2_wide, condition == 1|condition == 4)
View(H4b_3)
describeBy(H4b_3$s_causality, H4b_3$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 323 -0.28 3.79      0   -0.33 2.97  -8  10    18 0.15    -0.21 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 325 -0.39 4.01      0   -0.41 2.97 -10  12    22 0.04    -0.19 0.22
wilcox.test(s_causality~causality, data = H4b_3, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 52827, p-value = 0.8862
## alternative hypothesis: true location shift is not equal to 0
H4b_4 <- subset(data2_wide, condition == 2|condition == 3)
View(H4b_4)
describeBy(H4b_4$s_causality, H4b_4$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 329 -1.02 3.87     -1   -1.05 4.45 -10  10    20 0.09     -0.3 0.21
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 320 -0.6 3.9      0   -0.67 2.97  -9  10    19 0.16    -0.21 0.22
wilcox.test(s_causality~causality, data = H4b_4, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 49946, p-value = 0.2572
## alternative hypothesis: true location shift is not equal to 0

H4 Mixed Model

set.seed(288659)

data2_long$id <- as.numeric(data2_long$id)

data2_long$H4_interaction <- interaction(data2_long$causality, 
                                         data2_long$version)
data2_long$H4_interaction <- droplevels(data2_long$H4_interaction)
table(data2_long$H4_interaction)
## 
## no causality statement.old guideline no causality statement.new guideline 
##                                  714                                 1358 
##    causality statement.new guideline 
##                                 2010
data2_long_reg <- subset(data2_long, condition != 5)
View(data2_long_reg)

causality_null <- clm(as.factor(s_causality) ~ 1, data = data2_long_reg,
                       link = "logit")

causality_model1 <- clmm(as.factor(s_causality) ~ 1 + (1|id),
                                   data = data2_long_reg)
anova(causality_null,causality_model1)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                              link: threshold:
## causality_null   as.factor(s_causality) ~ 1            logit flexible  
## causality_model1 as.factor(s_causality) ~ 1 + (1 | id) logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## causality_null       12 14339 -7157.5                          
## causality_model1     13 14253 -7113.4   88.32  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model2 <- clmm(as.factor(s_causality) ~ H4_interaction + (1|id),
                         data = data2_long_reg)
anova(causality_model1,causality_model2)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                           link:
## causality_model1 as.factor(s_causality) ~ 1 + (1 | id)              logit
## causality_model2 as.factor(s_causality) ~ H4_interaction + (1 | id) logit
##                  threshold:
## causality_model1 flexible  
## causality_model2 flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)
## causality_model1     13 14253 -7113.4                      
## causality_model2     15 14256 -7112.8  1.1257  2     0.5696
causality_model3 <- clmm(as.factor(s_causality) ~ H4_interaction + s_awareness +
                           (1|id), data = data2_long_reg)
anova(causality_model2,causality_model3)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                        
## causality_model2 as.factor(s_causality) ~ H4_interaction + (1 | id)              
## causality_model3 as.factor(s_causality) ~ H4_interaction + s_awareness + (1 | id)
##                  link: threshold:
## causality_model2 logit flexible  
## causality_model3 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model2     15 14256 -7112.8                          
## causality_model3     16 14229 -7098.3  28.983  1  7.302e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model4 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           (1|id), data = data2_long_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 119
anova(causality_model3,causality_model4)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                        
## causality_model3 as.factor(s_causality) ~ H4_interaction + s_awareness + (1 | id)
## causality_model4 as.factor(s_causality) ~ H4_interaction * s_awareness + (1 | id)
##                  link: threshold:
## causality_model3 logit flexible  
## causality_model4 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model3     16 14229 -7098.3                        
## causality_model4     18 14226 -7095.2  6.1135  2    0.04704 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model5 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + (1|id), data = data2_long_reg)
anova(causality_model3,causality_model5)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                  
## causality_model3 as.factor(s_causality) ~ H4_interaction + s_awareness + (1 | id)          
## causality_model5 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + (1 | id)
##                  link: threshold:
## causality_model3 logit flexible  
## causality_model5 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)   
## causality_model3     16 14229 -7098.3                         
## causality_model5     19 14221 -7091.3  14.036  3   0.002857 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model6 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + (1|id), data = data2_long_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 131
anova(causality_model5,causality_model6)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                               
## causality_model5 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + (1 | id)             
## causality_model6 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + (1 | id)
##                  link: threshold:
## causality_model5 logit flexible  
## causality_model6 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model5     19 14221 -7091.3                        
## causality_model6     20 14219 -7089.4  3.6952  1    0.05457 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model7 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + (1|id),
                         data = data2_long_reg)
anova(causality_model5,causality_model7)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                                       
## causality_model5 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + (1 | id)                     
## causality_model7 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + (1 | id)
##                  link: threshold:
## causality_model5 logit flexible  
## causality_model7 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model5     19 14221 -7091.3                          
## causality_model7     21 14136 -7047.0    88.5  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model8 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + s_sex + (1|id),
                         data = data2_long_reg)
anova(causality_model7,causality_model8)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                                               
## causality_model7 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + (1 | id)        
## causality_model8 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + (1 | id)
##                  link: threshold:
## causality_model7 logit flexible  
## causality_model8 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model7     21 14136 -7047.0                        
## causality_model8     22 14133 -7044.4    5.18  1    0.02285 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model9 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + s_sex + s_school +
                           (1|id), data = data2_long_reg)
anova(causality_model7,causality_model9)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                                                          
## causality_model7 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + (1 | id)                   
## causality_model9 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + (1 | id)
##                  link: threshold:
## causality_model7 logit flexible  
## causality_model9 logit flexible  
## 
##                  no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model7     21 14136 -7047.0                          
## causality_model9     24 14096 -7023.9  46.309  3  4.876e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model10 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + s_sex + s_school +
                           as.factor(s_interest) + (1|id), data = data2_long_reg)
anova(causality_model9,causality_model10)
## Likelihood ratio tests of cumulative link models:
##  
##                   formula:                                                                                                                                  
## causality_model9  as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + (1 | id)                        
## causality_model10 as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                   link: threshold:
## causality_model9  logit flexible  
## causality_model10 logit flexible  
## 
##                   no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model9      24 14096 -7023.9                          
## causality_model10     28 14072 -7008.1  31.653  4  2.252e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(causality_model10)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction * s_awareness + summary +  
##     text_order + s_age + s_sex + s_school + as.factor(s_interest) +  
##     (1 | id)
## data:    data2_long_reg
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3346 -7008.06 14072.11 4864(14592) 3.12e-02 1.0e+06
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.6998   0.8365  
## Number of groups:  id 1707 
## 
## Coefficients:
##                                                                     Estimate
## H4_interactionno causality statement.new guideline                  0.128746
## H4_interactioncausality statement.new guideline                    -0.014037
## s_awarenesspass                                                     0.560054
## summaryFaerber                                                     -0.167427
## text_orderFaerber                                                   0.157517
## s_age                                                              -0.022849
## s_sexmale                                                           0.137656
## s_schoolReal                                                        0.200122
## s_schoolAbi                                                         0.635815
## as.factor(s_interest)5                                              0.026437
## as.factor(s_interest)6                                             -0.100110
## as.factor(s_interest)7                                             -0.210662
## as.factor(s_interest)8                                             -0.573066
## H4_interactionno causality statement.new guideline:s_awarenesspass -0.320219
## H4_interactioncausality statement.new guideline:s_awarenesspass     0.118785
##                                                                    Std. Error
## H4_interactionno causality statement.new guideline                   0.180151
## H4_interactioncausality statement.new guideline                      0.174423
## s_awarenesspass                                                      0.177426
## summaryFaerber                                                       0.062329
## text_orderFaerber                                                    0.074599
## s_age                                                                0.002525
## s_sexmale                                                            0.075034
## s_schoolReal                                                         0.092225
## s_schoolAbi                                                          0.094534
## as.factor(s_interest)5                                               0.114523
## as.factor(s_interest)6                                               0.116301
## as.factor(s_interest)7                                               0.127171
## as.factor(s_interest)8                                               0.123157
## H4_interactionno causality statement.new guideline:s_awarenesspass   0.217091
## H4_interactioncausality statement.new guideline:s_awarenesspass      0.214019
##                                                                    z value
## H4_interactionno causality statement.new guideline                   0.715
## H4_interactioncausality statement.new guideline                     -0.080
## s_awarenesspass                                                      3.157
## summaryFaerber                                                      -2.686
## text_orderFaerber                                                    2.112
## s_age                                                               -9.049
## s_sexmale                                                            1.835
## s_schoolReal                                                         2.170
## s_schoolAbi                                                          6.726
## as.factor(s_interest)5                                               0.231
## as.factor(s_interest)6                                              -0.861
## as.factor(s_interest)7                                              -1.657
## as.factor(s_interest)8                                              -4.653
## H4_interactionno causality statement.new guideline:s_awarenesspass  -1.475
## H4_interactioncausality statement.new guideline:s_awarenesspass      0.555
##                                                                    Pr(>|z|)    
## H4_interactionno causality statement.new guideline                  0.47482    
## H4_interactioncausality statement.new guideline                     0.93586    
## s_awarenesspass                                                     0.00160 ** 
## summaryFaerber                                                      0.00723 ** 
## text_orderFaerber                                                   0.03473 *  
## s_age                                                               < 2e-16 ***
## s_sexmale                                                           0.06657 .  
## s_schoolReal                                                        0.03001 *  
## s_schoolAbi                                                        1.75e-11 ***
## as.factor(s_interest)5                                              0.81744    
## as.factor(s_interest)6                                              0.38935    
## as.factor(s_interest)7                                              0.09761 .  
## as.factor(s_interest)8                                             3.27e-06 ***
## H4_interactionno causality statement.new guideline:s_awarenesspass  0.14020    
## H4_interactioncausality statement.new guideline:s_awarenesspass     0.57888    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -6.7316     0.3751 -17.945
## -5|-4  -6.0785     0.3120 -19.485
## -4|-3  -2.6165     0.2193 -11.931
## -3|-2  -2.1636     0.2161 -10.012
## -2|-1  -1.3085     0.2118  -6.177
## -1|0   -0.8773     0.2105  -4.167
## 0|1     0.3906     0.2100   1.860
## 1|2     0.7958     0.2110   3.772
## 2|3     1.8228     0.2156   8.456
## 3|4     2.2169     0.2184  10.151
## 4|5     3.8264     0.2441  15.674
## 5|6     4.2208     0.2574  16.397
## (80 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model10))
##                                                              -6|-5 
##                                                        0.001192662 
##                                                              -5|-4 
##                                                        0.002291605 
##                                                              -4|-3 
##                                                        0.073059762 
##                                                              -3|-2 
##                                                        0.114905968 
##                                                              -2|-1 
##                                                        0.270213031 
##                                                               -1|0 
##                                                        0.415898556 
##                                                                0|1 
##                                                        1.477834658 
##                                                                1|2 
##                                                        2.216168478 
##                                                                2|3 
##                                                        6.188854547 
##                                                                3|4 
##                                                        9.178383300 
##                                                                4|5 
##                                                       45.895289519 
##                                                                5|6 
##                                                       68.089209945 
##                 H4_interactionno causality statement.new guideline 
##                                                        1.137401433 
##                    H4_interactioncausality statement.new guideline 
##                                                        0.986061512 
##                                                    s_awarenesspass 
##                                                        1.750766673 
##                                                     summaryFaerber 
##                                                        0.845838072 
##                                                  text_orderFaerber 
##                                                        1.170600718 
##                                                              s_age 
##                                                        0.977410071 
##                                                          s_sexmale 
##                                                        1.147580946 
##                                                       s_schoolReal 
##                                                        1.221552276 
##                                                        s_schoolAbi 
##                                                        1.888560451 
##                                             as.factor(s_interest)5 
##                                                        1.026789415 
##                                             as.factor(s_interest)6 
##                                                        0.904737468 
##                                             as.factor(s_interest)7 
##                                                        0.810047938 
##                                             as.factor(s_interest)8 
##                                                        0.563794369 
## H4_interactionno causality statement.new guideline:s_awarenesspass 
##                                                        0.725990156 
##    H4_interactioncausality statement.new guideline:s_awarenesspass 
##                                                        1.126128325
exp(confint(causality_model10))
##                                                                           2.5 %
## -6|-5                                                               0.000571748
## -5|-4                                                               0.001243362
## -4|-3                                                               0.047535094
## -3|-2                                                               0.075229893
## -2|-1                                                               0.178399335
## -1|0                                                                0.275294354
## 0|1                                                                 0.979161888
## 1|2                                                                 1.465559546
## 2|3                                                                 4.056332112
## 3|4                                                                 5.982364104
## 4|5                                                                28.442310254
## 5|6                                                                41.112481197
## H4_interactionno causality statement.new guideline                  0.799041199
## H4_interactioncausality statement.new guideline                     0.700542974
## s_awarenesspass                                                     1.236524653
## summaryFaerber                                                      0.748570411
## text_orderFaerber                                                   1.011369247
## s_age                                                               0.972584762
## s_sexmale                                                           0.990636499
## s_schoolReal                                                        1.019553274
## s_schoolAbi                                                         1.569146432
## as.factor(s_interest)5                                              0.820349456
## as.factor(s_interest)6                                              0.720322608
## as.factor(s_interest)7                                              0.631339351
## as.factor(s_interest)8                                              0.442883331
## H4_interactionno causality statement.new guideline:s_awarenesspass  0.474398106
## H4_interactioncausality statement.new guideline:s_awarenesspass     0.740311909
##                                                                          97.5 %
## -6|-5                                                              2.487884e-03
## -5|-4                                                              4.223590e-03
## -4|-3                                                              1.122903e-01
## -3|-2                                                              1.755071e-01
## -2|-1                                                              4.092789e-01
## -1|0                                                               6.283151e-01
## 0|1                                                                2.230474e+00
## 1|2                                                                3.351213e+00
## 2|3                                                                9.442501e+00
## 3|4                                                                1.408184e+01
## 4|5                                                                7.405789e+01
## 5|6                                                                1.127672e+02
## H4_interactionno causality statement.new guideline                 1.619043e+00
## H4_interactioncausality statement.new guideline                    1.387948e+00
## s_awarenesspass                                                    2.478870e+00
## summaryFaerber                                                     9.557445e-01
## text_orderFaerber                                                  1.354902e+00
## s_age                                                              9.822593e-01
## s_sexmale                                                          1.329390e+00
## s_schoolReal                                                       1.463572e+00
## s_schoolAbi                                                        2.272994e+00
## as.factor(s_interest)5                                             1.285180e+00
## as.factor(s_interest)6                                             1.136366e+00
## as.factor(s_interest)7                                             1.039342e+00
## as.factor(s_interest)8                                             7.177152e-01
## H4_interactionno causality statement.new guideline:s_awarenesspass 1.111011e+00
## H4_interactioncausality statement.new guideline:s_awarenesspass    1.713014e+00
nagelkerke(fit = causality_model10, null = causality_null)
## $Models
##                                                                                                                                                                          
## Model: "clmm, as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_reg"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_reg, logit"                                                                                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0208820
## Cox and Snell (ML)                  0.0854639
## Nagelkerke (Cragg and Uhler)        0.0866657
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -16     -149.46 298.93 4.2561e-54
## 
## $Number.of.observations
##            
## Model: 3346
## Null:  3346
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test = emmeans(causality_model10, ~ H4_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H4test, adjust = "tukey")
##  contrast                                                                   
##  no causality statement.old guideline - no causality statement.new guideline
##  no causality statement.old guideline - causality statement.new guideline   
##  no causality statement.new guideline - causality statement.new guideline   
##  estimate    SE  df z.ratio p.value
##    0.0314 0.109 Inf   0.289  0.9551
##   -0.0454 0.107 Inf  -0.424  0.9056
##   -0.0767 0.088 Inf  -0.871  0.6583
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H4test, Letters = letters)
##  H4_interaction                         emmean     SE  df asymp.LCL asymp.UCL
##  no causality statement.new guideline -0.07559 0.0783 Inf    -0.229    0.0778
##  no causality statement.old guideline -0.04423 0.0989 Inf    -0.238    0.1496
##  causality statement.new guideline     0.00113 0.0756 Inf    -0.147    0.1493
##  .group
##   a    
##   a    
##   a    
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Mixed Model by Groups

set.seed(288659)

data2_long_reg1 <- subset(data2_long, condition == 3 | condition == 6)
View(data2_long_reg1)

causality_null_1 <- clm(as.factor(s_causality) ~ 1, data = data2_long_reg1, link = "logit")

causality_model10_1 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + s_sex + s_school +
                           as.factor(s_interest) + (1|id), data = data2_long_reg1)

summary(causality_model10_1)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction * s_awareness + summary +  
##     text_order + s_age + s_sex + s_school + as.factor(s_interest) +  
##     (1 | id)
## data:    data2_long_reg1
## 
##  link  threshold nobs logLik   AIC     niter       max.grad cond.H 
##  logit flexible  1352 -2809.00 5670.00 3788(11364) 1.15e-01 7.0e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.6495   0.8059  
## Number of groups:  id 690 
## 
## Coefficients:
##                                                                  Estimate
## H4_interactioncausality statement.new guideline                 -0.195033
## s_awarenesspass                                                  0.525671
## summaryFaerber                                                  -0.124229
## text_orderFaerber                                                0.165380
## s_age                                                           -0.022736
## s_sexmale                                                        0.104350
## s_schoolReal                                                     0.171260
## s_schoolAbi                                                      0.690237
## as.factor(s_interest)5                                           0.100506
## as.factor(s_interest)6                                           0.025818
## as.factor(s_interest)7                                           0.003071
## as.factor(s_interest)8                                          -0.460653
## H4_interactioncausality statement.new guideline:s_awarenesspass  0.279298
##                                                                 Std. Error
## H4_interactioncausality statement.new guideline                   0.201537
## s_awarenesspass                                                   0.178008
## summaryFaerber                                                    0.098035
## text_orderFaerber                                                 0.117260
## s_age                                                             0.003837
## s_sexmale                                                         0.117628
## s_schoolReal                                                      0.144088
## s_schoolAbi                                                       0.148007
## as.factor(s_interest)5                                            0.179311
## as.factor(s_interest)6                                            0.187244
## as.factor(s_interest)7                                            0.197449
## as.factor(s_interest)8                                            0.195923
## H4_interactioncausality statement.new guideline:s_awarenesspass   0.247362
##                                                                 z value
## H4_interactioncausality statement.new guideline                  -0.968
## s_awarenesspass                                                   2.953
## summaryFaerber                                                   -1.267
## text_orderFaerber                                                 1.410
## s_age                                                            -5.925
## s_sexmale                                                         0.887
## s_schoolReal                                                      1.189
## s_schoolAbi                                                       4.664
## as.factor(s_interest)5                                            0.561
## as.factor(s_interest)6                                            0.138
## as.factor(s_interest)7                                            0.016
## as.factor(s_interest)8                                           -2.351
## H4_interactioncausality statement.new guideline:s_awarenesspass   1.129
##                                                                 Pr(>|z|)    
## H4_interactioncausality statement.new guideline                  0.33318    
## s_awarenesspass                                                  0.00315 ** 
## summaryFaerber                                                   0.20509    
## text_orderFaerber                                                0.15843    
## s_age                                                           3.12e-09 ***
## s_sexmale                                                        0.37501    
## s_schoolReal                                                     0.23461    
## s_schoolAbi                                                     3.11e-06 ***
## as.factor(s_interest)5                                           0.57513    
## as.factor(s_interest)6                                           0.89033    
## as.factor(s_interest)7                                           0.98759    
## as.factor(s_interest)8                                           0.01871 *  
## H4_interactioncausality statement.new guideline:s_awarenesspass  0.25885    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -7.0313     0.6489 -10.836
## -5|-4  -5.9224     0.4453 -13.299
## -4|-3  -2.5221     0.2891  -8.723
## -3|-2  -2.1210     0.2838  -7.474
## -2|-1  -1.2425     0.2757  -4.506
## -1|0   -0.7586     0.2731  -2.778
## 0|1     0.5464     0.2730   2.001
## 1|2     0.8846     0.2748   3.219
## 2|3     1.8181     0.2826   6.434
## 3|4     2.2503     0.2880   7.813
## 4|5     4.0591     0.3431  11.829
## 5|6     4.4009     0.3654  12.045
## (34 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model10_1))
##                                                           -6|-5 
##                                                    8.837417e-04 
##                                                           -5|-4 
##                                                    2.678673e-03 
##                                                           -4|-3 
##                                                    8.028737e-02 
##                                                           -3|-2 
##                                                    1.199086e-01 
##                                                           -2|-1 
##                                                    2.886637e-01 
##                                                            -1|0 
##                                                    4.683080e-01 
##                                                             0|1 
##                                                    1.727057e+00 
##                                                             1|2 
##                                                    2.422000e+00 
##                                                             2|3 
##                                                    6.159836e+00 
##                                                             3|4 
##                                                    9.490937e+00 
##                                                             4|5 
##                                                    5.792149e+01 
##                                                             5|6 
##                                                    8.152514e+01 
##                 H4_interactioncausality statement.new guideline 
##                                                    8.228071e-01 
##                                                 s_awarenesspass 
##                                                    1.691593e+00 
##                                                  summaryFaerber 
##                                                    8.831771e-01 
##                                               text_orderFaerber 
##                                                    1.179841e+00 
##                                                           s_age 
##                                                    9.775209e-01 
##                                                       s_sexmale 
##                                                    1.109989e+00 
##                                                    s_schoolReal 
##                                                    1.186799e+00 
##                                                     s_schoolAbi 
##                                                    1.994189e+00 
##                                          as.factor(s_interest)5 
##                                                    1.105730e+00 
##                                          as.factor(s_interest)6 
##                                                    1.026154e+00 
##                                          as.factor(s_interest)7 
##                                                    1.003076e+00 
##                                          as.factor(s_interest)8 
##                                                    6.308716e-01 
## H4_interactioncausality statement.new guideline:s_awarenesspass 
##                                                    1.322202e+00
exp(confint(causality_model10_1))
##                                                                        2.5 %
## -6|-5                                                           2.477461e-04
## -5|-4                                                           1.119027e-03
## -4|-3                                                           4.555433e-02
## -3|-2                                                           6.875255e-02
## -2|-1                                                           1.681485e-01
## -1|0                                                            2.741834e-01
## 0|1                                                             1.011331e+00
## 1|2                                                             1.413301e+00
## 2|3                                                             3.540390e+00
## 3|4                                                             5.396776e+00
## 4|5                                                             2.956341e+01
## 5|6                                                             3.983717e+01
## H4_interactioncausality statement.new guideline                 5.543062e-01
## s_awarenesspass                                                 1.193371e+00
## summaryFaerber                                                  7.287866e-01
## text_orderFaerber                                               9.375867e-01
## s_age                                                           9.701968e-01
## s_sexmale                                                       8.814420e-01
## s_schoolReal                                                    8.948070e-01
## s_schoolAbi                                                     1.492048e+00
## as.factor(s_interest)5                                          7.780710e-01
## as.factor(s_interest)6                                          7.109350e-01
## as.factor(s_interest)7                                          6.811849e-01
## as.factor(s_interest)8                                          4.297055e-01
## H4_interactioncausality statement.new guideline:s_awarenesspass 8.142224e-01
##                                                                       97.5 %
## -6|-5                                                           3.152419e-03
## -5|-4                                                           6.412075e-03
## -4|-3                                                           1.415027e-01
## -3|-2                                                           2.091279e-01
## -2|-1                                                           4.955544e-01
## -1|0                                                            7.998750e-01
## 0|1                                                             2.949307e+00
## 1|2                                                             4.150626e+00
## 2|3                                                             1.071735e+01
## 3|4                                                             1.669105e+01
## 4|5                                                             1.134814e+02
## 5|6                                                             1.668379e+02
## H4_interactioncausality statement.new guideline                 1.221368e+00
## s_awarenesspass                                                 2.397819e+00
## summaryFaerber                                                  1.070275e+00
## text_orderFaerber                                               1.484690e+00
## s_age                                                           9.849002e-01
## s_sexmale                                                       1.397796e+00
## s_schoolReal                                                    1.574074e+00
## s_schoolAbi                                                     2.665322e+00
## as.factor(s_interest)5                                          1.571372e+00
## as.factor(s_interest)6                                          1.481138e+00
## as.factor(s_interest)7                                          1.477076e+00
## as.factor(s_interest)8                                          9.262134e-01
## H4_interactioncausality statement.new guideline:s_awarenesspass 2.147101e+00
nagelkerke(fit = causality_model10_1, null = causality_null_1)
## $Models
##                                                                                                                                                                           
## Model: "clmm, as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_reg1"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_reg1, logit"                                                                                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0239547
## Cox and Snell (ML)                  0.0969546
## Nagelkerke (Cragg and Uhler)        0.0983473
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq   p.value
##      -14      -68.94 137.88 1.871e-22
## 
## $Number.of.observations
##            
## Model: 1352
## Null:  1352
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_1 = emmeans(causality_model10_1, ~ H4_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H4test_1, adjust = "tukey")
##  contrast                                                                
##  no causality statement.old guideline - causality statement.new guideline
##  estimate    SE  df z.ratio p.value
##    0.0554 0.123 Inf   0.449  0.6532
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H4test_1, Letters = letters)
##  H4_interaction                         emmean    SE  df asymp.LCL asymp.UCL
##  causality statement.new guideline    -0.06402 0.115 Inf    -0.290     0.162
##  no causality statement.old guideline -0.00864 0.116 Inf    -0.235     0.218
##  .group
##   a    
##   a    
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_long_reg2 <- subset(data2_long, condition == 4 | condition == 6)
View(data2_long_reg2)

causality_null_2 <- clm(as.factor(s_causality) ~ 1, data = data2_long_reg2, link = "logit")

causality_model10_2 <- clmm(as.factor(s_causality) ~ H4_interaction*s_awareness +
                           summary + text_order + s_age + s_sex + s_school +
                           as.factor(s_interest) + (1|id), data = data2_long_reg2)

summary(causality_model10_2)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction * s_awareness + summary +  
##     text_order + s_age + s_sex + s_school + as.factor(s_interest) +  
##     (1 | id)
## data:    data2_long_reg2
## 
##  link  threshold nobs logLik   AIC     niter       max.grad cond.H 
##  logit flexible  1362 -2827.31 5706.61 4094(12283) 5.43e-02 7.1e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.7421   0.8614  
## Number of groups:  id 695 
## 
## Coefficients:
##                                                                  Estimate
## H4_interactioncausality statement.new guideline                  0.117033
## s_awarenesspass                                                  0.580314
## summaryFaerber                                                  -0.267177
## text_orderFaerber                                                0.059018
## s_age                                                           -0.025479
## s_sexmale                                                       -0.009739
## s_schoolReal                                                    -0.047985
## s_schoolAbi                                                      0.461570
## as.factor(s_interest)5                                           0.136535
## as.factor(s_interest)6                                          -0.086801
## as.factor(s_interest)7                                          -0.231873
## as.factor(s_interest)8                                          -0.547667
## H4_interactioncausality statement.new guideline:s_awarenesspass  0.027179
##                                                                 Std. Error
## H4_interactioncausality statement.new guideline                   0.197819
## s_awarenesspass                                                   0.181472
## summaryFaerber                                                    0.098288
## text_orderFaerber                                                 0.118469
## s_age                                                             0.004035
## s_sexmale                                                         0.119068
## s_schoolReal                                                      0.148525
## s_schoolAbi                                                       0.147938
## as.factor(s_interest)5                                            0.180805
## as.factor(s_interest)6                                            0.185835
## as.factor(s_interest)7                                            0.199484
## as.factor(s_interest)8                                            0.190699
## H4_interactioncausality statement.new guideline:s_awarenesspass   0.247568
##                                                                 z value
## H4_interactioncausality statement.new guideline                   0.592
## s_awarenesspass                                                   3.198
## summaryFaerber                                                   -2.718
## text_orderFaerber                                                 0.498
## s_age                                                            -6.315
## s_sexmale                                                        -0.082
## s_schoolReal                                                     -0.323
## s_schoolAbi                                                       3.120
## as.factor(s_interest)5                                            0.755
## as.factor(s_interest)6                                           -0.467
## as.factor(s_interest)7                                           -1.162
## as.factor(s_interest)8                                           -2.872
## H4_interactioncausality statement.new guideline:s_awarenesspass   0.110
##                                                                 Pr(>|z|)    
## H4_interactioncausality statement.new guideline                  0.55411    
## s_awarenesspass                                                  0.00138 ** 
## summaryFaerber                                                   0.00656 ** 
## text_orderFaerber                                                0.61837    
## s_age                                                           2.71e-10 ***
## s_sexmale                                                        0.93481    
## s_schoolReal                                                     0.74664    
## s_schoolAbi                                                      0.00181 ** 
## as.factor(s_interest)5                                           0.45016    
## as.factor(s_interest)6                                           0.64044    
## as.factor(s_interest)7                                           0.24509    
## as.factor(s_interest)8                                           0.00408 ** 
## H4_interactioncausality statement.new guideline:s_awarenesspass  0.91258    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -7.2097     0.5897 -12.226
## -5|-4  -6.3910     0.4566 -13.998
## -4|-3  -2.9928     0.3023  -9.902
## -3|-2  -2.5490     0.2958  -8.619
## -2|-1  -1.7132     0.2868  -5.973
## -1|0   -1.2982     0.2837  -4.576
## 0|1     0.0470     0.2803   0.168
## 1|2     0.4178     0.2815   1.484
## 2|3     1.4883     0.2888   5.154
## 3|4     1.8330     0.2927   6.262
## 4|5     3.3668     0.3316  10.152
## 5|6     3.5796     0.3419  10.471
## (34 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model10_2))
##                                                           -6|-5 
##                                                    7.393669e-04 
##                                                           -5|-4 
##                                                    1.676534e-03 
##                                                           -4|-3 
##                                                    5.014476e-02 
##                                                           -3|-2 
##                                                    7.815815e-02 
##                                                           -2|-1 
##                                                    1.802860e-01 
##                                                            -1|0 
##                                                    2.730271e-01 
##                                                             0|1 
##                                                    1.048123e+00 
##                                                             1|2 
##                                                    1.518603e+00 
##                                                             2|3 
##                                                    4.429337e+00 
##                                                             3|4 
##                                                    6.252702e+00 
##                                                             4|5 
##                                                    2.898481e+01 
##                                                             5|6 
##                                                    3.585869e+01 
##                 H4_interactioncausality statement.new guideline 
##                                                    1.124157e+00 
##                                                 s_awarenesspass 
##                                                    1.786599e+00 
##                                                  summaryFaerber 
##                                                    7.655374e-01 
##                                               text_orderFaerber 
##                                                    1.060794e+00 
##                                                           s_age 
##                                                    9.748431e-01 
##                                                       s_sexmale 
##                                                    9.903081e-01 
##                                                    s_schoolReal 
##                                                    9.531479e-01 
##                                                     s_schoolAbi 
##                                                    1.586564e+00 
##                                          as.factor(s_interest)5 
##                                                    1.146294e+00 
##                                          as.factor(s_interest)6 
##                                                    9.168595e-01 
##                                          as.factor(s_interest)7 
##                                                    7.930467e-01 
##                                          as.factor(s_interest)8 
##                                                    5.782974e-01 
## H4_interactioncausality statement.new guideline:s_awarenesspass 
##                                                    1.027552e+00
exp(confint(causality_model10_2))
##                                                                        2.5 %
## -6|-5                                                           2.327497e-04
## -5|-4                                                           6.851536e-04
## -4|-3                                                           2.773011e-02
## -3|-2                                                           4.377483e-02
## -2|-1                                                           1.027599e-01
## -1|0                                                            1.565818e-01
## 0|1                                                             6.051013e-01
## 1|2                                                             8.746617e-01
## 2|3                                                             2.515087e+00
## 3|4                                                             3.522799e+00
## 4|5                                                             1.513151e+01
## 5|6                                                             1.834876e+01
## H4_interactioncausality statement.new guideline                 7.628575e-01
## s_awarenesspass                                                 1.251866e+00
## summaryFaerber                                                  6.313982e-01
## text_orderFaerber                                               8.409881e-01
## s_age                                                           9.671643e-01
## s_sexmale                                                       7.841869e-01
## s_schoolReal                                                    7.124192e-01
## s_schoolAbi                                                     1.187224e+00
## as.factor(s_interest)5                                          8.042560e-01
## as.factor(s_interest)6                                          6.369707e-01
## as.factor(s_interest)7                                          5.364113e-01
## as.factor(s_interest)8                                          3.979495e-01
## H4_interactioncausality statement.new guideline:s_awarenesspass 6.325191e-01
##                                                                       97.5 %
## -6|-5                                                            0.002348718
## -5|-4                                                            0.004102390
## -4|-3                                                            0.090677503
## -3|-2                                                            0.139548162
## -2|-1                                                            0.316300961
## -1|0                                                             0.476069393
## 0|1                                                              1.815499305
## 1|2                                                              2.636625235
## 2|3                                                              7.800538673
## 3|4                                                             11.098075410
## 4|5                                                             55.521185306
## 5|6                                                             70.078075025
## H4_interactioncausality statement.new guideline                  1.656571980
## s_awarenesspass                                                  2.549744390
## summaryFaerber                                                   0.928174174
## text_orderFaerber                                                1.338049310
## s_age                                                            0.982582860
## s_sexmale                                                        1.250607730
## s_schoolReal                                                     1.275219565
## s_schoolAbi                                                      2.120227033
## as.factor(s_interest)5                                           1.633797015
## as.factor(s_interest)6                                           1.319733082
## as.factor(s_interest)7                                           1.172464270
## as.factor(s_interest)8                                           0.840377778
## H4_interactioncausality statement.new guideline:s_awarenesspass  1.669298576
nagelkerke(fit = causality_model10_2, null = causality_null_2)
## $Models
##                                                                                                                                                                           
## Model: "clmm, as.factor(s_causality) ~ H4_interaction * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_reg2"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_reg2, logit"                                                                                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0226533
## Cox and Snell (ML)                  0.0917444
## Nagelkerke (Cragg and Uhler)        0.0930748
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -14     -65.532 131.06 4.1889e-21
## 
## $Number.of.observations
##            
## Model: 1362
## Null:  1362
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_2 = emmeans(causality_model10_2, ~ H4_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H4test_2, adjust = "tukey")
##  contrast                                                                
##  no causality statement.old guideline - causality statement.new guideline
##  estimate    SE  df z.ratio p.value
##    -0.131 0.124 Inf  -1.057  0.2906
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H4test_2, Letters = letters)
##  H4_interaction                        emmean    SE  df asymp.LCL asymp.UCL
##  no causality statement.old guideline -0.0398 0.113 Inf    -0.261     0.182
##  causality statement.new guideline     0.0908 0.110 Inf    -0.125     0.307
##  .group
##   a    
##   a    
## 
## Results are averaged over the levels of: s_awareness, summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H5

H5a

H5a <- subset(data2_wide, condition == 5|condition == 6)

describeBy(H5a$s_CAMA,H5a$CAMA)
## 
##  Descriptive statistics by group 
## group: no CAMA PLS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 344 0.01 3.59      0    0.07 2.97  -9  11    20 -0.04    -0.13 0.19
## ------------------------------------------------------------ 
## group: CAMA PLS
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 308 0.82 4.2      0    0.81 3.71 -11  13    24 0.09        0 0.24
wilcox.test(s_CAMA~CAMA, data = H5a, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_CAMA by CAMA
## W = 47200, p-value = 0.01543
## alternative hypothesis: true location shift is not equal to 0

H5b

H5b <- subset(data2_wide, condition == 4| condition == 5)

describeBy(H5b$s_CAMA, H5b$CAMA)
## 
##  Descriptive statistics by group 
## group: no CAMA PLS
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 322 -0.25 3.29      0   -0.24 2.97  -9   9    18 -0.05        0 0.18
## ------------------------------------------------------------ 
## group: CAMA PLS
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 308 0.82 4.2      0    0.81 3.71 -11  13    24 0.09        0 0.24
wilcox.test(s_CAMA~CAMA, data = H5b, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_CAMA by CAMA
## W = 41998, p-value = 0.0008061
## alternative hypothesis: true location shift is not equal to 0

H5 Logistic Regression

data2_wide$H5_interaction <- interaction(data2_wide$CAMA, data2_wide$version)
data2_wide$H5_interaction <- droplevels(data2_wide$H5_interaction)
data2_wide_H5 <- subset(data2_wide, condition == 4| condition == 5 |condition == 6)
table(data2_wide_H5$H5_interaction)
## 
## no CAMA PLS.old guideline no CAMA PLS.new guideline    CAMA PLS.new guideline 
##                       357                       341                       327
cama_null <- clm(as.factor(s_CAMA) ~  1,
                 data = data2_wide_H5,
                 link = "logit")

cama_model1 <- clm(as.factor(s_CAMA) ~  H5_interaction, data = data2_wide_H5,
                   link = "logit")
anova(cama_null,cama_model1)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                           link: threshold:
## cama_null   as.factor(s_CAMA) ~ 1              logit flexible  
## cama_model1 as.factor(s_CAMA) ~ H5_interaction logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)   
## cama_null       23 5115.9 -2534.9                         
## cama_model1     25 5107.6 -2528.8  12.235  2   0.002204 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model2 <- clm(as.factor(s_CAMA) ~  H5_interaction + s_awareness,
                   data = data2_wide_H5, link = "logit")
anova(cama_model1,cama_model2)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                         link: threshold:
## cama_model1 as.factor(s_CAMA) ~ H5_interaction               logit flexible  
## cama_model2 as.factor(s_CAMA) ~ H5_interaction + s_awareness logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## cama_model1     25 5107.6 -2528.8                          
## cama_model2     26 5033.3 -2490.6  76.369  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model3 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness,
                   data = data2_wide_H5, link = "logit")
anova(cama_model2,cama_model3)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                         link: threshold:
## cama_model2 as.factor(s_CAMA) ~ H5_interaction + s_awareness logit flexible  
## cama_model3 as.factor(s_CAMA) ~ H5_interaction * s_awareness logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## cama_model2     26 5033.3 -2490.6                        
## cama_model3     28 5030.2 -2487.1  7.0659  2    0.02922 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model4 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness + 
                     text_order, data = data2_wide_H5, link = "logit")
anova(cama_model3,cama_model4)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                      link:
## cama_model3 as.factor(s_CAMA) ~ H5_interaction * s_awareness              logit
## cama_model4 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order logit
##             threshold:
## cama_model3 flexible  
## cama_model4 flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## cama_model3     28 5030.2 -2487.1                        
## cama_model4     29 5028.4 -2485.2  3.8341  1    0.05022 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model5 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness + 
                     text_order + s_age, data = data2_wide_H5, link = "logit")
anova(cama_model3,cama_model5)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                             
## cama_model3 as.factor(s_CAMA) ~ H5_interaction * s_awareness                     
## cama_model5 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age
##             link: threshold:
## cama_model3 logit flexible  
## cama_model5 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## cama_model3     28 5030.2 -2487.1                          
## cama_model5     30 5017.5 -2478.7  16.724  2  0.0002336 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model6 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness + 
                     text_order + s_age + s_sex, data = data2_wide_H5,
                   link = "logit")
anova(cama_model5,cama_model6)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                     
## cama_model5 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age        
## cama_model6 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex
##             link: threshold:
## cama_model5 logit flexible  
## cama_model6 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)
## cama_model5     30 5017.5 -2478.7                      
## cama_model6     31 5019.0 -2478.5  0.4983  1     0.4803
cama_model7 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness + 
                     text_order + s_age + s_sex + s_school, data = data2_wide_H5,
                   link = "logit")
anova(cama_model5,cama_model7)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                                
## cama_model5 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age                   
## cama_model7 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex + s_school
##             link: threshold:
## cama_model5 logit flexible  
## cama_model7 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## cama_model5     30 5017.5 -2478.7                          
## cama_model7     33 4987.2 -2460.6  36.291  3  6.499e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model8 <- clm(as.factor(s_CAMA) ~  H5_interaction*s_awareness + 
                     text_order + s_age + s_sex + s_school + 
                     as.factor(s_interest), data = data2_wide_H5, link = "logit")
anova(cama_model7,cama_model8)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                                                        
## cama_model7 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex + s_school                        
## cama_model8 as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
##             link: threshold:
## cama_model7 logit flexible  
## cama_model8 logit flexible  
## 
##             no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## cama_model7     33 4987.2 -2460.6                        
## cama_model8     37 4985.3 -2455.7  9.8634  4    0.04279 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(cama_model8)
## formula: 
## as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_H5
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  974  -2455.66 4985.33 8(1)  1.67e-08 1.7e+06
## 
## Coefficients:
##                                                          Estimate Std. Error
## H5_interactionno CAMA PLS.new guideline                  0.324783   0.230019
## H5_interactionCAMA PLS.new guideline                     0.256503   0.256379
## s_awarenesspass                                          1.252284   0.210605
## text_orderFaerber                                       -0.163419   0.113787
## s_age                                                   -0.013606   0.003899
## s_sexmale                                                0.053372   0.113759
## s_schoolReal                                             0.105607   0.139628
## s_schoolAbi                                              0.829416   0.144582
## as.factor(s_interest)5                                  -0.213281   0.173145
## as.factor(s_interest)6                                  -0.232508   0.176000
## as.factor(s_interest)7                                  -0.244103   0.188818
## as.factor(s_interest)8                                  -0.568490   0.182575
## H5_interactionno CAMA PLS.new guideline:s_awarenesspass -0.586188   0.285307
## H5_interactionCAMA PLS.new guideline:s_awarenesspass     0.213211   0.306523
##                                                         z value Pr(>|z|)    
## H5_interactionno CAMA PLS.new guideline                   1.412 0.157955    
## H5_interactionCAMA PLS.new guideline                      1.000 0.317076    
## s_awarenesspass                                           5.946 2.75e-09 ***
## text_orderFaerber                                        -1.436 0.150949    
## s_age                                                    -3.490 0.000484 ***
## s_sexmale                                                 0.469 0.638949    
## s_schoolReal                                              0.756 0.449445    
## s_schoolAbi                                               5.737 9.66e-09 ***
## as.factor(s_interest)5                                   -1.232 0.218021    
## as.factor(s_interest)6                                   -1.321 0.186479    
## as.factor(s_interest)7                                   -1.293 0.196082    
## as.factor(s_interest)8                                   -3.114 0.001847 ** 
## H5_interactionno CAMA PLS.new guideline:s_awarenesspass  -2.055 0.039919 *  
## H5_interactionCAMA PLS.new guideline:s_awarenesspass      0.696 0.486693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##        Estimate Std. Error z value
## -11|-9  -6.7914     1.0379  -6.543
## -9|-8   -5.1790     0.5266  -9.835
## -8|-7   -4.9955     0.4939 -10.115
## -7|-6   -2.6850     0.3084  -8.707
## -6|-5   -2.2489     0.2985  -7.533
## -5|-4   -1.7458     0.2908  -6.004
## -4|-3   -1.5155     0.2884  -5.256
## -3|-2   -1.1399     0.2859  -3.987
## -2|-1   -0.7217     0.2843  -2.539
## -1|0    -0.2458     0.2834  -0.867
## 0|1      0.8123     0.2850   2.850
## 1|2      1.2593     0.2870   4.387
## 2|3      1.5438     0.2886   5.349
## 3|4      1.9899     0.2917   6.822
## 4|5      2.4026     0.2956   8.128
## 5|6      3.0583     0.3055  10.011
## 6|7      3.4683     0.3152  11.004
## 7|8      4.2089     0.3443  12.223
## 8|9      4.5915     0.3685  12.461
## 9|10     5.7127     0.4972  11.489
## 10|11    5.8971     0.5297  11.133
## 11|12    6.8204     0.7620   8.950
## 12|13    7.5166     1.0396   7.230
## (51 Beobachtungen als fehlend gelöscht)
exp(coef(cama_model8))
##                                                  -11|-9 
##                                            1.123446e-03 
##                                                   -9|-8 
##                                            5.633819e-03 
##                                                   -8|-7 
##                                            6.768362e-03 
##                                                   -7|-6 
##                                            6.822442e-02 
##                                                   -6|-5 
##                                            1.055106e-01 
##                                                   -5|-4 
##                                            1.745017e-01 
##                                                   -4|-3 
##                                            2.196893e-01 
##                                                   -3|-2 
##                                            3.198537e-01 
##                                                   -2|-1 
##                                            4.859392e-01 
##                                                    -1|0 
##                                            7.820880e-01 
##                                                     0|1 
##                                            2.252987e+00 
##                                                     1|2 
##                                            3.523066e+00 
##                                                     2|3 
##                                            4.682308e+00 
##                                                     3|4 
##                                            7.314730e+00 
##                                                     4|5 
##                                            1.105160e+01 
##                                                     5|6 
##                                            2.129028e+01 
##                                                     6|7 
##                                            3.208148e+01 
##                                                     7|8 
##                                            6.728468e+01 
##                                                     8|9 
##                                            9.863891e+01 
##                                                    9|10 
##                                            3.026971e+02 
##                                                   10|11 
##                                            3.639738e+02 
##                                                   11|12 
##                                            9.163658e+02 
##                                                   12|13 
##                                            1.838318e+03 
##                 H5_interactionno CAMA PLS.new guideline 
##                                            1.383731e+00 
##                    H5_interactionCAMA PLS.new guideline 
##                                            1.292403e+00 
##                                         s_awarenesspass 
##                                            3.498324e+00 
##                                       text_orderFaerber 
##                                            8.492354e-01 
##                                                   s_age 
##                                            9.864860e-01 
##                                               s_sexmale 
##                                            1.054822e+00 
##                                            s_schoolReal 
##                                            1.111385e+00 
##                                             s_schoolAbi 
##                                            2.291981e+00 
##                                  as.factor(s_interest)5 
##                                            8.079293e-01 
##                                  as.factor(s_interest)6 
##                                            7.925435e-01 
##                                  as.factor(s_interest)7 
##                                            7.834067e-01 
##                                  as.factor(s_interest)8 
##                                            5.663799e-01 
## H5_interactionno CAMA PLS.new guideline:s_awarenesspass 
##                                            5.564445e-01 
##    H5_interactionCAMA PLS.new guideline:s_awarenesspass 
##                                            1.237646e+00
exp(confint(cama_model8))
##                                                             2.5 %    97.5 %
## H5_interactionno CAMA PLS.new guideline                 0.8815927 2.1730441
## H5_interactionCAMA PLS.new guideline                    0.7813097 2.1358281
## s_awarenesspass                                         2.3169359 5.2922804
## text_orderFaerber                                       0.6793523 1.0613211
## s_age                                                   0.9789612 0.9940429
## s_sexmale                                               0.8440127 1.3184195
## s_schoolReal                                            0.8452418 1.4613253
## s_schoolAbi                                             1.7275020 3.0452379
## as.factor(s_interest)5                                  0.5752706 1.1343118
## as.factor(s_interest)6                                  0.5610761 1.1187813
## as.factor(s_interest)7                                  0.5408258 1.1340259
## as.factor(s_interest)8                                  0.3957564 0.8097473
## H5_interactionno CAMA PLS.new guideline:s_awarenesspass 0.3178883 0.9730524
## H5_interactionCAMA PLS.new guideline:s_awarenesspass    0.6789073 2.2585905
nagelkerke(fit = cama_model8, null = cama_null)
## $Models
##                                                                                                                                                     
## Model: "clm, as.factor(s_CAMA) ~ H5_interaction * s_awareness + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_H5, logit"
## Null:  "clm, as.factor(s_CAMA) ~ 1, data2_wide_H5, logit"                                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0312726
## Cox and Snell (ML)                  0.1502220
## Nagelkerke (Cragg and Uhler)        0.1510510
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -14     -79.274 158.55 1.3894e-26
## 
## $Number.of.observations
##           
## Model: 974
## Null:  974
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H5test = emmeans(cama_model8, ~ H5_interaction)
## NOTE: Results may be misleading due to involvement in interactions
pairs(H5test, adjust = "none")
##  contrast                                              estimate    SE  df
##  no CAMA PLS.old guideline - no CAMA PLS.new guideline  -0.0317 0.142 Inf
##  no CAMA PLS.old guideline - CAMA PLS.new guideline     -0.3631 0.153 Inf
##  no CAMA PLS.new guideline - CAMA PLS.new guideline     -0.3314 0.150 Inf
##  z.ratio p.value
##   -0.223  0.8238
##   -2.368  0.0179
##   -2.202  0.0276
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H5test, Letters = letters)
##  H5_interaction            emmean    SE  df asymp.LCL asymp.UCL .group
##  no CAMA PLS.old guideline -0.936 0.162 Inf    -1.254    -0.619  a    
##  no CAMA PLS.new guideline -0.905 0.161 Inf    -1.220    -0.589  ab   
##  CAMA PLS.new guideline    -0.573 0.168 Inf    -0.903    -0.244   b   
## 
## Results are averaged over the levels of: s_awareness, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H6

data2_wide$user_experience <- rowMeans(data2_wide[,c("accessibility",
                                                     "understanding",
                                                     "empowerment")])
psych::describe(data2_wide$user_experience)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1944 5.31 1.41   5.33    5.35 1.48   1   8     7 -0.27    -0.25 0.03
data2_wide$version <- relevel(data2_wide$version, ref = "new guideline")

# Prep long dataset and separate datasets for Faerber and Barth

data2_long$user_experience <- rowMeans(data2_long[,c("accessibility",
                                                     "understanding",
                                                     "empowerment")])
psych::describe(data2_long$user_experience)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 3983 5.31 1.54   5.33    5.36 1.48   1   8     7 -0.32     -0.3 0.02
data2_long$version <- relevel(data2_long$version, ref = "new guideline")

data2_long_faerber <- filter(data2_long, summary == "Faerber")
data2_long_barth <- filter(data2_long, summary == "Barth")

Overall User Experience

describeBy(data2_wide$user_experience, data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1604  5.3 1.41   5.33    5.33 1.48   1   8     7 -0.27    -0.25 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 340 5.36 1.44   5.33     5.4 1.48   1   8     7 -0.28    -0.25 0.08
equiv.test(user_experience~version, data = data2_wide, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.72935, df = 1942.0000, ncp = 3.3498, p-value = 0.004391
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04354523
# For Faerber
describeBy(data2_long_faerber$user_experience,data2_long_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1638 5.27 1.55   5.33    5.32 1.48   1   8     7 -0.32    -0.24 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 347 5.25 1.6   5.33    5.32 1.48   1   8     7 -0.36    -0.36 0.09
equiv.test(user_experience~version, data = data2_long_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = 0.14658, df = 1983.0000, ncp = 3.3843, p-value = 0.0002071
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## 0.008662275
# For Barth
describeBy(data2_long_barth$user_experience,data2_long_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1648 5.33 1.52   5.33    5.38 1.48   1   8     7 -0.31    -0.34 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 350 5.43 1.5   5.33    5.47 1.48   1   8     7 -0.23    -0.45 0.08
equiv.test(user_experience~version, data = data2_long_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -1.1461, df = 1996.0000, ncp = 3.3982, p-value = 0.01217
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.06745572
# Post Hoc Tests Overall User Experience
data2_wide_1 <- subset(data2_wide, condition == 1 | condition == 6)
data2_wide_2 <- subset(data2_wide, condition == 2 | condition == 6)
data2_wide_3 <- subset(data2_wide, condition == 3 | condition == 6)
data2_wide_4 <- subset(data2_wide, condition == 4 | condition == 6)
data2_wide_5 <- subset(data2_wide, condition == 5 | condition == 6)

table(data2_wide_1$condition)
## 
##   1   2   3   4   5   6 
## 334   0   0   0   0 357
table(data2_wide_2$condition)
## 
##   1   2   3   4   5   6 
##   0 345   0   0   0 357
table(data2_wide_3$condition)
## 
##   1   2   3   4   5   6 
##   0   0 336   0   0 357
table(data2_wide_4$condition)
## 
##   1   2   3   4   5   6 
##   0   0   0 341   0 357
table(data2_wide_5$condition)
## 
##   1   2   3   4   5   6 
##   0   0   0   0 327 357
equiv.test(user_experience~version, data = data2_wide_1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -1.4838, df = 655.0000, ncp = 2.5616, p-value = 0.1406
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1158457
equiv.test(user_experience~version, data = data2_wide_2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = 0.51775, df = 672.000, ncp = 2.596, p-value = 0.0009251
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.03988743
equiv.test(user_experience~version, data = data2_wide_3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = 0.38989, df = 649.0000, ncp = 2.5489, p-value = 0.001649
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.03059216
equiv.test(user_experience~version, data = data2_wide_4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.47762, df = 668.0000, ncp = 2.5881, p-value = 0.01741
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.03690814
equiv.test(user_experience~version, data = data2_wide_5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -1.7543, df = 650.0000, ncp = 2.5511, p-value = 0.2129
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1375369

Accessibility

describeBy(data2_wide$accessibility,data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1651 5.53 1.63    5.5     5.6 1.48   1   8     7 -0.37    -0.44 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 353 5.57 1.64    5.5    5.65 1.48   1   8     7 -0.35     -0.4 0.09
equiv.test(accessibility~version, data = data2_wide, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.4836, df = 2002.0000, ncp = 3.4107, p-value = 0.001711
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.02835807
# For Faerber
describeBy(data2_long_faerber$accessibility,data2_long_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1667 5.53 1.84      6    5.65 1.48   1   8     7 -0.44    -0.49 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 355 5.53 1.89      6    5.67 1.48   1   8     7 -0.47    -0.46 0.1
equiv.test(accessibility~version, data = data2_long_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.01559, df = 2020.0000, ncp = 3.4215, p-value = 0.0003297
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##             d 
## -0.0009113073
# For Barth
describeBy(data2_long_barth$accessibility,data2_long_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1668 5.53 1.82      6    5.64 1.48   1   8     7 -0.42    -0.58 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 355 5.61 1.75      6    5.71 1.48   1   8     7 -0.3    -0.69 0.09
equiv.test(accessibility~version, data = data2_long_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.79426, df = 2021.0000, ncp = 3.4217, p-value = 0.004303
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04642451
# Post Hoc Tests Accessibility
equiv.test(accessibility~version, data = data2_wide_1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.977, df = 676.0000, ncp = 2.6016, p-value = 0.05214
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.0751067
equiv.test(accessibility~version, data = data2_wide_2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 1.0276, df = 692.000, ncp = 2.634, p-value = 0.0001262
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.07802283
equiv.test(accessibility~version, data = data2_wide_3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 0.60163, df = 674.0000, ncp = 2.5974, p-value = 0.0006909
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##         d 
## 0.0463245
equiv.test(accessibility~version, data = data2_wide_4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.56817, df = 688.0000, ncp = 2.6261, p-value = 0.0198
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04327161
equiv.test(accessibility~version, data = data2_wide_5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -1.98, df = 676.0000, ncp = 2.6016, p-value = 0.2672
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1522127

Understanding

describeBy(data2_wide$understanding,data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1647 5.58 1.49    5.5    5.64 1.48   1   8     7 -0.37    -0.34 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 350  5.7 1.55      6    5.78 1.48   1   8     7 -0.54    -0.02 0.08
equiv.test(understanding~version, data = data2_wide, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -1.3633, df = 1995.000, ncp = 3.398, p-value = 0.02095
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.08023921
# For Faerber
describeBy(data2_long_faerber$understanding,data2_long_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1665 5.53 1.73      6    5.63 1.48   1   8     7 -0.45    -0.34 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 354 5.55 1.73      6    5.64 1.48   1   8     7 -0.47    -0.36 0.09
equiv.test(understanding~version, data = data2_long_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.13493, df = 2017.0000, ncp = 3.4172, p-value = 0.0005149
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##            d 
## -0.007897128
# For Barth
describeBy(data2_long_barth$understanding,data2_long_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1666 5.62 1.68      6    5.72 1.48   1   8     7 -0.43    -0.36 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 353 5.81 1.72      6    5.94 1.48   1   8     7 -0.54    -0.22 0.09
equiv.test(understanding~version, data = data2_long_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -1.9398, df = 2017.0000, ncp = 3.4134, p-value = 0.07036
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##         d 
## -0.113658
# Post Hoc Tests Understanding
equiv.test(understanding~version, data = data2_wide_1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -2.0366, df = 673.0000, ncp = 2.5963, p-value = 0.2879
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1568885
equiv.test(understanding~version, data = data2_wide_2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.3228, df = 690.0000, ncp = 2.6304, p-value = 0.01051
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.02454351
equiv.test(understanding~version, data = data2_wide_3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.064833, df = 672.0000, ncp = 2.5942, p-value = 0.005713
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##            d 
## -0.004998248
equiv.test(understanding~version, data = data2_wide_4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.61154, df = 682.0000, ncp = 2.6146, p-value = 0.02259
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04677854
equiv.test(understanding~version, data = data2_wide_5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -2.121, df = 670.00, ncp = 2.59, p-value = 0.3195
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1637779

Empowerment

describeBy(data2_wide$empowerment,data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1651 4.78 1.61      5    4.81 1.48   1   8     7 -0.16    -0.34 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 348 4.74 1.74      5    4.79 1.48   1   8     7 -0.22    -0.44 0.09
equiv.test(empowerment~version, data = data2_wide, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.42973, df = 1997.0000, ncp = 3.3907, p-value = 6.665e-05
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.02534755
# For Faerber
describeBy(data2_long_faerber$empowerment,data2_long_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1664 4.74 1.8      5    4.77 1.48   1   8     7 -0.15    -0.48 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 352 4.62 1.92      5     4.7 1.48   1   8     7 -0.24    -0.64 0.1
equiv.test(empowerment~version, data = data2_long_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 1.0462, df = 2014.000, ncp = 3.409, p-value = 4.204e-06
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.06137999
# For Barth
describeBy(data2_long_barth$empowerment,data2_long_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1670 4.84 1.78      5    4.88 1.48   1   8     7 -0.2    -0.44 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 353 4.86 1.86      5     4.9 1.48   1   8     7 -0.19    -0.56 0.1
equiv.test(empowerment~version, data = data2_long_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.18637, df = 2021.0000, ncp = 3.4141, p-value = 0.0006238
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.01091782
# Post Hoc Tests Empowerment
equiv.test(empowerment~version, data = data2_wide_1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.68759, df = 673.0000, ncp = 2.5968, p-value = 0.02812
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.05295612
equiv.test(empowerment~version, data = data2_wide_2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 1.0572, df = 686.0000, ncp = 2.6228, p-value = 0.0001175
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.08061926
equiv.test(empowerment~version, data = data2_wide_3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 1.07, df = 672.0000, ncp = 2.5948, p-value = 0.0001247
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.08247223
equiv.test(empowerment~version, data = data2_wide_4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.34666, df = 685.0000, ncp = 2.6208, p-value = 0.001502
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.02645423
equiv.test(empowerment~version, data = data2_wide_5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.20839, df = 665.0000, ncp = 2.5802, p-value = 0.00885
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.01615317

Research Questions

RQ1

describeBy(data2_wide$s_funding,data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1620 2.52 5.4      2     2.5 5.93 -12  12    24 0.06    -0.73 0.13
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 344 2.72 5.52      2     2.7 5.93 -10  12    22 0.14    -0.81 0.3
wilcox.test(s_funding~version, data = data2_wide, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_funding by version
## W = 273670, p-value = 0.6017
## alternative hypothesis: true location shift is not equal to 0

RQ1 Mixed Model

sum(is.na(data2_long$disclaimer))
## [1] 0
sum(is.na(data2_long$s_awareness))
## [1] 0
sum(is.na(data2_long$text_order))
## [1] 0
sum(is.na(data2_long$s_age))
## [1] 2
data2_long <- data2_long %>% drop_na(s_age)
sum(is.na(data2_long$s_sex))
## [1] 0
sum(is.na(data2_long$s_school))
## [1] 0
sum(is.na(data2_long$s_interest))
## [1] 0
set.seed(288659)

funding_null <- clm(as.factor(s_funding) ~ 1,
                     data = data2_long,
                     link = "logit")

funding_model1 <- clmm(as.factor(s_funding) ~ 1 + (1|id),
                       data = data2_long)
anova(funding_null,funding_model1)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                            link: threshold:
## funding_null   as.factor(s_funding) ~ 1            logit flexible  
## funding_model1 as.factor(s_funding) ~ 1 + (1 | id) logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_null       12 17675 -8825.3                          
## funding_model1     13 17280 -8627.0  396.78  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model2 <- clmm(as.factor(s_funding) ~ version + (1|id),
                       data = data2_long)
anova(funding_model1,funding_model2)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                  link: threshold:
## funding_model1 as.factor(s_funding) ~ 1 + (1 | id)       logit flexible  
## funding_model2 as.factor(s_funding) ~ version + (1 | id) logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model1     13 17280 -8627.0                      
## funding_model2     14 17281 -8626.7  0.4621  1     0.4966
funding_model3 <- clmm(as.factor(s_funding) ~ version + s_awareness + (1|id),
                       data = data2_long)
anova(funding_model1,funding_model3)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                link:
## funding_model1 as.factor(s_funding) ~ 1 + (1 | id)                     logit
## funding_model3 as.factor(s_funding) ~ version + s_awareness + (1 | id) logit
##                threshold:
## funding_model1 flexible  
## funding_model3 flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model1     13 17280 -8627.0                          
## funding_model3     15 16960 -8464.9  324.16  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model4 <- clmm(as.factor(s_funding) ~ version*s_awareness + (1|id), 
                       data = data2_long)
anova(funding_model3, funding_model4)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                link:
## funding_model3 as.factor(s_funding) ~ version + s_awareness + (1 | id) logit
## funding_model4 as.factor(s_funding) ~ version * s_awareness + (1 | id) logit
##                threshold:
## funding_model3 flexible  
## funding_model4 flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model3     15 16960 -8464.9                      
## funding_model4     16 16962 -8464.8  0.0616  1     0.8039
funding_model5 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary +
                         (1|id), data = data2_long)
anova(funding_model3, funding_model5)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                         
## funding_model3 as.factor(s_funding) ~ version + s_awareness + (1 | id)          
## funding_model5 as.factor(s_funding) ~ version * s_awareness + summary + (1 | id)
##                link: threshold:
## funding_model3 logit flexible  
## funding_model5 logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)   
## funding_model3     15 16960 -8464.9                         
## funding_model5     17 16951 -8458.5  12.798  2   0.001663 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model6 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary +
                        text_order + (1|id), data = data2_long)
anova(funding_model5, funding_model6)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                                      
## funding_model5 as.factor(s_funding) ~ version * s_awareness + summary + (1 | id)             
## funding_model6 as.factor(s_funding) ~ version * s_awareness + summary + text_order + (1 | id)
##                link: threshold:
## funding_model5 logit flexible  
## funding_model6 logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## funding_model5     17 16951 -8458.5                        
## funding_model6     18 16949 -8456.5  4.0466  1    0.04426 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model7 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary + 
                         text_order + s_age + (1|id), data = data2_long)
anova(funding_model6, funding_model7)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                                              
## funding_model6 as.factor(s_funding) ~ version * s_awareness + summary + text_order + (1 | id)        
## funding_model7 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + (1 | id)
##                link: threshold:
## funding_model6 logit flexible  
## funding_model7 logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model6     18 16949 -8456.5                          
## funding_model7     19 16918 -8440.0  32.825  1  1.009e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model8 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary +
                         text_order + s_age + s_sex + (1|id), data = data2_long)
anova(funding_model7, funding_model8)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                                                      
## funding_model7 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + (1 | id)        
## funding_model8 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_sex + (1 | id)
##                link: threshold:
## funding_model7 logit flexible  
## funding_model8 logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model7     19 16918 -8440.0                      
## funding_model8     20 16920 -8439.8  0.5412  1     0.4619
funding_model9 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary +
                         text_order + s_age + s_school + (1|id),
                       data = data2_long)
anova(funding_model8, funding_model9)
## Likelihood ratio tests of cumulative link models:
##  
##                formula:                                                                                         
## funding_model8 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_sex + (1 | id)   
## funding_model9 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_school + (1 | id)
##                link: threshold:
## funding_model8 logit flexible  
## funding_model9 logit flexible  
## 
##                no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model8     20 16920 -8439.8                          
## funding_model9     21 16841 -8399.4  80.741  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model10 <- clmm(as.factor(s_funding) ~ version*s_awareness + summary +
                         text_order + s_age+ s_sex + s_school +
                          as.factor(s_interest) + (1|id),
                       data = data2_long)
anova(funding_model9, funding_model10)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                                                                                         
## funding_model9  as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_school + (1 | id)                                
## funding_model10 as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                 link: threshold:
## funding_model9  logit flexible  
## funding_model10 logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model9      21 16841 -8399.4                          
## funding_model10     26 16822 -8385.2  28.396  5  3.045e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(funding_model10)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_funding) ~ version * s_awareness + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  4002 -8385.20 16822.40 4698(16804) 8.57e-02 5.7e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 1.682    1.297   
## Number of groups:  id 2038 
## 
## Coefficients:
##                                       Estimate Std. Error z value Pr(>|z|)    
## versionold guideline                  0.115971   0.190277   0.609 0.542204    
## s_awarenesspass                       1.622291   0.103350  15.697  < 2e-16 ***
## summaryFaerber                        0.203732   0.058682   3.472 0.000517 ***
## text_orderFaerber                     0.182176   0.082240   2.215 0.026749 *  
## s_age                                -0.013948   0.002788  -5.003 5.63e-07 ***
## s_sexmale                            -0.099259   0.082722  -1.200 0.230173    
## s_schoolReal                          0.526756   0.101438   5.193 2.07e-07 ***
## s_schoolAbi                           0.942365   0.105173   8.960  < 2e-16 ***
## as.factor(s_interest)5                0.084974   0.126684   0.671 0.502377    
## as.factor(s_interest)6                0.113073   0.128249   0.882 0.377957    
## as.factor(s_interest)7                0.091911   0.140078   0.656 0.511733    
## as.factor(s_interest)8               -0.479298   0.135241  -3.544 0.000394 ***
## versionold guideline:s_awarenesspass -0.094120   0.231326  -0.407 0.684102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -5.2691     0.2812 -18.740
## -5|-4  -4.6088     0.2444 -18.856
## -4|-3  -2.3121     0.1943 -11.903
## -3|-2  -1.9199     0.1906 -10.073
## -2|-1  -0.9231     0.1850  -4.990
## -1|0   -0.3882     0.1836  -2.114
## 0|1     1.1382     0.1849   6.157
## 1|2     1.5227     0.1862   8.177
## 2|3     2.1337     0.1891  11.281
## 3|4     2.3794     0.1906  12.482
## 4|5     2.9345     0.1944  15.092
## 5|6     3.1405     0.1960  16.023
## (78 Beobachtungen als fehlend gelöscht)
exp(coef(funding_model10))
##                                -6|-5                                -5|-4 
##                          0.005148401                          0.009963453 
##                                -4|-3                                -3|-2 
##                          0.099050398                          0.146626844 
##                                -2|-1                                 -1|0 
##                          0.397275799                          0.678259796 
##                                  0|1                                  1|2 
##                          3.121294614                          4.584692407 
##                                  2|3                                  3|4 
##                          8.445723094                         10.798390191 
##                                  4|5                                  5|6 
##                         18.811286389                         23.116434962 
##                 versionold guideline                      s_awarenesspass 
##                          1.122963356                          5.064680238 
##                       summaryFaerber                    text_orderFaerber 
##                          1.225970093                          1.199825102 
##                                s_age                            s_sexmale 
##                          0.986148686                          0.905508178 
##                         s_schoolReal                          s_schoolAbi 
##                          1.693430179                          2.566042042 
##               as.factor(s_interest)5               as.factor(s_interest)6 
##                          1.088688615                          1.119713275 
##               as.factor(s_interest)7               as.factor(s_interest)8 
##                          1.096267345                          0.619217953 
## versionold guideline:s_awarenesspass 
##                          0.910173646
exp(confint(funding_model10))
##                                             2.5 %       97.5 %
## -6|-5                                 0.002967161  0.008933129
## -5|-4                                 0.006170975  0.016086664
## -4|-3                                 0.067687724  0.144944767
## -3|-2                                 0.100918818  0.213036893
## -2|-1                                 0.276447088  0.570915980
## -1|0                                  0.473270157  0.972037521
## 0|1                                   2.172628201  4.484191113
## 1|2                                   3.182743171  6.604178638
## 2|3                                   5.829566463 12.235942250
## 3|4                                   7.431971267 15.689677279
## 4|5                                  12.850290519 27.537470464
## 5|6                                  15.742802193 33.943738784
## versionold guideline                  0.773394668  1.630534515
## s_awarenesspass                       4.135996005  6.201888465
## summaryFaerber                        1.092772394  1.375403219
## text_orderFaerber                     1.021209750  1.409681287
## s_age                                 0.980775129  0.991551684
## s_sexmale                             0.769980086  1.064891254
## s_schoolReal                          1.388106338  2.065912165
## s_schoolAbi                           2.088049299  3.153456083
## as.factor(s_interest)5                0.849317557  1.395523843
## as.factor(s_interest)6                0.870846098  1.439700792
## as.factor(s_interest)7                0.833070502  1.442617507
## as.factor(s_interest)8                0.475035657  0.807162299
## versionold guideline:s_awarenesspass  0.578388408  1.432283314
nagelkerke(fit = funding_model10, null = funding_null)
## $Models
##                                                                                                                                                             
## Model: "clmm, as.factor(s_funding) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long"
## Null:  "clm, as.factor(s_funding) ~ 1, data2_long, logit"                                                                                                   
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0498729
## Cox and Snell (ML)                  0.1974510
## Nagelkerke (Cragg and Uhler)        0.1998800
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq     p.value
##      -14     -440.15 880.29 7.2038e-179
## 
## $Number.of.observations
##            
## Model: 4002
## Null:  4002
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

RQ2

describeBy(data2_wide$s_coi,data2_wide$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1579 1.94 5.88      1    2.04 5.93 -13  14    27 -0.02    -0.57 0.15
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 334 2.38 5.88      2    2.56 5.93 -11  14    25 -0.19    -0.64 0.32
wilcox.test(s_coi~version, data = data2_wide, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_coi by version
## W = 250867, p-value = 0.1606
## alternative hypothesis: true location shift is not equal to 0

RQ2 Mixed Model

set.seed(288659)

coi_null <- clm(as.factor(s_coi) ~ 1, data = data2_long, link = "logit")

coi_model1 <- clmm(as.factor(s_coi) ~ 1 + (1|id), data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 101
anova(coi_null, coi_model1)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                        link: threshold:
## coi_null   as.factor(s_coi) ~ 1            logit flexible  
## coi_model1 as.factor(s_coi) ~ 1 + (1 | id) logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_null       14 18800 -9385.8                          
## coi_model1     15 18439 -9204.3  363.02  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model2 <- clmm(as.factor(s_coi) ~  version + (1|id), data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 107
anova(coi_model1, coi_model2)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                              link: threshold:
## coi_model1 as.factor(s_coi) ~ 1 + (1 | id)       logit flexible  
## coi_model2 as.factor(s_coi) ~ version + (1 | id) logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)
## coi_model1     15 18439 -9204.3                      
## coi_model2     16 18440 -9203.9  0.9507  1     0.3295
coi_model3 <- clmm(as.factor(s_coi) ~  version + s_awareness + (1|id),
                   data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 113
anova(coi_model2, coi_model3)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                            link: threshold:
## coi_model2 as.factor(s_coi) ~ version + (1 | id)               logit flexible  
## coi_model3 as.factor(s_coi) ~ version + s_awareness + (1 | id) logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model2     16 18440 -9203.9                          
## coi_model3     17 18191 -9078.3  251.03  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model4 <- clmm(as.factor(s_coi) ~  version*s_awareness + (1|id),
                   data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 119
anova(coi_model2, coi_model4)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                            link: threshold:
## coi_model2 as.factor(s_coi) ~ version + (1 | id)               logit flexible  
## coi_model4 as.factor(s_coi) ~ version * s_awareness + (1 | id) logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model2     16 18440 -9203.9                          
## coi_model4     18 18190 -9077.2  253.39  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model5 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary + (1|id),
                   data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 125
anova(coi_model4, coi_model5)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                                      link:
## coi_model4 as.factor(s_coi) ~ version * s_awareness + (1 | id)           logit
## coi_model5 as.factor(s_coi) ~ version * s_awareness + summary + (1 | id) logit
##            threshold:
## coi_model4 flexible  
## coi_model5 flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model4     18 18190 -9077.2                          
## coi_model5     19 18114 -9037.9   78.51  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model6 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary + 
                     text_order + (1|id),
                   data = data2_long)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 131
anova(coi_model4, coi_model6)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                                                  
## coi_model4 as.factor(s_coi) ~ version * s_awareness + (1 | id)                       
## coi_model6 as.factor(s_coi) ~ version * s_awareness + summary + text_order + (1 | id)
##            link: threshold:
## coi_model4 logit flexible  
## coi_model6 logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model4     18 18190 -9077.2                          
## coi_model6     20 18115 -9037.7   78.84  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model7 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary +
                     text_order + s_age + (1|id),
                   data = data2_long)
anova(coi_model6, coi_model7)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                                                          
## coi_model6 as.factor(s_coi) ~ version * s_awareness + summary + text_order + (1 | id)        
## coi_model7 as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + (1 | id)
##            link: threshold:
## coi_model6 logit flexible  
## coi_model7 logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model6     20 18115 -9037.7                          
## coi_model7     21 18102 -9030.1  15.355  1  8.911e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model8 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary +
                     text_order + s_age + s_sex + (1|id),
                   data = data2_long)
anova(coi_model6, coi_model8)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                                                                  
## coi_model6 as.factor(s_coi) ~ version * s_awareness + summary + text_order + (1 | id)                
## coi_model8 as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + (1 | id)
##            link: threshold:
## coi_model6 logit flexible  
## coi_model8 logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model6     20 18115 -9037.7                          
## coi_model8     22 18103 -9029.6  16.355  2  0.0002809 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model9 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary + 
                     text_order + s_age + s_sex + s_school + (1|id),
                   data = data2_long)
anova(coi_model8, coi_model9)
## Likelihood ratio tests of cumulative link models:
##  
##            formula:                                                                                             
## coi_model8 as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + (1 | id)           
## coi_model9 as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + (1 | id)
##            link: threshold:
## coi_model8 logit flexible  
## coi_model9 logit flexible  
## 
##            no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model8     22 18103 -9029.6                          
## coi_model9     24 17984 -8968.2  122.65  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model10 <- clmm(as.factor(s_coi) ~  version*s_awareness + summary +
                     text_order + s_age + s_sex + s_school + 
                      as.factor(s_interest) + (1|id), data = data2_long)
anova(coi_model9, coi_model10)
## Likelihood ratio tests of cumulative link models:
##  
##             formula:                                                                                                                     
## coi_model9  as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + (1 | id)                        
## coi_model10 as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##             link: threshold:
## coi_model9  logit flexible  
## coi_model10 logit flexible  
## 
##             no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model9      24 17984 -8968.2                          
## coi_model10     28 17973 -8958.4  19.593  4  0.0006009 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(coi_model10)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_coi) ~ version * s_awareness + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3946 -8958.45 17972.89 5273(19537) 1.26e-02 6.7e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 1.703    1.305   
## Number of groups:  id 2033 
## 
## Coefficients:
##                                       Estimate Std. Error z value Pr(>|z|)    
## versionold guideline                 -0.137491   0.191305  -0.719  0.47232    
## s_awarenesspass                       1.333718   0.101978  13.078  < 2e-16 ***
## summaryFaerber                        0.522540   0.059016   8.854  < 2e-16 ***
## text_orderFaerber                     0.053404   0.082020   0.651  0.51498    
## s_age                                -0.008624   0.002779  -3.103  0.00191 ** 
## s_sexmale                             0.038925   0.082597   0.471  0.63745    
## s_schoolReal                          0.570161   0.101711   5.606 2.07e-08 ***
## s_schoolAbi                           1.167466   0.105807  11.034  < 2e-16 ***
## as.factor(s_interest)5                0.081718   0.126791   0.645  0.51925    
## as.factor(s_interest)6                0.044759   0.128542   0.348  0.72769    
## as.factor(s_interest)7               -0.071007   0.139836  -0.508  0.61160    
## as.factor(s_interest)8               -0.433832   0.135075  -3.212  0.00132 ** 
## versionold guideline:s_awarenesspass  0.329187   0.231729   1.421  0.15544    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -7|-6  -4.8812     0.2745 -17.780
## -6|-5  -4.2588     0.2416 -17.629
## -5|-4  -2.1063     0.1948 -10.813
## -4|-3  -1.7480     0.1913  -9.138
## -3|-2  -0.9814     0.1861  -5.274
## -2|-1  -0.5821     0.1845  -3.156
## -1|0    0.1040     0.1832   0.568
## 0|1     1.4534     0.1856   7.832
## 1|2     2.0811     0.1887  11.031
## 2|3     2.3298     0.1902  12.248
## 3|4     3.0372     0.1954  15.547
## 4|5     3.1994     0.1966  16.271
## 5|6     4.1542     0.2049  20.274
## 6|7     4.2959     0.2062  20.829
## (134 Beobachtungen als fehlend gelöscht)
exp(coef(coi_model10))
##                                -7|-6                                -6|-5 
##                          0.007587795                          0.014139607 
##                                -5|-4                                -4|-3 
##                          0.121683785                          0.174127292 
##                                -3|-2                                -2|-1 
##                          0.374788856                          0.558707240 
##                                 -1|0                                  0|1 
##                          1.109618408                          4.277712935 
##                                  1|2                                  2|3 
##                          8.013127538                         10.275464669 
##                                  3|4                                  4|5 
##                         20.847670547                         24.516698205 
##                                  5|6                                  6|7 
##                         63.699775943                         73.395477379 
##                 versionold guideline                      s_awarenesspass 
##                          0.871542315                          3.795128846 
##                       summaryFaerber                    text_orderFaerber 
##                          1.686304678                          1.054855315 
##                                s_age                            s_sexmale 
##                          0.991413339                          1.039692569 
##                         s_schoolReal                          s_schoolAbi 
##                          1.768550931                          3.213836927 
##               as.factor(s_interest)5               as.factor(s_interest)6 
##                          1.085149549                          1.045775331 
##               as.factor(s_interest)7               as.factor(s_interest)8 
##                          0.931455343                          0.648021124 
## versionold guideline:s_awarenesspass 
##                          1.389838113
exp(confint(coi_model10))
##                                             2.5 %       97.5 %
## -7|-6                                 0.004430339   0.01299554
## -6|-5                                 0.008806611   0.02270209
## -5|-4                                 0.083065405   0.17825644
## -4|-3                                 0.119684439   0.25333547
## -3|-2                                 0.260246752   0.53974425
## -2|-1                                 0.389201754   0.80203590
## -1|0                                  0.774921272   1.58887497
## 0|1                                   2.973429019   6.15411629
## 1|2                                   5.536341176  11.59795087
## 2|3                                   7.077760968  14.91787793
## 3|4                                  14.215819982  30.57335896
## 4|5                                  16.676004938  36.04391418
## 5|6                                  42.631368537  95.18018291
## 6|7                                  48.991083629 109.95666355
## versionold guideline                  0.599031569   1.26802333
## s_awarenesspass                       3.107582202   4.63479388
## summaryFaerber                        1.502107964   1.89308860
## text_orderFaerber                     0.898208413   1.23882132
## s_age                                 0.986028490   0.99682760
## s_sexmale                             0.884298016   1.22239406
## s_schoolReal                          1.448907812   2.15871042
## s_schoolAbi                           2.611926855   3.95445522
## as.factor(s_interest)5                0.846378340   1.39128034
## as.factor(s_interest)6                0.812874307   1.34540609
## as.factor(s_interest)7                0.708163354   1.22515384
## as.factor(s_interest)8                0.497293826   0.84443312
## versionold guideline:s_awarenesspass  0.882502575   2.18883212
nagelkerke(fit = coi_model10, null = coi_null)
## $Models
##                                                                                                                                                         
## Model: "clmm, as.factor(s_coi) ~ version * s_awareness + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long"
## Null:  "clm, as.factor(s_coi) ~ 1, data2_long, logit"                                                                                                   
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0455369
## Cox and Snell (ML)                  0.1947690
## Nagelkerke (Cragg and Uhler)        0.1964560
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq     p.value
##      -14      -427.4 854.8 2.0669e-173
## 
## $Number.of.observations
##            
## Model: 3946
## Null:  3946
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

RQ3

psych::describeBy(data2_wide$s_METI_exp,data2_wide$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1007 5.46 1.21   5.67    5.55 1.24   1   7     6 -0.69      0.2 0.04
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 989 5.45 1.23   5.67    5.53 1.48   1   7     6 -0.59    -0.13 0.04
psych::describeBy(data2_wide$s_METI_exp,data2_wide$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 325 5.45 1.17   5.67    5.53 1.24 1.83   7  5.17 -0.58    -0.27 0.07
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 342 5.43 1.23   5.67    5.51 1.48   1   7     6 -0.65     0.12 0.07
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 326 5.54 1.28   5.83    5.66 1.48   1   7     6 -0.78     0.09 0.07
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 336 5.45 1.17   5.67     5.5 1.48 1.67   7  5.33 -0.4    -0.69 0.06
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 320 5.43 1.21   5.58     5.5 1.36   1   7     6 -0.54    -0.14 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 347 5.44 1.26   5.83    5.53 1.48   1   7     6 -0.82     0.67 0.07
psych::describeBy(data2_wide$s_METI_int,data2_wide$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars    n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 1004 5.37 1.2    5.5    5.44 1.3   1   7     6 -0.58     0.09 0.04
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 995 5.43 1.26    5.5    5.51 1.48   1   7     6 -0.56    -0.17 0.04
psych::describeBy(data2_wide$s_METI_int,data2_wide$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 326 5.38 1.2    5.5    5.45 1.48   1   7     6 -0.57     0.03 0.07
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 339 5.38 1.26    5.5    5.48 1.48   1   7     6 -0.67     0.21 0.07
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 327 5.47 1.28   5.75    5.58 1.48   1   7     6 -0.79     0.36 0.07
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 338 5.38 1.2    5.5    5.43 1.48   2   7     5 -0.29    -0.84 0.07
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 319 5.41 1.2    5.5    5.47 1.48   1   7     6 -0.47    -0.17 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 350 5.37 1.22    5.5    5.44 1.48   1   7     6 -0.54    -0.04 0.07
psych::describeBy(data2_wide$s_METI_ben,data2_wide$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1003 5.34 1.21    5.5     5.4 1.48   1   7     6 -0.57     0.21 0.04
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 992 5.36 1.24    5.5    5.43 1.48   1   7     6 -0.53     0.04 0.04
psych::describeBy(data2_wide$s_METI_ben,data2_wide$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 326 5.34 1.17    5.5    5.39 1.11 1.5   7   5.5 -0.43    -0.25 0.07
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 341 5.35 1.25    5.5    5.44 1.48   1   7     6 -0.66     0.36 0.07
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 322 5.46 1.25   5.75    5.56 1.48   1   7     6 -0.72     0.28 0.07
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 334 5.33 1.19    5.5    5.36 1.48 1.25   7  5.75 -0.27    -0.66 0.06
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 324 5.33 1.22    5.5    5.39 1.48   1   7     6 -0.49     0.11 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 348 5.29 1.27    5.5    5.37 1.48   1   7     6 -0.65     0.55 0.07

RQ3: Expertise

expMETIModel <- lm(s_METI_exp ~ version*s_awareness + summary2 + 
                     METI_target + s_sex + s_age + s_school + s_interest,
                   data = data2_wide)

summary(expMETIModel)
## 
## Call:
## lm(formula = s_METI_exp ~ version * s_awareness + summary2 + 
##     METI_target + s_sex + s_age + s_school + s_interest, data = data2_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2143 -0.7035  0.1406  0.8334  2.3495 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.616980   0.152992  23.642  < 2e-16 ***
## versionold guideline                 -0.027082   0.120289  -0.225   0.8219    
## s_awarenesspass                       0.577994   0.061116   9.457  < 2e-16 ***
## summary2Faerber                       0.102042   0.050900   2.005   0.0451 *  
## METI_targetSummary Authors           -0.024576   0.050930  -0.483   0.6295    
## s_sexmale                            -0.259712   0.051324  -5.060 4.57e-07 ***
## s_age                                 0.013098   0.001718   7.623 3.82e-14 ***
## s_schoolReal                         -0.045886   0.062292  -0.737   0.4614    
## s_schoolAbi                          -0.006324   0.063957  -0.099   0.9212    
## s_interest                            0.163536   0.018697   8.747  < 2e-16 ***
## versionold guideline:s_awarenesspass -0.003286   0.144941  -0.023   0.9819    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.135 on 1985 degrees of freedom
##   (44 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.1366, Adjusted R-squared:  0.1322 
## F-statistic:  31.4 on 10 and 1985 DF,  p-value: < 2.2e-16
dwt(expMETIModel)
##  lag Autocorrelation D-W Statistic p-value
##    1     -0.02456489      2.048477   0.242
##  Alternative hypothesis: rho != 0
vif(expMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                         GVIF Df GVIF^(1/(2*Df))
## version             3.222049  1        1.795007
## s_awareness         1.263551  1        1.124078
## summary2            1.004172  1        1.002084
## METI_target         1.005315  1        1.002654
## s_sex               1.020980  1        1.010435
## s_age               1.056900  1        1.028056
## s_school            1.057583  2        1.014095
## s_interest          1.042409  1        1.020985
## version:s_awareness 3.445448  1        1.856192
1/vif(expMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                          GVIF  Df GVIF^(1/(2*Df))
## version             0.3103615 1.0       0.5571009
## s_awareness         0.7914202 1.0       0.8896180
## summary2            0.9958454 1.0       0.9979205
## METI_target         0.9947131 1.0       0.9973531
## s_sex               0.9794516 1.0       0.9896725
## s_age               0.9461632 1.0       0.9727092
## s_school            0.9455524 0.5       0.9861010
## s_interest          0.9593160 1.0       0.9794468
## version:s_awareness 0.2902380 1.0       0.5387374
mean(vif(expMETIModel))
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
## [1] 1.295259

RQ3: Integrity

intMETIModel <- lm(s_METI_int ~ version*s_awareness + summary2 + 
                     METI_target + s_sex + s_age + s_school + s_interest,
                   data = data2_wide)

summary(intMETIModel)
## 
## Call:
## lm(formula = s_METI_int ~ version * s_awareness + summary2 + 
##     METI_target + s_sex + s_age + s_school + s_interest, data = data2_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0182 -0.7592  0.1491  0.8767  2.3842 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.647474   0.155570  23.446  < 2e-16 ***
## versionold guideline                  0.039990   0.122005   0.328    0.743    
## s_awarenesspass                       0.511788   0.062256   8.221 3.61e-16 ***
## summary2Faerber                       0.063990   0.051748   1.237    0.216    
## METI_targetSummary Authors            0.034274   0.051783   0.662    0.508    
## s_sexmale                            -0.288823   0.052122  -5.541 3.40e-08 ***
## s_age                                 0.013094   0.001743   7.513 8.68e-14 ***
## s_schoolReal                         -0.091183   0.063398  -1.438    0.151    
## s_schoolAbi                          -0.077160   0.065019  -1.187    0.235    
## s_interest                            0.164069   0.019065   8.606  < 2e-16 ***
## versionold guideline:s_awarenesspass -0.118094   0.146961  -0.804    0.422    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.154 on 1988 degrees of freedom
##   (41 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.1197, Adjusted R-squared:  0.1153 
## F-statistic: 27.03 on 10 and 1988 DF,  p-value: < 2.2e-16
dwt(intMETIModel)
##  lag Autocorrelation D-W Statistic p-value
##    1     -0.01308015      2.025996   0.586
##  Alternative hypothesis: rho != 0
vif(intMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                         GVIF Df GVIF^(1/(2*Df))
## version             3.225666  1        1.796014
## s_awareness         1.264672  1        1.124576
## summary2            1.004414  1        1.002205
## METI_target         1.005782  1        1.002887
## s_sex               1.018884  1        1.009398
## s_age               1.056227  1        1.027729
## s_school            1.058289  2        1.014264
## s_interest          1.042882  1        1.021216
## version:s_awareness 3.448031  1        1.856887
1/vif(intMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                          GVIF  Df GVIF^(1/(2*Df))
## version             0.3100135 1.0       0.5567885
## s_awareness         0.7907187 1.0       0.8892237
## summary2            0.9956050 1.0       0.9978001
## METI_target         0.9942510 1.0       0.9971214
## s_sex               0.9814663 1.0       0.9906898
## s_age               0.9467661 1.0       0.9730191
## s_school            0.9449215 0.5       0.9859365
## s_interest          0.9588816 1.0       0.9792250
## version:s_awareness 0.2900206 1.0       0.5385356
mean(vif(intMETIModel))
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
## [1] 1.295556

RQ3: Benevolence

benMETIModel <- lm(s_METI_ben ~ version*s_awareness + summary2 + 
                     METI_target + s_sex + s_age + s_school + s_interest,
                   data = data2_wide)

summary(benMETIModel)
## 
## Call:
## lm(formula = s_METI_ben ~ version * s_awareness + summary2 + 
##     METI_target + s_sex + s_age + s_school + s_interest, data = data2_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9371 -0.7358  0.1280  0.8514  2.4009 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.564248   0.155305  22.950  < 2e-16 ***
## versionold guideline                 -0.059166   0.122432  -0.483   0.6290    
## s_awarenesspass                       0.487666   0.061987   7.867 5.91e-15 ***
## summary2Faerber                       0.097960   0.051575   1.899   0.0577 .  
## METI_targetSummary Authors           -0.003628   0.051632  -0.070   0.9440    
## s_sexmale                            -0.301682   0.052008  -5.801 7.67e-09 ***
## s_age                                 0.013642   0.001744   7.820 8.48e-15 ***
## s_schoolReal                         -0.065244   0.063222  -1.032   0.3022    
## s_schoolAbi                          -0.083552   0.064793  -1.290   0.1974    
## s_interest                            0.169806   0.019052   8.913  < 2e-16 ***
## versionold guideline:s_awarenesspass -0.032837   0.147140  -0.223   0.8234    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.15 on 1984 degrees of freedom
##   (45 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.1255, Adjusted R-squared:  0.1211 
## F-statistic: 28.47 on 10 and 1984 DF,  p-value: < 2.2e-16
dwt(benMETIModel)
##  lag Autocorrelation D-W Statistic p-value
##    1      0.02635584      1.946987   0.238
##  Alternative hypothesis: rho != 0
vif(benMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                         GVIF Df GVIF^(1/(2*Df))
## version             3.257897  1        1.804965
## s_awareness         1.262538  1        1.123627
## summary2            1.003548  1        1.001772
## METI_target         1.005832  1        1.002912
## s_sex               1.020511  1        1.010204
## s_age               1.056892  1        1.028052
## s_school            1.058993  2        1.014433
## s_interest          1.045170  1        1.022335
## version:s_awareness 3.482841  1        1.866237
1/vif(benMETIModel)
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
##                          GVIF  Df GVIF^(1/(2*Df))
## version             0.3069465 1.0       0.5540275
## s_awareness         0.7920554 1.0       0.8899749
## summary2            0.9964647 1.0       0.9982308
## METI_target         0.9942021 1.0       0.9970969
## s_sex               0.9799010 1.0       0.9898995
## s_age               0.9461709 1.0       0.9727132
## s_school            0.9442935 0.5       0.9857726
## s_interest          0.9567825 1.0       0.9781526
## version:s_awareness 0.2871219 1.0       0.5358376
mean(vif(benMETIModel))
## there are higher-order terms (interactions) in this model
## consider setting type = 'predictor'; see ?vif
## [1] 1.298843

Additional Analyses: Awareness-Check Pass - Subset

data2_wide_pass <- subset(data2_wide, s_awareness == "pass")
length(unique(data2_wide_pass$id))
## [1] 1382
data2_long_pass <- subset(data2_long, s_awareness == "pass")
length(unique(data2_long_pass$id))
## [1] 1382

H1

H1a

H1a_pass <- subset(data2_wide_pass, condition == 2|condition == 4|condition == 6)
View(H1a_pass)

describeBy(H1a_pass$s_relationship,H1a_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 240 0.51 3.02      0    0.45 2.97  -7   8    15 0.19    -0.46 0.2
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 450 0.91 3.64      0    0.74 2.97  -6   8    14 0.38    -0.94 0.17
wilcox.test(s_relationship~disclaimer, data = H1a_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 52152, p-value = 0.4557
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999659e-01  6.563517e-05
## sample estimates:
## difference in location 
##          -2.086247e-05

H1a post hoc

H1a_pass_1 <- subset(data2_wide_pass, condition ==2| condition == 6)
View(H1a_pass_1)
describeBy(H1a_pass_1$s_relationship, H1a_pass_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 240 0.51 3.02      0    0.45 2.97  -7   8    15 0.19    -0.46 0.2
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 246 0.61 3.66      0    0.38 2.97  -6   8    14 0.45    -0.86 0.23
wilcox.test(s_relationship~disclaimer, data = H1a_pass_1, exaxct = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 30093, p-value = 0.71
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -6.923148e-05  9.999839e-01
## sample estimates:
## difference in location 
##           5.003085e-05
H1a_pass_2 <- subset(data2_wide_pass, condition ==4| condition == 6)
View(H1a_pass_2)
describeBy(H1a_pass_2$s_relationship, H1a_pass_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 240 0.51 3.02      0    0.45 2.97  -7   8    15 0.19    -0.46 0.2
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.27 3.59      0    1.16 2.97  -5   8    13  0.3    -1.03 0.25
wilcox.test(s_relationship~disclaimer, data = H1a_pass_2, exaxct = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 22059, p-value = 0.07029
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.000003e+00  7.173675e-05
## sample estimates:
## difference in location 
##          -1.098109e-05

H1b

H1b_pass <- subset(data2_wide_pass, condition == 1|condition == 2|condition == 3|
                condition == 4)
View(H1b_pass)

describeBy(H1b_pass$s_relationship,H1b_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 424 0.45 3.21      0    0.32 2.97  -6   8    14 0.25    -0.63 0.16
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 450 0.91 3.64      0    0.74 2.97  -6   8    14 0.38    -0.94 0.17
wilcox.test(s_relationship~disclaimer, data = H1b_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 90501, p-value = 0.1862
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999266e-01  2.889107e-05
## sample estimates:
## difference in location 
##          -3.904304e-05

H1b post hoc

H1b_pass_1 <- subset(data2_wide_pass, condition == 1|condition == 2)
View(H1b_pass_1)
describeBy(H1b_pass_1$s_relationship,H1b_pass_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 213 0.62 3.21      0    0.56 2.97  -6   8    14 0.09    -0.68 0.22
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 246 0.61 3.66      0    0.38 2.97  -6   8    14 0.45    -0.86 0.23
wilcox.test(s_relationship~disclaimer, data = H1b_pass_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 27041, p-value = 0.5505
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.730705e-05  9.999690e-01
## sample estimates:
## difference in location 
##           5.618701e-05
H1b_pass_2 <- subset(data2_wide_pass, condition == 3|condition == 4)
View(H1b_pass_2)
describeBy(H1b_pass_2$s_relationship,H1b_pass_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 211 0.27 3.21      0    0.09 2.97  -6   8    14 0.41    -0.54 0.22
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.27 3.59      0    1.16 2.97  -5   8    13  0.3    -1.03 0.25
wilcox.test(s_relationship~disclaimer, data = H1b_pass_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 18358, p-value = 0.009108
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.999996e+00 -2.505375e-05
## sample estimates:
## difference in location 
##             -0.9999673
H1b_pass_3 <- subset(data2_wide_pass, condition == 1|condition == 4)
View(H1b_pass_3)
describeBy(H1b_pass_3$s_relationship,H1b_pass_3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 213 0.62 3.21      0    0.56 2.97  -6   8    14 0.09    -0.68 0.22
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.27 3.59      0    1.16 2.97  -5   8    13  0.3    -1.03 0.25
wilcox.test(s_relationship~disclaimer, data = H1b_pass_3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 19958, p-value = 0.1479
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.000021e+00  3.034113e-05
## sample estimates:
## difference in location 
##          -6.483228e-05
H1b_pass_4 <- subset(data2_wide_pass, condition == 2|condition == 3)
View(H1b_pass_4)
describeBy(H1b_pass_4$s_relationship,H1b_pass_4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 211 0.27 3.21      0    0.09 2.97  -6   8    14 0.41    -0.54 0.22
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 246 0.61 3.66      0    0.38 2.97  -6   8    14 0.45    -0.86 0.23
wilcox.test(s_relationship~disclaimer, data = H1b_pass_4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_relationship by disclaimer
## W = 25145, p-value = 0.5635
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999563e-01  4.130311e-05
## sample estimates:
## difference in location 
##           -4.90988e-05

H1 Logistic Regression

sum(is.na(data2_wide_pass$disclaimer))
## [1] 0
sum(is.na(data2_wide_pass$s_awareness))
## [1] 0
sum(is.na(data2_wide_pass$text_order))
## [1] 0
sum(is.na(data2_wide_pass$s_age))
## [1] 0
data2_wide_pass <- data2_wide_pass %>% drop_na(s_age)
sum(is.na(data2_wide_pass$s_sex))
## [1] 0
sum(is.na(data2_wide_pass$s_school))
## [1] 0
sum(is.na(data2_wide_pass$s_interest))
## [1] 0
data2_wide_pass$H1_interaction <- interaction(data2_wide_pass$disclaimer,
                                         data2_wide_pass$version)
data2_wide_pass$H1_interaction <- droplevels(data2_wide_pass$H1_interaction)

data2_wide_pass$H1_interaction <- factor(data2_wide_pass$H1_interaction, 
                                             levels = c(
                                               "no disclaimer.old guideline",
                                               "no disclaimer.new guideline",
                                               "disclaimer.new guideline"))
table(data2_wide_pass$H1_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         247                         441 
##    disclaimer.new guideline 
##                         694
data2_wide_pass_reg <- subset(data2_wide_pass, condition != 5)
View(data2_wide_pass_reg)

relationship_null_pass <- clm(as.factor(s_relationship)~1,
                              data = data2_wide_pass_reg, link = "logit")

relationship_model1_pass <- clm(as.factor(s_relationship)~ H1_interaction,
                           data = data2_wide_pass_reg, link = "logit")
anova(relationship_null_pass,relationship_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                   link:
## relationship_null_pass   as.factor(s_relationship) ~ 1              logit
## relationship_model1_pass as.factor(s_relationship) ~ H1_interaction logit
##                          threshold:
## relationship_null_pass   flexible  
## relationship_model1_pass flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_null_pass       15 5463.4 -2716.7                      
## relationship_model1_pass     17 5465.6 -2715.8  1.8388  2     0.3988
relationship_model2_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1,
                             data = data2_wide_pass_reg,
                             link = "logit")
anova(relationship_null_pass,relationship_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                             
## relationship_null_pass   as.factor(s_relationship) ~ 1                        
## relationship_model2_pass as.factor(s_relationship) ~ H1_interaction + summary1
##                          link: threshold:
## relationship_null_pass   logit flexible  
## relationship_model2_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_null_pass       15 5463.4 -2716.7                      
## relationship_model2_pass     18 5467.4 -2715.7  2.0697  3     0.5581
relationship_model3_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 
                             ,  data = data2_wide_pass_reg,
                             link = "logit")
anova(relationship_null_pass,relationship_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                             
## relationship_null_pass   as.factor(s_relationship) ~ 1                        
## relationship_model3_pass as.factor(s_relationship) ~ H1_interaction + summary1
##                          link: threshold:
## relationship_null_pass   logit flexible  
## relationship_model3_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_null_pass       15 5463.4 -2716.7                      
## relationship_model3_pass     18 5467.4 -2715.7  2.0697  3     0.5581
relationship_model4_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age, data = data2_wide_pass_reg,
                           link = "logit")
anova(relationship_null_pass,relationship_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                                     
## relationship_null_pass   as.factor(s_relationship) ~ 1                                
## relationship_model4_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age
##                          link: threshold:
## relationship_null_pass   logit flexible  
## relationship_model4_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## relationship_null_pass       15 5463.4 -2716.7                          
## relationship_model4_pass     19 5400.5 -2681.2  70.945  4  1.433e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model5_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age + s_sex,
                             data = data2_wide_pass_reg,
                           link = "logit")
anova(relationship_model4_pass,relationship_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                                             
## relationship_model4_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age        
## relationship_model5_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex
##                          link: threshold:
## relationship_model4_pass logit flexible  
## relationship_model5_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## relationship_model4_pass     19 5400.5 -2681.2                        
## relationship_model5_pass     20 5399.3 -2679.6  3.1887  1    0.07415 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model6_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age + s_sex + s_school, 
                           data = data2_wide_pass_reg, link = "logit")
anova(relationship_model4_pass,relationship_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                                                        
## relationship_model4_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age                   
## relationship_model6_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school
##                          link: threshold:
## relationship_model4_pass logit flexible  
## relationship_model6_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## relationship_model4_pass     19 5400.5 -2681.2                          
## relationship_model6_pass     22 5333.5 -2644.7  72.996  3  9.742e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
relationship_model7_pass <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_pass_reg,
                           link = "logit")
anova(relationship_model6_pass,relationship_model7_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                          formula:                                                                                                
## relationship_model6_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school                        
## relationship_model7_pass as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
##                          link: threshold:
## relationship_model6_pass logit flexible  
## relationship_model7_pass logit flexible  
## 
##                          no.par    AIC  logLik LR.stat df Pr(>Chisq)
## relationship_model6_pass     22 5333.5 -2644.7                      
## relationship_model7_pass     26 5338.7 -2643.4  2.7427  4     0.6018
summary(relationship_model7_pass)
## formula: 
## as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1114 -2643.37 5338.74 8(1)  1.31e-12 1.2e+06
## 
## Coefficients:
##                                           Estimate Std. Error z value Pr(>|z|)
## H1_interactionno disclaimer.new guideline -0.06035    0.13830  -0.436  0.66260
## H1_interactiondisclaimer.new guideline     0.11472    0.13879   0.827  0.40846
## summary1Faerber                            0.02985    0.10508   0.284  0.77634
## s_age                                     -0.02585    0.00353  -7.322 2.44e-13
## s_sexmale                                 -0.19652    0.10678  -1.840  0.06572
## s_schoolReal                               0.45967    0.13360   3.441  0.00058
## s_schoolAbi                                1.07333    0.13350   8.040 9.00e-16
## as.factor(s_interest)5                     0.02395    0.16480   0.145  0.88447
## as.factor(s_interest)6                     0.13498    0.16600   0.813  0.41612
## as.factor(s_interest)7                    -0.04526    0.17902  -0.253  0.80041
## as.factor(s_interest)8                    -0.12919    0.17824  -0.725  0.46857
##                                              
## H1_interactionno disclaimer.new guideline    
## H1_interactiondisclaimer.new guideline       
## summary1Faerber                              
## s_age                                     ***
## s_sexmale                                 .  
## s_schoolReal                              ***
## s_schoolAbi                               ***
## as.factor(s_interest)5                       
## as.factor(s_interest)6                       
## as.factor(s_interest)7                       
## as.factor(s_interest)8                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -7|-6  -7.9237     1.0343  -7.661
## -6|-5  -5.3487     0.3831 -13.963
## -5|-4  -4.7245     0.3338 -14.156
## -4|-3  -2.8220     0.2746 -10.276
## -3|-2  -2.3623     0.2691  -8.778
## -2|-1  -1.6553     0.2631  -6.291
## -1|0   -1.2762     0.2610  -4.889
## 0|1    -0.4453     0.2586  -1.722
## 1|2    -0.2039     0.2583  -0.789
## 2|3     0.3402     0.2589   1.314
## 3|4     0.5520     0.2596   2.126
## 4|5     1.2115     0.2639   4.592
## 5|6     1.3670     0.2655   5.150
## 6|7     2.6058     0.2911   8.951
## 7|8     2.9495     0.3049   9.674
## (31 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model7_pass))
##                                     -7|-6 
##                              3.620686e-04 
##                                     -6|-5 
##                              4.754510e-03 
##                                     -5|-4 
##                              8.875414e-03 
##                                     -4|-3 
##                              5.948701e-02 
##                                     -3|-2 
##                              9.420078e-02 
##                                     -2|-1 
##                              1.910288e-01 
##                                      -1|0 
##                              2.790939e-01 
##                                       0|1 
##                              6.406466e-01 
##                                       1|2 
##                              8.155315e-01 
##                                       2|3 
##                              1.405292e+00 
##                                       3|4 
##                              1.736693e+00 
##                                       4|5 
##                              3.358526e+00 
##                                       5|6 
##                              3.923682e+00 
##                                       6|7 
##                              1.354198e+01 
##                                       7|8 
##                              1.909619e+01 
## H1_interactionno disclaimer.new guideline 
##                              9.414391e-01 
##    H1_interactiondisclaimer.new guideline 
##                              1.121562e+00 
##                           summary1Faerber 
##                              1.030301e+00 
##                                     s_age 
##                              9.744805e-01 
##                                 s_sexmale 
##                              8.215881e-01 
##                              s_schoolReal 
##                              1.583553e+00 
##                               s_schoolAbi 
##                              2.925090e+00 
##                    as.factor(s_interest)5 
##                              1.024235e+00 
##                    as.factor(s_interest)6 
##                              1.144519e+00 
##                    as.factor(s_interest)7 
##                              9.557482e-01 
##                    as.factor(s_interest)8 
##                              8.788072e-01
exp(confint(relationship_model7_pass))
##                                               2.5 %    97.5 %
## H1_interactionno disclaimer.new guideline 0.7179040 1.2347526
## H1_interactiondisclaimer.new guideline    0.8545192 1.4725154
## summary1Faerber                           0.8385192 1.2659907
## s_age                                     0.9677420 0.9812311
## s_sexmale                                 0.6663281 1.0127647
## s_schoolReal                              1.2190899 2.0584310
## s_schoolAbi                               2.2533018 3.8031841
## as.factor(s_interest)5                    0.7414271 1.4148866
## as.factor(s_interest)6                    0.8265856 1.5848085
## as.factor(s_interest)7                    0.6728448 1.3576500
## as.factor(s_interest)8                    0.6195866 1.2463580
nagelkerke(fit = relationship_model7_pass, null = relationship_null_pass)
## $Models
##                                                                                                                                                   
## Model: "clm, as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_pass_reg, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0269966
## Cox and Snell (ML)                  0.1233720
## Nagelkerke (Cragg and Uhler)        0.1243190
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -11     -73.342 146.68 7.0852e-26
## 
## $Number.of.observations
##            
## Model: 1114
## Null:  1114
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test_pass = emmeans(relationship_model7_pass, ~ H1_interaction)
pairs(H1test_pass, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline   0.0603 0.138 Inf
##  no disclaimer.old guideline - disclaimer.new guideline     -0.1147 0.139 Inf
##  no disclaimer.new guideline - disclaimer.new guideline     -0.1751 0.120 Inf
##  z.ratio p.value
##    0.436  0.9004
##   -0.827  0.6865
##   -1.461  0.3100
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H1test_pass, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.new guideline  0.328 0.117 Inf    0.0978     0.558  a    
##  no disclaimer.old guideline  0.388 0.137 Inf    0.1190     0.657  a    
##  disclaimer.new guideline     0.503 0.117 Inf    0.2731     0.733  a    
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_pass_reg1 <- subset(data2_wide_pass_reg, condition == 2 | condition == 6)
View(data2_wide_pass_reg1)

relationship_null_pass1 <- clm(as.factor(s_relationship)~1, data = data2_wide_pass_reg1, link = "logit")

relationship_model8_pass1 <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_pass_reg1, link = "logit")

summary(relationship_model8_pass1)
## formula: 
## as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg1
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  486  -1147.25 2344.50 8(1)  1.95e-12 8.8e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)
## H1_interactiondisclaimer.new guideline -0.065661   0.159779  -0.411   0.6811
## summary1Faerber                         0.011016   0.160189   0.069   0.9452
## s_age                                  -0.031365   0.005283  -5.937 2.90e-09
## s_sexmale                              -0.212001   0.164079  -1.292   0.1963
## s_schoolReal                            0.481969   0.204975   2.351   0.0187
## s_schoolAbi                             1.005286   0.199581   5.037 4.73e-07
## as.factor(s_interest)5                  0.089178   0.248484   0.359   0.7197
## as.factor(s_interest)6                  0.438808   0.258044   1.701   0.0890
## as.factor(s_interest)7                 -0.072975   0.274101  -0.266   0.7901
## as.factor(s_interest)8                 -0.158705   0.263502  -0.602   0.5470
##                                           
## H1_interactiondisclaimer.new guideline    
## summary1Faerber                           
## s_age                                  ***
## s_sexmale                                 
## s_schoolReal                           *  
## s_schoolAbi                            ***
## as.factor(s_interest)5                    
## as.factor(s_interest)6                 .  
## as.factor(s_interest)7                    
## as.factor(s_interest)8                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -7|-6  -7.4248     1.0679  -6.953
## -6|-5  -5.8077     0.5834  -9.955
## -5|-4  -5.0036     0.4805 -10.412
## -4|-3  -3.0118     0.3864  -7.795
## -3|-2  -2.6811     0.3794  -7.067
## -2|-1  -1.9338     0.3675  -5.262
## -1|0   -1.4740     0.3627  -4.064
## 0|1    -0.6758     0.3585  -1.885
## 1|2    -0.3784     0.3585  -1.056
## 2|3     0.1258     0.3601   0.349
## 3|4     0.3354     0.3611   0.929
## 4|5     0.9917     0.3672   2.700
## 5|6     1.1274     0.3694   3.052
## 6|7     2.3418     0.4092   5.722
## 7|8     2.7719     0.4377   6.333
## (12 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model8_pass1))
##                                  -7|-6                                  -6|-5 
##                           5.962604e-04                           3.004315e-03 
##                                  -5|-4                                  -4|-3 
##                           6.713648e-03                           4.920516e-02 
##                                  -3|-2                                  -2|-1 
##                           6.849028e-02                           1.445920e-01 
##                                   -1|0                                    0|1 
##                           2.290127e-01                           5.087602e-01 
##                                    1|2                                    2|3 
##                           6.849830e-01                           1.134024e+00 
##                                    3|4                                    4|5 
##                           1.398514e+00                           2.695847e+00 
##                                    5|6                                    6|7 
##                           3.087526e+00                           1.039951e+01 
##                                    7|8 H1_interactiondisclaimer.new guideline 
##                           1.598859e+01                           9.364482e-01 
##                        summary1Faerber                                  s_age 
##                           1.011076e+00                           9.691219e-01 
##                              s_sexmale                           s_schoolReal 
##                           8.089638e-01                           1.619259e+00 
##                            s_schoolAbi                 as.factor(s_interest)5 
##                           2.732688e+00                           1.093276e+00 
##                 as.factor(s_interest)6                 as.factor(s_interest)7 
##                           1.550858e+00                           9.296238e-01 
##                 as.factor(s_interest)8 
##                           8.532480e-01
exp(confint(relationship_model8_pass1))
##                                            2.5 %    97.5 %
## H1_interactiondisclaimer.new guideline 0.6845099 1.2808557
## summary1Faerber                        0.7385515 1.3842098
## s_age                                  0.9590856 0.9791665
## s_sexmale                              0.5862197 1.1156221
## s_schoolReal                           1.0843282 2.4227437
## s_schoolAbi                            1.8506928 4.0483615
## as.factor(s_interest)5                 0.6713715 1.7795245
## as.factor(s_interest)6                 0.9349611 2.5728632
## as.factor(s_interest)7                 0.5430250 1.5915346
## as.factor(s_interest)8                 0.5085288 1.4297325
nagelkerke(fit = relationship_model8_pass1, null = relationship_null_pass1)
## $Models
##                                                                                                                                                    
## Model: "clm, as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg1, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_pass_reg1, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0322679
## Cox and Snell (ML)                  0.1456570
## Nagelkerke (Cragg and Uhler)        0.1467740
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -10     -38.254 76.508 2.4192e-12
## 
## $Number.of.observations
##           
## Model: 486
## Null:  486
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test_pass1 = emmeans(relationship_model8_pass1, ~ H1_interaction)
pairs(H1test_pass1, adjust = "tukey")
##  contrast                                               estimate   SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   0.0657 0.16 Inf
##  z.ratio p.value
##    0.411  0.6811
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H1test_pass1, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.274 0.150 Inf   -0.0201     0.569  a    
##  no disclaimer.old guideline  0.340 0.149 Inf    0.0473     0.632  a    
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_pass_reg2 <- subset(data2_wide_pass_reg, condition == 4 | condition == 6)
View(data2_wide_pass_reg2)

relationship_null_pass2 <- clm(as.factor(s_relationship)~1, data = data2_wide_pass_reg2, link = "logit")

relationship_model8_pass2 <- clm(as.factor(s_relationship)~ 
                             H1_interaction + summary1 +
                             s_age + s_sex + s_school +
                             as.factor(s_interest), data = data2_wide_pass_reg2, link = "logit")

summary(relationship_model8_pass2)
## formula: 
## as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg2
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  444  -1031.59 2113.19 9(3)  3.60e-09 9.9e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)
## H1_interactiondisclaimer.new guideline  0.352494   0.169991   2.074   0.0381
## summary1Faerber                        -0.188076   0.167999  -1.120   0.2629
## s_age                                  -0.024956   0.005708  -4.372 1.23e-05
## s_sexmale                              -0.433739   0.171931  -2.523   0.0116
## s_schoolReal                            0.502953   0.220156   2.285   0.0223
## s_schoolAbi                             0.941977   0.214734   4.387 1.15e-05
## as.factor(s_interest)5                  0.471621   0.261108   1.806   0.0709
## as.factor(s_interest)6                  0.190710   0.266937   0.714   0.4750
## as.factor(s_interest)7                  0.181755   0.283032   0.642   0.5208
## as.factor(s_interest)8                  0.273741   0.280349   0.976   0.3289
##                                           
## H1_interactiondisclaimer.new guideline *  
## summary1Faerber                           
## s_age                                  ***
## s_sexmale                              *  
## s_schoolReal                           *  
## s_schoolAbi                            ***
## as.factor(s_interest)5                 .  
## as.factor(s_interest)6                    
## as.factor(s_interest)7                    
## as.factor(s_interest)8                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -7|-6 -6.88286    1.08026  -6.372
## -6|-5 -5.48822    0.64543  -8.503
## -5|-4 -4.78372    0.53975  -8.863
## -4|-3 -2.92696    0.43038  -6.801
## -3|-2 -2.47213    0.41996  -5.887
## -2|-1 -1.74864    0.41001  -4.265
## -1|0  -1.25725    0.40655  -3.093
## 0|1   -0.31747    0.40275  -0.788
## 1|2   -0.08492    0.40226  -0.211
## 2|3    0.37662    0.40244   0.936
## 3|4    0.55056    0.40290   1.366
## 4|5    1.25390    0.40822   3.072
## 5|6    1.45013    0.41116   3.527
## 6|7    2.87853    0.46015   6.256
## 7|8    2.94284    0.46417   6.340
## (9 Beobachtungen als fehlend gelöscht)
exp(coef(relationship_model8_pass2))
##                                  -7|-6                                  -6|-5 
##                            0.001025204                            0.004135188 
##                                  -5|-4                                  -4|-3 
##                            0.008364854                            0.053559424 
##                                  -3|-2                                  -2|-1 
##                            0.084404961                            0.174011274 
##                                   -1|0                                    0|1 
##                            0.284434790                            0.727991812 
##                                    1|2                                    2|3 
##                            0.918581584                            1.457353505 
##                                    3|4                                    4|5 
##                            1.734226224                            3.503976489 
##                                    5|6                                    6|7 
##                            4.263680510                           17.788192626 
##                                    7|8 H1_interactiondisclaimer.new guideline 
##                           18.969570287                            1.422611563 
##                        summary1Faerber                                  s_age 
##                            0.828551806                            0.975352831 
##                              s_sexmale                           s_schoolReal 
##                            0.648081388                            1.653597700 
##                            s_schoolAbi                 as.factor(s_interest)5 
##                            2.565046537                            1.602589467 
##                 as.factor(s_interest)6                 as.factor(s_interest)7 
##                            1.210108923                            1.199320176 
##                 as.factor(s_interest)8 
##                            1.314873638
exp(confint(relationship_model8_pass2))
##                                            2.5 %    97.5 %
## H1_interactiondisclaimer.new guideline 1.0200037 1.9866959
## summary1Faerber                        0.5957644 1.1513567
## s_age                                  0.9644536 0.9862922
## s_sexmale                              0.4622383 0.9072056
## s_schoolReal                           1.0750819 2.5496399
## s_schoolAbi                            1.6867743 3.9159907
## as.factor(s_interest)5                 0.9607293 2.6758901
## as.factor(s_interest)6                 0.7169060 2.0429677
## as.factor(s_interest)7                 0.6887823 2.0907663
## as.factor(s_interest)8                 0.7593988 2.2809793
nagelkerke(fit = relationship_model8_pass2, null = relationship_null_pass2)
## $Models
##                                                                                                                                                    
## Model: "clm, as.factor(s_relationship) ~ H1_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg2, logit"
## Null:  "clm, as.factor(s_relationship) ~ 1, data2_wide_pass_reg2, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0309605
## Cox and Snell (ML)                  0.1379690
## Nagelkerke (Cragg and Uhler)        0.1391200
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq   p.value
##      -10     -32.959 65.918 2.704e-10
## 
## $Number.of.observations
##           
## Model: 444
## Null:  444
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H1test_pass2 = emmeans(relationship_model8_pass2, ~ H1_interaction)
pairs(H1test_pass2, adjust = "tukey")
##  contrast                                               estimate   SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   -0.352 0.17 Inf
##  z.ratio p.value
##   -2.074  0.0381
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H1test_pass2, Letters = letters)
##  H1_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.295 0.155 Inf  -0.00851     0.598  a    
##  disclaimer.new guideline     0.647 0.166 Inf   0.32274     0.972   b   
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H1 Graphical

describeBy(data2_wide_pass_reg$s_relationship,
           data2_wide_pass_reg$H1_interaction)
## 
##  Descriptive statistics by group 
## group: no disclaimer.old guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 240 0.51 3.02      0    0.45 2.97  -7   8    15 0.19    -0.46 0.2
## ------------------------------------------------------------ 
## group: no disclaimer.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 424 0.45 3.21      0    0.32 2.97  -6   8    14 0.25    -0.63 0.16
## ------------------------------------------------------------ 
## group: disclaimer.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 450 0.91 3.64      0    0.74 2.97  -6   8    14 0.38    -0.94 0.17
H1_bar <- ggplot(data2_wide_pass_reg, aes(H1_interaction,
                                       s_relationship)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Condition", y = "Relationship Knowledge Score")
H1_bar
## Warning: Removed 31 rows containing non-finite values (`stat_summary()`).
## Removed 31 rows containing non-finite values (`stat_summary()`).

data2_wide_pass_reg$H1_interaction <- mapvalues(data2_wide_pass_reg$H1_interaction,
                                                c("no disclaimer.old guideline",
                                                  "no disclaimer.new guideline",
                                                  "disclaimer.new guideline"),
                                                c("old, no disclaimer",
                                                  "new, no disclaimer",
                                                  "new, disclaimer"))

H1_boxplot <- ggplot(data2_wide_pass_reg, aes(H1_interaction, s_relationship,
                                              fill = H1_interaction))
H1_boxplot <- H1_boxplot + geom_boxplot() +
  theme_classic() + theme(legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  text = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "Realtionship Knowledge Score") +
  scale_fill_brewer(palette = "Blues")
H1_boxplot
## Warning: Removed 31 rows containing non-finite values (`stat_boxplot()`).

ggsave("H1_boxplot.png", plot = H1_boxplot,
       scale = 1, dpi = 600)
## Saving 7 x 5 in image
## Warning: Removed 31 rows containing non-finite values (`stat_boxplot()`).

H2

H2a

H2a_pass <- subset(data2_wide_pass, condition == 2|condition == 4|condition == 6)
View(H2a_pass)

describeBy(H2a_pass$s_extent,H2a_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 0.93 2.27      1    0.87 2.97  -4   6    10 0.22    -0.63 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 453 1.07 2.45      1    1.02 2.97  -6   6    12 0.12    -0.77 0.12
wilcox.test(s_extent~disclaimer, data = H2a_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 52872, p-value = 0.4913
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.072637e-05  8.141003e-05
## sample estimates:
## difference in location 
##          -4.522336e-05

H2a post hoc

H2a_pass_1 <- subset(data2_wide_pass, condition == 2|condition == 6)
View(H2a_pass_1)

describeBy(H2a_pass_1$s_extent,H2a_pass_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 0.93 2.27      1    0.87 2.97  -4   6    10 0.22    -0.63 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 249 0.87 2.43      0    0.81 2.97  -6   6    12 0.15    -0.69 0.15
wilcox.test(s_extent~disclaimer, data = H2a_pass_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 30495, p-value = 0.7521
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.699256e-05  1.121775e-05
## sample estimates:
## difference in location 
##           2.572533e-05
H2a_pass_2 <- subset(data2_wide_pass, condition == 4|condition == 6)
View(H2a_pass_2)

describeBy(H2a_pass_2$s_extent,H2a_pass_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 0.93 2.27      1    0.87 2.97  -4   6    10 0.22    -0.63 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.31 2.47      1    1.27 2.97  -4   6    10 0.07    -0.89 0.17
wilcox.test(s_extent~disclaimer, data = H2a_pass_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 22377, p-value = 0.09958
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999351e-01  3.470513e-05
## sample estimates:
## difference in location 
##           -4.93409e-05

H2b

H2b_pass <- subset(data2_wide_pass, condition == 1| condition == 2| condition == 3|
                condition == 4)
View(H2b_pass)

describeBy(H2b_pass$s_extent,H2b_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 430 0.69 2.24      0    0.64 2.97  -6   6    12 0.15    -0.39 0.11
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 453 1.07 2.45      1    1.02 2.97  -6   6    12 0.12    -0.77 0.12
wilcox.test(s_extent~disclaimer, data = H2b_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 89460, p-value = 0.03434
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999829e-01 -3.957081e-05
## sample estimates:
## difference in location 
##          -4.508197e-05

H2b post hoc

H2b_pass_1 <- subset(data2_wide, condition == 1| condition == 2)
View(H2b_pass_1)
describeBy(H2b_pass_1$s_extent,H2b_pass_1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 327 0.51 2.21      0    0.43 2.97  -4   6    10 0.25    -0.46 0.12
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 340 0.52 2.38      0    0.44 2.97  -6   6    12 0.22    -0.49 0.13
wilcox.test(s_extent~disclaimer, data = H2b_pass_1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 55838, p-value = 0.9198
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.851467e-05  3.167506e-05
## sample estimates:
## difference in location 
##           4.181901e-05
H2b_pass_2 <- subset(data2_wide_pass, condition == 3| condition == 4)
View(H2b_pass_2)
describeBy(H2b_pass_2$s_extent,H2b_pass_2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 213 0.53 2.16      0    0.47 2.97  -6   6    12 0.12    -0.09 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.31 2.47      1    1.27 2.97  -4   6    10 0.07    -0.89 0.17
wilcox.test(s_extent~disclaimer, data = H2b_pass_2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 17879, p-value = 0.001565
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -1.000023e+00 -4.802819e-05
## sample estimates:
## difference in location 
##             -0.9999337
H2b_pass_3 <- subset(data2_wide_pass, condition == 1| condition == 4)
View(H2b_pass_3)
describeBy(H2b_pass_3$s_extent,H2b_pass_3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 217 0.85 2.31      1     0.8 2.97  -4   6    10 0.14    -0.68 0.16
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.31 2.47      1    1.27 2.97  -4   6    10 0.07    -0.89 0.17
wilcox.test(s_extent~disclaimer, data = H2b_pass_3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 19853, p-value = 0.06502
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999654e-01  2.904643e-05
## sample estimates:
## difference in location 
##          -2.018815e-05
H2b_pass_4 <- subset(data2_wide_pass, condition == 2| condition == 3)
View(H2b_pass_4)
describeBy(H2b_pass_4$s_extent,H2b_pass_4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 213 0.53 2.16      0    0.47 2.97  -6   6    12 0.12    -0.09 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 249 0.87 2.43      0    0.81 2.97  -6   6    12 0.15    -0.69 0.15
wilcox.test(s_extent~disclaimer, data = H2b_pass_4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_extent by disclaimer
## W = 24692, p-value = 0.1965
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -9.999545e-01  2.824539e-05
## sample estimates:
## difference in location 
##          -7.797653e-05

H2 Logistic Regression

data2_wide_pass$H2_interaction <- data2_wide_pass$H1_interaction
table(data2_wide_pass$H2_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         247                         441 
##    disclaimer.new guideline 
##                         694
data2_wide_pass_reg <- subset(data2_wide_pass, condition != 5)
View(data2_wide_pass_reg)

extent_null_pass <- clm(as.factor(s_extent) ~ 1, data = data2_wide_pass_reg,
                        link = "logit")

extent_model1_pass <- clm(as.factor(s_extent) ~ H2_interaction,
                          data = data2_wide_pass_reg, link = "logit")
anova(extent_null_pass,extent_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                             link: threshold:
## extent_null_pass   as.factor(s_extent) ~ 1              logit flexible  
## extent_model1_pass as.factor(s_extent) ~ H2_interaction logit flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_null_pass       12 4901.9 -2438.9                      
## extent_model1_pass     14 4901.3 -2436.6  4.5981  2     0.1004
extent_model2_pass <- clm(as.factor(s_extent) ~ H2_interaction + summary1,
                     data = data2_wide_pass_reg, link = "logit")
anova(extent_model1_pass,extent_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                                        link:
## extent_model1_pass as.factor(s_extent) ~ H2_interaction            logit
## extent_model2_pass as.factor(s_extent) ~ H2_interaction + summary1 logit
##                    threshold:
## extent_model1_pass flexible  
## extent_model2_pass flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_model1_pass     14 4901.3 -2436.6                      
## extent_model2_pass     15 4903.3 -2436.6   0.002  1     0.9641
extent_model3_pass <- clm(as.factor(s_extent) ~ H2_interaction + summary1 + 
                            s_age, data = data2_wide_pass_reg, 
                     link = "logit")
anova(extent_model1_pass,extent_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                                               
## extent_model1_pass as.factor(s_extent) ~ H2_interaction                   
## extent_model3_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age
##                    link: threshold:
## extent_model1_pass logit flexible  
## extent_model3_pass logit flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_model1_pass     14 4901.3 -2436.6                          
## extent_model3_pass     16 4889.2 -2428.6  16.109  2  0.0003177 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model4_pass <- clm(as.factor(s_extent) ~ H2_interaction + 
                       summary1 + s_age + s_sex,
                       data = data2_wide_pass_reg, link = "logit")
anova(extent_model3_pass,extent_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                                                       
## extent_model3_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age        
## extent_model4_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex
##                    link: threshold:
## extent_model3_pass logit flexible  
## extent_model4_pass logit flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)
## extent_model3_pass     16 4889.2 -2428.6                      
## extent_model4_pass     17 4890.0 -2428.0  1.1912  1     0.2751
extent_model5_pass <- clm(as.factor(s_extent) ~ H2_interaction + summary1 +
                            s_age + s_sex + s_school, 
                          data = data2_wide_pass_reg, link = "logit")
anova(extent_model3_pass,extent_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                                                                  
## extent_model3_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age                   
## extent_model5_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school
##                    link: threshold:
## extent_model3_pass logit flexible  
## extent_model5_pass logit flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## extent_model3_pass     16 4889.2 -2428.6                          
## extent_model5_pass     19 4827.2 -2394.6  67.932  3  1.183e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
extent_model6_pass <- clm(as.factor(s_extent) ~ H2_interaction + summary1 + 
                            s_age + s_sex + s_school + 
                            as.factor(s_interest), data = data2_wide_pass_reg, 
                     link = "logit")
anova(extent_model5_pass,extent_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                    formula:                                                                                          
## extent_model5_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school                        
## extent_model6_pass as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
##                    link: threshold:
## extent_model5_pass logit flexible  
## extent_model6_pass logit flexible  
## 
##                    no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## extent_model5_pass     19 4827.2 -2394.6                        
## extent_model6_pass     23 4824.1 -2389.1  11.137  4    0.02507 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(extent_model6_pass)
## formula: 
## as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1124 -2389.05 4824.11 7(0)  7.79e-08 1.1e+06
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)
## H2_interactionno disclaimer.new guideline -0.147638   0.140490  -1.051  0.29331
## H2_interactiondisclaimer.new guideline     0.117724   0.140369   0.839  0.40165
## summary1Faerber                            0.020479   0.104929   0.195  0.84526
## s_age                                     -0.011816   0.003469  -3.406  0.00066
## s_sexmale                                  0.078822   0.106339   0.741  0.45855
## s_schoolReal                               0.565252   0.134680   4.197  2.7e-05
## s_schoolAbi                                1.101721   0.133843   8.231  < 2e-16
## as.factor(s_interest)5                    -0.153299   0.166794  -0.919  0.35805
## as.factor(s_interest)6                    -0.142009   0.165998  -0.855  0.39228
## as.factor(s_interest)7                    -0.295302   0.181130  -1.630  0.10303
## as.factor(s_interest)8                    -0.561386   0.182576  -3.075  0.00211
##                                              
## H2_interactionno disclaimer.new guideline    
## H2_interactiondisclaimer.new guideline       
## summary1Faerber                              
## s_age                                     ***
## s_sexmale                                    
## s_schoolReal                              ***
## s_schoolAbi                               ***
## as.factor(s_interest)5                       
## as.factor(s_interest)6                       
## as.factor(s_interest)7                       
## as.factor(s_interest)8                    ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -6.6085     0.7542  -8.762
## -5|-4  -6.2020     0.6342  -9.779
## -4|-3  -4.2889     0.3449 -12.436
## -3|-2  -3.3854     0.2997 -11.294
## -2|-1  -1.7076     0.2704  -6.315
## -1|0   -1.1692     0.2669  -4.381
## 0|1    -0.1881     0.2651  -0.710
## 1|2     0.2877     0.2657   1.083
## 2|3     1.0299     0.2677   3.848
## 3|4     1.5009     0.2702   5.554
## 4|5     2.8465     0.2905   9.799
## 5|6     3.4037     0.3093  11.004
## (21 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model6_pass))
##                                     -6|-5 
##                               0.001348841 
##                                     -5|-4 
##                               0.002025423 
##                                     -4|-3 
##                               0.013720079 
##                                     -3|-2 
##                               0.033863684 
##                                     -2|-1 
##                               0.181304316 
##                                      -1|0 
##                               0.310600539 
##                                       0|1 
##                               0.828508464 
##                                       1|2 
##                               1.333313271 
##                                       2|3 
##                               2.800707691 
##                                       3|4 
##                               4.485916176 
##                                       4|5 
##                              17.226841649 
##                                       5|6 
##                              30.074089560 
## H2_interactionno disclaimer.new guideline 
##                               0.862743658 
##    H2_interactiondisclaimer.new guideline 
##                               1.124933886 
##                           summary1Faerber 
##                               1.020690062 
##                                     s_age 
##                               0.988253475 
##                                 s_sexmale 
##                               1.082011416 
##                              s_schoolReal 
##                               1.759891565 
##                               s_schoolAbi 
##                               3.009341248 
##                    as.factor(s_interest)5 
##                               0.857873532 
##                    as.factor(s_interest)6 
##                               0.867613364 
##                    as.factor(s_interest)7 
##                               0.744306662 
##                    as.factor(s_interest)8 
##                               0.570417685
exp(confint(extent_model6_pass))
##                                               2.5 %    97.5 %
## H2_interactionno disclaimer.new guideline 0.6550016 1.1362689
## H2_interactiondisclaimer.new guideline    0.8544239 1.4815155
## summary1Faerber                           0.8309360 1.2538099
## s_age                                     0.9815466 0.9949903
## s_sexmale                                 0.8784657 1.3328799
## s_schoolReal                              1.3520751 2.2926483
## s_schoolAbi                               2.3166961 3.9154156
## as.factor(s_interest)5                    0.6184745 1.1895039
## as.factor(s_interest)6                    0.6264859 1.2011560
## as.factor(s_interest)7                    0.5216627 1.0613352
## as.factor(s_interest)8                    0.3985866 0.8155419
nagelkerke(fit = extent_model6_pass, null = extent_null_pass)
## $Models
##                                                                                                                                             
## Model: "clm, as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_pass_reg, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0204548
## Cox and Snell (ML)                  0.0849428
## Nagelkerke (Cragg and Uhler)        0.0860651
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -11     -49.888 99.776 1.9778e-16
## 
## $Number.of.observations
##            
## Model: 1124
## Null:  1124
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test_pass = emmeans(extent_model6_pass, ~ H2_interaction)
pairs(H2test_pass, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline    0.148 0.140 Inf
##  no disclaimer.old guideline - disclaimer.new guideline      -0.118 0.140 Inf
##  no disclaimer.new guideline - disclaimer.new guideline      -0.265 0.119 Inf
##  z.ratio p.value
##    1.051  0.5447
##   -0.839  0.6789
##   -2.236  0.0653
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H2test_pass, Letters = letters)
##  H2_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.new guideline  0.875 0.142 Inf     0.597      1.15  a    
##  no disclaimer.old guideline  1.023 0.161 Inf     0.708      1.34  a    
##  disclaimer.new guideline     1.141 0.141 Inf     0.863      1.42  a    
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_pass_reg3 <- subset(data2_wide_pass, condition == 2| condition == 6)
View(data2_wide_pass_reg3)

extent_null_pass1 <- clm(as.factor(s_extent) ~ 1, data = data2_wide_pass_reg3, link = "logit")

extent_model8_pass1 <- clm(as.factor(s_extent) ~ H2_interaction + 
                       summary1 + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_pass_reg3, 
                     link = "logit")

summary(extent_model8_pass1)
## formula: 
## as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg3
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  490  -1034.81 2111.63 7(0)  3.06e-13 7.5e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)
## H2_interactiondisclaimer.new guideline -0.044804   0.159616  -0.281  0.77894
## summary1Faerber                         0.095749   0.160578   0.596  0.55099
## s_age                                  -0.014622   0.005158  -2.835  0.00459
## s_sexmale                               0.145365   0.162996   0.892  0.37248
## s_schoolReal                            0.624281   0.208019   3.001  0.00269
## s_schoolAbi                             1.223665   0.202689   6.037 1.57e-09
## as.factor(s_interest)5                 -0.686079   0.261132  -2.627  0.00861
## as.factor(s_interest)6                 -0.346777   0.261641  -1.325  0.18504
## as.factor(s_interest)7                 -0.610305   0.285482  -2.138  0.03253
## as.factor(s_interest)8                 -1.078512   0.273982  -3.936 8.27e-05
##                                           
## H2_interactiondisclaimer.new guideline    
## summary1Faerber                           
## s_age                                  ** 
## s_sexmale                                 
## s_schoolReal                           ** 
## s_schoolAbi                            ***
## as.factor(s_interest)5                 ** 
## as.factor(s_interest)6                    
## as.factor(s_interest)7                 *  
## as.factor(s_interest)8                 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-4 -6.86459    1.06688  -6.434
## -4|-3 -5.06113    0.55190  -9.170
## -3|-2 -3.67533    0.42583  -8.631
## -2|-1 -2.06712    0.38233  -5.407
## -1|0  -1.49388    0.37557  -3.978
## 0|1   -0.49938    0.37124  -1.345
## 1|2   -0.08956    0.37196  -0.241
## 2|3    0.64829    0.37515   1.728
## 3|4    1.23557    0.37937   3.257
## 4|5    2.53649    0.40768   6.222
## 5|6    3.03144    0.43258   7.008
## (8 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model8_pass1))
##                                  -6|-4                                  -4|-3 
##                            0.001044105                            0.006338367 
##                                  -3|-2                                  -2|-1 
##                            0.025341049                            0.126550148 
##                                   -1|0                                    0|1 
##                            0.224499522                            0.606904850 
##                                    1|2                                    2|3 
##                            0.914330938                            1.912260879 
##                                    3|4                                    4|5 
##                            3.440345754                           12.635257566 
##                                    5|6 H2_interactiondisclaimer.new guideline 
##                           20.727031668                            0.956185263 
##                        summary1Faerber                                  s_age 
##                            1.100482296                            0.985484742 
##                              s_sexmale                           s_schoolReal 
##                            1.156461331                            1.866902863 
##                            s_schoolAbi                 as.factor(s_interest)5 
##                            3.399625174                            0.503546744 
##                 as.factor(s_interest)6                 as.factor(s_interest)7 
##                            0.706962760                            0.543185084 
##                 as.factor(s_interest)8 
##                            0.340101191
exp(confint(extent_model8_pass1))
##                                            2.5 %    97.5 %
## H2_interactiondisclaimer.new guideline 0.6991790 1.3074693
## summary1Faerber                        0.8033906 1.5080332
## s_age                                  0.9755443 0.9954825
## s_sexmale                              0.8402997 1.5923638
## s_schoolReal                           1.2430276 2.8106958
## s_schoolAbi                            2.2897012 5.0701958
## as.factor(s_interest)5                 0.3011995 0.8389337
## as.factor(s_interest)6                 0.4227658 1.1798470
## as.factor(s_interest)7                 0.3099438 0.9498413
## as.factor(s_interest)8                 0.1982278 0.5806786
nagelkerke(fit = extent_model8_pass1, null = extent_null_pass1)
## $Models
##                                                                                                                                              
## Model: "clm, as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg3, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_pass_reg3, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0282131
## Cox and Snell (ML)                  0.1154040
## Nagelkerke (Cragg and Uhler)        0.1169180
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -10     -30.043 60.086 3.4913e-09
## 
## $Number.of.observations
##           
## Model: 490
## Null:  490
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test_pass1 = emmeans(extent_model8_pass1, ~ H2_interaction)
pairs(H2test_pass1, adjust = "tukey")
##  contrast                                               estimate   SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   0.0448 0.16 Inf
##  z.ratio p.value
##    0.281  0.7789
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H2test_pass1, Letters = letters)
##  H2_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.568 0.163 Inf     0.248     0.888  a    
##  no disclaimer.old guideline  0.613 0.166 Inf     0.288     0.938  a    
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_pass_reg4 <- subset(data2_wide_pass, condition == 4| condition == 6)
View(data2_wide_pass_reg4)

extent_null_pass2 <- clm(as.factor(s_extent) ~ 1, data = data2_wide_pass_reg4, link = "logit")

extent_model8_pass2 <- clm(as.factor(s_extent) ~ H2_interaction + 
                       summary1 + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_pass_reg4, 
                     link = "logit")

summary(extent_model8_pass2)
## formula: 
## as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg4
## 
##  link  threshold nobs logLik  AIC     niter max.grad cond.H 
##  logit flexible  445  -943.66 1927.33 6(0)  4.78e-08 6.5e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)
## H2_interactiondisclaimer.new guideline  0.278387   0.168382   1.653  0.09827
## summary1Faerber                        -0.108853   0.167853  -0.649  0.51666
## s_age                                  -0.003981   0.005547  -0.718  0.47291
## s_sexmale                              -0.011885   0.169055  -0.070  0.94395
## s_schoolReal                            0.474719   0.219729   2.160  0.03074
## s_schoolAbi                             1.073030   0.212220   5.056 4.28e-07
## as.factor(s_interest)5                 -0.124291   0.265590  -0.468  0.63980
## as.factor(s_interest)6                 -0.024801   0.267356  -0.093  0.92609
## as.factor(s_interest)7                 -0.349794   0.285345  -1.226  0.22025
## as.factor(s_interest)8                 -0.862544   0.291118  -2.963  0.00305
##                                           
## H2_interactiondisclaimer.new guideline .  
## summary1Faerber                           
## s_age                                     
## s_sexmale                                 
## s_schoolReal                           *  
## s_schoolAbi                            ***
## as.factor(s_interest)5                    
## as.factor(s_interest)6                    
## as.factor(s_interest)7                    
## as.factor(s_interest)8                 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -4|-3 -4.42779    0.60056  -7.373
## -3|-2 -3.16934    0.46954  -6.750
## -2|-1 -1.49384    0.41582  -3.593
## -1|0  -0.95047    0.40910  -2.323
## 0|1    0.03591    0.40670   0.088
## 1|2    0.47841    0.40851   1.171
## 2|3    1.20354    0.41197   2.921
## 3|4    1.68563    0.41575   4.054
## 4|5    2.97797    0.44392   6.708
## 5|6    3.41373    0.46278   7.377
## (8 Beobachtungen als fehlend gelöscht)
exp(coef(extent_model8_pass2))
##                                  -4|-3                                  -3|-2 
##                             0.01194086                             0.04203126 
##                                  -2|-1                                   -1|0 
##                             0.22450841                             0.38656013 
##                                    0|1                                    1|2 
##                             1.03656299                             1.61350067 
##                                    2|3                                    3|4 
##                             3.33189615                             5.39586770 
##                                    4|5                                    5|6 
##                            19.64792867                            30.37828672 
## H2_interactiondisclaimer.new guideline                        summary1Faerber 
##                             1.32099742                             0.89686220 
##                                  s_age                              s_sexmale 
##                             0.99602656                             0.98818499 
##                           s_schoolReal                            s_schoolAbi 
##                             1.60756289                             2.92422687 
##                 as.factor(s_interest)5                 as.factor(s_interest)6 
##                             0.88312240                             0.97550415 
##                 as.factor(s_interest)7                 as.factor(s_interest)8 
##                             0.70483297                             0.42208709
exp(confint(extent_model8_pass2))
##                                            2.5 %    97.5 %
## H2_interactiondisclaimer.new guideline 0.9499940 1.8387032
## summary1Faerber                        0.6452066 1.2461931
## s_age                                  0.9852479 1.0069212
## s_sexmale                              0.7093950 1.3766550
## s_schoolReal                           1.0456603 2.4757086
## s_schoolAbi                            1.9324547 4.4424361
## as.factor(s_interest)5                 0.5243658 1.4864294
## as.factor(s_interest)6                 0.5773738 1.6480811
## as.factor(s_interest)7                 0.4025247 1.2330482
## as.factor(s_interest)8                 0.2380862 0.7460035
nagelkerke(fit = extent_model8_pass2, null = extent_null_pass2)
## $Models
##                                                                                                                                              
## Model: "clm, as.factor(s_extent) ~ H2_interaction + summary1 + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg4, logit"
## Null:  "clm, as.factor(s_extent) ~ 1, data2_wide_pass_reg4, logit"                                                                           
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0227249
## Cox and Snell (ML)                  0.0939145
## Nagelkerke (Cragg and Uhler)        0.0951552
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -10     -21.943 43.887 3.4497e-06
## 
## $Number.of.observations
##           
## Model: 445
## Null:  445
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H2test_pass2 = emmeans(extent_model8_pass2, ~ H2_interaction)
pairs(H2test_pass2, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline   -0.278 0.168 Inf
##  z.ratio p.value
##   -1.653  0.0983
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H2test_pass2, Letters = letters)
##  H2_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline 0.0166 0.131 Inf   -0.2403     0.273  a    
##  disclaimer.new guideline    0.2950 0.140 Inf    0.0203     0.570  a    
## 
## Results are averaged over the levels of: summary1, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H2 Graphical

describeBy(data2_wide_pass_reg$s_extent,
           data2_wide_pass_reg$H2_interaction)
## 
##  Descriptive statistics by group 
## group: no disclaimer.old guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 0.93 2.27      1    0.87 2.97  -4   6    10 0.22    -0.63 0.15
## ------------------------------------------------------------ 
## group: no disclaimer.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 430 0.69 2.24      0    0.64 2.97  -6   6    12 0.15    -0.39 0.11
## ------------------------------------------------------------ 
## group: disclaimer.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 453 1.07 2.45      1    1.02 2.97  -6   6    12 0.12    -0.77 0.12
H2_bar <- ggplot(data2_wide_pass_reg, aes(H2_interaction,
                                       s_extent)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Condition", y = "Extent of Evaluation Knowledge Score")
H2_bar
## Warning: Removed 21 rows containing non-finite values (`stat_summary()`).
## Removed 21 rows containing non-finite values (`stat_summary()`).

data2_wide_pass_reg$H2_interaction <- mapvalues(data2_wide_pass_reg$H2_interaction,
                                                c("no disclaimer.old guideline",
                                                  "no disclaimer.new guideline",
                                                  "disclaimer.new guideline"),
                                                c("old, no disclaimer",
                                                  "new, no disclaimer",
                                                  "new, disclaimer"))

H2_boxplot <- ggplot(data2_wide_pass_reg, aes(H2_interaction, s_extent,
                                              fill = H2_interaction))
H2_boxplot <- H2_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "Extent of Evaluation Knowledge Score") +
  scale_fill_brewer(palette = "Blues")
H2_boxplot
## Warning: Removed 21 rows containing non-finite values (`stat_boxplot()`).

H3

H3a

H3a_pass <- subset(data2_wide_pass, condition == 2|condition == 4|condition == 6)
View(H3a_pass)

describeBy(H3a_pass$s_diff,H3a_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis  se
## X1    1 438 0.43 2.1      0    0.32 2.97  -6   6    12 0.31     0.21 0.1
wilcox.test(s_diff~disclaimer, data = H3a_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 55496, p-value = 0.1862
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -5.555652e-05  3.627647e-05
## sample estimates:
## difference in location 
##           6.347909e-05

H3a post hoc

H3a_pass1 <- subset(data2_wide_pass, condition == 2|condition == 6)
View(H3a_pass1)
describeBy(H3a_pass1$s_diff,H3a_pass1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 238 0.19 2.03      0     0.1 2.97  -4   6    10 0.31     0.08 0.13
wilcox.test(s_diff~disclaimer, data = H3a_pass1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 31996, p-value = 0.01615
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  5.293119e-05 9.999779e-01
## sample estimates:
## difference in location 
##           6.013123e-05
H3a_pass2 <- subset(data2_wide_pass, condition == 4|condition == 6)
View(H3a_pass2)
describeBy(H3a_pass2$s_diff,H3a_pass2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 200 0.72 2.14      0    0.61 2.97  -6   6    12 0.28      0.3 0.15
wilcox.test(s_diff~disclaimer, data = H3a_pass2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 23501, p-value = 0.7588
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.626346e-05  2.603510e-05
## sample estimates:
## difference in location 
##           -5.60431e-05

H3b

H3b_pass <- subset(data2_wide_pass, condition == 1| condition == 2| condition == 3|
                condition == 4)
View(H3b_pass)

describeBy(H3b_pass$s_diff,H3b_pass$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 432 0.39 2.11      0    0.34 2.22  -6   6    12 0.07      0.3 0.1
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis  se
## X1    1 438 0.43 2.1      0    0.32 2.97  -6   6    12 0.31     0.21 0.1
wilcox.test(s_diff~disclaimer, data = H3b_pass, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 94509, p-value = 0.9783
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -7.612500e-05  4.959797e-05
## sample estimates:
## difference in location 
##          -3.882985e-05

H3b post hoc

H3b_pass1 <- subset(data2_wide_pass, condition == 1| condition == 2)
View(H3b_pass1)
describeBy(H3b_pass1$s_diff,H3b_pass1$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 216 0.26 2.05      0    0.27 1.48  -6   6    12 -0.06     0.29 0.14
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 238 0.19 2.03      0     0.1 2.97  -4   6    10 0.31     0.08 0.13
wilcox.test(s_diff~disclaimer, data = H3b_pass1, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 26715, p-value = 0.4599
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.963525e-06  8.116125e-06
## sample estimates:
## difference in location 
##           3.549421e-05
H3b_pass2 <- subset(data2_wide_pass, condition == 3| condition == 4)
View(H3b_pass2)
describeBy(H3b_pass2$s_diff,H3b_pass2$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 216 0.51 2.16      0    0.45 2.97  -6   6    12 0.17     0.22 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 200 0.72 2.14      0    0.61 2.97  -6   6    12 0.28      0.3 0.15
wilcox.test(s_diff~disclaimer, data = H3b_pass2, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 20468, p-value = 0.3454
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -3.811281e-05  1.060134e-05
## sample estimates:
## difference in location 
##           -5.52108e-05
H3b_pass3 <- subset(data2_wide_pass, condition == 2| condition == 3)
View(H3b_pass3)
describeBy(H3b_pass3$s_diff,H3b_pass3$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 216 0.51 2.16      0    0.45 2.97  -6   6    12 0.17     0.22 0.15
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 238 0.19 2.03      0     0.1 2.97  -4   6    10 0.31     0.08 0.13
wilcox.test(s_diff~disclaimer, data = H3b_pass3, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 27860, p-value = 0.1147
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -4.027259e-05  9.999986e-01
## sample estimates:
## difference in location 
##           5.850487e-05
H3b_pass4 <- subset(data2_wide_pass, condition == 1| condition == 4)
View(H3b_pass4)
describeBy(H3b_pass4$s_diff,H3b_pass4$disclaimer)
## 
##  Descriptive statistics by group 
## group: no disclaimer
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 216 0.26 2.05      0    0.27 1.48  -6   6    12 -0.06     0.29 0.14
## ------------------------------------------------------------ 
## group: disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 200 0.72 2.14      0    0.61 2.97  -6   6    12 0.28      0.3 0.15
wilcox.test(s_diff~disclaimer, data = H3b_pass4, exact = FALSE,
            conf.int = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_diff by disclaimer
## W = 19467, p-value = 0.07539
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -0.9999553527  0.0000525234
## sample estimates:
## difference in location 
##          -4.526937e-05

H3 Logistic Regression

data2_wide_pass$H3_interaction <- data2_wide_pass$H2_interaction
table(data2_wide_pass$H3_interaction)
## 
## no disclaimer.old guideline no disclaimer.new guideline 
##                         247                         441 
##    disclaimer.new guideline 
##                         694
data2_wide_pass_reg <- subset(data2_wide_pass, condition != 5)
View(data2_wide_pass_reg)

diff_null_pass <- clm(as.factor(s_diff) ~ 1, data = data2_wide_pass_reg, link = "logit")

diff_model1_pass <- clm(as.factor(s_diff) ~ H3_interaction, data = data2_wide_pass_reg,
                     link = "logit")
anova(diff_null_pass,diff_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                           link: threshold:
## diff_null_pass   as.factor(s_diff) ~ 1              logit flexible  
## diff_model1_pass as.factor(s_diff) ~ H3_interaction logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_null_pass       12 4455.7 -2215.8                      
## diff_model1_pass     14 4457.4 -2214.7  2.2258  2     0.3286
diff_model2_pass <- clm(as.factor(s_diff) ~ H3_interaction + text_order, data = data2_wide_pass_reg, link = "logit")
anova(diff_null_pass,diff_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                        link:
## diff_null_pass   as.factor(s_diff) ~ 1                           logit
## diff_model2_pass as.factor(s_diff) ~ H3_interaction + text_order logit
##                  threshold:
## diff_null_pass   flexible  
## diff_model2_pass flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## diff_null_pass       12 4455.7 -2215.8                          
## diff_model2_pass     15 4436.4 -2203.2  25.314  3  1.328e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model3_pass <- clm(as.factor(s_diff) ~ H3_interaction + text_order + s_age, data = data2_wide_pass_reg, 
                     link = "logit")
anova(diff_model2_pass,diff_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                link:
## diff_model2_pass as.factor(s_diff) ~ H3_interaction + text_order         logit
## diff_model3_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age logit
##                  threshold:
## diff_model2_pass flexible  
## diff_model3_pass flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)   
## diff_model2_pass     15 4436.4 -2203.2                         
## diff_model3_pass     16 4431.5 -2199.8  6.8496  1   0.008866 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model4_pass <- clm(as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex, 
                   data = data2_wide_pass_reg, 
                     link = "logit")
anova(diff_model3_pass,diff_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                       
## diff_model3_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age        
## diff_model4_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex
##                  link: threshold:
## diff_model3_pass logit flexible  
## diff_model4_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## diff_model3_pass     16 4431.5 -2199.8                        
## diff_model4_pass     17 4428.3 -2197.2  5.1723  1    0.02295 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
diff_model5_pass <- clm(as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex +
                       s_school, data = data2_wide_pass_reg, 
                     link = "logit")
anova(diff_model4_pass,diff_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                  
## diff_model4_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex           
## diff_model5_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school
##                  link: threshold:
## diff_model4_pass logit flexible  
## diff_model5_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model4_pass     17 4428.3 -2197.2                      
## diff_model5_pass     19 4429.3 -2195.6    3.05  2     0.2176
diff_model6_pass <- clm(as.factor(s_diff) ~ H3_interaction  + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_pass_reg, 
                     link = "logit")
anova(diff_model4_pass,diff_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                                          
## diff_model4_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex                                   
## diff_model6_pass as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
##                  link: threshold:
## diff_model4_pass logit flexible  
## diff_model6_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## diff_model4_pass     17 4428.3 -2197.2                      
## diff_model6_pass     23 4432.6 -2193.3  7.6897  6     0.2617
summary(diff_model6_pass)
## formula: 
## as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  1109 -2193.32 4432.64 8(2)  2.77e-09 8.9e+05
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)
## H3_interactionno disclaimer.new guideline -0.194153   0.142134  -1.366   0.1719
## H3_interactiondisclaimer.new guideline    -0.194669   0.141730  -1.374   0.1696
## text_orderFaerber                          0.516386   0.107709   4.794 1.63e-06
## s_age                                     -0.007849   0.003501  -2.242   0.0250
## s_sexmale                                 -0.247799   0.108325  -2.288   0.0222
## s_schoolReal                               0.005230   0.136029   0.038   0.9693
## s_schoolAbi                                0.192445   0.132190   1.456   0.1454
## as.factor(s_interest)5                     0.124630   0.168940   0.738   0.4607
## as.factor(s_interest)6                     0.089459   0.170234   0.526   0.5992
## as.factor(s_interest)7                     0.103742   0.182736   0.568   0.5702
## as.factor(s_interest)8                    -0.200823   0.182186  -1.102   0.2703
##                                              
## H3_interactionno disclaimer.new guideline    
## H3_interactiondisclaimer.new guideline       
## text_orderFaerber                         ***
## s_age                                     *  
## s_sexmale                                 *  
## s_schoolReal                                 
## s_schoolAbi                                  
## as.factor(s_interest)5                       
## as.factor(s_interest)6                       
## as.factor(s_interest)7                       
## as.factor(s_interest)8                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##        Estimate Std. Error z value
## -6|-5 -5.952747   0.564623 -10.543
## -5|-4 -5.728589   0.518428 -11.050
## -4|-3 -3.617525   0.306116 -11.817
## -3|-2 -3.210759   0.292886 -10.962
## -2|-1 -1.759454   0.271141  -6.489
## -1|0  -1.313645   0.268326  -4.896
## 0|1   -0.003668   0.264491  -0.014
## 1|2    0.502327   0.264802   1.897
## 2|3    1.780497   0.272814   6.526
## 3|4    2.053815   0.276476   7.429
## 4|5    3.304792   0.312878  10.563
## 5|6    3.841515   0.345440  11.121
## (36 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model6_pass))
##                                     -6|-5 
##                               0.002598693 
##                                     -5|-4 
##                               0.003251662 
##                                     -4|-3 
##                               0.026849048 
##                                     -3|-2 
##                               0.040325981 
##                                     -2|-1 
##                               0.172138759 
##                                      -1|0 
##                               0.268838330 
##                                       0|1 
##                               0.996338650 
##                                       1|2 
##                               1.652562935 
##                                       2|3 
##                               5.932805631 
##                                       3|4 
##                               7.797591811 
##                                       4|5 
##                              27.242875959 
##                                       5|6 
##                              46.595999285 
## H3_interactionno disclaimer.new guideline 
##                               0.823531544 
##    H3_interactiondisclaimer.new guideline 
##                               0.823107147 
##                         text_orderFaerber 
##                               1.675959468 
##                                     s_age 
##                               0.992181668 
##                                 s_sexmale 
##                               0.780516664 
##                              s_schoolReal 
##                               1.005243926 
##                               s_schoolAbi 
##                               1.212209291 
##                    as.factor(s_interest)5 
##                               1.132729009 
##                    as.factor(s_interest)6 
##                               1.093582519 
##                    as.factor(s_interest)7 
##                               1.109314599 
##                    as.factor(s_interest)8 
##                               0.818056919
exp(confint(diff_model6_pass))
##                                               2.5 %    97.5 %
## H3_interactionno disclaimer.new guideline 0.6231962 1.0880869
## H3_interactiondisclaimer.new guideline    0.6233792 1.0866853
## text_orderFaerber                         1.3575010 2.0708138
## s_age                                     0.9853886 0.9990093
## s_sexmale                                 0.6310609 0.9649871
## s_schoolReal                              0.7699230 1.3124440
## s_schoolAbi                               0.9356472 1.5711167
## as.factor(s_interest)5                    0.8134840 1.5777806
## as.factor(s_interest)6                    0.7832952 1.5269502
## as.factor(s_interest)7                    0.7753767 1.5874767
## as.factor(s_interest)8                    0.5721892 1.1689666
nagelkerke(fit = diff_model6_pass, null = diff_null_pass)
## $Models
##                                                                                                                                             
## Model: "clm, as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_pass_reg, logit"                                                                             
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0101598
## Cox and Snell (ML)                  0.0397866
## Nagelkerke (Cragg and Uhler)        0.0405318
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -11     -22.513 45.025 4.8032e-06
## 
## $Number.of.observations
##            
## Model: 1109
## Null:  1109
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H3test_pass = emmeans(diff_model6_pass, ~ H3_interaction)
pairs(H3test_pass, adjust = "tukey")
##  contrast                                                  estimate    SE  df
##  no disclaimer.old guideline - no disclaimer.new guideline 0.194153 0.142 Inf
##  no disclaimer.old guideline - disclaimer.new guideline    0.194669 0.142 Inf
##  no disclaimer.new guideline - disclaimer.new guideline    0.000515 0.121 Inf
##  z.ratio p.value
##    1.366  0.3589
##    1.374  0.3548
##    0.004  1.0000
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H3test_pass, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline     0.502 0.124 Inf     0.258     0.746  a    
##  no disclaimer.new guideline  0.502 0.125 Inf     0.257     0.747  a    
##  no disclaimer.old guideline  0.696 0.146 Inf     0.411     0.982  a    
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Logistic Regression by Group

data2_wide_pass_reg5 <- subset(data2_wide_pass, condition == 2 | condition == 6)
View(data2_wide_pass_reg5)

diff_null_pass1 <- clm(as.factor(s_diff) ~ 1, data = data2_wide_pass_reg5, link = "logit")

diff_model8_pass1 <- clm(as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_pass_reg5, 
                     link = "logit")

summary(diff_model8_pass1)
## formula: 
## as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg5
## 
##  link  threshold nobs logLik  AIC     niter max.grad cond.H 
##  logit flexible  477  -932.58 1907.17 7(0)  3.80e-11 7.1e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)   
## H3_interactiondisclaimer.new guideline -0.388193   0.164305  -2.363  0.01815 * 
## text_orderFaerber                       0.486639   0.165159   2.946  0.00321 **
## s_age                                  -0.006172   0.005239  -1.178  0.23874   
## s_sexmale                              -0.345801   0.167879  -2.060  0.03942 * 
## s_schoolReal                            0.198953   0.211035   0.943  0.34581   
## s_schoolAbi                             0.539629   0.203704   2.649  0.00807 **
## as.factor(s_interest)5                 -0.094372   0.260464  -0.362  0.71711   
## as.factor(s_interest)6                 -0.313121   0.267101  -1.172  0.24108   
## as.factor(s_interest)7                  0.068689   0.284515   0.241  0.80923   
## as.factor(s_interest)8                 -0.532610   0.274367  -1.941  0.05223 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-4 -6.58513    1.06629  -6.176
## -4|-3 -3.77559    0.44636  -8.459
## -3|-2 -3.26554    0.41875  -7.798
## -2|-1 -1.77227    0.38316  -4.625
## -1|0  -1.32142    0.37890  -3.488
## 0|1   -0.05228    0.37387  -0.140
## 1|2    0.55506    0.37512   1.480
## 2|3    1.86651    0.38929   4.795
## 3|4    2.13559    0.39532   5.402
## 4|5    3.63270    0.48029   7.564
## 5|6    4.33950    0.57506   7.546
## (21 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model8_pass1))
##                                  -6|-4                                  -4|-3 
##                            0.001380745                            0.022923453 
##                                  -3|-2                                  -2|-1 
##                            0.038176286                            0.169946912 
##                                   -1|0                                    0|1 
##                            0.266755290                            0.949067024 
##                                    1|2                                    2|3 
##                            1.742043392                            6.465663507 
##                                    3|4                                    4|5 
##                            8.462045053                           37.814938028 
##                                    5|6 H3_interactiondisclaimer.new guideline 
##                           76.669164452                            0.678281411 
##                      text_orderFaerber                                  s_age 
##                            1.626839914                            0.993846724 
##                              s_sexmale                           s_schoolReal 
##                            0.707653180                            1.220124945 
##                            s_schoolAbi                 as.factor(s_interest)5 
##                            1.715370987                            0.909944074 
##                 as.factor(s_interest)6                 as.factor(s_interest)7 
##                            0.731161557                            1.071103294 
##                 as.factor(s_interest)8 
##                            0.587070492
exp(confint((diff_model8_pass1)))
##                                            2.5 %    97.5 %
## H3_interactiondisclaimer.new guideline 0.4911004 0.9354306
## text_orderFaerber                      1.1778298 2.2510215
## s_age                                  0.9836779 1.0041017
## s_sexmale                              0.5088386 0.9829124
## s_schoolReal                           0.8067329 1.8458995
## s_schoolAbi                            1.1517100 2.5605504
## as.factor(s_interest)5                 0.5460993 1.5171487
## as.factor(s_interest)6                 0.4328520 1.2341965
## as.factor(s_interest)7                 0.6130843 1.8717818
## as.factor(s_interest)8                 0.3422971 1.0043133
nagelkerke(fit = diff_model8_pass1, null = diff_null_pass1)
## $Models
##                                                                                                                                              
## Model: "clm, as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg5, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_pass_reg5, logit"                                                                             
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0168509
## Cox and Snell (ML)                  0.0648234
## Nagelkerke (Cragg and Uhler)        0.0660612
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -10     -15.984 31.968 0.00040531
## 
## $Number.of.observations
##           
## Model: 477
## Null:  477
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H3test_pass1 = emmeans(diff_model8_pass1, ~ H3_interaction)
pairs(H3test_pass1, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline    0.388 0.164 Inf
##  z.ratio p.value
##    2.363  0.0181
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H3test_pass1, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  disclaimer.new guideline    -0.153 0.170 Inf    -0.486     0.179  a    
##  no disclaimer.old guideline  0.235 0.169 Inf    -0.096     0.566   b   
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_wide_pass_reg6 <- subset(data2_wide_pass, condition == 4 | condition == 6)
View(data2_wide_pass_reg6)

diff_null_pass2 <- clm(as.factor(s_diff) ~ 1, data = data2_wide_pass_reg6, link = "logit")

diff_model8_pass2 <- clm(as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex +
                       s_school + as.factor(s_interest), data = data2_wide_pass_reg6, 
                     link = "logit")

summary(diff_model8_pass2)
## formula: 
## as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_reg6
## 
##  link  threshold nobs logLik  AIC     niter max.grad cond.H 
##  logit flexible  439  -863.63 1769.26 6(0)  2.79e-07 7.4e+05
## 
## Coefficients:
##                                         Estimate Std. Error z value Pr(>|z|)
## H3_interactiondisclaimer.new guideline  0.040609   0.171091   0.237  0.81238
## text_orderFaerber                       0.688554   0.173445   3.970 7.19e-05
## s_age                                  -0.005643   0.005587  -1.010  0.31245
## s_sexmale                              -0.186012   0.172343  -1.079  0.28045
## s_schoolReal                            0.084964   0.224419   0.379  0.70499
## s_schoolAbi                             0.250525   0.211117   1.187  0.23536
## as.factor(s_interest)5                 -0.081958   0.273645  -0.300  0.76456
## as.factor(s_interest)6                 -0.275165   0.284954  -0.966  0.33422
## as.factor(s_interest)7                 -0.352366   0.289682  -1.216  0.22384
## as.factor(s_interest)8                 -0.768699   0.290873  -2.643  0.00822
##                                           
## H3_interactiondisclaimer.new guideline    
## text_orderFaerber                      ***
## s_age                                     
## s_sexmale                                 
## s_schoolReal                              
## s_schoolAbi                               
## as.factor(s_interest)5                    
## as.factor(s_interest)6                    
## as.factor(s_interest)7                    
## as.factor(s_interest)8                 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-4 -5.62529    0.81663  -6.888
## -4|-3 -3.89968    0.50775  -7.680
## -3|-2 -3.33395    0.46892  -7.110
## -2|-1 -1.86714    0.42576  -4.385
## -1|0  -1.35600    0.41965  -3.231
## 0|1   -0.09764    0.41315  -0.236
## 1|2    0.47915    0.41409   1.157
## 2|3    1.84211    0.42647   4.319
## 3|4    2.04630    0.43012   4.757
## 4|5    3.28624    0.47948   6.854
## 5|6    3.81460    0.52408   7.279
## (14 Beobachtungen als fehlend gelöscht)
exp(coef(diff_model8_pass2))
##                                  -6|-4                                  -4|-3 
##                            0.003605502                            0.020248427 
##                                  -3|-2                                  -2|-1 
##                            0.035652068                            0.154564650 
##                                   -1|0                                    0|1 
##                            0.257689089                            0.906974807 
##                                    1|2                                    2|3 
##                            1.614697910                            6.309817279 
##                                    3|4                                    4|5 
##                            7.739192246                           26.742070059 
##                                    5|6 H3_interactiondisclaimer.new guideline 
##                           45.358523588                            1.041445037 
##                      text_orderFaerber                                  s_age 
##                            1.990835127                            0.994372655 
##                              s_sexmale                           s_schoolReal 
##                            0.830263764                            1.088678216 
##                            s_schoolAbi                 as.factor(s_interest)5 
##                            1.284699639                            0.921310933 
##                 as.factor(s_interest)6                 as.factor(s_interest)7 
##                            0.759446499                            0.703022865 
##                 as.factor(s_interest)8 
##                            0.463616005
exp(confint((diff_model8_pass2)))
##                                            2.5 %    97.5 %
## H3_interactiondisclaimer.new guideline 0.7446871 1.4567482
## text_orderFaerber                      1.4188033 2.8012153
## s_age                                  0.9835143 1.0053083
## s_sexmale                              0.5919237 1.1636173
## s_schoolReal                           0.7011513 1.6908710
## s_schoolAbi                            0.8496957 1.9449402
## as.factor(s_interest)5                 0.5387405 1.5762248
## as.factor(s_interest)6                 0.4339542 1.3272051
## as.factor(s_interest)7                 0.3980580 1.2402486
## as.factor(s_interest)8                 0.2616050 0.8189529
nagelkerke(fit = diff_model8_pass2, null = diff_null_pass1)
## $Models
##                                                                                                                                              
## Model: "clm, as.factor(s_diff) ~ H3_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_reg6, logit"
## Null:  "clm, as.factor(s_diff) ~ 1, data2_wide_pass_reg5, logit"                                                                             
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0895446
## Cox and Snell (ML)                  0.3208860
## Nagelkerke (Cragg and Uhler)        0.3252050
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -10     -84.939 169.88 2.9397e-31
## 
## $Number.of.observations
##           
## Model: 439
## Null:  477
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "WARNING: Fitted and null models have different numbers of observations"
H3test_pass2 = emmeans(diff_model8_pass2, ~ H3_interaction)
pairs(H3test_pass2, adjust = "tukey")
##  contrast                                               estimate    SE  df
##  no disclaimer.old guideline - disclaimer.new guideline  -0.0406 0.171 Inf
##  z.ratio p.value
##   -0.237  0.8124
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H3test_pass2, Letters = letters)
##  H3_interaction              emmean    SE  df asymp.LCL asymp.UCL .group
##  no disclaimer.old guideline  0.225 0.154 Inf   -0.0770     0.528  a    
##  disclaimer.new guideline     0.266 0.163 Inf   -0.0542     0.586  a    
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H3 Graphical

describeBy(data2_wide_pass_reg$s_diff,
           data2_wide_pass_reg$H3_interaction)
## 
##  Descriptive statistics by group 
## group: no disclaimer.old guideline
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
## ------------------------------------------------------------ 
## group: no disclaimer.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 432 0.39 2.11      0    0.34 2.22  -6   6    12 0.07      0.3 0.1
## ------------------------------------------------------------ 
## group: disclaimer.new guideline
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis  se
## X1    1 438 0.43 2.1      0    0.32 2.97  -6   6    12 0.31     0.21 0.1
H3_bar <- ggplot(data2_wide_pass_reg, aes(H3_interaction, s_diff)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Condition", y = "Differentiation Knowledge Score")
H3_bar
## Warning: Removed 36 rows containing non-finite values (`stat_summary()`).
## Removed 36 rows containing non-finite values (`stat_summary()`).

data2_wide_pass_reg$H3_interaction <- mapvalues(data2_wide_pass_reg$H3_interaction,
                                                c("no disclaimer.old guideline",
                                                  "no disclaimer.new guideline",
                                                  "disclaimer.new guideline"),
                                                c("old, no disclaimer",
                                                  "new, no disclaimer",
                                                  "new, disclaimer"))

H3_boxplot <- ggplot(data2_wide_pass_reg, aes(H3_interaction, s_diff,
                                              fill = H3_interaction))
H3_boxplot <- H3_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "Differentiation Knowledge Score") +
  scale_fill_brewer(palette = "Blues")
H3_boxplot
## Warning: Removed 36 rows containing non-finite values (`stat_boxplot()`).

by(data2_wide_pass_reg$s_diff, data2_wide_pass_reg$H3_interaction, describe)
## data2_wide_pass_reg$H3_interaction: old, no disclaimer
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
## ------------------------------------------------------------ 
## data2_wide_pass_reg$H3_interaction: new, no disclaimer
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 432 0.39 2.11      0    0.34 2.22  -6   6    12 0.07      0.3 0.1
## ------------------------------------------------------------ 
## data2_wide_pass_reg$H3_interaction: new, disclaimer
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis  se
## X1    1 438 0.43 2.1      0    0.32 2.97  -6   6    12 0.31     0.21 0.1
data2_wide_pass_reg_old <- subset(data2_wide_pass_reg, H3_interaction == 
                                    "old, no disclaimer")
quantile(data2_wide_pass_reg_old$s_diff, c(0.25, 0.75), na.rm = TRUE)
## 25% 75% 
##   0   2

H4

H4a

H4a_pass <- subset(data2_wide_pass, condition == 3| condition == 4| condition == 6) 
View(H4a_pass)

describeBy(H4a_pass$s_causality, H4a_pass$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 239    0 3.85      0   -0.06 2.97  -8  10    18 0.15    -0.27 0.25
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 405 0.11 3.95      0    0.08 2.97  -9  12    21 0.11     -0.2 0.2
wilcox.test(s_causality~causality, data = H4a_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 47508, p-value = 0.6952
## alternative hypothesis: true location shift is not equal to 0
# T-Test was computed to double-check results. Careful: 
# Requirements are not met.
t.test(s_causality~causality, data = H4a_pass, confint = TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  s_causality by causality
## t = -0.32162, df = 508.95, p-value = 0.7479
## alternative hypothesis: true difference in means between group no causality statement and group causality statement is not equal to 0
## 95 percent confidence interval:
##  -0.7249870  0.5210096
## sample estimates:
## mean in group no causality statement    mean in group causality statement 
##                            0.0041841                            0.1061728

H4a post hoc

H4a_pass1 <- subset(data2_wide_pass, condition == 3| condition == 6) 
View(H4a_pass1)
describeBy(H4a_pass1$s_causality, H4a_pass1$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 239    0 3.85      0   -0.06 2.97  -8  10    18 0.15    -0.27 0.25
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 209 0.08 3.92      0    0.05 2.97  -8  10    18 0.11    -0.23 0.27
wilcox.test(s_causality~causality, data = H4a_pass1, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 24716, p-value = 0.8491
## alternative hypothesis: true location shift is not equal to 0
H4a_pass2 <- subset(data2_wide_pass, condition == 4| condition == 6) 
View(H4a_pass2)
describeBy(H4a_pass2$s_causality, H4a_pass2$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 239    0 3.85      0   -0.06 2.97  -8  10    18 0.15    -0.27 0.25
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 196 0.14 3.98      0    0.11 2.97  -9  12    21  0.1     -0.2 0.28
wilcox.test(s_causality~causality, data = H4a_pass2, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 22792, p-value = 0.6275
## alternative hypothesis: true location shift is not equal to 0

H4b

H4b_pass <- subset(data2_wide_pass, condition == 1| condition == 2|
                condition == 3| condition == 4)
View(H4b_pass)

describeBy(H4b_pass$s_causality, H4b_pass$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 457 -0.51 3.88      0   -0.57 2.97 -10  10    20 0.13    -0.24 0.18
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 405 0.11 3.95      0    0.08 2.97  -9  12    21 0.11     -0.2 0.2
wilcox.test(s_causality~causality, data = H4b_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 84435, p-value = 0.02563
## alternative hypothesis: true location shift is not equal to 0
# T-Test was computed to double-check results. Careful: 
# Requirements are not met.
t.test(s_causality~causality, data = H4b_pass, confint = TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  s_causality by causality
## t = -2.3053, df = 844.03, p-value = 0.02139
## alternative hypothesis: true difference in means between group no causality statement and group causality statement is not equal to 0
## 95 percent confidence interval:
##  -1.14050223 -0.09153711
## sample estimates:
## mean in group no causality statement    mean in group causality statement 
##                           -0.5098468                            0.1061728

H4b post hoc

H4b_pass1 <- subset(data2_wide_pass, condition == 1|condition == 3)
View(H4b_pass1)
describeBy(H4b_pass1$s_causality, H4b_pass1$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 215 -0.12 3.85      0   -0.19 4.45  -8  10    18 0.15    -0.39 0.26
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 209 0.08 3.92      0    0.05 2.97  -8  10    18 0.11    -0.23 0.27
wilcox.test(s_causality~causality, data = H4b_pass1, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 21834, p-value = 0.6144
## alternative hypothesis: true location shift is not equal to 0
H4b_pass2 <- subset(data2_wide_pass, condition == 2|condition == 4)
View(H4b_pass2)
describeBy(H4b_pass2$s_causality, H4b_pass2$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 242 -0.86 3.88     -1   -0.91 4.45 -10  10    20 0.12    -0.16 0.25
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 196 0.14 3.98      0    0.11 2.97  -9  12    21  0.1     -0.2 0.28
wilcox.test(s_causality~causality, data = H4b_pass2, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 20336, p-value = 0.009955
## alternative hypothesis: true location shift is not equal to 0
H4b_pass3 <- subset(data2_wide_pass, condition == 1|condition == 4)
View(H4b_pass3)
describeBy(H4b_pass3$s_causality, H4b_pass3$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 215 -0.12 3.85      0   -0.19 4.45  -8  10    18 0.15    -0.39 0.26
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 196 0.14 3.98      0    0.11 2.97  -9  12    21  0.1     -0.2 0.28
wilcox.test(s_causality~causality, data = H4b_pass3, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 20235, p-value = 0.4859
## alternative hypothesis: true location shift is not equal to 0
H4b_pass4 <- subset(data2_wide_pass, condition == 2|condition == 3)
View(H4b_pass4)
describeBy(H4b_pass4$s_causality, H4b_pass4$causality)
## 
##  Descriptive statistics by group 
## group: no causality statement
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 242 -0.86 3.88     -1   -0.91 4.45 -10  10    20 0.12    -0.16 0.25
## ------------------------------------------------------------ 
## group: causality statement
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 209 0.08 3.92      0    0.05 2.97  -8  10    18 0.11    -0.23 0.27
wilcox.test(s_causality~causality, data = H4b_pass4, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_causality by causality
## W = 22030, p-value = 0.01772
## alternative hypothesis: true location shift is not equal to 0

H4 Mixed Model

sum(is.na(data2_long_pass$disclaimer))
## [1] 0
sum(is.na(data2_long_pass$s_awareness))
## [1] 0
sum(is.na(data2_long_pass$text_order))
## [1] 0
sum(is.na(data2_long_pass$s_age))
## [1] 0
data2_long_pass <- data2_long_pass %>% drop_na(s_age)
sum(is.na(data2_long_pass$s_sex))
## [1] 0
sum(is.na(data2_long_pass$s_school))
## [1] 0
sum(is.na(data2_long_pass$s_interest))
## [1] 0
data2_long_pass$H4_interaction <- interaction(data2_long_pass$causality, 
                                         data2_long_pass$version)
data2_long_pass$H4_interaction <- droplevels(data2_long_pass$H4_interaction)
table(data2_long_pass$H4_interaction)
## 
## no causality statement.new guideline    causality statement.new guideline 
##                                  944                                 1326 
## no causality statement.old guideline 
##                                  494
data2_long_pass_reg <- subset(data2_long_pass, condition != 5)
View(data2_long_pass_reg)

data2_long_pass_reg$H4_interaction <- relevel(data2_long_pass_reg$H4_interaction,
                                              ref = "no causality statement.old guideline")

set.seed(288659)

causality_null_pass <- clm(as.factor(s_causality) ~ 1,
                           data = data2_long_pass_reg,
                      link = "logit")

causality_model1_pass <- clmm(as.factor(s_causality) ~ 1 + (1|id),
                         data = data2_long_pass_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 75
anova(causality_null_pass,causality_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                              link: threshold:
## causality_null_pass   as.factor(s_causality) ~ 1            logit flexible  
## causality_model1_pass as.factor(s_causality) ~ 1 + (1 | id) logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## causality_null_pass       12 9757.2 -4866.6                          
## causality_model1_pass     13 9727.4 -4850.7  31.761  1  1.744e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model2_pass <- clmm(as.factor(s_causality) ~ H4_interaction + (1|id),
                         data = data2_long_pass_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 85
anova(causality_model1_pass,causality_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                           link:
## causality_model1_pass as.factor(s_causality) ~ 1 + (1 | id)              logit
## causality_model2_pass as.factor(s_causality) ~ H4_interaction + (1 | id) logit
##                       threshold:
## causality_model1_pass flexible  
## causality_model2_pass flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model1_pass     13 9727.4 -4850.7                        
## causality_model2_pass     15 9725.0 -4847.5  6.3853  2    0.04106 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model3_pass <- clmm(as.factor(s_causality) ~ H4_interaction +
                           summary + (1|id), data = data2_long_pass_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 90
anova(causality_model2_pass,causality_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                    
## causality_model2_pass as.factor(s_causality) ~ H4_interaction + (1 | id)          
## causality_model3_pass as.factor(s_causality) ~ H4_interaction + summary + (1 | id)
##                       link: threshold:
## causality_model2_pass logit flexible  
## causality_model3_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model2_pass     15 9725.0 -4847.5                        
## causality_model3_pass     16 9723.8 -4845.9  3.2427  1    0.07174 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model4_pass <- clmm(as.factor(s_causality) ~ H4_interaction + 
                                summary + text_order + (1|id), 
                              data = data2_long_pass_reg)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 95
anova(causality_model2_pass,causality_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                                 
## causality_model2_pass as.factor(s_causality) ~ H4_interaction + (1 | id)                       
## causality_model4_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + (1 | id)
##                       link: threshold:
## causality_model2_pass logit flexible  
## causality_model4_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model2_pass     15 9725.0 -4847.5                        
## causality_model4_pass     17 9722.2 -4844.1   6.866  2    0.03229 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model5_pass <- clmm(as.factor(s_causality) ~ H4_interaction +
                           summary + text_order + s_age + (1|id),
                         data = data2_long_pass_reg)
anova(causality_model2_pass,causality_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                                         
## causality_model2_pass as.factor(s_causality) ~ H4_interaction + (1 | id)                               
## causality_model5_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + (1 | id)
##                       link: threshold:
## causality_model2_pass logit flexible  
## causality_model5_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model2_pass     15 9725.0 -4847.5                          
## causality_model5_pass     18 9681.1 -4822.6  49.889  3  8.434e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model6_pass <- clmm(as.factor(s_causality) ~ H4_interaction + 
                                summary + text_order + s_age + s_sex + (1|id),
                         data = data2_long_pass_reg)
anova(causality_model5_pass,causality_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                                                 
## causality_model5_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + (1 | id)        
## causality_model6_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + (1 | id)
##                       link: threshold:
## causality_model5_pass logit flexible  
## causality_model6_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)
## causality_model5_pass     18 9681.1 -4822.6                      
## causality_model6_pass     19 9681.5 -4821.8  1.6077  1     0.2048
causality_model7_pass <- clmm(as.factor(s_causality) ~ H4_interaction +
                           summary + text_order + s_age + s_sex + s_school +
                           (1|id), data = data2_long_pass_reg)
anova(causality_model5_pass,causality_model7_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                                                            
## causality_model5_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + (1 | id)                   
## causality_model7_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + (1 | id)
##                       link: threshold:
## causality_model5_pass logit flexible  
## causality_model7_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## causality_model5_pass     18 9681.1 -4822.6                          
## causality_model7_pass     21 9641.4 -4799.7  45.772  3   6.34e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
causality_model8_pass <- clmm(as.factor(s_causality) ~ H4_interaction +
                            summary + text_order + s_age + s_sex + s_school +
                            as.factor(s_interest) + (1|id), 
                            data = data2_long_pass_reg)
anova(causality_model7_pass,causality_model8_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                       formula:                                                                                                                    
## causality_model7_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + (1 | id)                        
## causality_model8_pass as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                       link: threshold:
## causality_model7_pass logit flexible  
## causality_model8_pass logit flexible  
## 
##                       no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## causality_model7_pass     21 9641.4 -4799.7                        
## causality_model8_pass     25 9639.9 -4794.9  9.5015  4    0.04972 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(causality_model8_pass)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass_reg
## 
##  link  threshold nobs logLik   AIC     niter       max.grad cond.H 
##  logit flexible  2241 -4794.94 9639.87 4028(11718) 1.40e+03 8.4e+06
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.497    0.705   
## Number of groups:  id 1140 
## 
## Coefficients:
##                                                      Estimate Std. Error
## H4_interactionno causality statement.new guideline -0.1815985  0.0001996
## H4_interactioncausality statement.new guideline     0.1087917  0.0863757
## summaryFaerber                                     -0.1255491  0.0001894
## text_orderFaerber                                   0.1757052  0.0788898
## s_age                                              -0.0177713  0.0001884
## s_sexmale                                           0.0929959  0.0789162
## s_schoolReal                                        0.2094841  0.0903320
## s_schoolAbi                                         0.6934230  0.0001996
## as.factor(s_interest)5                              0.0983129  0.1070160
## as.factor(s_interest)6                             -0.0129118  0.1047526
## as.factor(s_interest)7                             -0.1677846  0.1168966
## as.factor(s_interest)8                             -0.3113103  0.0001996
##                                                      z value Pr(>|z|)    
## H4_interactionno causality statement.new guideline  -909.819   <2e-16 ***
## H4_interactioncausality statement.new guideline        1.260   0.2078    
## summaryFaerber                                      -663.023   <2e-16 ***
## text_orderFaerber                                      2.227   0.0259 *  
## s_age                                                -94.343   <2e-16 ***
## s_sexmale                                              1.178   0.2386    
## s_schoolReal                                           2.319   0.0204 *  
## s_schoolAbi                                         3474.084   <2e-16 ***
## as.factor(s_interest)5                                 0.919   0.3583    
## as.factor(s_interest)6                                -0.123   0.9019    
## as.factor(s_interest)7                                -1.435   0.1512    
## as.factor(s_interest)8                             -1559.681   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##         Estimate Std. Error    z value
## -6|-5 -6.7945533  0.4042384    -16.808
## -5|-4 -5.9460333  0.2631006    -22.600
## -4|-3 -2.6712206  0.0001894 -14106.773
## -3|-2 -2.2408979  0.0001894 -11834.255
## -2|-1 -1.3892263  0.0434762    -31.954
## -1|0  -0.9576527  0.0492953    -19.427
## 0|1    0.1050367  0.0594889      1.766
## 1|2    0.4723382  0.0631892      7.475
## 2|3    1.4633246  0.0766954     19.080
## 3|4    1.7932872  0.0831083     21.578
## 4|5    3.4485920  0.1449077     23.799
## 5|6    3.7781135  0.1664454     22.699
## (49 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model8_pass))
##                                              -6|-5 
##                                        0.001119858 
##                                              -5|-4 
##                                        0.002616198 
##                                              -4|-3 
##                                        0.069167747 
##                                              -3|-2 
##                                        0.106362954 
##                                              -2|-1 
##                                        0.249268093 
##                                               -1|0 
##                                        0.383792709 
##                                                0|1 
##                                        1.110751353 
##                                                1|2 
##                                        1.603739714 
##                                                2|3 
##                                        4.320299055 
##                                                3|4 
##                                        6.009173409 
##                                                4|5 
##                                       31.456072357 
##                                                5|6 
##                                       43.733459723 
## H4_interactionno causality statement.new guideline 
##                                        0.833936077 
##    H4_interactioncausality statement.new guideline 
##                                        1.114930086 
##                                     summaryFaerber 
##                                        0.882012473 
##                                  text_orderFaerber 
##                                        1.192086603 
##                                              s_age 
##                                        0.982385704 
##                                          s_sexmale 
##                                        1.097457252 
##                                       s_schoolReal 
##                                        1.233041825 
##                                        s_schoolAbi 
##                                        2.000551646 
##                             as.factor(s_interest)5 
##                                        1.103307994 
##                             as.factor(s_interest)6 
##                                        0.987171202 
##                             as.factor(s_interest)7 
##                                        0.845535951 
##                             as.factor(s_interest)8 
##                                        0.732486541
exp(confint(causality_model8_pass))
##                                                           2.5 %       97.5 %
## -6|-5                                              5.070779e-04  0.002473155
## -5|-4                                              1.562136e-03  0.004381494
## -4|-3                                              6.914208e-02  0.069193422
## -3|-2                                              1.063235e-01  0.106402436
## -2|-1                                              2.289073e-01  0.271439888
## -1|0                                               3.484468e-01  0.422724064
## 0|1                                                9.885071e-01  1.248112957
## 1|2                                                1.416926e+00  1.815183812
## 2|3                                                3.717325e+00  5.021079185
## 3|4                                                5.105906e+00  7.072234837
## 4|5                                                2.367875e+01 41.787863810
## 5|6                                                3.155987e+01 60.602763239
## H4_interactionno causality statement.new guideline 8.336099e-01  0.834262382
## H4_interactioncausality statement.new guideline    9.412923e-01  1.320598366
## summaryFaerber                                     8.816852e-01  0.882339880
## text_orderFaerber                                  1.021308e+00  1.391422192
## s_age                                              9.820231e-01  0.982748463
## s_sexmale                                          9.401866e-01  1.281035515
## s_schoolReal                                       1.032968e+00  1.471867006
## s_schoolAbi                                        1.999769e+00  2.001334428
## as.factor(s_interest)5                             8.945499e-01  1.360783190
## as.factor(s_interest)6                             8.039460e-01  1.212154755
## as.factor(s_interest)7                             6.724027e-01  1.063248253
## as.factor(s_interest)8                             7.322000e-01  0.732773150
nagelkerke(fit = causality_model8_pass, null = causality_null_pass)
## $Models
##                                                                                                                                                                 
## Model: "clmm, as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass_reg"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_pass_reg, logit"                                                                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0147238
## Cox and Snell (ML)                  0.0619471
## Nagelkerke (Cragg and Uhler)        0.0627627
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -13     -71.655 143.31 4.5656e-24
## 
## $Number.of.observations
##            
## Model: 2241
## Null:  2241
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_pass = emmeans(causality_model8_pass, ~ H4_interaction)
pairs(H4test_pass, adjust = "tukey")
##  contrast                                                                   
##  no causality statement.old guideline - no causality statement.new guideline
##  no causality statement.old guideline - causality statement.new guideline   
##  no causality statement.new guideline - causality statement.new guideline   
##  estimate        SE  df z.ratio p.value
##    0.1816 0.0001996 Inf 909.819  <.0001
##   -0.1088 0.0863757 Inf  -1.260  0.4182
##   -0.2904 0.0863756 Inf  -3.362  0.0022
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H4test_pass, Letters = letters)
##  H4_interaction                       emmean     SE  df asymp.LCL asymp.UCL
##  no causality statement.new guideline 0.0186 0.0726 Inf   -0.1237     0.161
##  no causality statement.old guideline 0.2002 0.0726 Inf    0.0579     0.343
##  causality statement.new guideline    0.3090 0.0900 Inf    0.1326     0.485
##  .group
##   a    
##    b   
##    b   
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
#Changing reference group for H4_interaction to new_no causality" for further testing

data2_long_pass_reg$H4_interaction <- relevel(data2_long_pass_reg$H4_interaction,
                                              ref = "no causality statement.new guideline")

set.seed(288659)

causality_null_pass <- clm(as.factor(s_causality) ~ 1,
                           data = data2_long_pass_reg,
                      link = "logit")

causality_model8_pass <- clmm(as.factor(s_causality) ~ H4_interaction +
                            summary + text_order + s_age + s_sex + s_school +
                            as.factor(s_interest) + (1|id), 
                            data = data2_long_pass_reg)

summary(causality_model8_pass)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass_reg
## 
##  link  threshold nobs logLik   AIC     niter       max.grad cond.H 
##  logit flexible  2241 -4794.89 9639.77 4881(14309) 1.39e+03 7.0e+06
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.4961   0.7044  
## Number of groups:  id 1140 
## 
## Coefficients:
##                                                      Estimate Std. Error
## H4_interactionno causality statement.old guideline  0.1786773  0.1078775
## H4_interactioncausality statement.new guideline     0.2788990  0.0912867
## summaryFaerber                                     -0.1259396  0.0001896
## text_orderFaerber                                   0.1735413  0.0796119
## s_age                                              -0.0177474  0.0001886
## s_sexmale                                           0.0884027  0.0795611
## s_schoolReal                                        0.2068055  0.0906082
## s_schoolAbi                                         0.6943650  0.0001958
## as.factor(s_interest)5                              0.0918543  0.1083552
## as.factor(s_interest)6                             -0.0175016  0.1055569
## as.factor(s_interest)7                             -0.1572082  0.1184559
## as.factor(s_interest)8                             -0.3082542  0.0001958
##                                                      z value Pr(>|z|)    
## H4_interactionno causality statement.old guideline     1.656  0.09766 .  
## H4_interactioncausality statement.new guideline        3.055  0.00225 ** 
## summaryFaerber                                      -664.358  < 2e-16 ***
## text_orderFaerber                                      2.180  0.02927 *  
## s_age                                                -94.082  < 2e-16 ***
## s_sexmale                                              1.111  0.26651    
## s_schoolReal                                           2.282  0.02246 *  
## s_schoolAbi                                         3546.635  < 2e-16 ***
## as.factor(s_interest)5                                 0.848  0.39660    
## as.factor(s_interest)6                                -0.166  0.86831    
## as.factor(s_interest)7                                -1.327  0.18446    
## as.factor(s_interest)8                             -1574.483  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##         Estimate Std. Error    z value
## -6|-5 -6.6246147  0.4049569    -16.359
## -5|-4 -5.7731911  0.2629285    -21.957
## -4|-3 -2.5008761  0.0001896 -13192.732
## -3|-2 -2.0710260  0.0001896 -10925.191
## -2|-1 -1.2171565  0.0438267    -27.772
## -1|0  -0.7854026  0.0497442    -15.789
## 0|1    0.2811440  0.0601178      4.677
## 1|2    0.6473634  0.0637883     10.149
## 2|3    1.6422486  0.0773354     21.235
## 3|4    1.9721463  0.0837088     23.560
## 4|5    3.6194797  0.1447421     25.006
## 5|6    3.9433068  0.1656134     23.810
## (49 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model8_pass))
##                                              -6|-5 
##                                        0.001327292 
##                                              -5|-4 
##                                        0.003109818 
##                                              -4|-3 
##                                        0.082013118 
##                                              -3|-2 
##                                        0.126056386 
##                                              -2|-1 
##                                        0.296070835 
##                                               -1|0 
##                                        0.455936086 
##                                                0|1 
##                                        1.324644327 
##                                                1|2 
##                                        1.910497003 
##                                                2|3 
##                                        5.166774512 
##                                                3|4 
##                                        7.186083677 
##                                                4|5 
##                                       37.318146840 
##                                                5|6 
##                                       51.588914574 
## H4_interactionno causality statement.old guideline 
##                                        1.195634906 
##    H4_interactioncausality statement.new guideline 
##                                        1.321673814 
##                                     summaryFaerber 
##                                        0.881668115 
##                                  text_orderFaerber 
##                                        1.189509807 
##                                              s_age 
##                                        0.982409174 
##                                          s_sexmale 
##                                        1.092427931 
##                                       s_schoolReal 
##                                        1.229743348 
##                                        s_schoolAbi 
##                                        2.002437155 
##                             as.factor(s_interest)5 
##                                        1.096205068 
##                             as.factor(s_interest)6 
##                                        0.982650625 
##                             as.factor(s_interest)7 
##                                        0.854526113 
##                             as.factor(s_interest)8 
##                                        0.734728535
exp(confint(causality_model8_pass))
##                                                           2.5 %       97.5 %
## -6|-5                                              6.001592e-04  0.002935394
## -5|-4                                              1.857504e-03  0.005206431
## -4|-3                                              8.198265e-02  0.082043594
## -3|-2                                              1.260096e-01  0.126103230
## -2|-1                                              2.717004e-01  0.322627193
## -1|0                                               4.135820e-01  0.502627580
## 0|1                                                1.177408e+00  1.490292874
## 1|2                                                1.685969e+00  2.164926000
## 2|3                                                4.440087e+00  6.012394891
## 3|4                                                6.098727e+00  8.467308255
## 4|5                                                2.810058e+01 49.559259014
## 5|6                                                3.728945e+01 71.371826410
## H4_interactionno causality statement.old guideline 9.677721e-01  1.477148271
## H4_interactioncausality statement.new guideline    1.105149e+00  1.580620724
## summaryFaerber                                     8.813406e-01  0.881995753
## text_orderFaerber                                  1.017659e+00  1.390380860
## s_age                                              9.820460e-01  0.982772461
## s_sexmale                                          9.346958e-01  1.276777796
## s_schoolReal                                       1.029648e+00  1.468724567
## s_schoolAbi                                        2.001669e+00  2.003205686
## as.factor(s_interest)5                             8.864611e-01  1.355576221
## as.factor(s_interest)6                             7.990040e-01  1.208507447
## as.factor(s_interest)7                             6.774784e-01  1.077842263
## as.factor(s_interest)8                             7.344467e-01  0.735010522
nagelkerke(fit = causality_model8_pass, null = causality_null_pass)
## $Models
##                                                                                                                                                                 
## Model: "clmm, as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass_reg"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_pass_reg, logit"                                                                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0147338
## Cox and Snell (ML)                  0.0619876
## Nagelkerke (Cragg and Uhler)        0.0628037
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -13     -71.703 143.41 4.3658e-24
## 
## $Number.of.observations
##            
## Model: 2241
## Null:  2241
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_pass = emmeans(causality_model8_pass, ~ H4_interaction)
pairs(H4test_pass, adjust = "tukey")
##  contrast                                                                   
##  no causality statement.new guideline - no causality statement.old guideline
##  no causality statement.new guideline - causality statement.new guideline   
##  no causality statement.old guideline - causality statement.new guideline   
##  estimate     SE  df z.ratio p.value
##    -0.179 0.1079 Inf  -1.656  0.2222
##    -0.279 0.0913 Inf  -3.055  0.0064
##    -0.100 0.1166 Inf  -0.859  0.6660
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld(H4test_pass, Letters = letters)
##  H4_interaction                       emmean     SE  df asymp.LCL asymp.UCL
##  no causality statement.new guideline  0.025 0.0779 Inf  -0.12761     0.178
##  no causality statement.old guideline  0.204 0.1078 Inf  -0.00763     0.415
##  causality statement.new guideline     0.304 0.0900 Inf   0.12750     0.480
##  .group
##   a    
##   ab   
##    b   
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Mixed Model by Groups

set.seed(288659)

data2_long_pass_reg1 <- subset(data2_long_pass, condition == 3 | condition == 6)
View(data2_long_pass_reg1)

causality_null_pass1 <- clm(as.factor(s_causality) ~ 1, data = data2_long_pass_reg1, link = "logit")

causality_model10_pass1 <- clmm(as.factor(s_causality) ~ H4_interaction +
                           summary + text_order + s_age + s_sex + s_school +
                           as.factor(s_interest) + (1|id), data = data2_long_pass_reg1)

summary(causality_model10_pass1)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass_reg1
## 
##  link  threshold nobs logLik   AIC     niter      max.grad cond.H 
##  logit flexible  913  -1946.71 3941.42 2900(8398) 5.87e+02 8.5e+06
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.4964   0.7046  
## Number of groups:  id 465 
## 
## Coefficients:
##                                                      Estimate Std. Error
## H4_interactionno causality statement.old guideline -0.0997313  0.1290745
## summaryFaerber                                     -0.0152518  0.0002921
## text_orderFaerber                                   0.1497657  0.1266031
## s_age                                              -0.0190058  0.0002909
## s_sexmale                                           0.0724975  0.0003017
## s_schoolReal                                        0.0333418  0.0003017
## s_schoolAbi                                         0.7230952  0.1446164
## as.factor(s_interest)5                              0.1390184  0.1659623
## as.factor(s_interest)6                              0.0651620  0.1743074
## as.factor(s_interest)7                             -0.0183709  0.1927326
## as.factor(s_interest)8                             -0.1665107  0.2091752
##                                                    z value Pr(>|z|)    
## H4_interactionno causality statement.old guideline  -0.773    0.440    
## summaryFaerber                                     -52.214  < 2e-16 ***
## text_orderFaerber                                    1.183    0.237    
## s_age                                              -65.342  < 2e-16 ***
## s_sexmale                                          240.313  < 2e-16 ***
## s_schoolReal                                       110.521  < 2e-16 ***
## s_schoolAbi                                          5.000 5.73e-07 ***
## as.factor(s_interest)5                               0.838    0.402    
## as.factor(s_interest)6                               0.374    0.709    
## as.factor(s_interest)7                              -0.095    0.924    
## as.factor(s_interest)8                              -0.796    0.426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##         Estimate Std. Error  z value
## -6|-5 -7.0209208  0.7127743   -9.850
## -5|-4 -5.9130827  0.4151365  -14.244
## -4|-3 -2.8117318  0.1298472  -21.654
## -3|-2 -2.4156564  0.1188085  -20.332
## -2|-1 -1.5168817  0.1016805  -14.918
## -1|0  -1.0494706  0.0953385  -11.008
## 0|1    0.0573920  0.0802807    0.715
## 1|2    0.3940832  0.0734972    5.362
## 2|3    1.3367872  0.0002921 4576.484
## 3|4    1.7048392  0.0002921 5836.530
## 4|5    3.5134056  0.2026555   17.337
## 5|6    3.8168416  0.2415576   15.801
## (21 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model10_pass1))
##                                              -6|-5 
##                                       8.930028e-04 
##                                              -5|-4 
##                                       2.703839e-03 
##                                              -4|-3 
##                                       6.010082e-02 
##                                              -3|-2 
##                                       8.930869e-02 
##                                              -2|-1 
##                                       2.193950e-01 
##                                               -1|0 
##                                       3.501230e-01 
##                                                0|1 
##                                       1.059071e+00 
##                                                1|2 
##                                       1.483024e+00 
##                                                2|3 
##                                       3.806793e+00 
##                                                3|4 
##                                       5.500501e+00 
##                                                4|5 
##                                       3.356237e+01 
##                                                5|6 
##                                       4.546040e+01 
## H4_interactionno causality statement.old guideline 
##                                       9.050806e-01 
##                                     summaryFaerber 
##                                       9.848639e-01 
##                                  text_orderFaerber 
##                                       1.161562e+00 
##                                              s_age 
##                                       9.811737e-01 
##                                          s_sexmale 
##                                       1.075190e+00 
##                                       s_schoolReal 
##                                       1.033904e+00 
##                                        s_schoolAbi 
##                                       2.060802e+00 
##                             as.factor(s_interest)5 
##                                       1.149145e+00 
##                             as.factor(s_interest)6 
##                                       1.067332e+00 
##                             as.factor(s_interest)7 
##                                       9.817968e-01 
##                             as.factor(s_interest)8 
##                                       8.466138e-01
exp(confint(causality_model10_pass1))
##                                                           2.5 %       97.5 %
## -6|-5                                              2.208708e-04  0.003610501
## -5|-4                                              1.198439e-03  0.006100222
## -4|-3                                              4.659661e-02  0.077518709
## -3|-2                                              7.075608e-02  0.112725906
## -2|-1                                              1.797530e-01  0.267779418
## -1|0                                               2.904480e-01  0.422058833
## 0|1                                                9.048778e-01  1.239538731
## 1|2                                                1.284066e+00  1.712809466
## 2|3                                                3.804614e+00  3.808973298
## 3|4                                                5.497353e+00  5.503651203
## 4|5                                                2.256067e+01 49.929060470
## 5|6                                                2.831516e+01 72.987320143
## H4_interactionno causality statement.old guideline 7.027791e-01  1.165616398
## summaryFaerber                                     9.843003e-01  0.985427946
## text_orderFaerber                                  9.063118e-01  1.488699939
## s_age                                              9.806145e-01  0.981733172
## s_sexmale                                          1.074555e+00  1.075826028
## s_schoolReal                                       1.033293e+00  1.034515370
## s_schoolAbi                                        1.552167e+00  2.736112499
## as.factor(s_interest)5                             8.300564e-01  1.590897651
## as.factor(s_interest)6                             7.584531e-01  1.502001105
## as.factor(s_interest)7                             6.729261e-01  1.432438156
## as.factor(s_interest)8                             5.618690e-01  1.275661908
nagelkerke(fit = causality_model10_pass1, null = causality_null_pass1)
## $Models
##                                                                                                                                                                  
## Model: "clmm, as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass_reg1"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_pass_reg1, logit"                                                                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0149519
## Cox and Snell (ML)                  0.0626788
## Nagelkerke (Cragg and Uhler)        0.0635159
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -29.549 59.098 3.2947e-08
## 
## $Number.of.observations
##           
## Model: 913
## Null:  913
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_pass1 = emmeans(causality_model10_pass1, ~ H4_interaction)
pairs(H4test_pass1, adjust = "tukey")
##  contrast                                                                
##  causality statement.new guideline - no causality statement.old guideline
##  estimate    SE  df z.ratio p.value
##    0.0997 0.129 Inf   0.773  0.4397
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H4test_pass1, Letters = letters)
##  H4_interaction                       emmean    SE  df asymp.LCL asymp.UCL
##  no causality statement.old guideline  0.194 0.129 Inf   -0.0593     0.447
##  causality statement.new guideline     0.294 0.123 Inf    0.0525     0.535
##  .group
##   a    
##   a    
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.
data2_long_pass_reg2 <- subset(data2_long_pass, condition == 4 | condition == 6)
View(data2_long_pass_reg2)

causality_null_pass2 <- clm(as.factor(s_causality) ~ 1, data = data2_long_pass_reg2, link = "logit")

causality_model10_pass2 <- clmm(as.factor(s_causality) ~ H4_interaction +
                           summary + text_order + s_age + s_sex + s_school +
                           as.factor(s_interest) + (1|id), data = data2_long_pass_reg2)

summary(causality_model10_pass2)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_causality) ~ H4_interaction + summary + text_order +  
##     s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass_reg2
## 
##  link  threshold nobs logLik   AIC     niter      max.grad cond.H 
##  logit flexible  886  -1887.79 3823.58 3341(7710) 2.22e-02 9.9e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 0.3295   0.574   
## Number of groups:  id 451 
## 
## Coefficients:
##                                                     Estimate Std. Error z value
## H4_interactionno causality statement.old guideline -0.118928   0.132703  -0.896
## summaryFaerber                                     -0.148873   0.119944  -1.241
## text_orderFaerber                                   0.115044   0.132548   0.868
## s_age                                              -0.018639   0.004464  -4.176
## s_sexmale                                           0.020535   0.134037   0.153
## s_schoolReal                                        0.044700   0.172999   0.258
## s_schoolAbi                                         0.601577   0.165542   3.634
## as.factor(s_interest)5                              0.266951   0.209249   1.276
## as.factor(s_interest)6                              0.076552   0.213502   0.359
## as.factor(s_interest)7                             -0.041883   0.220704  -0.190
## as.factor(s_interest)8                             -0.123130   0.227445  -0.541
##                                                    Pr(>|z|)    
## H4_interactionno causality statement.old guideline 0.370147    
## summaryFaerber                                     0.214536    
## text_orderFaerber                                  0.385425    
## s_age                                              2.97e-05 ***
## s_sexmale                                          0.878236    
## s_schoolReal                                       0.796112    
## s_schoolAbi                                        0.000279 ***
## as.factor(s_interest)5                             0.202041    
## as.factor(s_interest)6                             0.719930    
## as.factor(s_interest)7                             0.849488    
## as.factor(s_interest)8                             0.588259    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -7.7090     1.0620  -7.259
## -5|-4  -5.9094     0.5425 -10.893
## -4|-3  -2.8459     0.3586  -7.936
## -3|-2  -2.4231     0.3514  -6.896
## -2|-1  -1.5457     0.3412  -4.531
## -1|0   -1.1540     0.3380  -3.414
## 0|1    -0.1024     0.3345  -0.306
## 1|2     0.2402     0.3354   0.716
## 2|3     1.2434     0.3418   3.638
## 3|4     1.5105     0.3447   4.383
## 4|5     3.0561     0.3839   7.960
## 5|6     3.1802     0.3899   8.156
## (20 Beobachtungen als fehlend gelöscht)
exp(coef(causality_model10_pass2))
##                                              -6|-5 
##                                       4.487809e-04 
##                                              -5|-4 
##                                       2.713847e-03 
##                                              -4|-3 
##                                       5.808065e-02 
##                                              -3|-2 
##                                       8.864492e-02 
##                                              -2|-1 
##                                       2.131572e-01 
##                                               -1|0 
##                                       3.153692e-01 
##                                                0|1 
##                                       9.027076e-01 
##                                                1|2 
##                                       1.271515e+00 
##                                                2|3 
##                                       3.467490e+00 
##                                                3|4 
##                                       4.529133e+00 
##                                                4|5 
##                                       2.124499e+01 
##                                                5|6 
##                                       2.405164e+01 
## H4_interactionno causality statement.old guideline 
##                                       8.878716e-01 
##                                     summaryFaerber 
##                                       8.616788e-01 
##                                  text_orderFaerber 
##                                       1.121923e+00 
##                                              s_age 
##                                       9.815333e-01 
##                                          s_sexmale 
##                                       1.020748e+00 
##                                       s_schoolReal 
##                                       1.045714e+00 
##                                        s_schoolAbi 
##                                       1.824995e+00 
##                             as.factor(s_interest)5 
##                                       1.305976e+00 
##                             as.factor(s_interest)6 
##                                       1.079558e+00 
##                             as.factor(s_interest)7 
##                                       9.589815e-01 
##                             as.factor(s_interest)8 
##                                       8.841487e-01
exp(confint(causality_model10_pass2))
##                                                           2.5 %       97.5 %
## -6|-5                                              5.598198e-05  0.003597664
## -5|-4                                              9.371317e-04  0.007859052
## -4|-3                                              2.876044e-02  0.117291749
## -3|-2                                              4.452233e-02  0.176493965
## -2|-1                                              1.092200e-01  0.416004133
## -1|0                                               1.625917e-01  0.611702454
## 0|1                                                4.686053e-01  1.738949582
## 1|2                                                6.588962e-01  2.453725326
## 2|3                                                1.774458e+00  6.775863591
## 3|4                                                2.304823e+00  8.900053074
## 4|5                                                1.001070e+01 45.086698909
## 5|6                                                1.120072e+01 51.646816739
## H4_interactionno causality statement.old guideline 6.845311e-01  1.151614486
## summaryFaerber                                     6.811601e-01  1.090037973
## text_orderFaerber                                  8.652430e-01  1.454748889
## s_age                                              9.729837e-01  0.990157946
## s_sexmale                                          7.849213e-01  1.327426775
## s_schoolReal                                       7.449995e-01  1.467809717
## s_schoolAbi                                        1.319326e+00  2.524476263
## as.factor(s_interest)5                             8.666075e-01  1.968104048
## as.factor(s_interest)6                             7.104154e-01  1.640512872
## as.factor(s_interest)7                             6.222240e-01  1.477997579
## as.factor(s_interest)8                             5.661396e-01  1.380788253
nagelkerke(fit = causality_model10_pass2, null = causality_null_pass2)
## $Models
##                                                                                                                                                                  
## Model: "clmm, as.factor(s_causality) ~ H4_interaction + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass_reg2"
## Null:  "clm, as.factor(s_causality) ~ 1, data2_long_pass_reg2, logit"                                                                                            
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0142506
## Cox and Snell (ML)                  0.0597460
## Nagelkerke (Cragg and Uhler)        0.0605489
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -27.291 54.582 2.1503e-07
## 
## $Number.of.observations
##           
## Model: 886
## Null:  886
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H4test_pass2 = emmeans(causality_model10_pass2, ~ H4_interaction)
pairs(H4test_pass2, adjust = "tukey")
##  contrast                                                                
##  causality statement.new guideline - no causality statement.old guideline
##  estimate    SE  df z.ratio p.value
##     0.119 0.133 Inf   0.896  0.3701
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H4test_pass2, Letters = letters)
##  H4_interaction                       emmean    SE  df asymp.LCL asymp.UCL
##  no causality statement.old guideline  0.270 0.139 Inf  -0.00207     0.542
##  causality statement.new guideline     0.389 0.145 Inf   0.10435     0.673
##  .group
##   a    
##   a    
## 
## Results are averaged over the levels of: summary, text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H4 Graphical

describeBy(data2_long_pass_reg$s_causality,
           data2_long_pass_reg$H4_interaction)
## 
##  Descriptive statistics by group 
## group: no causality statement.new guideline
##    vars   n  mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 928 -0.26 2.5      0   -0.36 2.97  -6   6    12 0.18    -0.61 0.08
## ------------------------------------------------------------ 
## group: no causality statement.old guideline
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 486 -0.02 2.52      0   -0.07 2.97  -5   6    11 0.18    -0.57 0.11
## ------------------------------------------------------------ 
## group: causality statement.new guideline
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 827 0.06 2.55      0    0.02 2.97  -6   6    12 0.14    -0.56 0.09
H4_bar <- ggplot(data2_long_pass_reg, aes(H4_interaction,
                                       s_causality)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Condition", y = "Causality Knowledge Score")

H4_bar
## Warning: Removed 49 rows containing non-finite values (`stat_summary()`).
## Removed 49 rows containing non-finite values (`stat_summary()`).

data2_long_pass_reg$H4_interaction <- mapvalues(data2_long_pass_reg$H4_interaction,
                                                c("no causality statement.old guideline",
                                                  "no causality statement.new guideline",
                                                  "causality statement.new guideline"),
                                                c("old, no causality",
                                                  "new, no causality",
                                                  "new, causality"))

H4_boxplot <- ggplot(data2_long_pass_reg, aes(H4_interaction, s_causality,
                                              fill = H4_interaction))
H4_boxplot <- H4_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "Causality Knowledge Score") +
  scale_fill_brewer(palette = "Blues")
H4_boxplot
## Warning: Removed 49 rows containing non-finite values (`stat_boxplot()`).

H5

H5a

H5a_pass <- subset(data2_wide_pass, condition == 5|condition == 6)

describeBy(H5a_pass$s_CAMA,H5a_pass$CAMA)
## 
##  Descriptive statistics by group 
## group: no CAMA PLS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.77 3.36      0    0.83 2.97  -7  11    18 -0.04     0.12 0.22
## ------------------------------------------------------------ 
## group: CAMA PLS
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 225 1.66 4.2      1     1.7 4.45 -11  13    24 -0.01    -0.05 0.28
wilcox.test(s_CAMA~CAMA, data = H5a_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_CAMA by CAMA
## W = 23613, p-value = 0.02249
## alternative hypothesis: true location shift is not equal to 0

H5b

H5b_pass <- subset(data2_wide_pass, condition == 4| condition == 5)

describeBy(H5b_pass$s_CAMA, H5b_pass$CAMA)
## 
##  Descriptive statistics by group 
## group: no CAMA PLS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 193  0.3 3.01      0    0.32 2.97  -9   7    16 -0.09     0.12 0.22
## ------------------------------------------------------------ 
## group: CAMA PLS
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 225 1.66 4.2      1     1.7 4.45 -11  13    24 -0.01    -0.05 0.28
wilcox.test(s_CAMA~CAMA, data = H5b_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_CAMA by CAMA
## W = 17375, p-value = 0.0003894
## alternative hypothesis: true location shift is not equal to 0

H5 Logistic Regression

data2_wide_pass$H5_interaction <- interaction(data2_wide_pass$CAMA, 
                                              data2_wide_pass$version)
data2_wide_pass$H5_interaction <- droplevels(data2_wide_pass$H5_interaction)

data2_wide_pass$H5_interaction <- factor(data2_wide_pass$H5_interaction, 
                                             levels = c(
                                               "no CAMA PLS.old guideline",
                                               "no CAMA PLS.new guideline",
                                               "CAMA PLS.new guideline"))
data2_wide_pass_H5 <- subset(data2_wide_pass, condition == 4| condition == 5 |
                               condition == 6)
table(data2_wide_pass_H5$H5_interaction)
## 
## no CAMA PLS.old guideline no CAMA PLS.new guideline    CAMA PLS.new guideline 
##                       247                       206                       237
cama_null_pass <- clm(as.factor(s_CAMA) ~  1, data = data2_wide_pass_H5, 
                      link = "logit")

cama_model1_pass <- clm(as.factor(s_CAMA) ~  H5_interaction, 
                        data = data2_wide_pass_H5, link = "logit")
anova(cama_null_pass,cama_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                           link: threshold:
## cama_null_pass   as.factor(s_CAMA) ~ 1              logit flexible  
## cama_model1_pass as.factor(s_CAMA) ~ H5_interaction logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## cama_null_pass       22 3459.0 -1707.5                          
## cama_model1_pass     24 3449.2 -1700.6  13.834  2  0.0009909 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model2_pass <- clm(as.factor(s_CAMA) ~  H5_interaction + text_order,
                   data = data2_wide_pass_H5, link = "logit")
anova(cama_model1_pass,cama_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                        link:
## cama_model1_pass as.factor(s_CAMA) ~ H5_interaction              logit
## cama_model2_pass as.factor(s_CAMA) ~ H5_interaction + text_order logit
##                  threshold:
## cama_model1_pass flexible  
## cama_model2_pass flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## cama_model1_pass     24 3449.2 -1700.6                      
## cama_model2_pass     25 3449.6 -1699.8  1.6002  1     0.2059
cama_model3_pass <- clm(as.factor(s_CAMA) ~  H5_interaction + 
                     text_order + s_age, data = data2_wide_pass_H5, link = "logit")
anova(cama_model1_pass,cama_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                link:
## cama_model1_pass as.factor(s_CAMA) ~ H5_interaction                      logit
## cama_model3_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age logit
##                  threshold:
## cama_model1_pass flexible  
## cama_model3_pass flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)  
## cama_model1_pass     24 3449.2 -1700.6                        
## cama_model3_pass     26 3446.5 -1697.2  6.7211  2    0.03472 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model4_pass <- clm(as.factor(s_CAMA) ~  H5_interaction + 
                     text_order + s_age + s_sex, data = data2_wide_pass_H5,
                   link = "logit")
anova(cama_model3_pass,cama_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                       
## cama_model3_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age        
## cama_model4_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex
##                  link: threshold:
## cama_model3_pass logit flexible  
## cama_model4_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## cama_model3_pass     26 3446.5 -1697.2                      
## cama_model4_pass     27 3448.4 -1697.2   3e-04  1     0.9873
cama_model5_pass <- clm(as.factor(s_CAMA) ~  H5_interaction + 
                     text_order + s_age + s_sex + s_school, 
                     data = data2_wide_pass_H5, link = "logit")
anova(cama_model3_pass,cama_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                  
## cama_model3_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age                   
## cama_model5_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex + s_school
##                  link: threshold:
## cama_model3_pass logit flexible  
## cama_model5_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)    
## cama_model3_pass     26 3446.5 -1697.2                          
## cama_model5_pass     29 3419.7 -1680.8  32.779  3  3.585e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cama_model6_pass <- clm(as.factor(s_CAMA) ~  H5_interaction + 
                     text_order + s_age + s_sex + s_school + 
                     as.factor(s_interest), data = data2_wide_pass_H5,
                     link = "logit")
anova(cama_model5_pass,cama_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                  formula:                                                                                          
## cama_model5_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex + s_school                        
## cama_model6_pass as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
##                  link: threshold:
## cama_model5_pass logit flexible  
## cama_model6_pass logit flexible  
## 
##                  no.par    AIC  logLik LR.stat df Pr(>Chisq)
## cama_model5_pass     29 3419.7 -1680.8                      
## cama_model6_pass     33 3426.9 -1680.5  0.7545  4     0.9444
summary(cama_model6_pass)
## formula: 
## as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest)
## data:    data2_wide_pass_H5
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  657  -1680.46 3426.92 7(0)  2.98e-11 1.6e+06
## 
## Coefficients:
##                                          Estimate Std. Error z value Pr(>|z|)
## H5_interactionno CAMA PLS.new guideline -0.262374   0.167304  -1.568  0.11682
## H5_interactionCAMA PLS.new guideline     0.478083   0.167268   2.858  0.00426
## text_orderFaerber                       -0.110927   0.138257  -0.802  0.42236
## s_age                                   -0.007547   0.004675  -1.614  0.10645
## s_sexmale                                0.008042   0.138852   0.058  0.95382
## s_schoolReal                             0.170208   0.175719   0.969  0.33273
## s_schoolAbi                              0.929699   0.177237   5.246 1.56e-07
## as.factor(s_interest)5                  -0.147259   0.216936  -0.679  0.49726
## as.factor(s_interest)6                  -0.135124   0.216552  -0.624  0.53264
## as.factor(s_interest)7                  -0.137275   0.225313  -0.609  0.54235
## as.factor(s_interest)8                  -0.032987   0.237320  -0.139  0.88945
##                                            
## H5_interactionno CAMA PLS.new guideline    
## H5_interactionCAMA PLS.new guideline    ** 
## text_orderFaerber                          
## s_age                                      
## s_sexmale                                  
## s_schoolReal                               
## s_schoolAbi                             ***
## as.factor(s_interest)5                     
## as.factor(s_interest)6                     
## as.factor(s_interest)7                     
## as.factor(s_interest)8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##        Estimate Std. Error z value
## -11|-9 -6.60905    1.05323  -6.275
## -9|-7  -5.50745    0.66523  -8.279
## -7|-6  -3.58099    0.39864  -8.983
## -6|-5  -3.12509    0.37560  -8.320
## -5|-4  -2.63725    0.35910  -7.344
## -4|-3  -2.41480    0.35352  -6.831
## -3|-2  -1.93911    0.34468  -5.626
## -2|-1  -1.43488    0.33871  -4.236
## -1|0   -0.91807    0.33519  -2.739
## 0|1     0.07168    0.33416   0.215
## 1|2     0.45977    0.33548   1.370
## 2|3     0.74358    0.33675   2.208
## 3|4     1.16960    0.33917   3.448
## 4|5     1.59541    0.34272   4.655
## 5|6     2.25738    0.35233   6.407
## 6|7     2.71030    0.36286   7.469
## 7|8     3.43429    0.39099   8.784
## 8|9     3.75083    0.41029   9.142
## 9|10    4.81709    0.52608   9.157
## 10|11   5.00191    0.55689   8.982
## 11|12   5.92668    0.78121   7.587
## 12|13   6.62309    1.05373   6.285
## (33 Beobachtungen als fehlend gelöscht)
exp(coef(cama_model6_pass))
##                                  -11|-9                                   -9|-7 
##                            1.348114e-03                            4.056438e-03 
##                                   -7|-6                                   -6|-5 
##                            2.784807e-02                            4.393306e-02 
##                                   -5|-4                                   -4|-3 
##                            7.155746e-02                            8.938497e-02 
##                                   -3|-2                                   -2|-1 
##                            1.438326e-01                            2.381433e-01 
##                                    -1|0                                     0|1 
##                            3.992886e-01                            1.074310e+00 
##                                     1|2                                     2|3 
##                            1.583707e+00                            2.103444e+00 
##                                     3|4                                     4|5 
##                            3.220700e+00                            4.930355e+00 
##                                     5|6                                     6|7 
##                            9.557989e+00                            1.503382e+01 
##                                     7|8                                     8|9 
##                            3.100929e+01                            4.255629e+01 
##                                    9|10                                   10|11 
##                            1.236049e+02                            1.486973e+02 
##                                   11|12                                   12|13 
##                            3.749073e+02                            7.522626e+02 
## H5_interactionno CAMA PLS.new guideline    H5_interactionCAMA PLS.new guideline 
##                            7.692232e-01                            1.612979e+00 
##                       text_orderFaerber                                   s_age 
##                            8.950039e-01                            9.924813e-01 
##                               s_sexmale                            s_schoolReal 
##                            1.008074e+00                            1.185551e+00 
##                             s_schoolAbi                  as.factor(s_interest)5 
##                            2.533746e+00                            8.630705e-01 
##                  as.factor(s_interest)6                  as.factor(s_interest)7 
##                            8.736073e-01                            8.717303e-01 
##                  as.factor(s_interest)8 
##                            9.675508e-01
exp(confint(cama_model6_pass))
##                                             2.5 %   97.5 %
## H5_interactionno CAMA PLS.new guideline 0.5539004 1.067482
## H5_interactionCAMA PLS.new guideline    1.1626234 2.240295
## text_orderFaerber                       0.6824211 1.173535
## s_age                                   0.9834147 1.001612
## s_sexmale                               0.7678170 1.323472
## s_schoolReal                            0.8401177 1.673439
## s_schoolAbi                             1.7921677 3.591132
## as.factor(s_interest)5                  0.5640010 1.320657
## as.factor(s_interest)6                  0.5711298 1.335344
## as.factor(s_interest)7                  0.5602173 1.355618
## as.factor(s_interest)8                  0.6072331 1.540302
nagelkerke(fit = cama_model6_pass, null = cama_null_pass)
## $Models
##                                                                                                                                            
## Model: "clm, as.factor(s_CAMA) ~ H5_interaction + text_order + s_age + s_sex + s_school + as.factor(s_interest), data2_wide_pass_H5, logit"
## Null:  "clm, as.factor(s_CAMA) ~ 1, data2_wide_pass_H5, logit"                                                                             
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0158385
## Cox and Snell (ML)                  0.0790289
## Nagelkerke (Cragg and Uhler)        0.0794682
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -11     -27.044 54.089 1.1373e-07
## 
## $Number.of.observations
##           
## Model: 657
## Null:  657
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
H5test_pass = emmeans(cama_model6_pass, ~ H5_interaction)
pairs(H5test_pass, adjust = "none")
##  contrast                                              estimate    SE  df
##  no CAMA PLS.old guideline - no CAMA PLS.new guideline    0.262 0.167 Inf
##  no CAMA PLS.old guideline - CAMA PLS.new guideline      -0.478 0.167 Inf
##  no CAMA PLS.new guideline - CAMA PLS.new guideline      -0.740 0.176 Inf
##  z.ratio p.value
##    1.568  0.1168
##   -2.858  0.0043
##   -4.211  <.0001
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Note: contrasts are still on the as.factor scale
cld(H5test_pass, Letters = letters)
##  H5_interaction            emmean    SE  df asymp.LCL asymp.UCL .group
##  no CAMA PLS.new guideline -0.864 0.182 Inf    -1.220    -0.507  a    
##  no CAMA PLS.old guideline -0.601 0.174 Inf    -0.943    -0.260  a    
##  CAMA PLS.new guideline    -0.123 0.177 Inf    -0.469     0.223   b   
## 
## Results are averaged over the levels of: text_order, s_sex, s_school, s_interest 
## Results are given on the as.factor (not the response) scale. 
## Confidence level used: 0.95 
## Note: contrasts are still on the as.factor scale 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

H5 Graphical

describeBy(data2_wide_pass_H5$s_CAMA,
           data2_wide_pass_H5$H5_interaction)
## 
##  Descriptive statistics by group 
## group: no CAMA PLS.old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.77 3.36      0    0.83 2.97  -7  11    18 -0.04     0.12 0.22
## ------------------------------------------------------------ 
## group: no CAMA PLS.new guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 193  0.3 3.01      0    0.32 2.97  -9   7    16 -0.09     0.12 0.22
## ------------------------------------------------------------ 
## group: CAMA PLS.new guideline
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 225 1.66 4.2      1     1.7 4.45 -11  13    24 -0.01    -0.05 0.28
H5_bar <- ggplot(data2_wide_pass_H5, aes(H5_interaction,
                                       s_CAMA)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Condition", y = "CAMA Knowledge Score")
H5_bar
## Warning: Removed 33 rows containing non-finite values (`stat_summary()`).
## Removed 33 rows containing non-finite values (`stat_summary()`).

data2_wide_pass_H5$H5_interaction <- mapvalues(data2_wide_pass_H5$H5_interaction,
                                                c("no CAMA PLS.old guideline",
                                                  "no CAMA PLS.new guideline",
                                                  "CAMA PLS.new guideline"),
                                                c("old, no CAMA PLS",
                                                  "new, no CAMA PLS",
                                                  "new, CAMA PLS"))

H5_boxplot <- ggplot(data2_wide_pass_H5, aes(H5_interaction, s_CAMA,
                                              fill = H5_interaction))
H5_boxplot <- H5_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Condition", y = "CAMA Knowledge Score") +
  scale_fill_brewer(palette = "Blues")
H5_boxplot
## Warning: Removed 33 rows containing non-finite values (`stat_boxplot()`).

H6

data2_wide_pass$user_experience <- rowMeans(data2_wide_pass[,c("accessibility",
                                                     "understanding",
                                                     "empowerment")])
psych::describe(data2_wide_pass$user_experience)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1341 5.29 1.42    5.5    5.36 1.48   1   8     7 -0.39    -0.29 0.04
data2_wide_pass$version <- relevel(data2_wide_pass$version, ref = 
                                     "new guideline")

# Prep long dataset and seperate datasets for Faerber and Barth
data2_long_pass$user_experience <- rowMeans(data2_long_pass[,c("accessibility",
                                                     "understanding",
                                                     "empowerment")])
psych::describe(data2_long_pass$user_experience)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 2722 5.29 1.56   5.33    5.36 1.48   1   8     7 -0.42    -0.29 0.03
data2_long_pass$version <- relevel(data2_long_pass$version, ref = "new guideline")

data2_long_pass_faerber <- filter(data2_long_pass, summary == "Faerber")
data2_long_pass_barth <- filter(data2_long_pass, summary == "Barth")

Overall User Experience

describeBy(data2_wide_pass$user_experience, data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1102 5.28 1.42    5.5    5.35 1.48   1   8     7 -0.42    -0.27 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 5.37 1.43    5.5    5.41 1.48 1.5   8   6.5 -0.26    -0.41 0.09
equiv.test(user_experience~version, data = data2_wide_pass, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.87214, df = 1339.0000, ncp = 2.8029, p-value = 0.02676
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.06223154
H6ue_bar <- ggplot(data2_wide_pass, aes(version,
                                       user_experience)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Guideline Version", y = "User Experience Score")
H6ue_bar
## Warning: Removed 41 rows containing non-finite values (`stat_summary()`).
## Removed 41 rows containing non-finite values (`stat_summary()`).

H6ue_boxplot <- ggplot(data2_wide_pass, aes(version, user_experience,
                                              fill = version))
H6ue_boxplot <- H6ue_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Guideline Version", y = "User Experience Score") +
  scale_fill_brewer(palette = "Blues")
H6ue_boxplot
## Warning: Removed 41 rows containing non-finite values (`stat_boxplot()`).

# For Faerber
describeBy(data2_long_pass_faerber$user_experience,data2_long_pass_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1115 5.23 1.59   5.33    5.31 1.48   1   8     7 -0.44    -0.27 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 242 5.27 1.59   5.33    5.34 1.48   1   8     7 -0.38    -0.43 0.1
equiv.test(user_experience~version, data = data2_long_pass_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.31758, df = 1355.0000, ncp = 2.8202, p-value = 0.006163
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.02252122
# For Barth
describeBy(data2_long_pass_barth$user_experience,data2_long_pass_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1121 5.32 1.53   5.67     5.4 1.48   1   8     7 -0.45    -0.27 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad  min max range skew kurtosis  se
## X1    1 244 5.42 1.49   5.33    5.45 1.48 1.67   8  6.33 -0.2    -0.56 0.1
equiv.test(user_experience~version, data = data2_long_pass_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.91421, df = 1363.0000, ncp = 2.8311, p-value = 0.02763
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.06458235
# Post Hoc Tests Overall User Experience
data2_wide_pass1 <- subset(data2_wide_pass, condition == 1 | condition == 6)
data2_wide_pass2 <- subset(data2_wide_pass, condition == 2 | condition == 6)
data2_wide_pass3 <- subset(data2_wide_pass, condition == 3 | condition == 6)
data2_wide_pass4 <- subset(data2_wide_pass, condition == 4 | condition == 6)
data2_wide_pass5 <- subset(data2_wide_pass, condition == 5 | condition == 6)

table(data2_wide_pass1$condition)
## 
##   1   2   3   4   5   6 
## 221   0   0   0   0 247
table(data2_wide_pass2$condition)
## 
##   1   2   3   4   5   6 
##   0 251   0   0   0 247
table(data2_wide_pass3$condition)
## 
##   1   2   3   4   5   6 
##   0   0 220   0   0 247
table(data2_wide_pass4$condition)
## 
##   1   2   3   4   5   6 
##   0   0   0 206   0 247
table(data2_wide_pass5$condition)
## 
##   1   2   3   4   5   6 
##   0   0   0   0 237 247
equiv.test(user_experience~version, data = data2_wide_pass1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.82184, df = 454.0000, ncp = 2.1329, p-value = 0.09492
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.07706175
equiv.test(user_experience~version, data = data2_wide_pass2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = 0.28578, df = 484.0000, ncp = 2.2042, p-value = 0.006391
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.02592987
equiv.test(user_experience~version, data = data2_wide_pass3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.027427, df = 444.0000, ncp = 2.1064, p-value = 0.01881
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##            d 
## -0.002604127
equiv.test(user_experience~version, data = data2_wide_pass4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -0.69832, df = 441.0000, ncp = 2.0982, p-value = 0.08078
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.06656408
equiv.test(user_experience~version, data = data2_wide_pass5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  user_experience by version
## t = -2.0866, df = 464.000, ncp = 2.158, p-value = 0.4712
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1933815

Accessibility

describeBy(data2_wide_pass$accessibility,data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1125 5.55 1.66      6    5.64 1.48   1   8     7 -0.46    -0.41 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 247  5.6 1.62    5.5    5.66 2.22   1   8     7 -0.26    -0.68 0.1
equiv.test(accessibility~version, data = data2_wide_pass, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.40254, df = 1370.0000, ncp = 2.8463, p-value = 0.007268
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.02828507
H6accessibility_bar <- ggplot(data2_wide_pass, aes(version,
                                        accessibility)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Guideline Version", y = "Accessibility Score")
H6accessibility_bar
## Warning: Removed 10 rows containing non-finite values (`stat_summary()`).
## Removed 10 rows containing non-finite values (`stat_summary()`).

H6accessibility_boxplot <- ggplot(data2_wide_pass, aes(version, accessibility,
                                              fill = version))
H6accessibility_boxplot <- H6accessibility_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Guideline Version", y = "Accessibility Score") +
  scale_fill_brewer(palette = "Blues")
H6accessibility_boxplot
## Warning: Removed 10 rows containing non-finite values (`stat_boxplot()`).

# For Faerber
describeBy(data2_long_pass_faerber$accessibility,data2_long_pass_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1129 5.55 1.86      6    5.69 1.48   1   8     7 -0.52    -0.46 0.06
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 247 5.54 1.89      6    5.67 1.48   1   8     7 -0.45    -0.57 0.12
equiv.test(accessibility~version, data = data2_long_pass_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 0.070917, df = 1374.0000, ncp = 2.8472, p-value = 0.001761
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## 0.004981581
# For Barth
describeBy(data2_long_pass_barth$accessibility,data2_long_pass_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1131 5.55 1.84      6    5.67 1.48   1   8     7 -0.51    -0.52 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 247 5.65 1.68      6    5.72 1.48   1   8     7 -0.22    -0.85 0.11
equiv.test(accessibility~version, data = data2_long_pass_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.79634, df = 1376.0000, ncp = 2.8476, p-value = 0.02012
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.0559301
# Post Hoc Tests Accessibility
equiv.test(accessibility~version, data = data2_wide_pass1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 0.020547, df = 464.0000, ncp = 2.1548, p-value = 0.0148
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## 0.001907115
equiv.test(accessibility~version, data = data2_wide_pass2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 1.0123, df = 496.0000, ncp = 2.2315, p-value = 0.0005943
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.09072331
equiv.test(accessibility~version, data = data2_wide_pass3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = 0.27681, df = 460.0000, ncp = 2.1443, p-value = 0.007743
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.02581846
equiv.test(accessibility~version, data = data2_wide_pass4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -0.70293, df = 450.0000, ncp = 2.1168, p-value = 0.07869
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.06641314
equiv.test(accessibility~version, data = data2_wide_pass5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  accessibility by version
## t = -2.1988, df = 480.0000, ncp = 2.1948, p-value = 0.5011
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.2003628

Understanding

describeBy(data2_wide_pass$understanding,data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1121 5.64 1.5      6    5.73 1.48   1   8     7 -0.53    -0.22 0.04
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 242 5.79 1.53      6    5.89 1.48   1   8     7 -0.65     0.08 0.1
equiv.test(understanding~version, data = data2_wide_pass, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -1.3934, df = 1361.0000, ncp = 2.8216, p-value = 0.07666
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.09876733
H6understanding_bar <- ggplot(data2_wide_pass, aes(version,
                                                   understanding)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Guideline Version", y = "Understanding Score")
H6understanding_bar
## Warning: Removed 19 rows containing non-finite values (`stat_summary()`).
## Removed 19 rows containing non-finite values (`stat_summary()`).

H6understanding_boxplot <- ggplot(data2_wide_pass, aes(version, understanding,
                                              fill = version))
H6understanding_boxplot <- H6understanding_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Guideline Version", y = "Understanding Score") +
  scale_fill_brewer(palette = "Blues")
H6understanding_boxplot
## Warning: Removed 19 rows containing non-finite values (`stat_boxplot()`).

# For Faerber
describeBy(data2_long_pass_faerber$understanding,data2_long_pass_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1127 5.58 1.75      6     5.7 1.48   1   8     7 -0.56    -0.26 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 244 5.66 1.71      6    5.78 1.48   1   8     7 -0.58    -0.24 0.11
equiv.test(understanding~version, data = data2_long_pass_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.62025, df = 1369.0000, ncp = 2.8325, p-value = 0.01348
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04379567
# For Barth
describeBy(data2_long_pass_barth$understanding,data2_long_pass_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1128 5.69 1.67      6    5.81 1.48   1   8     7 -0.58    -0.17 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 245 5.87 1.68      6    5.99 1.48   1   8     7 -0.58    -0.14 0.11
equiv.test(understanding~version, data = data2_long_pass_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -1.5116, df = 1371.0000, ncp = 2.8375, p-value = 0.09249
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1065482
# Post Hoc Tests Understanding
equiv.test(understanding~version, data = data2_wide_pass1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -1.071, df = 458.0000, ncp = 2.1418, p-value = 0.1421
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.1000102
equiv.test(understanding~version, data = data2_wide_pass2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.63113, df = 489.0000, ncp = 2.2156, p-value = 0.05654
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.05697061
equiv.test(understanding~version, data = data2_wide_pass3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.42938, df = 455.000, ncp = 2.134, p-value = 0.04412
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04024149
equiv.test(understanding~version, data = data2_wide_pass4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -0.59774, df = 445.000, ncp = 2.107, p-value = 0.06561
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.05673865
equiv.test(understanding~version, data = data2_wide_pass5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  understanding by version
## t = -2.465, df = 474.0000, ncp = 2.1814, p-value = 0.6108
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## -0.2259951

Empowerment

describeBy(data2_wide_pass$empowerment,data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1122 4.65 1.64      5    4.68 1.48   1   8     7 -0.2    -0.48 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 243 4.61 1.74    4.5    4.65 1.48   1   8     7 -0.17    -0.48 0.11
equiv.test(empowerment~version, data = data2_wide_pass, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.2917, df = 1363.0000, ncp = 2.8266, p-value = 0.0009098
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.02063939
H6empowerment_bar <- ggplot(data2_wide_pass, aes(version,
                                                   empowerment)) +
  stat_summary(fun = mean, geom = "bar", fill = "White",
               colour = "Black") + stat_summary(fun.data = 
                                                  mean_cl_normal,
                                                geom = "pointrange") +
  labs(x = "Guideline Version", y = "Empowerment Score")
H6empowerment_bar
## Warning: Removed 17 rows containing non-finite values (`stat_summary()`).
## Removed 17 rows containing non-finite values (`stat_summary()`).

H6empowerment_boxplot <- ggplot(data2_wide_pass, aes(version, empowerment,
                                              fill = version))
H6empowerment_boxplot <- H6empowerment_boxplot + geom_boxplot() + theme_classic() + theme(
  legend.position = "none",
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  panel.background = element_blank(),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(face = "bold"),
  legend.title = element_text(face = "bold"))+
  labs(x = "Guideline Version", y = "Empowerment Score") +
  scale_fill_brewer(palette = "Blues")
H6empowerment_boxplot
## Warning: Removed 17 rows containing non-finite values (`stat_boxplot()`).

# For Faerber
describeBy(data2_long_pass_faerber$empowerment,data2_long_pass_faerber$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1128 4.57 1.83      5    4.61 1.48   1   8     7 -0.13     -0.6 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 245  4.5 1.89      5    4.56 1.48   1   8     7 -0.22    -0.66 0.12
equiv.test(empowerment~version, data = data2_long_pass_faerber, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.54422, df = 1371.0000, ncp = 2.8375, p-value = 0.0003606
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.03835926
# For Barth
describeBy(data2_long_pass_barth$empowerment,data2_long_pass_barth$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1129 4.73 1.79      5    4.78 1.48   1   8     7 -0.25    -0.49 0.05
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 245 4.73 1.87      5    4.75 1.48   1   8     7 -0.15    -0.62 0.12
equiv.test(empowerment~version, data = data2_long_pass_barth, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.0087268, df = 1372.0000, ncp = 2.8377, p-value = 0.002335
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##            d 
## -0.000615064
# Post Hoc Tests Empowerment
equiv.test(empowerment~version, data = data2_wide_pass1, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.54525, df = 461.0000, ncp = 2.1491, p-value = 0.05437
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.05074275
equiv.test(empowerment~version, data = data2_wide_pass2, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.98251, df = 490.0000, ncp = 2.2179, p-value = 0.000691
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.08859657
equiv.test(empowerment~version, data = data2_wide_pass3, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.90395, df = 456.0000, ncp = 2.1361, p-value = 0.00119
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.08463598
equiv.test(empowerment~version, data = data2_wide_pass4, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = 0.20321, df = 447.0000, ncp = 2.1118, p-value = 0.01031
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##          d 
## 0.01924514
equiv.test(empowerment~version, data = data2_wide_pass5, eps = 0.2, 
           alternative = "greater")
## 
##  Two sample non-inferiority test
## 
## data:  empowerment by version
## t = -0.51378, df = 473.0000, ncp = 2.1789, p-value = 0.04794
## alternative hypothesis: non-inferiority
## null values:
## lower upper 
##  -Inf  -0.2 
## sample estimates:
##           d 
## -0.04716043

Overall plot

complete_boxplot <- ggarrange(H1_boxplot, H2_boxplot, H3_boxplot, H4_boxplot,
                            H5_boxplot, H6ue_boxplot, nrow = 2)
## Warning: Removed 31 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 21 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 36 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 49 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 33 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 41 rows containing non-finite values (`stat_boxplot()`).

complete_boxplot

ggsave("complete_boxplot.png", plot = complete_boxplot, width = 25, height = 15,
       units = "cm", scale = 1.5, dpi = 600)

ggsave("complete_boxplot.jpeg", plot = complete_boxplot, width = 25, height = 15,
       units = "cm", scale = 1.5, dpi = 600)

ggsave("complete_boxplot.pdf", plot = complete_boxplot, width = 25, height = 15,
       units = "cm", scale = 1.5, dpi = 600)

ggsave("complete_boxplot.tiff", plot = complete_boxplot, width = 25, height = 15,
       units = "cm", scale = 1.5, dpi = 600)
ggsave("complete_boxplot.tiff", plot = complete_boxplot, width = 25, height = 15,
       units = "cm", scale = 1.5, dpi = 300)

RQ1

describeBy(data2_wide_pass$s_funding,data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1092 4.01 5.28      4    4.16 5.93 -10  12    22 -0.17    -0.84 0.16
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 240 4.04 5.51      4    4.24 5.93 -10  12    22 -0.12    -0.89 0.36
wilcox.test(s_funding~version, data = data2_wide_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_funding by version
## W = 130325, p-value = 0.8943
## alternative hypothesis: true location shift is not equal to 0

RQ1 Mixed Model

data2_long_pass$version <- relevel(data2_long_pass$version, ref = "old guideline")

set.seed(288659)

funding_null_pass <- clm(as.factor(s_funding) ~ 1,
                    data = data2_long_pass,
                    link = "logit")

funding_model1_pass <- clmm(as.factor(s_funding) ~ 1 + (1|id),
                       data = data2_long_pass)
anova(funding_null_pass,funding_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                            link: threshold:
## funding_null_pass   as.factor(s_funding) ~ 1            logit flexible  
## funding_model1_pass as.factor(s_funding) ~ 1 + (1 | id) logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_null_pass       12 11646 -5810.8                          
## funding_model1_pass     13 11460 -5716.9  187.69  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model2_pass <- clmm(as.factor(s_funding) ~ version + (1|id),
                            data = data2_long_pass)
anova(funding_model1_pass,funding_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                  link: threshold:
## funding_model1_pass as.factor(s_funding) ~ 1 + (1 | id)       logit flexible  
## funding_model2_pass as.factor(s_funding) ~ version + (1 | id) logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model1_pass     13 11460 -5716.9                      
## funding_model2_pass     14 11462 -5716.9  0.0512  1     0.8209
funding_model3_pass <- clmm(as.factor(s_funding) ~ version + summary + (1|id),
                            data = data2_long_pass)
anova(funding_model2_pass,funding_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                            link:
## funding_model2_pass as.factor(s_funding) ~ version + (1 | id)           logit
## funding_model3_pass as.factor(s_funding) ~ version + summary + (1 | id) logit
##                     threshold:
## funding_model2_pass flexible  
## funding_model3_pass flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model2_pass     14 11462 -5716.9                          
## funding_model3_pass     15 11442 -5706.2  21.377  1  3.774e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model4_pass <- clmm(as.factor(s_funding) ~ version + summary + 
                              text_order + (1|id), data = data2_long_pass)
anova(funding_model3_pass,funding_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                        
## funding_model3_pass as.factor(s_funding) ~ version + summary + (1 | id)             
## funding_model4_pass as.factor(s_funding) ~ version + summary + text_order + (1 | id)
##                     link: threshold:
## funding_model3_pass logit flexible  
## funding_model4_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model3_pass     15 11442 -5706.2                      
## funding_model4_pass     16 11442 -5705.1  2.3288  1      0.127
funding_model5_pass <- clmm(as.factor(s_funding) ~ version + summary + 
                              text_order + s_age + (1|id), data = 
                              data2_long_pass)
anova(funding_model3_pass,funding_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                
## funding_model3_pass as.factor(s_funding) ~ version + summary + (1 | id)                     
## funding_model5_pass as.factor(s_funding) ~ version + summary + text_order + s_age + (1 | id)
##                     link: threshold:
## funding_model3_pass logit flexible  
## funding_model5_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model3_pass     15 11442 -5706.2                          
## funding_model5_pass     17 11412 -5689.1  34.192  2  3.761e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model6_pass <- clmm(as.factor(s_funding) ~ version + summary + 
                              text_order + s_age + s_sex + (1|id), data = 
                              data2_long_pass)
anova(funding_model5_pass,funding_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                        
## funding_model5_pass as.factor(s_funding) ~ version + summary + text_order + s_age + (1 | id)        
## funding_model6_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + (1 | id)
##                     link: threshold:
## funding_model5_pass logit flexible  
## funding_model6_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)
## funding_model5_pass     17 11412 -5689.1                      
## funding_model6_pass     18 11412 -5688.2  1.8037  1     0.1793
funding_model7_pass <- clmm(as.factor(s_funding) ~ version + summary + 
                              text_order + s_age + s_sex + s_school + (1|id),
                            data = data2_long_pass)
anova(funding_model6_pass,funding_model7_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                                   
## funding_model6_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + (1 | id)           
## funding_model7_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + s_school + (1 | id)
##                     link: threshold:
## funding_model6_pass logit flexible  
## funding_model7_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model6_pass     18 11412 -5688.2                          
## funding_model7_pass     20 11340 -5649.9  76.639  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model8_pass <- clmm(as.factor(s_funding) ~ version + summary + 
                              text_order + s_age + s_sex + s_school + 
                              as.factor(s_interest)+ (1|id), data = 
                              data2_long_pass)
anova(funding_model6_pass,funding_model8_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                                                           
## funding_model6_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + (1 | id)                                   
## funding_model8_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                     link: threshold:
## funding_model6_pass logit flexible  
## funding_model8_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## funding_model6_pass     18 11412 -5688.2                          
## funding_model8_pass     24 11338 -5645.1  86.197  6  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funding_model9_pass <- clmm(as.factor(s_funding) ~ version*summary + 
                              text_order + s_age + s_sex + s_school + 
                              as.factor(s_interest)+ (1|id), data = 
                              data2_long_pass)
anova(funding_model8_pass,funding_model9_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                     formula:                                                                                                           
## funding_model8_pass as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
## funding_model9_pass as.factor(s_funding) ~ version * summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                     link: threshold:
## funding_model8_pass logit flexible  
## funding_model9_pass logit flexible  
## 
##                     no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## funding_model8_pass     24 11338 -5645.1                        
## funding_model9_pass     25 11337 -5643.4  3.4739  1    0.06235 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(funding_model8_pass)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_funding) ~ version + summary + text_order + s_age +  
##     s_sex + s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  2712 -5645.14 11338.28 3987(14464) 3.54e-01 8.2e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 1.636    1.279   
## Number of groups:  id 1380 
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## versionnew guideline   -0.012676   0.130101  -0.097   0.9224    
## summaryFaerber          0.326449   0.072132   4.526 6.02e-06 ***
## text_orderFaerber       0.176627   0.099779   1.770   0.0767 .  
## s_age                  -0.015095   0.003352  -4.503 6.68e-06 ***
## s_sexmale              -0.151315   0.100877  -1.500   0.1336    
## s_schoolReal            0.595373   0.126764   4.697 2.64e-06 ***
## s_schoolAbi             1.062530   0.127444   8.337  < 2e-16 ***
## as.factor(s_interest)5  0.258381   0.157433   1.641   0.1008    
## as.factor(s_interest)6  0.231295   0.157766   1.466   0.1426    
## as.factor(s_interest)7  0.285743   0.169754   1.683   0.0923 .  
## as.factor(s_interest)8 -0.122145   0.172482  -0.708   0.4788    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -6|-5  -6.0651     0.3829 -15.840
## -5|-4  -5.4246     0.3362 -16.136
## -4|-3  -3.6322     0.2790 -13.017
## -3|-2  -3.1546     0.2719 -11.603
## -2|-1  -2.2396     0.2627  -8.525
## -1|0   -1.6774     0.2592  -6.472
## 0|1    -0.2710     0.2552  -1.062
## 1|2     0.1036     0.2551   0.406
## 2|3     0.6583     0.2558   2.574
## 3|4     0.8615     0.2563   3.362
## 4|5     1.3917     0.2579   5.396
## 5|6     1.5920     0.2587   6.153
## (52 Beobachtungen als fehlend gelöscht)
exp(coef(funding_model8_pass))
##                  -6|-5                  -5|-4                  -4|-3 
##            0.002322568            0.004406736            0.026458544 
##                  -3|-2                  -2|-1                   -1|0 
##            0.042655030            0.106503875            0.186867164 
##                    0|1                    1|2                    2|3 
##            0.762590787            1.109193326            1.931535253 
##                    3|4                    4|5                    5|6 
##            2.366670986            4.021741107            4.913765099 
##   versionnew guideline         summaryFaerber      text_orderFaerber 
##            0.987404363            1.386037645            1.193186087 
##                  s_age              s_sexmale           s_schoolReal 
##            0.985018490            0.859577315            1.813707109 
##            s_schoolAbi as.factor(s_interest)5 as.factor(s_interest)6 
##            2.893684162            1.294832373            1.260230797 
## as.factor(s_interest)7 as.factor(s_interest)8 
##            1.330749924            0.885019928
exp(confint(funding_model8_pass))
##                              2.5 %      97.5 %
## -6|-5                  0.001096572 0.004919259
## -5|-4                  0.002280166 0.008516627
## -4|-3                  0.015312917 0.045716605
## -3|-2                  0.025035452 0.072675003
## -2|-1                  0.063642630 0.178230776
## -1|0                   0.112444803 0.310546476
## 0|1                    0.462493585 1.257411402
## 1|2                    0.672708372 1.828890329
## 2|3                    1.169934523 3.188920714
## 3|4                    1.432190493 3.910884467
## 4|5                    2.425830087 6.667573964
## 5|6                    2.959288166 8.159086273
## versionnew guideline   0.765161148 1.274198747
## summaryFaerber         1.203305963 1.596518603
## text_orderFaerber      0.981242205 1.450908890
## s_age                  0.978568680 0.991510811
## s_sexmale              0.705372171 1.047494062
## s_schoolReal           1.414703039 2.325246632
## s_schoolAbi            2.254084565 3.714771023
## as.factor(s_interest)5 0.951056857 1.762871337
## as.factor(s_interest)6 0.925037200 1.716884101
## as.factor(s_interest)7 0.954116030 1.856058702
## as.factor(s_interest)8 0.631155380 1.240994371
nagelkerke(fit = funding_model8_pass, null = funding_null_pass)
## $Models
##                                                                                                                                                    
## Model: "clmm, as.factor(s_funding) ~ version + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass"
## Null:  "clm, as.factor(s_funding) ~ 1, data2_long_pass, logit"                                                                                     
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0285082
## Cox and Snell (ML)                  0.1149970
## Nagelkerke (Cragg and Uhler)        0.1166030
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq    p.value
##      -12     -165.66 331.31 1.2216e-63
## 
## $Number.of.observations
##            
## Model: 2712
## Null:  2712
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

RQ2

describeBy(data2_wide_pass$s_coi,data2_wide_pass$version)
## 
##  Descriptive statistics by group 
## group: new guideline
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1067  3.3 5.86      3    3.48 7.41 -12  14    26 -0.19    -0.68 0.18
## ------------------------------------------------------------ 
## group: old guideline
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 231 3.97 5.53      5    4.26 5.93 -10  14    24 -0.42    -0.37 0.36
wilcox.test(s_coi~version, data = data2_wide_pass, exact = FALSE,
            confint = TRUE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  s_coi by version
## W = 114768, p-value = 0.1
## alternative hypothesis: true location shift is not equal to 0

RQ2 Mixed Model

set.seed(288659)

coi_null_pass <- clm(as.factor(s_coi) ~ 1, data = data2_long_pass,
                     link = "logit")

coi_model1_pass <- clmm(as.factor(s_coi) ~ 1 + (1|id), data = data2_long_pass)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 101
anova(coi_null_pass, coi_model1_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                        link: threshold:
## coi_null_pass   as.factor(s_coi) ~ 1            logit flexible  
## coi_model1_pass as.factor(s_coi) ~ 1 + (1 | id) logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_null_pass       14 12565 -6268.7                          
## coi_model1_pass     15 12397 -6183.6  170.18  1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model2_pass <- clmm(as.factor(s_coi) ~  version + (1|id), 
                        data = data2_long_pass)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 107
anova(coi_model1_pass, coi_model2_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                              link: threshold:
## coi_model1_pass as.factor(s_coi) ~ 1 + (1 | id)       logit flexible  
## coi_model2_pass as.factor(s_coi) ~ version + (1 | id) logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)
## coi_model1_pass     15 12397 -6183.6                      
## coi_model2_pass     16 12397 -6182.5  2.2212  1     0.1361
coi_model3_pass <- clmm(as.factor(s_coi) ~  version + summary + (1|id),
                   data = data2_long_pass)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 113
anova(coi_model1_pass, coi_model3_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                        link:
## coi_model1_pass as.factor(s_coi) ~ 1 + (1 | id)                 logit
## coi_model3_pass as.factor(s_coi) ~ version + summary + (1 | id) logit
##                 threshold:
## coi_model1_pass flexible  
## coi_model3_pass flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model1_pass     15 12397 -6183.6                          
## coi_model3_pass     17 12288 -6127.2  112.73  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model4_pass <- clmm(as.factor(s_coi) ~  version + summary + text_order + 
                          (1|id), data = data2_long_pass)
## Warning in update.uC(rho): Non finite negative log-likelihood
##   at iteration 119
anova(coi_model3_pass, coi_model4_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                    
## coi_model3_pass as.factor(s_coi) ~ version + summary + (1 | id)             
## coi_model4_pass as.factor(s_coi) ~ version + summary + text_order + (1 | id)
##                 link: threshold:
## coi_model3_pass logit flexible  
## coi_model4_pass logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)
## coi_model3_pass     17 12288 -6127.2                      
## coi_model4_pass     18 12290 -6127.1  0.2999  1     0.5839
coi_model5_pass <- clmm(as.factor(s_coi) ~  version + summary + text_order + 
                          s_age + (1|id), data = data2_long_pass)
anova(coi_model3_pass, coi_model5_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                            
## coi_model3_pass as.factor(s_coi) ~ version + summary + (1 | id)                     
## coi_model5_pass as.factor(s_coi) ~ version + summary + text_order + s_age + (1 | id)
##                 link: threshold:
## coi_model3_pass logit flexible  
## coi_model5_pass logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## coi_model3_pass     17 12288 -6127.2                        
## coi_model5_pass     19 12284 -6122.9  8.6968  2    0.01293 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model6_pass <- clmm(as.factor(s_coi) ~  version + summary + text_order + 
                          s_age + s_sex + (1|id), data = data2_long_pass)
anova(coi_model5_pass, coi_model6_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                                    
## coi_model5_pass as.factor(s_coi) ~ version + summary + text_order + s_age + (1 | id)        
## coi_model6_pass as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex + (1 | id)
##                 link: threshold:
## coi_model5_pass logit flexible  
## coi_model6_pass logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)
## coi_model5_pass     19 12284 -6122.9                      
## coi_model6_pass     20 12286 -6122.9  0.0208  1     0.8853
coi_model7_pass <- clmm(as.factor(s_coi) ~  version + summary + 
                     text_order + s_age + s_sex + s_school + (1|id),
                   data = data2_long_pass)
anova(coi_model5_pass, coi_model7_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                                               
## coi_model5_pass as.factor(s_coi) ~ version + summary + text_order + s_age + (1 | id)                   
## coi_model7_pass as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex + s_school + (1 | id)
##                 link: threshold:
## coi_model5_pass logit flexible  
## coi_model7_pass logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)    
## coi_model5_pass     19 12284 -6122.9                          
## coi_model7_pass     22 12156 -6056.2  133.36  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coi_model8_pass <- clmm(as.factor(s_coi) ~  version + summary + text_order + 
                          s_age + s_sex + s_school +  as.factor(s_interest) + 
                          (1|id), data = data2_long_pass)
anova(coi_model7_pass, coi_model8_pass)
## Likelihood ratio tests of cumulative link models:
##  
##                 formula:                                                                                                       
## coi_model7_pass as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex + s_school + (1 | id)                        
## coi_model8_pass as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id)
##                 link: threshold:
## coi_model7_pass logit flexible  
## coi_model8_pass logit flexible  
## 
##                 no.par   AIC  logLik LR.stat df Pr(>Chisq)  
## coi_model7_pass     22 12156 -6056.2                        
## coi_model8_pass     26 12152 -6050.1  12.131  4    0.01641 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(coi_model8_pass)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex +  
##     s_school + as.factor(s_interest) + (1 | id)
## data:    data2_long_pass
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  2675 -6050.12 12152.25 4310(15646) 5.38e-03 9.4e+05
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  id     (Intercept) 1.561    1.25    
## Number of groups:  id 1377 
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## versionnew guideline   -0.169686   0.127420  -1.332   0.1830    
## summaryFaerber          0.756996   0.072909  10.383  < 2e-16 ***
## text_orderFaerber       0.062410   0.097660   0.639   0.5228    
## s_age                  -0.005239   0.003260  -1.607   0.1081    
## s_sexmale              -0.048385   0.098815  -0.490   0.6244    
## s_schoolReal            0.664333   0.124803   5.323 1.02e-07 ***
## s_schoolAbi             1.394269   0.126524  11.020  < 2e-16 ***
## as.factor(s_interest)5  0.288074   0.155304   1.855   0.0636 .  
## as.factor(s_interest)6  0.321365   0.155103   2.072   0.0383 *  
## as.factor(s_interest)7  0.116880   0.166546   0.702   0.4828    
## as.factor(s_interest)8 -0.133703   0.169150  -0.790   0.4293    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##       Estimate Std. Error z value
## -7|-6  -5.5660     0.3903 -14.259
## -6|-5  -4.9020     0.3351 -14.627
## -5|-4  -2.9191     0.2694 -10.836
## -4|-3  -2.5253     0.2640  -9.565
## -3|-2  -1.8114     0.2570  -7.048
## -2|-1  -1.4046     0.2543  -5.523
## -1|0   -0.7605     0.2514  -3.025
## 0|1     0.5108     0.2506   2.039
## 1|2     1.0704     0.2521   4.245
## 2|3     1.2790     0.2530   5.056
## 3|4     1.9867     0.2565   7.746
## 4|5     2.1324     0.2573   8.287
## 5|6     3.0917     0.2637  11.725
## 6|7     3.2405     0.2648  12.236
## (89 Beobachtungen als fehlend gelöscht)
exp(coef(coi_model8_pass))
##                  -7|-6                  -6|-5                  -5|-4 
##            0.003825663            0.007431350            0.053979554 
##                  -4|-3                  -3|-2                  -2|-1 
##            0.080032401            0.163420568            0.245476823 
##                   -1|0                    0|1                    1|2 
##            0.467431568            1.666686705            2.916498052 
##                    2|3                    3|4                    4|5 
##            3.593041804            7.291465754            8.434956274 
##                    5|6                    6|7   versionnew guideline 
##           22.015011894           25.547155227            0.843929640 
##         summaryFaerber      text_orderFaerber                  s_age 
##            2.131861654            1.064399022            0.994775120 
##              s_sexmale           s_schoolReal            s_schoolAbi 
##            0.952766612            1.943193740            4.032027844 
## as.factor(s_interest)5 as.factor(s_interest)6 as.factor(s_interest)7 
##            1.333855947            1.379008819            1.123984451 
## as.factor(s_interest)8 
##            0.874849431
exp(confint(coi_model8_pass))
##                               2.5 %       97.5 %
## -7|-6                   0.001780108  0.008221805
## -6|-5                   0.003852944  0.014333187
## -5|-4                   0.031835431  0.091526710
## -4|-3                   0.047702097  0.134274710
## -3|-2                   0.098748217  0.270448246
## -2|-1                   0.149128696  0.404072939
## -1|0                    0.285564667  0.765123617
## 0|1                     1.019948486  2.723514580
## 1|2                     1.779321331  4.780452377
## 2|3                     2.188497941  5.899000023
## 3|4                     4.410540061 12.054186588
## 4|5                     5.093982438 13.967163846
## 5|6                    13.129899515 36.912753836
## 6|7                    15.202175962 42.931823826
## versionnew guideline    0.657424865  1.083343931
## summaryFaerber          1.847987829  2.459342015
## text_orderFaerber       0.878973361  1.288941540
## s_age                   0.988438537  1.001152325
## s_sexmale               0.785010033  1.156372757
## s_schoolReal            1.521541266  2.481695366
## s_schoolAbi             3.146486806  5.166793803
## as.factor(s_interest)5  0.983815619  1.808440174
## as.factor(s_interest)6  1.017519555  1.868922629
## as.factor(s_interest)7  0.810953291  1.557846870
## as.factor(s_interest)8  0.627989743  1.218748451
nagelkerke(fit = coi_model8_pass, null = coi_null_pass)
## $Models
##                                                                                                                                                
## Model: "clmm, as.factor(s_coi) ~ version + summary + text_order + s_age + s_sex + s_school + as.factor(s_interest) + (1 | id), data2_long_pass"
## Null:  "clm, as.factor(s_coi) ~ 1, data2_long_pass, logit"                                                                                     
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0348641
## Cox and Snell (ML)                  0.1507510
## Nagelkerke (Cragg and Uhler)        0.1521530
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq    p.value
##      -12     -218.55 437.1 5.1623e-86
## 
## $Number.of.observations
##            
## Model: 2675
## Null:  2675
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

RQ3

psych::describeBy(data2_wide_pass$s_METI_exp,data2_wide_pass$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 689 5.64 1.15   5.83    5.76 1.24   1   7     6   -1     1.03 0.04
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 665  5.7 1.13      6    5.81 1.24 1.17   7  5.83 -0.92     0.68 0.04
psych::describeBy(data2_wide_pass$s_METI_exp,data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 216 5.67 1.13   5.83     5.8 0.99 1.83   7  5.17 -1.08     1.14 0.08
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 249 5.61 1.16      6    5.71 1.24   1   7     6 -0.8     0.19 0.07
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 215 5.79 1.16      6    5.93 1.24 1.83   7  5.17 -1.07     0.77 0.08
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 203 5.67 1.1   5.83    5.76 1.24 1.67   7  5.33 -0.81     0.45 0.08
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 231 5.66 1.11   5.83    5.75 1.24 1.17   7  5.83 -0.74     0.21 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 240 5.65 1.16   5.83    5.78 1.24   1   7     6 -1.22     2.17 0.08
psych::describeBy(data2_wide_pass$s_METI_int,data2_wide_pass$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 692 5.51 1.16   5.75     5.6 1.11   1   7     6 -0.84     0.77 0.04
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 668 5.66 1.16      6    5.77 1.48   1   7     6 -0.84     0.56 0.05
psych::describeBy(data2_wide_pass$s_METI_int,data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 217 5.61 1.16   5.75    5.72 1.11   1   7     6 -1.04     1.44 0.08
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 246 5.52 1.23   5.75    5.63 1.48   1   7     6 -0.86     0.64 0.08
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 216 5.71 1.14      6    5.82 1.11   1   7     6 -0.94     0.76 0.08
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 206 5.55 1.13   5.75    5.62 1.48 2.25   7  4.75 -0.52    -0.44 0.08
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 233 5.62 1.11   5.75     5.7 1.11 1.25   7  5.75 -0.64     0.16 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 242 5.52 1.19   5.75    5.62 1.11   1   7     6 -0.89     0.91 0.08
psych::describeBy(data2_wide_pass$s_METI_ben,data2_wide_pass$METI_target)
## 
##  Descriptive statistics by group 
## group: Study Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 689 5.48 1.19   5.75    5.56 1.11   1   7     6 -0.77     0.69 0.05
## ------------------------------------------------------------ 
## group: Summary Authors
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 667 5.59 1.15   5.75    5.68 1.11   1   7     6 -0.69     0.32 0.04
psych::describeBy(data2_wide_pass$s_METI_ben,data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 216 5.54 1.11    5.5    5.61 1.11 1.5   7   5.5 -0.69      0.5 0.08
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 247 5.49 1.23   5.75     5.6 1.48   1   7     6 -0.82     0.45 0.08
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 215 5.68 1.15      6    5.78 1.48   1   7     6 -0.86     0.76 0.08
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 201  5.5 1.16   5.75    5.57 1.11 1.25   7  5.75 -0.54    -0.23 0.08
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 235 5.55 1.1   5.75     5.6 1.11 1.25   7  5.75 -0.42    -0.22 0.07
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 242 5.46 1.23    5.5    5.57 1.11   1   7     6 -0.91     1.19 0.08
data2_wide_pass$version <- relevel(data2_wide_pass$version, ref = "old guideline")

RQ3 Expertise

expMETIModel_pass <- lm(s_METI_exp ~ version + summary2 +  
                          METI_target + s_sex + s_age + s_school + s_interest, 
                        data = data2_wide_pass)
summary(expMETIModel_pass)
## 
## Call:
## lm(formula = s_METI_exp ~ version + summary2 + METI_target + 
##     s_sex + s_age + s_school + s_interest, data = data2_wide_pass)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0744 -0.6022  0.2386  0.8486  1.8455 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.510531   0.199191  22.644  < 2e-16 ***
## versionnew guideline        0.031712   0.079199   0.400 0.688921    
## summary2Faerber             0.074637   0.060592   1.232 0.218244    
## METI_targetSummary Authors  0.014361   0.060908   0.236 0.813640    
## s_sexmale                  -0.229680   0.061492  -3.735 0.000195 ***
## s_age                       0.009097   0.002021   4.502 7.33e-06 ***
## s_schoolReal               -0.077091   0.076153  -1.012 0.311564    
## s_schoolAbi                -0.004158   0.075576  -0.055 0.956138    
## s_interest                  0.134974   0.023126   5.836 6.68e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.112 on 1345 degrees of freedom
##   (28 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.05037,    Adjusted R-squared:  0.04472 
## F-statistic: 8.918 on 8 and 1345 DF,  p-value: 5.721e-12
dwt(expMETIModel_pass)
##  lag Autocorrelation D-W Statistic p-value
##    1     -0.01642422      2.031437   0.582
##  Alternative hypothesis: rho != 0
vif(expMETIModel_pass)
##                 GVIF Df GVIF^(1/(2*Df))
## version     1.002313  1        1.001156
## summary2    1.005707  1        1.002849
## METI_target 1.015929  1        1.007933
## s_sex       1.033046  1        1.016389
## s_age       1.038588  1        1.019111
## s_school    1.037644  2        1.009281
## s_interest  1.047061  1        1.023260
1/vif(expMETIModel_pass)
##                  GVIF  Df GVIF^(1/(2*Df))
## version     0.9976919 1.0       0.9988453
## summary2    0.9943256 1.0       0.9971588
## METI_target 0.9843211 1.0       0.9921296
## s_sex       0.9680108 1.0       0.9838754
## s_age       0.9628455 1.0       0.9812469
## s_school    0.9637219 0.5       0.9908044
## s_interest  0.9550545 1.0       0.9772689
mean(vif(expMETIModel_pass))
## [1] 1.060013

RQ3 Integrity

intMETIModel_pass <- lm(s_METI_int ~ version + summary2 +  
                          METI_target + s_sex + s_age + s_school +
                          s_interest, data = data2_wide_pass)
summary(intMETIModel_pass)
## 
## Call:
## lm(formula = s_METI_int ~ version + summary2 + METI_target + 
##     s_sex + s_age + s_school + s_interest, data = data2_wide_pass)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9951 -0.6616  0.2203  0.8394  1.9745 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.385025   0.202376  21.668  < 2e-16 ***
## versionnew guideline        0.077256   0.080342   0.962    0.336    
## summary2Faerber             0.040920   0.061589   0.664    0.507    
## METI_targetSummary Authors  0.099614   0.061928   1.609    0.108    
## s_sexmale                  -0.267241   0.062480  -4.277 2.03e-05 ***
## s_age                       0.010112   0.002056   4.918 9.81e-07 ***
## s_schoolReal               -0.121783   0.077544  -1.571    0.117    
## s_schoolAbi                -0.095256   0.076759  -1.241    0.215    
## s_interest                  0.134181   0.023531   5.702 1.45e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.132 on 1351 degrees of freedom
##   (22 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.05814,    Adjusted R-squared:  0.05257 
## F-statistic: 10.42 on 8 and 1351 DF,  p-value: 2.928e-14
dwt(intMETIModel_pass)
##  lag Autocorrelation D-W Statistic p-value
##    1     -0.02030847      2.039929   0.436
##  Alternative hypothesis: rho != 0
vif(intMETIModel_pass)
##                 GVIF Df GVIF^(1/(2*Df))
## version     1.001984  1        1.000992
## summary2    1.006353  1        1.003172
## METI_target 1.017150  1        1.008539
## s_sex       1.032782  1        1.016259
## s_age       1.037378  1        1.018518
## s_school    1.037355  2        1.009211
## s_interest  1.048584  1        1.024004
1/vif(intMETIModel_pass)
##                  GVIF  Df GVIF^(1/(2*Df))
## version     0.9980196 1.0       0.9990093
## summary2    0.9936870 1.0       0.9968385
## METI_target 0.9831392 1.0       0.9915338
## s_sex       0.9682590 1.0       0.9840015
## s_age       0.9639684 1.0       0.9818189
## s_school    0.9639905 0.5       0.9908734
## s_interest  0.9536674 1.0       0.9765590
mean(vif(intMETIModel_pass))
## [1] 1.060108

RQ3 Benevolence

benMETIModel_pass <- lm(s_METI_ben ~ version + summary2 +  
                          METI_target + s_sex + s_age + s_school +
                          s_interest, data = data2_wide_pass)
summary(benMETIModel_pass)
## 
## Call:
## lm(formula = s_METI_ben ~ version + summary2 + METI_target + 
##     s_sex + s_age + s_school + s_interest, data = data2_wide_pass)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9380 -0.7093  0.1893  0.8631  2.0990 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.251784   0.202849  20.960  < 2e-16 ***
## versionnew guideline        0.091636   0.080411   1.140    0.255    
## summary2Faerber             0.067799   0.061658   1.100    0.272    
## METI_targetSummary Authors  0.059676   0.062014   0.962    0.336    
## s_sexmale                  -0.293757   0.062613  -4.692 2.99e-06 ***
## s_age                       0.010599   0.002062   5.140 3.14e-07 ***
## s_schoolReal               -0.097845   0.077660  -1.260    0.208    
## s_schoolAbi                -0.091808   0.076916  -1.194    0.233    
## s_interest                  0.143717   0.023606   6.088 1.49e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.133 on 1347 degrees of freedom
##   (26 Beobachtungen als fehlend gelöscht)
## Multiple R-squared:  0.06438,    Adjusted R-squared:  0.05883 
## F-statistic: 11.59 on 8 and 1347 DF,  p-value: 5.007e-16
dwt(benMETIModel_pass)
##  lag Autocorrelation D-W Statistic p-value
##    1    -0.006280475      2.012405   0.778
##  Alternative hypothesis: rho != 0
vif(benMETIModel_pass)
##                 GVIF Df GVIF^(1/(2*Df))
## version     1.001589  1        1.000794
## summary2    1.004128  1        1.002062
## METI_target 1.015520  1        1.007730
## s_sex       1.032738  1        1.016237
## s_age       1.036920  1        1.018293
## s_school    1.037557  2        1.009260
## s_interest  1.049584  1        1.024492
1/vif(benMETIModel_pass)
##                  GVIF  Df GVIF^(1/(2*Df))
## version     0.9984138 1.0       0.9992066
## summary2    0.9958893 1.0       0.9979426
## METI_target 0.9847176 1.0       0.9923294
## s_sex       0.9682996 1.0       0.9840222
## s_age       0.9643945 1.0       0.9820359
## s_school    0.9638026 0.5       0.9908252
## s_interest  0.9527585 1.0       0.9760935
mean(vif(benMETIModel_pass))
## [1] 1.059852

Appendix: Percentage Tables for Knowledge Items

Preparation

data2_wide_old <- subset(data2_wide, H1_interaction == "no disclaimer.old guideline")
length(unique(data2_wide_old$id))
## [1] 357
data2_wide_new <- subset(data2_wide, H1_interaction == "no disclaimer.new guideline")
length(unique(data2_wide_new$id))
## [1] 670
data2_wide_disclaimer_new <- subset(data2_wide, H1_interaction == "disclaimer.new guideline")
length(unique(data2_wide_disclaimer_new$id))
## [1] 1013
data2_wide_old_pass <- subset(data2_wide_pass, H1_interaction == "no disclaimer.old guideline")
length(unique(data2_wide_old_pass$id))
## [1] 247
data2_wide_new_pass <- subset(data2_wide_pass, H1_interaction == "no disclaimer.new guideline")
length(unique(data2_wide_new_pass$id))
## [1] 441
data2_wide_disclaimer_new_pass <- subset(data2_wide, H1_interaction == "disclaimer.new guideline")
length(unique(data2_wide_disclaimer_new_pass$id))
## [1] 1013
data2_long_old1 <- subset(data2_long, H4_interaction == 
                            "no causality statement.old guideline")
length(unique(data2_long_old1$id))
## [1] 357
data2_long_new1 <- subset(data2_long, H4_interaction == 
                            "no causality statement.new guideline")
length(unique(data2_long_new1$id))
## [1] 679
data2_long_statement_new <- subset(data2_long,
                                   H4_interaction ==
                                   "causality statement.new guideline")
length(unique(data2_long_statement_new$id))
## [1] 1004
data2_long_old1_pass <- subset(data2_long_pass,
                               H4_interaction == "no causality statement.old guideline")
length(unique(data2_long_old1_pass$id))
## [1] 247
data2_long_new1_pass <- subset(data2_long_pass,
                               H4_interaction == "no causality statement.new guideline")
length(unique(data2_long_new1_pass$id))
## [1] 472
data2_long_statement_new_pass <- subset(data2_long_pass,
                                        H4_interaction ==
                                        "causality statement.new guideline")
length(unique(data2_long_statement_new_pass$id))
## [1] 663
data2_wide_old2 <- subset(data2_wide, H5_interaction ==
                            "no CAMA PLS.old guideline")
length(unique(data2_wide_old2$id))
## [1] 357
data2_wide_new2 <- subset(data2_wide, H5_interaction ==
                            "no CAMA PLS.new guideline")
data2_wide_CAMA_new <- subset(data2_wide, H5_interaction
                              == "CAMA PLS.new guideline")
length(unique(data2_wide_new2$id))
## [1] 1356
data2_wide_old2_pass <- subset(data2_wide_pass,
                               H5_interaction ==
                               "no CAMA PLS.old guideline")
length(unique(data2_wide_old2_pass$id))
## [1] 247
data2_wide_new2_pass <- subset(data2_wide_pass,
                               H5_interaction ==
                                 "no CAMA PLS.new guideline")
length(unique(data2_wide_new2_pass$id))
## [1] 898
data2_wide_CAMA_new_pass <- subset(data2_wide_pass,
                                   H5_interaction
                                   == "CAMA PLS.new guideline")
length(unique(data2_wide_CAMA_new_pass$id))
## [1] 237
data2_long_version_old <- subset(data2_long, version == "old guideline")
length(unique(data2_long_version_old$id))
## [1] 357
data2_long_version_new <- subset(data2_long, version == "new guideline")
length(unique(data2_long_version_new$id))
## [1] 1683
data2_long_version_old_pass <- subset(data2_long_pass, version == "old guideline")
length(unique(data2_long_version_old_pass$id))
## [1] 247
data2_long_version_new_pass <- subset(data2_long_pass, version == "new guideline")
length(unique(data2_long_version_new_pass$id))
## [1] 1135

Relationship-Item

Item 1

# "Der KLaRtext fasst die Übersichtsarbeit zusammen."

table(data2_wide$s_relationship_1,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          39                          89
##   0                           60                          91
##   1                          257                         487
##     
##      disclaimer.new guideline
##   -1                       85
##   0                       160
##   1                       766
chisq.test(data2_wide$s_relationship_1, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_1 and data2_wide$H1_interaction
## X-squared = 12.042, df = 4, p-value = 0.01704
prop.table(table(data2_wide_old$s_relationship_1))
## 
##        -1         0         1 
## 0.1095506 0.1685393 0.7219101
prop.table(table(data2_wide_new$s_relationship_1))
## 
##        -1         0         1 
## 0.1334333 0.1364318 0.7301349
prop.table(table(data2_wide_disclaimer_new$s_relationship_1))
## 
##         -1          0          1 
## 0.08407517 0.15825915 0.75766568

Awareness Check Pass

table(data2_wide_pass$s_relationship_1,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          24                          43
##   0                           31                          40
##   1                          191                         356
##     
##      disclaimer.new guideline
##   -1                       40
##   0                        73
##   1                       581
chisq.test(data2_wide_pass$s_relationship_1, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_1 and data2_wide_pass$H1_interaction
## X-squared = 9.8761, df = 4, p-value = 0.04257
prop.table(table(data2_wide_old_pass$s_relationship_1))
## 
##         -1          0          1 
## 0.09756098 0.12601626 0.77642276
prop.table(table(data2_wide_new_pass$s_relationship_1))
## 
##         -1          0          1 
## 0.09794989 0.09111617 0.81093394
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_1))
## 
##         -1          0          1 
## 0.08407517 0.15825915 0.75766568

Item 2

# "Die Übersichtsarbeit fasst den KLARtext zusammen."

table(data2_wide$s_relationship_2,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         190                         332
##   0                           75                         122
##   1                           91                         209
##     
##      disclaimer.new guideline
##   -1                      524
##   0                       166
##   1                       321
chisq.test(data2_wide$s_relationship_2, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_2 and data2_wide$H1_interaction
## X-squared = 7.4299, df = 4, p-value = 0.1148
prop.table(table(data2_wide_old$s_relationship_2))
## 
##        -1         0         1 
## 0.5337079 0.2106742 0.2556180
prop.table(table(data2_wide_new$s_relationship_2))
## 
##        -1         0         1 
## 0.5007541 0.1840121 0.3152338
prop.table(table(data2_wide_disclaimer_new$s_relationship_2))
## 
##        -1         0         1 
## 0.5182987 0.1641939 0.3175074

Awareness Check Pass

table(data2_wide_pass$s_relationship_2,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         123                         214
##   0                           51                          74
##   1                           72                         150
##     
##      disclaimer.new guideline
##   -1                      353
##   0                        91
##   1                       250
chisq.test(data2_wide_pass$s_relationship_2, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_2 and data2_wide_pass$H1_interaction
## X-squared = 9.9718, df = 4, p-value = 0.04091
prop.table(table(data2_wide_old_pass$s_relationship_2))
## 
##        -1         0         1 
## 0.5000000 0.2073171 0.2926829
prop.table(table(data2_wide_new_pass$s_relationship_2))
## 
##        -1         0         1 
## 0.4885845 0.1689498 0.3424658
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_2))
## 
##        -1         0         1 
## 0.5182987 0.1641939 0.3175074

Item 3

# "Die Autor:innen des KLARtextes waren auch die Autor:innen der Übersichtsarbeit."

table(data2_wide$s_relationship_3,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          92                         207
##   0                          132                         240
##   1                          128                         221
##     
##      disclaimer.new guideline
##   -1                      307
##   0                       306
##   1                       397
chisq.test(data2_wide$s_relationship_3, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_3 and data2_wide$H1_interaction
## X-squared = 12.233, df = 4, p-value = 0.0157
prop.table(table(data2_wide_old$s_relationship_3))
## 
##        -1         0         1 
## 0.2613636 0.3750000 0.3636364
prop.table(table(data2_wide_new$s_relationship_3))
## 
##        -1         0         1 
## 0.3098802 0.3592814 0.3308383
prop.table(table(data2_wide_disclaimer_new$s_relationship_3))
## 
##        -1         0         1 
## 0.3039604 0.3029703 0.3930693

Awareness Check Pass

table(data2_wide_pass$s_relationship_3,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          46                         113
##   0                           96                         169
##   1                          100                         157
##     
##      disclaimer.new guideline
##   -1                      171
##   0                       204
##   1                       317
chisq.test(data2_wide_pass$s_relationship_3, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_3 and data2_wide_pass$H1_interaction
## X-squared = 18.713, df = 4, p-value = 0.000895
prop.table(table(data2_wide_old_pass$s_relationship_3))
## 
##        -1         0         1 
## 0.1900826 0.3966942 0.4132231
prop.table(table(data2_wide_new_pass$s_relationship_3))
## 
##        -1         0         1 
## 0.2574032 0.3849658 0.3576310
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_3))
## 
##        -1         0         1 
## 0.3039604 0.3029703 0.3930693

Item 4

# "Die Herausgeber:innen des KLARtextes sind auch die Herausgeber:innen der Übersichtsarbeit."

table(data2_wide$s_relationship_4,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         111                         218
##   0                          133                         235
##   1                          112                         214
##     
##      disclaimer.new guideline
##   -1                      323
##   0                       286
##   1                       400
chisq.test(data2_wide$s_relationship_4, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_4 and data2_wide$H1_interaction
## X-squared = 18.299, df = 4, p-value = 0.001079
prop.table(table(data2_wide_old$s_relationship_4))
## 
##        -1         0         1 
## 0.3117978 0.3735955 0.3146067
prop.table(table(data2_wide_new$s_relationship_4))
## 
##        -1         0         1 
## 0.3268366 0.3523238 0.3208396
prop.table(table(data2_wide_disclaimer_new$s_relationship_4))
## 
##        -1         0         1 
## 0.3201189 0.2834490 0.3964321

Awareness Check Pass

table(data2_wide_pass$s_relationship_4,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          64                         131
##   0                           96                         161
##   1                           87                         147
##     
##      disclaimer.new guideline
##   -1                      187
##   0                       191
##   1                       314
chisq.test(data2_wide_pass$s_relationship_4, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_4 and data2_wide_pass$H1_interaction
## X-squared = 22.778, df = 4, p-value = 0.0001402
prop.table(table(data2_wide_old_pass$s_relationship_4))
## 
##        -1         0         1 
## 0.2591093 0.3886640 0.3522267
prop.table(table(data2_wide_new_pass$s_relationship_4))
## 
##        -1         0         1 
## 0.2984055 0.3667426 0.3348519
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_4))
## 
##        -1         0         1 
## 0.3201189 0.2834490 0.3964321

Item 5

# "Der KLARtext gibt die Durchführung und die Ergebnisse der Übersichtsarbeit allgemeinverständlich wieder."

table(data2_wide$s_relationship_5,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          43                          92
##   0                           56                         106
##   1                          256                         472
##     
##      disclaimer.new guideline
##   -1                       97
##   0                       170
##   1                       742
chisq.test(data2_wide$s_relationship_5, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_5 and data2_wide$H1_interaction
## X-squared = 7.0471, df = 4, p-value = 0.1334
prop.table(table(data2_wide_old$s_relationship_5))
## 
##        -1         0         1 
## 0.1211268 0.1577465 0.7211268
prop.table(table(data2_wide_new$s_relationship_5))
## 
##        -1         0         1 
## 0.1373134 0.1582090 0.7044776
prop.table(table(data2_wide_disclaimer_new$s_relationship_5))
## 
##         -1          0          1 
## 0.09613479 0.16848365 0.73538157

Awareness Check Pass

table(data2_wide_pass$s_relationship_5,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          26                          41
##   0                           33                          53
##   1                          187                         347
##     
##      disclaimer.new guideline
##   -1                       57
##   0                        88
##   1                       546
chisq.test(data2_wide_pass$s_relationship_5, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_5 and data2_wide_pass$H1_interaction
## X-squared = 1.6225, df = 4, p-value = 0.8047
prop.table(table(data2_wide_old_pass$s_relationship_5))
## 
##        -1         0         1 
## 0.1056911 0.1341463 0.7601626
prop.table(table(data2_wide_new_pass$s_relationship_5))
## 
##         -1          0          1 
## 0.09297052 0.12018141 0.78684807
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_5))
## 
##         -1          0          1 
## 0.09613479 0.16848365 0.73538157

Item 6

# "Die Übersichtsarbeit gibt die Durchführung und die Ergebnisse des KLARtextes allgemeinverständlich wieder."

table(data2_wide$s_relationship_6,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         198                         396
##   0                           79                         119
##   1                           79                         153
##     
##      disclaimer.new guideline
##   -1                      573
##   0                       184
##   1                       250
chisq.test(data2_wide$s_relationship_6, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_6 and data2_wide$H1_interaction
## X-squared = 4.3783, df = 4, p-value = 0.3572
prop.table(table(data2_wide_old$s_relationship_6))
## 
##        -1         0         1 
## 0.5561798 0.2219101 0.2219101
prop.table(table(data2_wide_new$s_relationship_6))
## 
##        -1         0         1 
## 0.5928144 0.1781437 0.2290419
prop.table(table(data2_wide_disclaimer_new$s_relationship_6))
## 
##        -1         0         1 
## 0.5690169 0.1827210 0.2482622

Awareness Check Pass

table(data2_wide_pass$s_relationship_6,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         142                         278
##   0                           48                          63
##   1                           56                          98
##     
##      disclaimer.new guideline
##   -1                      405
##   0                        95
##   1                       192
chisq.test(data2_wide_pass$s_relationship_6, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_6 and data2_wide_pass$H1_interaction
## X-squared = 9.2989, df = 4, p-value = 0.05405
prop.table(table(data2_wide_old_pass$s_relationship_6))
## 
##        -1         0         1 
## 0.5772358 0.1951220 0.2276423
prop.table(table(data2_wide_new_pass$s_relationship_6))
## 
##        -1         0         1 
## 0.6332574 0.1435080 0.2232346
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_6))
## 
##        -1         0         1 
## 0.5690169 0.1827210 0.2482622

Item 7

# "Der KLARtext gibt die Durchführung und die Ergebnisse der Übersichtsarbiet für Wussenschaftler:innen wieder."

table(data2_wide$s_relationship_7,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         211                         391
##   0                           78                         130
##   1                           66                         144
##     
##      disclaimer.new guideline
##   -1                      603
##   0                       193
##   1                       213
chisq.test(data2_wide$s_relationship_7, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_7 and data2_wide$H1_interaction
## X-squared = 2.2683, df = 4, p-value = 0.6865
prop.table(table(data2_wide_old$s_relationship_7))
## 
##        -1         0         1 
## 0.5943662 0.2197183 0.1859155
prop.table(table(data2_wide_new$s_relationship_7))
## 
##        -1         0         1 
## 0.5879699 0.1954887 0.2165414
prop.table(table(data2_wide_disclaimer_new$s_relationship_7))
## 
##        -1         0         1 
## 0.5976214 0.1912785 0.2111001

Awareness Check Pass

table(data2_wide_pass$s_relationship_7,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         154                         267
##   0                           43                          72
##   1                           48                          98
##     
##      disclaimer.new guideline
##   -1                      412
##   0                       111
##   1                       168
chisq.test(data2_wide_pass$s_relationship_7, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_7 and data2_wide_pass$H1_interaction
## X-squared = 2.392, df = 4, p-value = 0.6641
prop.table(table(data2_wide_old_pass$s_relationship_7))
## 
##        -1         0         1 
## 0.6285714 0.1755102 0.1959184
prop.table(table(data2_wide_new_pass$s_relationship_7))
## 
##        -1         0         1 
## 0.6109840 0.1647597 0.2242563
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_7))
## 
##        -1         0         1 
## 0.5976214 0.1912785 0.2111001

Item 8

# "Die Übersichtsarbeit gibt die Durchführung und die Ergebnisse des KLARtextes für Wissenschaftler:innen wieder."

table(data2_wide$s_relationship_8,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         180                         335
##   0                           88                         141
##   1                           86                         189
##     
##      disclaimer.new guideline
##   -1                      504
##   0                       194
##   1                       311
chisq.test(data2_wide$s_relationship_8, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_relationship_8 and data2_wide$H1_interaction
## X-squared = 8.0295, df = 4, p-value = 0.0905
prop.table(table(data2_wide_old$s_relationship_8))
## 
##        -1         0         1 
## 0.5084746 0.2485876 0.2429379
prop.table(table(data2_wide_new$s_relationship_8))
## 
##        -1         0         1 
## 0.5037594 0.2120301 0.2842105
prop.table(table(data2_wide_disclaimer_new$s_relationship_8))
## 
##        -1         0         1 
## 0.4995045 0.1922696 0.3082260

Awareness Check Pass

table(data2_wide_pass$s_relationship_8,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         116                         222
##   0                           58                          83
##   1                           72                         131
##     
##      disclaimer.new guideline
##   -1                      337
##   0                       114
##   1                       240
chisq.test(data2_wide_pass$s_relationship_8, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_relationship_8 and data2_wide_pass$H1_interaction
## X-squared = 8.12, df = 4, p-value = 0.08728
prop.table(table(data2_wide_old_pass$s_relationship_8))
## 
##        -1         0         1 
## 0.4715447 0.2357724 0.2926829
prop.table(table(data2_wide_new_pass$s_relationship_8))
## 
##        -1         0         1 
## 0.5091743 0.1903670 0.3004587
prop.table(table(data2_wide_disclaimer_new_pass$s_relationship_8))
## 
##        -1         0         1 
## 0.4995045 0.1922696 0.3082260

Extent of Evaluation-Item

Item 1

# "KLARtexte werden nur für besonders hochwertige Übersichtsarbeiten geschrieben."

table(data2_wide$s_extent_1,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          96                         202
##   0                          130                         215
##   1                          130                         251
##     
##      disclaimer.new guideline
##   -1                      289
##   0                       334
##   1                       386
chisq.test(data2_wide$s_extent_1, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_1 and data2_wide$H1_interaction
## X-squared = 2.4732, df = 4, p-value = 0.6494
prop.table(table(data2_wide_old$s_extent_1))
## 
##        -1         0         1 
## 0.2696629 0.3651685 0.3651685
prop.table(table(data2_wide_new$s_extent_1))
## 
##        -1         0         1 
## 0.3023952 0.3218563 0.3757485
prop.table(table(data2_wide_disclaimer_new$s_extent_1))
## 
##        -1         0         1 
## 0.2864222 0.3310208 0.3825570

Awareness Check Pass

table(data2_wide_pass$s_extent_1,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          56                         112
##   0                           85                         142
##   1                          106                         187
##     
##      disclaimer.new guideline
##   -1                      164
##   0                       225
##   1                       303
chisq.test(data2_wide_pass$s_extent_1, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_1 and data2_wide_pass$H1_interaction
## X-squared = 0.94823, df = 4, p-value = 0.9175
prop.table(table(data2_wide_old_pass$s_extent_1))
## 
##        -1         0         1 
## 0.2267206 0.3441296 0.4291498
prop.table(table(data2_wide_new_pass$s_extent_1))
## 
##        -1         0         1 
## 0.2539683 0.3219955 0.4240363
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_1))
## 
##        -1         0         1 
## 0.2864222 0.3310208 0.3825570

Item 2

# "KLARtexte prüfen alle Aussagen der Übersichtsarbeit auf ihre Korrektheit."

table(data2_wide$s_extent_2,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         139                         281
##   0                           97                         180
##   1                          120                         207
##     
##      disclaimer.new guideline
##   -1                      406
##   0                       233
##   1                       369
chisq.test(data2_wide$s_extent_2, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_2 and data2_wide$H1_interaction
## X-squared = 7.4736, df = 4, p-value = 0.1129
prop.table(table(data2_wide_old$s_extent_2))
## 
##        -1         0         1 
## 0.3904494 0.2724719 0.3370787
prop.table(table(data2_wide_new$s_extent_2))
## 
##        -1         0         1 
## 0.4206587 0.2694611 0.3098802
prop.table(table(data2_wide_disclaimer_new$s_extent_2))
## 
##        -1         0         1 
## 0.4027778 0.2311508 0.3660714

Awareness Check Pass

table(data2_wide_pass$s_extent_2,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          89                         174
##   0                           70                         122
##   1                           88                         145
##     
##      disclaimer.new guideline
##   -1                      261
##   0                       136
##   1                       295
chisq.test(data2_wide_pass$s_extent_2, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_2 and data2_wide_pass$H1_interaction
## X-squared = 17.669, df = 4, p-value = 0.001432
prop.table(table(data2_wide_old_pass$s_extent_2))
## 
##        -1         0         1 
## 0.3603239 0.2834008 0.3562753
prop.table(table(data2_wide_new_pass$s_extent_2))
## 
##        -1         0         1 
## 0.3945578 0.2766440 0.3287982
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_2))
## 
##        -1         0         1 
## 0.4027778 0.2311508 0.3660714

Item 3

# "Die Inhalte der Übersichtsarbeit wurden durch das Leibniz-Institut für Psychologie geprüft."

table(data2_wide$s_extent_3,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         160                         309
##   0                          118                         218
##   1                           77                         137
##     
##      disclaimer.new guideline
##   -1                      453
##   0                       322
##   1                       237
chisq.test(data2_wide$s_extent_3, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_3 and data2_wide$H1_interaction
## X-squared = 1.9623, df = 4, p-value = 0.7427
prop.table(table(data2_wide_old$s_extent_3))
## 
##        -1         0         1 
## 0.4507042 0.3323944 0.2169014
prop.table(table(data2_wide_new$s_extent_3))
## 
##        -1         0         1 
## 0.4653614 0.3283133 0.2063253
prop.table(table(data2_wide_disclaimer_new$s_extent_3))
## 
##        -1         0         1 
## 0.4476285 0.3181818 0.2341897

Awareness Check Pass

table(data2_wide_pass$s_extent_3,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         112                         195
##   0                           77                         151
##   1                           57                          92
##     
##      disclaimer.new guideline
##   -1                      305
##   0                       217
##   1                       172
chisq.test(data2_wide_pass$s_extent_3, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_3 and data2_wide_pass$H1_interaction
## X-squared = 2.6987, df = 4, p-value = 0.6094
prop.table(table(data2_wide_old_pass$s_extent_3))
## 
##        -1         0         1 
## 0.4552846 0.3130081 0.2317073
prop.table(table(data2_wide_new_pass$s_extent_3))
## 
##        -1         0         1 
## 0.4452055 0.3447489 0.2100457
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_3))
## 
##        -1         0         1 
## 0.4476285 0.3181818 0.2341897

Item 4

# "Aussagen in KLARtexten werden durch Studien des Leibniz-Instituts für Psychologie abgesichert."

table(data2_wide$s_extent_4,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                         144                         286
##   0                          133                         229
##   1                           77                         150
##     
##      disclaimer.new guideline
##   -1                      429
##   0                       326
##   1                       255
chisq.test(data2_wide$s_extent_4, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_4 and data2_wide$H1_interaction
## X-squared = 4.5001, df = 4, p-value = 0.3425
prop.table(table(data2_wide_old$s_extent_4))
## 
##        -1         0         1 
## 0.4067797 0.3757062 0.2175141
prop.table(table(data2_wide_new$s_extent_4))
## 
##        -1         0         1 
## 0.4300752 0.3443609 0.2255639
prop.table(table(data2_wide_disclaimer_new$s_extent_4))
## 
##        -1         0         1 
## 0.4247525 0.3227723 0.2524752

Awareness Check Pass

table(data2_wide_pass$s_extent_4,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          90                         193
##   0                           93                         153
##   1                           62                          91
##     
##      disclaimer.new guideline
##   -1                      273
##   0                       222
##   1                       197
chisq.test(data2_wide_pass$s_extent_4, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_4 and data2_wide_pass$H1_interaction
## X-squared = 10.65, df = 4, p-value = 0.03079
prop.table(table(data2_wide_old_pass$s_extent_4))
## 
##        -1         0         1 
## 0.3673469 0.3795918 0.2530612
prop.table(table(data2_wide_new_pass$s_extent_4))
## 
##        -1         0         1 
## 0.4416476 0.3501144 0.2082380
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_4))
## 
##        -1         0         1 
## 0.4247525 0.3227723 0.2524752

Item 5

# "KLARtexte geben die Aussagen der Autor:innen einer Übersichtsarbeit wieder."

table(data2_wide$s_extent_5,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          50                         101
##   0                           86                         155
##   1                          218                         409
##     
##      disclaimer.new guideline
##   -1                      142
##   0                       235
##   1                       633
chisq.test(data2_wide$s_extent_5, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_5 and data2_wide$H1_interaction
## X-squared = 0.61761, df = 4, p-value = 0.9611
prop.table(table(data2_wide_old$s_extent_5))
## 
##        -1         0         1 
## 0.1412429 0.2429379 0.6158192
prop.table(table(data2_wide_new$s_extent_5))
## 
##        -1         0         1 
## 0.1518797 0.2330827 0.6150376
prop.table(table(data2_wide_disclaimer_new$s_extent_5))
## 
##        -1         0         1 
## 0.1405941 0.2326733 0.6267327

Awareness Check Pass

table(data2_wide_pass$s_extent_5,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          27                          53
##   0                           53                          89
##   1                          165                         295
##     
##      disclaimer.new guideline
##   -1                       87
##   0                       131
##   1                       474
chisq.test(data2_wide_pass$s_extent_5, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_5 and data2_wide_pass$H1_interaction
## X-squared = 1.1596, df = 4, p-value = 0.8847
prop.table(table(data2_wide_old_pass$s_extent_5))
## 
##        -1         0         1 
## 0.1102041 0.2163265 0.6734694
prop.table(table(data2_wide_new_pass$s_extent_5))
## 
##        -1         0         1 
## 0.1212815 0.2036613 0.6750572
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_5))
## 
##        -1         0         1 
## 0.1405941 0.2326733 0.6267327

Item 6

# "KLARtexte geben den Stand der Forschung zu einem bestimmten Zeitpunkt wieder."

table(data2_wide$s_extent_6,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          60                         124
##   0                           80                         126
##   1                          214                         419
##     
##      disclaimer.new guideline
##   -1                      166
##   0                       235
##   1                       611
chisq.test(data2_wide$s_extent_6, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_extent_6 and data2_wide$H1_interaction
## X-squared = 5.1949, df = 4, p-value = 0.2679
prop.table(table(data2_wide_old$s_extent_6))
## 
##        -1         0         1 
## 0.1694915 0.2259887 0.6045198
prop.table(table(data2_wide_new$s_extent_6))
## 
##        -1         0         1 
## 0.1853513 0.1883408 0.6263079
prop.table(table(data2_wide_disclaimer_new$s_extent_6))
## 
##        -1         0         1 
## 0.1640316 0.2322134 0.6037549

Awareness Check Pass

table(data2_wide_pass$s_extent_6,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          36                          76
##   0                           52                          68
##   1                          158                         297
##     
##      disclaimer.new guideline
##   -1                      109
##   0                       138
##   1                       446
chisq.test(data2_wide_pass$s_extent_6, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_extent_6 and data2_wide_pass$H1_interaction
## X-squared = 5.0243, df = 4, p-value = 0.2848
prop.table(table(data2_wide_old_pass$s_extent_6))
## 
##        -1         0         1 
## 0.1463415 0.2113821 0.6422764
prop.table(table(data2_wide_new_pass$s_extent_6))
## 
##        -1         0         1 
## 0.1723356 0.1541950 0.6734694
prop.table(table(data2_wide_disclaimer_new_pass$s_extent_6))
## 
##        -1         0         1 
## 0.1640316 0.2322134 0.6037549

Differentiation-Item

Item 1

# "Mitarbeiter:innen des Leibniz-Instituts für Psychologie."

T1

table(data2_wide$s_diff_1_1,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          79                         153
##   0                           56                          91
##   1                           47                          81
##     
##      disclaimer.new guideline
##   -1                      237
##   0                       123
##   1                       150
chisq.test(data2_wide$s_diff_1_1, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_1 and data2_wide$H1_interaction
## X-squared = 4.6313, df = 4, p-value = 0.3273
prop.table(table(data2_wide_old$s_diff_1_1))
## 
##        -1         0         1 
## 0.4340659 0.3076923 0.2582418
prop.table(table(data2_wide_new$s_diff_1_1))
## 
##        -1         0         1 
## 0.4707692 0.2800000 0.2492308
prop.table(table(data2_wide_disclaimer_new$s_diff_1_1))
## 
##        -1         0         1 
## 0.4647059 0.2411765 0.2941176
Awareness Check Pass
table(data2_wide_pass$s_diff_1_1,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          44                          96
##   0                           42                          59
##   1                           38                          61
##     
##      disclaimer.new guideline
##   -1                      156
##   0                        80
##   1                       114
chisq.test(data2_wide_pass$s_diff_1_1, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_1 and data2_wide_pass$H1_interaction
## X-squared = 7.1264, df = 4, p-value = 0.1294
prop.table(table(data2_wide_old_pass$s_diff_1_1))
## 
##        -1         0         1 
## 0.3548387 0.3387097 0.3064516
prop.table(table(data2_wide_new_pass$s_diff_1_1))
## 
##        -1         0         1 
## 0.4444444 0.2731481 0.2824074
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_1))
## 
##        -1         0         1 
## 0.4647059 0.2411765 0.2941176

T2

table(data2_wide$s_diff_2_1,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          54                         134
##   0                           39                          74
##   1                           79                         130
##     
##      disclaimer.new guideline
##   -1                      198
##   0                       115
##   1                       187
chisq.test(data2_wide$s_diff_2_1, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_1 and data2_wide$H1_interaction
## X-squared = 5.0824, df = 4, p-value = 0.2789
prop.table(table(data2_wide_old$s_diff_2_1))
## 
##        -1         0         1 
## 0.3139535 0.2267442 0.4593023
prop.table(table(data2_wide_new$s_diff_2_1))
## 
##        -1         0         1 
## 0.3964497 0.2189349 0.3846154
prop.table(table(data2_wide_disclaimer_new$s_diff_2_1))
## 
##    -1     0     1 
## 0.396 0.230 0.374
Awareness Ckeck Pass
table(data2_wide_pass$s_diff_2_1,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          32                          81
##   0                           24                          45
##   1                           65                          95
##     
##      disclaimer.new guideline
##   -1                      124
##   0                        63
##   1                       154
chisq.test(data2_wide_pass$s_diff_2_1, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_1 and data2_wide_pass$H1_interaction
## X-squared = 5.2136, df = 4, p-value = 0.2661
prop.table(table(data2_wide_old_pass$s_diff_2_1))
## 
##        -1         0         1 
## 0.2644628 0.1983471 0.5371901
prop.table(table(data2_wide_new_pass$s_diff_2_1))
## 
##        -1         0         1 
## 0.3665158 0.2036199 0.4298643
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_1))
## 
##    -1     0     1 
## 0.396 0.230 0.374

Item 2

# "Die Autor:innen, deren Einzelstudien in der Übersichtsarbeit berücksichtigt wurden."

T1

table(data2_wide$s_diff_1_2,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          86                         163
##   0                           59                          80
##   1                           39                          87
##     
##      disclaimer.new guideline
##   -1                      249
##   0                       124
##   1                       133
chisq.test(data2_wide$s_diff_1_2, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_2 and data2_wide$H1_interaction
## X-squared = 5.1988, df = 4, p-value = 0.2675
prop.table(table(data2_wide_old$s_diff_1_2))
## 
##        -1         0         1 
## 0.4673913 0.3206522 0.2119565
prop.table(table(data2_wide_new$s_diff_1_2))
## 
##        -1         0         1 
## 0.4939394 0.2424242 0.2636364
prop.table(table(data2_wide_disclaimer_new$s_diff_1_2))
## 
##        -1         0         1 
## 0.4920949 0.2450593 0.2628458
Awareness Check Pass
table(data2_wide_pass$s_diff_1_2,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          65                         114
##   0                           37                          51
##   1                           23                          53
##     
##      disclaimer.new guideline
##   -1                      173
##   0                        81
##   1                        95
chisq.test(data2_wide_pass$s_diff_1_2, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_2 and data2_wide_pass$H1_interaction
## X-squared = 4.8292, df = 4, p-value = 0.3053
prop.table(table(data2_wide_old_pass$s_diff_1_2))
## 
##    -1     0     1 
## 0.520 0.296 0.184
prop.table(table(data2_wide_new_pass$s_diff_1_2))
## 
##        -1         0         1 
## 0.5229358 0.2339450 0.2431193
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_2))
## 
##        -1         0         1 
## 0.4920949 0.2450593 0.2628458

T2

table(data2_wide$s_diff_2_2,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          78                         128
##   0                           41                          85
##   1                           53                         126
##     
##      disclaimer.new guideline
##   -1                      208
##   0                       127
##   1                       165
chisq.test(data2_wide$s_diff_2_2, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_2 and data2_wide$H1_interaction
## X-squared = 3.493, df = 4, p-value = 0.4789
prop.table(table(data2_wide_old$s_diff_2_2))
## 
##        -1         0         1 
## 0.4534884 0.2383721 0.3081395
prop.table(table(data2_wide_new$s_diff_2_2))
## 
##        -1         0         1 
## 0.3775811 0.2507375 0.3716814
prop.table(table(data2_wide_disclaimer_new$s_diff_2_2))
## 
##    -1     0     1 
## 0.416 0.254 0.330
Awareness Check Pass
table(data2_wide_pass$s_diff_2_2,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          52                          85
##   0                           28                          49
##   1                           41                          88
##     
##      disclaimer.new guideline
##   -1                      143
##   0                        70
##   1                       128
chisq.test(data2_wide_pass$s_diff_2_2, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_2 and data2_wide_pass$H1_interaction
## X-squared = 1.6122, df = 4, p-value = 0.8066
prop.table(table(data2_wide_old_pass$s_diff_2_2))
## 
##        -1         0         1 
## 0.4297521 0.2314050 0.3388430
prop.table(table(data2_wide_new_pass$s_diff_2_2))
## 
##        -1         0         1 
## 0.3828829 0.2207207 0.3963964
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_2))
## 
##    -1     0     1 
## 0.416 0.254 0.330

Item 3

# "Die Autor:innen der Übersichtsarbeit."

T1

table(data2_wide$s_diff_1_3,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          53                         102
##   0                           59                          96
##   1                           70                         131
##     
##      disclaimer.new guideline
##   -1                      174
##   0                       130
##   1                       203
chisq.test(data2_wide$s_diff_1_3, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_3 and data2_wide$H1_interaction
## X-squared = 3.9061, df = 4, p-value = 0.4189
prop.table(table(data2_wide_old$s_diff_1_3))
## 
##        -1         0         1 
## 0.2912088 0.3241758 0.3846154
prop.table(table(data2_wide_new$s_diff_1_3))
## 
##        -1         0         1 
## 0.3100304 0.2917933 0.3981763
prop.table(table(data2_wide_disclaimer_new$s_diff_1_3))
## 
##        -1         0         1 
## 0.3431953 0.2564103 0.4003945
Awareness Check Pass
table(data2_wide_pass$s_diff_1_3,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          38                          70
##   0                           35                          58
##   1                           50                          89
##     
##      disclaimer.new guideline
##   -1                      129
##   0                        83
##   1                       137
chisq.test(data2_wide_pass$s_diff_1_3, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_3 and data2_wide_pass$H1_interaction
## X-squared = 2.463, df = 4, p-value = 0.6513
prop.table(table(data2_wide_old_pass$s_diff_1_3))
## 
##        -1         0         1 
## 0.3089431 0.2845528 0.4065041
prop.table(table(data2_wide_new_pass$s_diff_1_3))
## 
##        -1         0         1 
## 0.3225806 0.2672811 0.4101382
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_3))
## 
##        -1         0         1 
## 0.3431953 0.2564103 0.4003945

T2

table(data2_wide$s_diff_2_3,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          60                         127
##   0                           42                          84
##   1                           67                         125
##     
##      disclaimer.new guideline
##   -1                      189
##   0                       127
##   1                       184
chisq.test(data2_wide$s_diff_2_3, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_3 and data2_wide$H1_interaction
## X-squared = 0.49848, df = 4, p-value = 0.9736
prop.table(table(data2_wide_old$s_diff_2_3))
## 
##        -1         0         1 
## 0.3550296 0.2485207 0.3964497
prop.table(table(data2_wide_new$s_diff_2_3))
## 
##        -1         0         1 
## 0.3779762 0.2500000 0.3720238
prop.table(table(data2_wide_disclaimer_new$s_diff_2_3))
## 
##    -1     0     1 
## 0.378 0.254 0.368
Awareness Check Pass
table(data2_wide_pass$s_diff_2_3,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          49                          98
##   0                           25                          49
##   1                           45                          73
##     
##      disclaimer.new guideline
##   -1                      148
##   0                        69
##   1                       125
chisq.test(data2_wide_pass$s_diff_2_3, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_3 and data2_wide_pass$H1_interaction
## X-squared = 1.0924, df = 4, p-value = 0.8955
prop.table(table(data2_wide_old_pass$s_diff_2_3))
## 
##        -1         0         1 
## 0.4117647 0.2100840 0.3781513
prop.table(table(data2_wide_new_pass$s_diff_2_3))
## 
##        -1         0         1 
## 0.4454545 0.2227273 0.3318182
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_3))
## 
##    -1     0     1 
## 0.378 0.254 0.368

Item 4

"Die Autor:innen des KLARtextes."
## [1] "Die Autor:innen des KLARtextes."

T1

table(data2_wide$s_diff_1_4,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          58                         111
##   0                           53                          94
##   1                           73                         124
##     
##      disclaimer.new guideline
##   -1                      168
##   0                       116
##   1                       222
chisq.test(data2_wide$s_diff_1_4, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_4 and data2_wide$H1_interaction
## X-squared = 5.3916, df = 4, p-value = 0.2494
prop.table(table(data2_wide_old$s_diff_1_4))
## 
##        -1         0         1 
## 0.3152174 0.2880435 0.3967391
prop.table(table(data2_wide_new$s_diff_1_4))
## 
##        -1         0         1 
## 0.3373860 0.2857143 0.3768997
prop.table(table(data2_wide_disclaimer_new$s_diff_1_4))
## 
##        -1         0         1 
## 0.3320158 0.2292490 0.4387352
Awareness Check Pass
table(data2_wide_pass$s_diff_1_4,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          35                          71
##   0                           31                          57
##   1                           59                          90
##     
##      disclaimer.new guideline
##   -1                       98
##   0                        68
##   1                       180
chisq.test(data2_wide_pass$s_diff_1_4, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_4 and data2_wide_pass$H1_interaction
## X-squared = 6.9918, df = 4, p-value = 0.1363
prop.table(table(data2_wide_old_pass$s_diff_1_4))
## 
##    -1     0     1 
## 0.280 0.248 0.472
prop.table(table(data2_wide_new_pass$s_diff_1_4))
## 
##        -1         0         1 
## 0.3256881 0.2614679 0.4128440
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_4))
## 
##        -1         0         1 
## 0.3320158 0.2292490 0.4387352

T2

table(data2_wide$s_diff_2_4,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          55                          92
##   0                           46                          84
##   1                           72                         163
##     
##      disclaimer.new guideline
##   -1                      135
##   0                       119
##   1                       246
chisq.test(data2_wide$s_diff_2_4, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_4 and data2_wide$H1_interaction
## X-squared = 3.1557, df = 4, p-value = 0.5321
prop.table(table(data2_wide_old$s_diff_2_4))
## 
##        -1         0         1 
## 0.3179191 0.2658960 0.4161850
prop.table(table(data2_wide_new$s_diff_2_4))
## 
##        -1         0         1 
## 0.2713864 0.2477876 0.4808260
prop.table(table(data2_wide_disclaimer_new$s_diff_2_4))
## 
##    -1     0     1 
## 0.270 0.238 0.492
Awareness Check Pass
table(data2_wide_pass$s_diff_2_4,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          32                          53
##   0                           28                          48
##   1                           62                         121
##     
##      disclaimer.new guideline
##   -1                       79
##   0                        60
##   1                       202
chisq.test(data2_wide_pass$s_diff_2_4, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_4 and data2_wide_pass$H1_interaction
## X-squared = 3.4692, df = 4, p-value = 0.4826
prop.table(table(data2_wide_old_pass$s_diff_2_4))
## 
##        -1         0         1 
## 0.2622951 0.2295082 0.5081967
prop.table(table(data2_wide_new_pass$s_diff_2_4))
## 
##        -1         0         1 
## 0.2387387 0.2162162 0.5450450
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_4))
## 
##    -1     0     1 
## 0.270 0.238 0.492

Item 5

# "Jürgen Barth und sieben weitere Forschende."

T1

table(data2_wide$s_diff_1_5,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          42                          70
##   0                           71                         119
##   1                           69                         138
##     
##      disclaimer.new guideline
##   -1                      120
##   0                       171
##   1                       218
chisq.test(data2_wide$s_diff_1_5, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_5 and data2_wide$H1_interaction
## X-squared = 2.4453, df = 4, p-value = 0.6545
prop.table(table(data2_wide_old$s_diff_1_5))
## 
##        -1         0         1 
## 0.2307692 0.3901099 0.3791209
prop.table(table(data2_wide_new$s_diff_1_5))
## 
##        -1         0         1 
## 0.2140673 0.3639144 0.4220183
prop.table(table(data2_wide_disclaimer_new$s_diff_1_5))
## 
##        -1         0         1 
## 0.2357564 0.3359528 0.4282908
Awareness Check Pass
table(data2_wide_pass$s_diff_1_5,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          30                          47
##   0                           46                          77
##   1                           48                          93
##     
##      disclaimer.new guideline
##   -1                       87
##   0                       117
##   1                       146
chisq.test(data2_wide_pass$s_diff_1_5, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_5 and data2_wide_pass$H1_interaction
## X-squared = 1.3293, df = 4, p-value = 0.8564
prop.table(table(data2_wide_old_pass$s_diff_1_5))
## 
##        -1         0         1 
## 0.2419355 0.3709677 0.3870968
prop.table(table(data2_wide_new_pass$s_diff_1_5))
## 
##        -1         0         1 
## 0.2165899 0.3548387 0.4285714
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_5))
## 
##        -1         0         1 
## 0.2357564 0.3359528 0.4282908

T2

table(data2_wide$s_diff_2_5,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          40                          96
##   0                           42                          71
##   1                           89                         172
##     
##      disclaimer.new guideline
##   -1                      123
##   0                       136
##   1                       237
chisq.test(data2_wide$s_diff_2_5, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_5 and data2_wide$H1_interaction
## X-squared = 5.4515, df = 4, p-value = 0.244
prop.table(table(data2_wide_old$s_diff_2_5))
## 
##        -1         0         1 
## 0.2339181 0.2456140 0.5204678
prop.table(table(data2_wide_new$s_diff_2_5))
## 
##        -1         0         1 
## 0.2831858 0.2094395 0.5073746
prop.table(table(data2_wide_disclaimer_new$s_diff_2_5))
## 
##        -1         0         1 
## 0.2479839 0.2741935 0.4778226
Awareness Check Pass
table(data2_wide_pass$s_diff_2_5,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          29                          57
##   0                           25                          34
##   1                           67                         131
##     
##      disclaimer.new guideline
##   -1                       92
##   0                        72
##   1                       177
chisq.test(data2_wide_pass$s_diff_2_5, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_5 and data2_wide_pass$H1_interaction
## X-squared = 4.1079, df = 4, p-value = 0.3916
prop.table(table(data2_wide_old_pass$s_diff_2_5))
## 
##        -1         0         1 
## 0.2396694 0.2066116 0.5537190
prop.table(table(data2_wide_new_pass$s_diff_2_5))
## 
##        -1         0         1 
## 0.2567568 0.1531532 0.5900901
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_5))
## 
##        -1         0         1 
## 0.2479839 0.2741935 0.4778226

Item 6

# "Mitarbeiter:innen von der Universität Bern und zwei weiteren Instituten."

T1

table(data2_wide$s_diff_1_6,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          45                          99
##   0                           56                          98
##   1                           82                         131
##     
##      disclaimer.new guideline
##   -1                      139
##   0                       152
##   1                       219
chisq.test(data2_wide$s_diff_1_6, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_1_6 and data2_wide$H1_interaction
## X-squared = 2.1882, df = 4, p-value = 0.7012
prop.table(table(data2_wide_old$s_diff_1_6))
## 
##        -1         0         1 
## 0.2459016 0.3060109 0.4480874
prop.table(table(data2_wide_new$s_diff_1_6))
## 
##        -1         0         1 
## 0.3018293 0.2987805 0.3993902
prop.table(table(data2_wide_disclaimer_new$s_diff_1_6))
## 
##        -1         0         1 
## 0.2725490 0.2980392 0.4294118
Awareness Check Pass
table(data2_wide_pass$s_diff_1_6,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          29                          68
##   0                           37                          61
##   1                           58                          88
##     
##      disclaimer.new guideline
##   -1                      107
##   0                       104
##   1                       139
chisq.test(data2_wide_pass$s_diff_1_6, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_1_6 and data2_wide_pass$H1_interaction
## X-squared = 3.2333, df = 4, p-value = 0.5196
prop.table(table(data2_wide_old_pass$s_diff_1_6))
## 
##        -1         0         1 
## 0.2338710 0.2983871 0.4677419
prop.table(table(data2_wide_new_pass$s_diff_1_6))
## 
##        -1         0         1 
## 0.3133641 0.2811060 0.4055300
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_1_6))
## 
##        -1         0         1 
## 0.2725490 0.2980392 0.4294118

T2

table(data2_wide$s_diff_2_6,data2_wide$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          49                         104
##   0                           34                          86
##   1                           89                         148
##     
##      disclaimer.new guideline
##   -1                      158
##   0                       134
##   1                       207
chisq.test(data2_wide$s_diff_2_6, data2_wide$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_diff_2_6 and data2_wide$H1_interaction
## X-squared = 6.0511, df = 4, p-value = 0.1954
prop.table(table(data2_wide_old$s_diff_2_6))
## 
##        -1         0         1 
## 0.2848837 0.1976744 0.5174419
prop.table(table(data2_wide_new$s_diff_2_6))
## 
##        -1         0         1 
## 0.3076923 0.2544379 0.4378698
prop.table(table(data2_wide_disclaimer_new$s_diff_2_6))
## 
##        -1         0         1 
## 0.3166333 0.2685371 0.4148297
Awareness Check Pass
table(data2_wide_pass$s_diff_2_6,data2_wide_pass$H1_interaction)
##     
##      no disclaimer.old guideline no disclaimer.new guideline
##   -1                          39                          75
##   0                           20                          49
##   1                           62                          99
##     
##      disclaimer.new guideline
##   -1                      118
##   0                        75
##   1                       148
chisq.test(data2_wide_pass$s_diff_2_6, data2_wide_pass$H1_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_diff_2_6 and data2_wide_pass$H1_interaction
## X-squared = 2.8189, df = 4, p-value = 0.5886
prop.table(table(data2_wide_old_pass$s_diff_2_6))
## 
##        -1         0         1 
## 0.3223140 0.1652893 0.5123967
prop.table(table(data2_wide_new_pass$s_diff_2_6))
## 
##        -1         0         1 
## 0.3363229 0.2197309 0.4439462
prop.table(table(data2_wide_disclaimer_new_pass$s_diff_2_6))
## 
##        -1         0         1 
## 0.3166333 0.2685371 0.4148297

Causality-Item

Item 1

T1

table(data2_long$s_causality_1_1,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  150                                  286
##   0                                   132                                  256
##   1                                   428                                  806
##     
##      causality statement.new guideline
##   -1                               392
##   0                                402
##   1                               1204
chisq.test(data2_long$s_causality_1_1, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_1 and data2_long$H4_interaction
## X-squared = 2.1268, df = 4, p-value = 0.7125
prop.table(table(data2_long_old1$s_causality_1_1))
## 
##        -1         0         1 
## 0.2112676 0.1859155 0.6028169
prop.table(table(data2_long_new1$s_causality_1_1))
## 
##        -1         0         1 
## 0.2121662 0.1899110 0.5979228
prop.table(table(data2_long_statement_new$s_causality_1_1))
## 
##        -1         0         1 
## 0.1961962 0.2012012 0.6026026
Awareness Check Pass
table(data2_long_pass$s_causality_1_1,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  192                               264
##   0                                   150                               226
##   1                                   598                               830
##     
##      no causality statement.old guideline
##   -1                                  114
##   0                                    74
##   1                                   304
chisq.test(data2_long_pass$s_causality_1_1, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_1 and data2_long_pass$H4_interaction
## X-squared = 3.0538, df = 4, p-value = 0.5489
prop.table(table(data2_long_old1_pass$s_causality_1_1))
## 
##        -1         0         1 
## 0.2317073 0.1504065 0.6178862
prop.table(table(data2_long_new1_pass$s_causality_1_1))
## 
##        -1         0         1 
## 0.2042553 0.1595745 0.6361702
prop.table(table(data2_long_statement_new_pass$s_causality_1_1))
## 
##        -1         0         1 
## 0.2000000 0.1712121 0.6287879

T2

table(data2_long_pass$s_causality_2_1,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  208                               242
##   0                                   180                               228
##   1                                   554                               850
##     
##      no causality statement.old guideline
##   -1                                  104
##   0                                    84
##   1                                   302
chisq.test(data2_long_pass$s_causality_2_1, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_1 and data2_long_pass$H4_interaction
## X-squared = 8.1812, df = 4, p-value = 0.08516
prop.table(table(data2_long_old1_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.2122449 0.1714286 0.6163265
prop.table(table(data2_long_new1_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.2208068 0.1910828 0.5881104
prop.table(table(data2_long_statement_new_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.1833333 0.1727273 0.6439394

Awareness Check Pass

table(data2_long_pass$s_causality_1_1,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  192                               264
##   0                                   150                               226
##   1                                   598                               830
##     
##      no causality statement.old guideline
##   -1                                  114
##   0                                    74
##   1                                   304
chisq.test(data2_long_pass$s_causality_2_1, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_1 and data2_long_pass$H4_interaction
## X-squared = 8.1812, df = 4, p-value = 0.08516
prop.table(table(data2_long_old1_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.2122449 0.1714286 0.6163265
prop.table(table(data2_long_new1_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.2208068 0.1910828 0.5881104
prop.table(table(data2_long_statement_new_pass$s_causality_2_1))
## 
##        -1         0         1 
## 0.1833333 0.1727273 0.6439394

Item 2

T1

table(data2_long$s_causality_1_2,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  348                                  616
##   0                                   178                                  320
##   1                                   186                                  416
##     
##      causality statement.new guideline
##   -1                               932
##   0                                476
##   1                                590
chisq.test(data2_long$s_causality_1_2, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_2 and data2_long$H4_interaction
## X-squared = 4.9578, df = 4, p-value = 0.2917
prop.table(table(data2_long_old1$s_causality_1_2))
## 
##       -1        0        1 
## 0.488764 0.250000 0.261236
prop.table(table(data2_long_new1$s_causality_1_2))
## 
##        -1         0         1 
## 0.4556213 0.2366864 0.3076923
prop.table(table(data2_long_statement_new$s_causality_1_2))
## 
##        -1         0         1 
## 0.4664665 0.2382382 0.2952953
Awareness Check Pass
table(data2_long_pass$s_causality_1_2,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  452                               640
##   0                                   208                               268
##   1                                   278                               414
##     
##      no causality statement.old guideline
##   -1                                  248
##   0                                   110
##   1                                   136
chisq.test(data2_long_pass$s_causality_1_2, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_2 and data2_long_pass$H4_interaction
## X-squared = 3.3124, df = 4, p-value = 0.507
prop.table(table(data2_long_old1_pass$s_causality_1_2))
## 
##        -1         0         1 
## 0.5020243 0.2226721 0.2753036
prop.table(table(data2_long_new1_pass$s_causality_1_2))
## 
##        -1         0         1 
## 0.4818763 0.2217484 0.2963753
prop.table(table(data2_long_statement_new_pass$s_causality_1_2))
## 
##        -1         0         1 
## 0.4841150 0.2027231 0.3131619

T2

table(data2_long$s_causality_2_2,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  250                                  614
##   0                                   210                                  328
##   1                                   252                                  404
##     
##      causality statement.new guideline
##   -1                               830
##   0                                558
##   1                                608
chisq.test(data2_long$s_causality_2_2, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_2_2 and data2_long$H4_interaction
## X-squared = 23.065, df = 4, p-value = 0.0001229
prop.table(table(data2_long_old1$s_causality_2_2))
## 
##        -1         0         1 
## 0.3511236 0.2949438 0.3539326
prop.table(table(data2_long_new1$s_causality_2_2))
## 
##        -1         0         1 
## 0.4561664 0.2436850 0.3001486
prop.table(table(data2_long_statement_new$s_causality_2_2))
## 
##        -1         0         1 
## 0.4158317 0.2795591 0.3046092
Awareness Check Pass
table(data2_long_pass$s_causality_2_2,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  434                               544
##   0                                   220                               332
##   1                                   286                               440
##     
##      no causality statement.old guideline
##   -1                                  166
##   0                                   130
##   1                                   198
chisq.test(data2_long_pass$s_causality_2_2, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_2 and data2_long_pass$H4_interaction
## X-squared = 22.634, df = 4, p-value = 0.0001498
prop.table(table(data2_long_old1_pass$s_causality_2_2))
## 
##        -1         0         1 
## 0.3360324 0.2631579 0.4008097
prop.table(table(data2_long_new1_pass$s_causality_2_2))
## 
##        -1         0         1 
## 0.4617021 0.2340426 0.3042553
prop.table(table(data2_long_statement_new_pass$s_causality_2_2))
## 
##        -1         0         1 
## 0.4133739 0.2522796 0.3343465

Item 3

T1

table(data2_long$s_causality_1_3,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  328                                  638
##   0                                   188                                  324
##   1                                   192                                  388
##     
##      causality statement.new guideline
##   -1                               910
##   0                                552
##   1                                538
chisq.test(data2_long$s_causality_1_3, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_3 and data2_long$H4_interaction
## X-squared = 5.6109, df = 4, p-value = 0.2302
prop.table(table(data2_long_old1$s_causality_1_3))
## 
##        -1         0         1 
## 0.4632768 0.2655367 0.2711864
prop.table(table(data2_long_new1$s_causality_1_3))
## 
##        -1         0         1 
## 0.4725926 0.2400000 0.2874074
prop.table(table(data2_long_statement_new$s_causality_1_3))
## 
##    -1     0     1 
## 0.455 0.276 0.269
Awareness Check Pass
table(data2_long_pass$s_causality_1_3,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  438                               606
##   0                                   230                               334
##   1                                   270                               382
##     
##      no causality statement.old guideline
##   -1                                  226
##   0                                   120
##   1                                   146
chisq.test(data2_long_pass$s_causality_1_3, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_3 and data2_long_pass$H4_interaction
## X-squared = 0.36449, df = 4, p-value = 0.9853
prop.table(table(data2_long_old1_pass$s_causality_1_3))
## 
##        -1         0         1 
## 0.4593496 0.2439024 0.2967480
prop.table(table(data2_long_new1_pass$s_causality_1_3))
## 
##        -1         0         1 
## 0.4669510 0.2452026 0.2878465
prop.table(table(data2_long_statement_new_pass$s_causality_1_3))
## 
##        -1         0         1 
## 0.4583964 0.2526475 0.2889561

T2

table(data2_long$s_causality_2_3,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  308                                  554
##   0                                   186                                  390
##   1                                   218                                  414
##     
##      causality statement.new guideline
##   -1                               898
##   0                                540
##   1                                562
chisq.test(data2_long$s_causality_2_3, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_2_3 and data2_long$H4_interaction
## X-squared = 6.6043, df = 4, p-value = 0.1583
prop.table(table(data2_long_old1$s_causality_2_3))
## 
##        -1         0         1 
## 0.4325843 0.2612360 0.3061798
prop.table(table(data2_long_new1$s_causality_2_3))
## 
##        -1         0         1 
## 0.4079529 0.2871870 0.3048601
prop.table(table(data2_long_statement_new$s_causality_2_3))
## 
##    -1     0     1 
## 0.449 0.270 0.281
Awareness Check Pass
table(data2_long_pass$s_causality_2_3,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  380                               592
##   0                                   258                               318
##   1                                   306                               408
##     
##      no causality statement.old guideline
##   -1                                  208
##   0                                   116
##   1                                   170
chisq.test(data2_long_pass$s_causality_2_3, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_3 and data2_long_pass$H4_interaction
## X-squared = 7.1359, df = 4, p-value = 0.1289
prop.table(table(data2_long_old1_pass$s_causality_2_3))
## 
##        -1         0         1 
## 0.4210526 0.2348178 0.3441296
prop.table(table(data2_long_new1_pass$s_causality_2_3))
## 
##        -1         0         1 
## 0.4025424 0.2733051 0.3241525
prop.table(table(data2_long_statement_new_pass$s_causality_2_3))
## 
##        -1         0         1 
## 0.4491654 0.2412747 0.3095599

Item 4

T1

table(data2_long$s_causality_1_4,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  354                                  694
##   0                                   182                                  344
##   1                                   176                                  316
##     
##      causality statement.new guideline
##   -1                               954
##   0                                526
##   1                                516
chisq.test(data2_long$s_causality_1_4, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_4 and data2_long$H4_interaction
## X-squared = 4.3662, df = 4, p-value = 0.3587
prop.table(table(data2_long_old1$s_causality_1_4))
## 
##       -1        0        1 
## 0.497191 0.255618 0.247191
prop.table(table(data2_long_new1$s_causality_1_4))
## 
##        -1         0         1 
## 0.5125554 0.2540620 0.2333826
prop.table(table(data2_long_statement_new$s_causality_1_4))
## 
##        -1         0         1 
## 0.4779559 0.2635271 0.2585170
Awareness Check Pass
table(data2_long_pass$s_causality_1_4,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  504                               632
##   0                                   234                               332
##   1                                   206                               354
##     
##      no causality statement.old guideline
##   -1                                  264
##   0                                   120
##   1                                   110
chisq.test(data2_long_pass$s_causality_1_4, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_4 and data2_long_pass$H4_interaction
## X-squared = 10.927, df = 4, p-value = 0.0274
prop.table(table(data2_long_old1_pass$s_causality_1_4))
## 
##        -1         0         1 
## 0.5344130 0.2429150 0.2226721
prop.table(table(data2_long_new1_pass$s_causality_1_4))
## 
##        -1         0         1 
## 0.5338983 0.2478814 0.2182203
prop.table(table(data2_long_statement_new_pass$s_causality_1_4))
## 
##        -1         0         1 
## 0.4795144 0.2518968 0.2685888

T2

table(data2_long$s_causality_2_4,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  330                                  620
##   0                                   206                                  388
##   1                                   172                                  342
##     
##      causality statement.new guideline
##   -1                               916
##   0                                570
##   1                                500
chisq.test(data2_long$s_causality_2_4, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_2_4 and data2_long$H4_interaction
## X-squared = 0.29341, df = 4, p-value = 0.9902
prop.table(table(data2_long_old1$s_causality_2_4))
## 
##        -1         0         1 
## 0.4661017 0.2909605 0.2429379
prop.table(table(data2_long_new1$s_causality_2_4))
## 
##        -1         0         1 
## 0.4592593 0.2874074 0.2533333
prop.table(table(data2_long_statement_new$s_causality_2_4))
## 
##        -1         0         1 
## 0.4612286 0.2870091 0.2517623
Awareness Check Pass
table(data2_long_pass$s_causality_2_4,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  442                               590
##   0                                   276                               348
##   1                                   220                               366
##     
##      no causality statement.old guideline
##   -1                                  246
##   0                                   124
##   1                                   122
chisq.test(data2_long_pass$s_causality_2_4, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_4 and data2_long_pass$H4_interaction
## X-squared = 9.048, df = 4, p-value = 0.05991
prop.table(table(data2_long_old1_pass$s_causality_2_4))
## 
##        -1         0         1 
## 0.5000000 0.2520325 0.2479675
prop.table(table(data2_long_new1_pass$s_causality_2_4))
## 
##        -1         0         1 
## 0.4712154 0.2942431 0.2345416
prop.table(table(data2_long_statement_new_pass$s_causality_2_4))
## 
##        -1         0         1 
## 0.4524540 0.2668712 0.2806748

Item 5

T1

table(data2_long$s_causality_1_5,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  270                                  566
##   0                                   208                                  316
##   1                                   230                                  468
##     
##      causality statement.new guideline
##   -1                               828
##   0                                592
##   1                                578
chisq.test(data2_long$s_causality_1_5, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_5 and data2_long$H4_interaction
## X-squared = 22.929, df = 4, p-value = 0.0001308
prop.table(table(data2_long_old1$s_causality_1_5))
## 
##        -1         0         1 
## 0.3813559 0.2937853 0.3248588
prop.table(table(data2_long_new1$s_causality_1_5))
## 
##        -1         0         1 
## 0.4192593 0.2340741 0.3466667
prop.table(table(data2_long_statement_new$s_causality_1_5))
## 
##        -1         0         1 
## 0.4144144 0.2962963 0.2892893
Awareness Check Pass
table(data2_long_pass$s_causality_1_5,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  392                               500
##   0                                   208                               374
##   1                                   340                               446
##     
##      no causality statement.old guideline
##   -1                                  168
##   0                                   140
##   1                                   184
chisq.test(data2_long_pass$s_causality_1_5, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_5 and data2_long_pass$H4_interaction
## X-squared = 15.91, df = 4, p-value = 0.003142
prop.table(table(data2_long_old1_pass$s_causality_1_5))
## 
##        -1         0         1 
## 0.3414634 0.2845528 0.3739837
prop.table(table(data2_long_new1_pass$s_causality_1_5))
## 
##        -1         0         1 
## 0.4170213 0.2212766 0.3617021
prop.table(table(data2_long_statement_new_pass$s_causality_1_5))
## 
##        -1         0         1 
## 0.3787879 0.2833333 0.3378788

T2

table(data2_long$s_causality_2_5,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  266                                  536
##   0                                   202                                  398
##   1                                   246                                  422
##     
##      causality statement.new guideline
##   -1                               746
##   0                                606
##   1                                644
chisq.test(data2_long$s_causality_2_5, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_2_5 and data2_long$H4_interaction
## X-squared = 3.5703, df = 4, p-value = 0.4673
prop.table(table(data2_long_old1$s_causality_2_5))
## 
##        -1         0         1 
## 0.3725490 0.2829132 0.3445378
prop.table(table(data2_long_new1$s_causality_2_5))
## 
##        -1         0         1 
## 0.3952802 0.2935103 0.3112094
prop.table(table(data2_long_statement_new$s_causality_2_5))
## 
##        -1         0         1 
## 0.3737475 0.3036072 0.3226453
Awareness Check Pass
table(data2_long_pass$s_causality_2_5,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  354                               448
##   0                                   274                               380
##   1                                   316                               492
##     
##      no causality statement.old guideline
##   -1                                  170
##   0                                   138
##   1                                   186
chisq.test(data2_long_pass$s_causality_2_5, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_5 and data2_long_pass$H4_interaction
## X-squared = 4.8728, df = 4, p-value = 0.3006
prop.table(table(data2_long_old1_pass$s_causality_2_5))
## 
##        -1         0         1 
## 0.3441296 0.2793522 0.3765182
prop.table(table(data2_long_new1_pass$s_causality_2_5))
## 
##        -1         0         1 
## 0.3750000 0.2902542 0.3347458
prop.table(table(data2_long_statement_new_pass$s_causality_2_5))
## 
##        -1         0         1 
## 0.3393939 0.2878788 0.3727273

Item 6

T1

table(data2_long$s_causality_1_6,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  276                                  572
##   0                                   206                                  370
##   1                                   226                                  412
##     
##      causality statement.new guideline
##   -1                               840
##   0                                600
##   1                                558
chisq.test(data2_long$s_causality_1_6, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_1_6 and data2_long$H4_interaction
## X-squared = 6.9153, df = 4, p-value = 0.1404
prop.table(table(data2_long_old1$s_causality_1_6))
## 
##        -1         0         1 
## 0.3898305 0.2909605 0.3192090
prop.table(table(data2_long_new1$s_causality_1_6))
## 
##        -1         0         1 
## 0.4224520 0.2732644 0.3042836
prop.table(table(data2_long_statement_new$s_causality_1_6))
## 
##        -1         0         1 
## 0.4204204 0.3003003 0.2792793
Awareness Check Pass
table(data2_long_pass$s_causality_1_6,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  386                               546
##   0                                   242                               370
##   1                                   316                               404
##     
##      no causality statement.old guideline
##   -1                                  180
##   0                                   134
##   1                                   178
chisq.test(data2_long_pass$s_causality_1_6, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_1_6 and data2_long_pass$H4_interaction
## X-squared = 7.0708, df = 4, p-value = 0.1322
prop.table(table(data2_long_old1_pass$s_causality_1_6))
## 
##        -1         0         1 
## 0.3658537 0.2723577 0.3617886
prop.table(table(data2_long_new1_pass$s_causality_1_6))
## 
##        -1         0         1 
## 0.4088983 0.2563559 0.3347458
prop.table(table(data2_long_statement_new_pass$s_causality_1_6))
## 
##        -1         0         1 
## 0.4136364 0.2803030 0.3060606

T2

table(data2_long$s_causality_2_6,data2_long$H4_interaction)
##     
##      no causality statement.old guideline no causality statement.new guideline
##   -1                                  258                                  520
##   0                                   208                                  382
##   1                                   244                                  450
##     
##      causality statement.new guideline
##   -1                               764
##   0                                616
##   1                                618
chisq.test(data2_long$s_causality_2_6, data2_long$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_causality_2_6 and data2_long$H4_interaction
## X-squared = 4.9736, df = 4, p-value = 0.29
prop.table(table(data2_long_old1$s_causality_2_6))
## 
##        -1         0         1 
## 0.3633803 0.2929577 0.3436620
prop.table(table(data2_long_new1$s_causality_2_6))
## 
##        -1         0         1 
## 0.3846154 0.2825444 0.3328402
prop.table(table(data2_long_statement_new$s_causality_2_6))
## 
##        -1         0         1 
## 0.3823824 0.3083083 0.3093093
Awareness Check Pass
table(data2_long_pass$s_causality_2_6,data2_long_pass$H4_interaction)
##     
##      no causality statement.new guideline causality statement.new guideline
##   -1                                  342                               460
##   0                                   272                               396
##   1                                   326                               460
##     
##      no causality statement.old guideline
##   -1                                  160
##   0                                   142
##   1                                   190
chisq.test(data2_long_pass$s_causality_2_6, data2_long_pass$H4_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_causality_2_6 and data2_long_pass$H4_interaction
## X-squared = 3.3377, df = 4, p-value = 0.503
prop.table(table(data2_long_old1_pass$s_causality_2_6))
## 
##        -1         0         1 
## 0.3252033 0.2886179 0.3861789
prop.table(table(data2_long_new1_pass$s_causality_2_6))
## 
##        -1         0         1 
## 0.3638298 0.2893617 0.3468085
prop.table(table(data2_long_statement_new_pass$s_causality_2_6))
## 
##        -1         0         1 
## 0.3495441 0.3009119 0.3495441

CAMA-Item

Item 1

# "Lebeindige Evidenz" bedeutet, dass fortlaufend neue Ergebnisse in eine Metaanalyse aufgenommen werden können."

table(data2_wide$s_CAMA_1_1,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        65                        50                     36
##   0                        116                       140                     86
##   1                        173                       150                    203
chisq.test(data2_wide$s_CAMA_1_1, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_1 and data2_wide$H5_interaction
## X-squared = 28.521, df = 4, p-value = 9.781e-06
prop.table(table(data2_wide_old2$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.1836158 0.3276836 0.4887006
prop.table(table(data2_wide_new2$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.1470588 0.4117647 0.4411765
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.1107692 0.2646154 0.6246154

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_1,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        36                        24                     21
##   0                         87                        94                     57
##   1                        123                        88                    157
chisq.test(data2_wide_pass$s_CAMA_1_1, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_1 and data2_wide_pass$H5_interaction
## X-squared = 30.653, df = 4, p-value = 3.603e-06
prop.table(table(data2_wide_old2_pass$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.1463415 0.3536585 0.5000000
prop.table(table(data2_wide_new2_pass$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.1165049 0.4563107 0.4271845
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_1))
## 
##        -1         0         1 
## 0.0893617 0.2425532 0.6680851

Item 2

# "Lebendige Evidenz" bedeutet, dass die Darstellung der Ergebnisse spannend formuliert ist."

table(data2_wide$s_CAMA_1_2,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        89                        83                     66
##   0                        139                       139                     98
##   1                        128                       116                    160
chisq.test(data2_wide$s_CAMA_1_2, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_2 and data2_wide$H5_interaction
## X-squared = 19.192, df = 4, p-value = 0.0007206
prop.table(table(data2_wide_old2$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.2500000 0.3904494 0.3595506
prop.table(table(data2_wide_new2$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.2455621 0.4112426 0.3431953
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.2037037 0.3024691 0.4938272

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_2,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        44                        31                     36
##   0                        100                        87                     67
##   1                        102                        87                    133
chisq.test(data2_wide_pass$s_CAMA_1_2, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_2 and data2_wide_pass$H5_interaction
## X-squared = 14.893, df = 4, p-value = 0.004929
prop.table(table(data2_wide_old2_pass$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.1788618 0.4065041 0.4146341
prop.table(table(data2_wide_new2_pass$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.1512195 0.4243902 0.4243902
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_2))
## 
##        -1         0         1 
## 0.1525424 0.2838983 0.5635593

Item 3

# "Lebendige Evidenz" bedeutet, dass ein Zwischenbericht zu allerersten Ergebnissen einer noch in Arbeit befindlichen Metaanalyse gegeben wird."

table(data2_wide$s_CAMA_1_3,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                       122                       111                    134
##   0                        157                       169                    102
##   1                         78                        61                     88
chisq.test(data2_wide$s_CAMA_1_3, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_3 and data2_wide$H5_interaction
## X-squared = 24.055, df = 4, p-value = 7.786e-05
prop.table(table(data2_wide_old2$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.3417367 0.4397759 0.2184874
prop.table(table(data2_wide_new2$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.3255132 0.4956012 0.1788856
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.4135802 0.3148148 0.2716049

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_3,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        67                        55                     89
##   0                        121                       117                     72
##   1                         59                        34                     73
chisq.test(data2_wide_pass$s_CAMA_1_3, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_3 and data2_wide_pass$H5_interaction
## X-squared = 33.721, df = 4, p-value = 8.503e-07
prop.table(table(data2_wide_old2_pass$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.2712551 0.4898785 0.2388664
prop.table(table(data2_wide_new2_pass$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.2669903 0.5679612 0.1650485
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_3))
## 
##        -1         0         1 
## 0.3803419 0.3076923 0.3119658

Item 4

# "Lebendige Evidenz" bedeutet, dass es sich um Metaanalysen handelt, die besonders alltagsnahe Themen behandeln."

table(data2_wide$s_CAMA_1_4,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                       137                       130                    121
##   0                        150                       146                    109
##   1                         70                        61                     94
chisq.test(data2_wide$s_CAMA_1_4, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_4 and data2_wide$H5_interaction
## X-squared = 15.102, df = 4, p-value = 0.004494
prop.table(table(data2_wide_old2$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3837535 0.4201681 0.1960784
prop.table(table(data2_wide_new2$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3857567 0.4332344 0.1810089
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3734568 0.3364198 0.2901235

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_4,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        89                        72                     84
##   0                        110                       100                     76
##   1                         48                        30                     76
chisq.test(data2_wide_pass$s_CAMA_1_4, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_4 and data2_wide_pass$H5_interaction
## X-squared = 24.701, df = 4, p-value = 5.778e-05
prop.table(table(data2_wide_old2_pass$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3603239 0.4453441 0.1943320
prop.table(table(data2_wide_new2_pass$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3564356 0.4950495 0.1485149
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_4))
## 
##        -1         0         1 
## 0.3559322 0.3220339 0.3220339

Item 5

# "In PsychOpen CAMA kann man die Ergebnisse einer Metaanalyse auslesen."

table(data2_wide$s_CAMA_1_5,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        61                        51                     52
##   0                        172                       177                    115
##   1                        122                       110                    158
chisq.test(data2_wide$s_CAMA_1_5, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_5 and data2_wide$H5_interaction
## X-squared = 25.328, df = 4, p-value = 4.322e-05
prop.table(table(data2_wide_old2$s_CAMA_1_5))
## 
##       -1        0        1 
## 0.171831 0.484507 0.343662
prop.table(table(data2_wide_new2$s_CAMA_1_5))
## 
##        -1         0         1 
## 0.1508876 0.5236686 0.3254438
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_5))
## 
##        -1         0         1 
## 0.1600000 0.3538462 0.4861538

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_5,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        28                        19                     27
##   0                        133                       120                     84
##   1                         85                        65                    125
chisq.test(data2_wide_pass$s_CAMA_1_5, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_5 and data2_wide_pass$H5_interaction
## X-squared = 29.596, df = 4, p-value = 5.915e-06
prop.table(table(data2_wide_old2_pass$s_CAMA_1_5))
## 
##        -1         0         1 
## 0.1138211 0.5406504 0.3455285
prop.table(table(data2_wide_new2_pass$s_CAMA_1_5))
## 
##         -1          0          1 
## 0.09313725 0.58823529 0.31862745
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_5))
## 
##        -1         0         1 
## 0.1144068 0.3559322 0.5296610

Item 6

# "In PsychOpen CAMA kann man Metaanalysen in einem Peer-ReView-Verfahren begutachten lassen."

table(data2_wide$s_CAMA_1_6,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        86                        88                     81
##   0                        202                       189                    150
##   1                         69                        61                     88
chisq.test(data2_wide$s_CAMA_1_6, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_6 and data2_wide$H5_interaction
## X-squared = 11.937, df = 4, p-value = 0.01782
prop.table(table(data2_wide_old2$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.2408964 0.5658263 0.1932773
prop.table(table(data2_wide_new2$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.2603550 0.5591716 0.1804734
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.2539185 0.4702194 0.2758621

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_6,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        42                        46                     46
##   0                        161                       132                    118
##   1                         44                        25                     67
chisq.test(data2_wide_pass$s_CAMA_1_6, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_6 and data2_wide_pass$H5_interaction
## X-squared = 22.772, df = 4, p-value = 0.0001406
prop.table(table(data2_wide_old2_pass$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.1700405 0.6518219 0.1781377
prop.table(table(data2_wide_new2_pass$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.2266010 0.6502463 0.1231527
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_6))
## 
##        -1         0         1 
## 0.1991342 0.5108225 0.2900433

Item 7

# "In PsychOpen CAMA werden ausschließlich Metaanalysen aufgenommen, die im weitesten Sinne etwas mit dem Thema Schlafqualität zu tun haben."

table(data2_wide$s_CAMA_1_7,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        72                        60                     69
##   0                        151                       169                     96
##   1                        132                       111                    159
chisq.test(data2_wide$s_CAMA_1_7, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_7 and data2_wide$H5_interaction
## X-squared = 30.034, df = 4, p-value = 4.818e-06
prop.table(table(data2_wide_old2$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.2028169 0.4253521 0.3718310
prop.table(table(data2_wide_new2$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.1764706 0.4970588 0.3264706
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.2129630 0.2962963 0.4907407

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_7,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        29                        25                     31
##   0                        115                       111                     65
##   1                        103                        70                    139
chisq.test(data2_wide_pass$s_CAMA_1_7, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_7 and data2_wide_pass$H5_interaction
## X-squared = 36.184, df = 4, p-value = 2.652e-07
prop.table(table(data2_wide_old2_pass$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.1174089 0.4655870 0.4170040
prop.table(table(data2_wide_new2_pass$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.1213592 0.5388350 0.3398058
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_7))
## 
##        -1         0         1 
## 0.1319149 0.2765957 0.5914894

Item 8

# "In PsychOpen CAMA werden ausschließlich narrative Übersichtsarbeiten aufgenommen."

table(data2_wide$s_CAMA_1_8,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        69                        62                     72
##   0                        188                       188                    139
##   1                        100                        88                    115
chisq.test(data2_wide$s_CAMA_1_8, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_1_8 and data2_wide$H5_interaction
## X-squared = 12.624, df = 4, p-value = 0.01327
prop.table(table(data2_wide_old2$s_CAMA_1_8))
## 
##        -1         0         1 
## 0.1932773 0.5266106 0.2801120
prop.table(table(data2_wide_new2$s_CAMA_1_8))
## 
##       -1        0        1 
## 0.183432 0.556213 0.260355
prop.table(table(data2_wide_CAMA_new$s_CAMA_1_8))
## 
##        -1         0         1 
## 0.2208589 0.4263804 0.3527607

Awareness Check Pass

table(data2_wide_pass$s_CAMA_1_8,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        28                        22                     43
##   0                        148                       128                    101
##   1                         71                        54                     92
chisq.test(data2_wide_pass$s_CAMA_1_8, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_1_8 and data2_wide_pass$H5_interaction
## X-squared = 21.981, df = 4, p-value = 0.0002022
prop.table(table(data2_wide_old2_pass$s_CAMA_1_8))
## 
##        -1         0         1 
## 0.1133603 0.5991903 0.2874494
prop.table(table(data2_wide_new2_pass$s_CAMA_1_8))
## 
##        -1         0         1 
## 0.1078431 0.6274510 0.2647059
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_1_8))
## 
##        -1         0         1 
## 0.1822034 0.4279661 0.3898305

Item 9

# "Die in der Übersichtsarbeit zu einer Metaanalyse zusammengefassten Studien stammen aus einer Recherche des Leibniz-Instituts für Psychologie"

table(data2_wide$s_CAMA_2_1,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                       141                       157                    149
##   0                        136                       104                    106
##   1                         77                        80                     71
chisq.test(data2_wide$s_CAMA_2_1, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_2_1 and data2_wide$H5_interaction
## X-squared = 5.709, df = 4, p-value = 0.222
prop.table(table(data2_wide_old2$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.3983051 0.3841808 0.2175141
prop.table(table(data2_wide_new2$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.4604106 0.3049853 0.2346041
prop.table(table(data2_wide_CAMA_new$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.4570552 0.3251534 0.2177914

Awareness Check Pass

table(data2_wide_pass$s_CAMA_2_1,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        94                        94                    104
##   0                         94                        58                     77
##   1                         56                        54                     55
chisq.test(data2_wide_pass$s_CAMA_2_1, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_2_1 and data2_wide_pass$H5_interaction
## X-squared = 5.753, df = 4, p-value = 0.2184
prop.table(table(data2_wide_old2_pass$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.3852459 0.3852459 0.2295082
prop.table(table(data2_wide_new2_pass$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.4563107 0.2815534 0.2621359
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_2_1))
## 
##        -1         0         1 
## 0.4406780 0.3262712 0.2330508

Item 10

# "PsychOpen CAMA beinhaltet die Ergebnisse der Übersichtsarbeiten von Francesca Färber und Jenny Rosendahl und erweitert diese Ergebnisse."

table(data2_wide$s_CAMA_2_2,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        92                        91                     73
##   0                        173                       147                    123
##   1                         92                       100                    129
chisq.test(data2_wide$s_CAMA_2_2, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_2_2 and data2_wide$H5_interaction
## X-squared = 16.874, df = 4, p-value = 0.002045
prop.table(table(data2_wide_old2$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2577031 0.4845938 0.2577031
prop.table(table(data2_wide_new2$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2692308 0.4349112 0.2958580
prop.table(table(data2_wide_CAMA_new$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2246154 0.3784615 0.3969231

Awareness Check Pass

table(data2_wide_pass$s_CAMA_2_2,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        72                        58                     53
##   0                        133                        93                     86
##   1                         42                        53                     96
chisq.test(data2_wide_pass$s_CAMA_2_2, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_2_2 and data2_wide_pass$H5_interaction
## X-squared = 35.138, df = 4, p-value = 4.352e-07
prop.table(table(data2_wide_old2_pass$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2914980 0.5384615 0.1700405
prop.table(table(data2_wide_new2_pass$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2843137 0.4558824 0.2598039
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_2_2))
## 
##        -1         0         1 
## 0.2255319 0.3659574 0.4085106

Item 11

# "Die Übersichtsarbeit von Francesca Färber und Jenny Rosendahl beinhaltet die Ergebnisse aus PsychOpen CAMA und erweitert diese Ergebnisse."

table(data2_wide$s_CAMA_2_3,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        90                       105                    121
##   0                        155                       151                    125
##   1                        110                        84                     81
chisq.test(data2_wide$s_CAMA_2_3, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_2_3 and data2_wide$H5_interaction
## X-squared = 12.633, df = 4, p-value = 0.01321
prop.table(table(data2_wide_old2$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.2535211 0.4366197 0.3098592
prop.table(table(data2_wide_new2$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.3088235 0.4441176 0.2470588
prop.table(table(data2_wide_CAMA_new$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.3700306 0.3822630 0.2477064

Awareness Check Pass

table(data2_wide_pass$s_CAMA_2_3,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        48                        53                     82
##   0                        119                        97                     93
##   1                         78                        56                     62
chisq.test(data2_wide_pass$s_CAMA_2_3, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_2_3 and data2_wide_pass$H5_interaction
## X-squared = 14.467, df = 4, p-value = 0.005945
prop.table(table(data2_wide_old2_pass$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.1959184 0.4857143 0.3183673
prop.table(table(data2_wide_new2_pass$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.2572816 0.4708738 0.2718447
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_2_3))
## 
##        -1         0         1 
## 0.3459916 0.3924051 0.2616034

Item 12

# Der KLARtext bezieht sich vorrangig auf Ergebnisse der Übersichtsarbeit von Francesca Färber und Jenny Rosendahl unabhängig von den Ergebnissen in PsychOpen CAMA

table(data2_wide$s_CAMA_2_4,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                       147                       147                    136
##   0                        133                       128                    115
##   1                         75                        66                     75
chisq.test(data2_wide$s_CAMA_2_4, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_2_4 and data2_wide$H5_interaction
## X-squared = 1.484, df = 4, p-value = 0.8295
prop.table(table(data2_wide_old2$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.4140845 0.3746479 0.2112676
prop.table(table(data2_wide_new2$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.4310850 0.3753666 0.1935484
prop.table(table(data2_wide_CAMA_new$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.4171779 0.3527607 0.2300613

Awareness Check Pass

table(data2_wide_pass$s_CAMA_2_4,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        97                        91                    100
##   0                         93                        71                     83
##   1                         55                        44                     53
chisq.test(data2_wide_pass$s_CAMA_2_4, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_2_4 and data2_wide_pass$H5_interaction
## X-squared = 1.0974, df = 4, p-value = 0.8947
prop.table(table(data2_wide_old2_pass$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.3959184 0.3795918 0.2244898
prop.table(table(data2_wide_new2_pass$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.4417476 0.3446602 0.2135922
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_2_4))
## 
##        -1         0         1 
## 0.4237288 0.3516949 0.2245763

Item 13

# Der KLARtext, den ich gerade gelesen habe, beruht auf lebendiger Evidenz

table(data2_wide$s_CAMA_3,data2_wide$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                       122                       111                    135
##   0                        157                       169                    102
##   1                         78                        61                     90
chisq.test(data2_wide$s_CAMA_3, data2_wide$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide$s_CAMA_3 and data2_wide$H5_interaction
## X-squared = 25.131, df = 4, p-value = 4.735e-05
prop.table(table(data2_wide_old2$s_CAMA_3))
## 
##        -1         0         1 
## 0.3417367 0.4397759 0.2184874
prop.table(table(data2_wide_new2$s_CAMA_3))
## 
##        -1         0         1 
## 0.3255132 0.4956012 0.1788856
prop.table(table(data2_wide_CAMA_new$s_CAMA_3))
## 
##        -1         0         1 
## 0.4128440 0.3119266 0.2752294

Awareness Check Pass

table(data2_wide_pass$s_CAMA_3,data2_wide_pass$H5_interaction)
##     
##      no CAMA PLS.old guideline no CAMA PLS.new guideline CAMA PLS.new guideline
##   -1                        67                        55                     90
##   0                        121                       117                     72
##   1                         59                        34                     75
chisq.test(data2_wide_pass$s_CAMA_3, data2_wide_pass$H5_interaction)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_wide_pass$s_CAMA_3 and data2_wide_pass$H5_interaction
## X-squared = 35.122, df = 4, p-value = 4.385e-07
prop.table(table(data2_wide_old2_pass$s_CAMA_3))
## 
##        -1         0         1 
## 0.2712551 0.4898785 0.2388664
prop.table(table(data2_wide_new2_pass$s_CAMA_3))
## 
##        -1         0         1 
## 0.2669903 0.5679612 0.1650485
prop.table(table(data2_wide_CAMA_new_pass$s_CAMA_3))
## 
##        -1         0         1 
## 0.3797468 0.3037975 0.3164557

Funding Item

Item 1

T1

table(data2_long$s_funding_1_1,data2_long$version)
##     
##      new guideline old guideline
##   -1          1042           222
##   0           1172           242
##   1           1132           246
chisq.test(data2_long$s_funding_1_1, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_1 and data2_long$version
## X-squared = 0.26711, df = 2, p-value = 0.875
prop.table(table(data2_long_version_old$s_funding_1_1))
## 
##        -1         0         1 
## 0.3126761 0.3408451 0.3464789
prop.table(table(data2_long_version_new$s_funding_1_1))
## 
##        -1         0         1 
## 0.3114166 0.3502690 0.3383144
Awareness Check Pass
table(data2_long_pass$s_funding_1_1,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           138           600
##   0            156           774
##   1            198           882
chisq.test(data2_long_pass$s_funding_1_1, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_1 and data2_long_pass$version
## X-squared = 1.2606, df = 2, p-value = 0.5324
prop.table(table(data2_long_version_old_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2804878 0.3170732 0.4024390
prop.table(table(data2_long_version_new_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2659574 0.3430851 0.3909574

T1, Barth et al.

subset_barth <- subset(data2_long, summary == "Barth")
subset_barth_version_old <- subset(data2_long_version_old, summary == "Barth")
subset_barth_version_new <- subset(data2_long_version_new, summary == "Barth")

table(subset_barth$s_funding_1_1, subset_barth$version)
##     
##      new guideline old guideline
##   -1           521           111
##   0            586           121
##   1            566           123
chisq.test(subset_barth$s_funding_1_1, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_1 and subset_barth$version
## X-squared = 0.13355, df = 2, p-value = 0.9354
prop.table(table(subset_barth_version_old$s_funding_1_1))
## 
##        -1         0         1 
## 0.3126761 0.3408451 0.3464789
prop.table(table(subset_barth_version_new$s_funding_1_1))
## 
##        -1         0         1 
## 0.3114166 0.3502690 0.3383144
Awareness Check Pass
subset_barth_pass <- subset(data2_long_pass, summary == "Barth")
subset_barth_version_old_pass <- subset(data2_long_version_old_pass, summary == "Barth")
subset_barth_version_new_pass <- subset(data2_long_version_new_pass, summary == "Barth")

table(subset_barth_pass$s_funding_1_1, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            69           300
##   0             78           387
##   1             99           441
chisq.test(subset_barth_pass$s_funding_1_1, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_1 and subset_barth_pass$version
## X-squared = 0.63028, df = 2, p-value = 0.7297
prop.table(table(subset_barth_version_old_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2804878 0.3170732 0.4024390
prop.table(table(subset_barth_version_new_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2659574 0.3430851 0.3909574

T1, Faerber et al.

subset_faerber <- subset(data2_long, summary == "Faerber")
subset_faerber_version_old <- subset(data2_long_version_old, summary == "Faerber")
subset_faerber_version_new <- subset(data2_long_version_new, summary == "Faerber")

table(subset_faerber$s_funding_1_1, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           521           111
##   0            586           121
##   1            566           123
chisq.test(subset_faerber$s_funding_1_1, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_1 and subset_faerber$version
## X-squared = 0.13355, df = 2, p-value = 0.9354
prop.table(table(subset_faerber_version_old$s_funding_1_1))
## 
##        -1         0         1 
## 0.3126761 0.3408451 0.3464789
prop.table(table(subset_faerber_version_new$s_funding_1_1))
## 
##        -1         0         1 
## 0.3114166 0.3502690 0.3383144
Awareness Check Pass
subset_faerber_pass <- subset(data2_long_pass, summary == "Faerber")
subset_faerber_version_old_pass <- subset(data2_long_version_old_pass, summary == "Faerber")
subset_faerber_version_new_pass <- subset(data2_long_version_new_pass, summary == "Faerber")

table(subset_faerber_pass$s_funding_1_1, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            69           300
##   0             78           387
##   1             99           441
chisq.test(subset_faerber_pass$s_funding_1_1, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_1 and subset_faerber_pass$version
## X-squared = 0.63028, df = 2, p-value = 0.7297
prop.table(table(subset_faerber_version_old_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2804878 0.3170732 0.4024390
prop.table(table(subset_faerber_version_new_pass$s_funding_1_1))
## 
##        -1         0         1 
## 0.2659574 0.3430851 0.3909574

T2

table(data2_long$s_funding_2_1,data2_long$version)
##     
##      new guideline old guideline
##   -1           816           152
##   0            880           184
##   1           1654           376
chisq.test(data2_long$s_funding_2_1, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_1 and data2_long$version
## X-squared = 3.66, df = 2, p-value = 0.1604
prop.table(table(data2_long_version_old$s_funding_2_1))
## 
##        -1         0         1 
## 0.2134831 0.2584270 0.5280899
prop.table(table(data2_long_version_new$s_funding_2_1))
## 
##        -1         0         1 
## 0.2435821 0.2626866 0.4937313
Awareness Check Pass
table(data2_long_pass$s_funding_2_1,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            74           410
##   0            114           512
##   1            306          1336
chisq.test(data2_long_pass$s_funding_2_1, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_1 and data2_long_pass$version
## X-squared = 2.8797, df = 2, p-value = 0.237
prop.table(table(data2_long_version_old_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1497976 0.2307692 0.6194332
prop.table(table(data2_long_version_new_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1815766 0.2267493 0.5916740

T2 Barth et al.

table(subset_barth$s_funding_2_1,subset_barth$version)
##     
##      new guideline old guideline
##   -1           408            76
##   0            440            92
##   1            827           188
chisq.test(subset_barth$s_funding_2_1, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_1 and subset_barth$version
## X-squared = 1.83, df = 2, p-value = 0.4005
prop.table(table(subset_barth_version_old$s_funding_2_1))
## 
##        -1         0         1 
## 0.2134831 0.2584270 0.5280899
prop.table(table(subset_barth_version_new$s_funding_2_1))
## 
##        -1         0         1 
## 0.2435821 0.2626866 0.4937313
Awarness Check Pass
table(subset_barth_pass$s_funding_2_1,subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            37           205
##   0             57           256
##   1            153           668
chisq.test(subset_barth_pass$s_funding_2_1, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_1 and subset_barth_pass$version
## X-squared = 1.4399, df = 2, p-value = 0.4868
prop.table(table(subset_barth_version_old_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1497976 0.2307692 0.6194332
prop.table(table(subset_barth_version_new_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1815766 0.2267493 0.5916740

T2 Faerber et al.

table(subset_faerber$s_funding_2_1,subset_faerber$version)
##     
##      new guideline old guideline
##   -1           408            76
##   0            440            92
##   1            827           188
chisq.test(subset_faerber$s_funding_2_1, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_1 and subset_faerber$version
## X-squared = 1.83, df = 2, p-value = 0.4005
prop.table(table(subset_faerber_version_old$s_funding_2_1))
## 
##        -1         0         1 
## 0.2134831 0.2584270 0.5280899
prop.table(table(subset_faerber_version_new$s_funding_2_1))
## 
##        -1         0         1 
## 0.2435821 0.2626866 0.4937313
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_1,subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            37           205
##   0             57           256
##   1            153           668
chisq.test(subset_faerber_pass$s_funding_2_1, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_1 and subset_faerber_pass$version
## X-squared = 1.4399, df = 2, p-value = 0.4868
prop.table(table(subset_faerber_version_old_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1497976 0.2307692 0.6194332
prop.table(table(subset_faerber_version_new_pass$s_funding_2_1))
## 
##        -1         0         1 
## 0.1815766 0.2267493 0.5916740

Item 2

T1

table(data2_long$s_funding_1_2,data2_long$version)
##     
##      new guideline old guideline
##   -1           946           194
##   0           1180           250
##   1           1234           264
chisq.test(data2_long$s_funding_1_2, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_2 and data2_long$version
## X-squared = 0.17478, df = 2, p-value = 0.9163
prop.table(table(data2_long_version_old$s_funding_1_2))
## 
##        -1         0         1 
## 0.2740113 0.3531073 0.3728814
prop.table(table(data2_long_version_new$s_funding_1_2))
## 
##        -1         0         1 
## 0.2815476 0.3511905 0.3672619
Awareness Check Pass
table(data2_long_pass$s_funding_1_2,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            98           492
##   0            180           808
##   1            214           966
chisq.test(data2_long_pass$s_funding_1_2, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_2 and data2_long_pass$version
## X-squared = 0.77582, df = 2, p-value = 0.6785
prop.table(table(data2_long_version_old_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.1991870 0.3658537 0.4349593
prop.table(table(data2_long_version_new_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.2171227 0.3565755 0.4263019

T1, Barth et al.

table(subset_barth$s_funding_1_2, subset_barth$version)
##     
##      new guideline old guideline
##   -1           473            97
##   0            590           125
##   1            617           132
chisq.test(subset_barth$s_funding_1_2, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_2 and subset_barth$version
## X-squared = 0.087389, df = 2, p-value = 0.9572
prop.table(table(subset_barth_version_old$s_funding_1_2))
## 
##        -1         0         1 
## 0.2740113 0.3531073 0.3728814
prop.table(table(subset_barth_version_new$s_funding_1_2))
## 
##        -1         0         1 
## 0.2815476 0.3511905 0.3672619
Awareness Check Pass
table(subset_barth_pass$s_funding_1_2, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            49           246
##   0             90           404
##   1            107           483
chisq.test(subset_barth_pass$s_funding_1_2, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_2 and subset_barth_pass$version
## X-squared = 0.38791, df = 2, p-value = 0.8237
prop.table(table(subset_barth_version_old_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.1991870 0.3658537 0.4349593
prop.table(table(subset_barth_version_new_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.2171227 0.3565755 0.4263019

T1, Faerber et al.

table(subset_faerber$s_funding_1_2, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           473            97
##   0            590           125
##   1            617           132
chisq.test(subset_faerber$s_funding_1_2, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_2 and subset_faerber$version
## X-squared = 0.087389, df = 2, p-value = 0.9572
prop.table(table(subset_faerber_version_old$s_funding_1_2))
## 
##        -1         0         1 
## 0.2740113 0.3531073 0.3728814
prop.table(table(subset_faerber_version_new$s_funding_1_2))
## 
##        -1         0         1 
## 0.2815476 0.3511905 0.3672619
Awareness Check Pass
table(subset_faerber_pass$s_funding_1_2, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            49           246
##   0             90           404
##   1            107           483
chisq.test(subset_faerber_pass$s_funding_1_2, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_2 and subset_faerber_pass$version
## X-squared = 0.38791, df = 2, p-value = 0.8237
prop.table(table(subset_faerber_version_old_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.1991870 0.3658537 0.4349593
prop.table(table(subset_faerber_version_new_pass$s_funding_1_2))
## 
##        -1         0         1 
## 0.2171227 0.3565755 0.4263019

T2

table(data2_long$s_funding_2_2,data2_long$version)
##     
##      new guideline old guideline
##   -1           768           160
##   0            922           190
##   1           1656           362
chisq.test(data2_long$s_funding_2_2, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_2 and data2_long$version
## X-squared = 0.43688, df = 2, p-value = 0.8038
prop.table(table(data2_long_version_old$s_funding_2_2))
## 
##        -1         0         1 
## 0.2247191 0.2668539 0.5084270
prop.table(table(data2_long_version_new$s_funding_2_2))
## 
##        -1         0         1 
## 0.2295278 0.2755529 0.4949193
Awareness Check Pass
table(data2_long_pass$s_funding_2_2,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            80           378
##   0            124           542
##   1            288          1336
chisq.test(data2_long_pass$s_funding_2_2, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_2 and data2_long_pass$version
## X-squared = 0.32277, df = 2, p-value = 0.851
prop.table(table(data2_long_version_old_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1626016 0.2520325 0.5853659
prop.table(table(data2_long_version_new_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1675532 0.2402482 0.5921986

T2, Barth et al.

table(subset_barth$s_funding_2_2, subset_barth$version)
##     
##      new guideline old guideline
##   -1           384            80
##   0            461            95
##   1            828           181
chisq.test(subset_barth$s_funding_2_2, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_2 and subset_barth$version
## X-squared = 0.21844, df = 2, p-value = 0.8965
prop.table(table(subset_barth_version_old$s_funding_2_2))
## 
##        -1         0         1 
## 0.2247191 0.2668539 0.5084270
prop.table(table(subset_barth_version_new$s_funding_2_2))
## 
##        -1         0         1 
## 0.2295278 0.2755529 0.4949193
Awareness Check Pass
table(subset_barth_pass$s_funding_2_2, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            40           189
##   0             62           271
##   1            144           668
chisq.test(subset_barth_pass$s_funding_2_2, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_2 and subset_barth_pass$version
## X-squared = 0.16138, df = 2, p-value = 0.9225
prop.table(table(subset_barth_version_old_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1626016 0.2520325 0.5853659
prop.table(table(subset_barth_version_new_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1675532 0.2402482 0.5921986

T2, Faerber et al.

table(subset_faerber$s_funding_2_2, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           384            80
##   0            461            95
##   1            828           181
chisq.test(subset_faerber$s_funding_2_2, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_2 and subset_faerber$version
## X-squared = 0.21844, df = 2, p-value = 0.8965
prop.table(table(subset_faerber_version_old$s_funding_2_2))
## 
##        -1         0         1 
## 0.2247191 0.2668539 0.5084270
prop.table(table(subset_faerber_version_new$s_funding_2_2))
## 
##        -1         0         1 
## 0.2295278 0.2755529 0.4949193
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_2, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            40           189
##   0             62           271
##   1            144           668
chisq.test(subset_faerber_pass$s_funding_2_2, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_2 and subset_faerber_pass$version
## X-squared = 0.16138, df = 2, p-value = 0.9225
prop.table(table(subset_faerber_version_old_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1626016 0.2520325 0.5853659
prop.table(table(subset_faerber_version_new_pass$s_funding_2_2))
## 
##        -1         0         1 
## 0.1675532 0.2402482 0.5921986

Item 3

T1

table(data2_long$s_funding_1_3,data2_long$version)
##     
##      new guideline old guideline
##   -1           720           142
##   0           1140           252
##   1           1488           314
chisq.test(data2_long$s_funding_1_3, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_3 and data2_long$version
## X-squared = 0.98388, df = 2, p-value = 0.6114
prop.table(table(data2_long_version_old$s_funding_1_3))
## 
##        -1         0         1 
## 0.2005650 0.3559322 0.4435028
prop.table(table(data2_long_version_new$s_funding_1_3))
## 
##        -1         0         1 
## 0.2150538 0.3405018 0.4444444
Awareness Check Pass
table(data2_long_pass$s_funding_1_3,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            80           380
##   0            166           756
##   1            244          1122
chisq.test(data2_long_pass$s_funding_1_3, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_3 and data2_long_pass$version
## X-squared = 0.080523, df = 2, p-value = 0.9605
prop.table(table(data2_long_version_old_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1632653 0.3387755 0.4979592
prop.table(table(data2_long_version_new_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1682905 0.3348096 0.4968999

T1, Barth et al.

table(subset_barth$s_funding_1_3, subset_barth$version)
##     
##      new guideline old guideline
##   -1           360            71
##   0            570           126
##   1            744           157
chisq.test(subset_barth$s_funding_1_3, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_3 and subset_barth$version
## X-squared = 0.49194, df = 2, p-value = 0.7819
prop.table(table(subset_barth_version_old$s_funding_1_3))
## 
##        -1         0         1 
## 0.2005650 0.3559322 0.4435028
prop.table(table(subset_barth_version_new$s_funding_1_3))
## 
##        -1         0         1 
## 0.2150538 0.3405018 0.4444444
Awareness Check Pass
table(subset_barth_pass$s_funding_1_3, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            40           190
##   0             83           378
##   1            122           561
chisq.test(subset_barth_pass$s_funding_1_3, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_3 and subset_barth_pass$version
## X-squared = 0.040262, df = 2, p-value = 0.9801
prop.table(table(subset_barth_version_old_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1632653 0.3387755 0.4979592
prop.table(table(subset_barth_version_new_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1682905 0.3348096 0.4968999

T1, Faerber et al.

table(subset_faerber$s_funding_1_3, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           360            71
##   0            570           126
##   1            744           157
chisq.test(subset_faerber$s_funding_1_3, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_3 and subset_faerber$version
## X-squared = 0.49194, df = 2, p-value = 0.7819
prop.table(table(subset_faerber_version_old$s_funding_1_3))
## 
##        -1         0         1 
## 0.2005650 0.3559322 0.4435028
prop.table(table(subset_faerber_version_new$s_funding_1_3))
## 
##        -1         0         1 
## 0.2150538 0.3405018 0.4444444
Awareness Check Pass
table(subset_faerber_pass$s_funding_1_3, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            40           190
##   0             83           378
##   1            122           561
chisq.test(subset_faerber_pass$s_funding_1_3, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_3 and subset_faerber_pass$version
## X-squared = 0.040262, df = 2, p-value = 0.9801
prop.table(table(subset_faerber_version_old_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1632653 0.3387755 0.4979592
prop.table(table(subset_faerber_version_new_pass$s_funding_1_3))
## 
##        -1         0         1 
## 0.1682905 0.3348096 0.4968999

T2

table(data2_long$s_funding_2_3,data2_long$version)
##     
##      new guideline old guideline
##   -1           674           134
##   0            880           202
##   1           1802           376
chisq.test(data2_long$s_funding_2_3, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_3 and data2_long$version
## X-squared = 1.578, df = 2, p-value = 0.4543
prop.table(table(data2_long_version_old$s_funding_2_3))
## 
##        -1         0         1 
## 0.1882022 0.2837079 0.5280899
prop.table(table(data2_long_version_new$s_funding_2_3))
## 
##        -1         0         1 
## 0.2008343 0.2622169 0.5369487
Awareness Check Pass
table(data2_long_pass$s_funding_2_3,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            60           302
##   0            130           520
##   1            304          1438
chisq.test(data2_long_pass$s_funding_2_3, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_3 and data2_long_pass$version
## X-squared = 2.6151, df = 2, p-value = 0.2705
prop.table(table(data2_long_version_old_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1214575 0.2631579 0.6153846
prop.table(table(data2_long_version_new_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1336283 0.2300885 0.6362832

T2, Barth et al.

table(subset_barth$s_funding_2_3, subset_barth$version)
##     
##      new guideline old guideline
##   -1           337            67
##   0            440           101
##   1            901           188
chisq.test(subset_barth$s_funding_2_3, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_3 and subset_barth$version
## X-squared = 0.78898, df = 2, p-value = 0.674
prop.table(table(subset_barth_version_old$s_funding_2_3))
## 
##        -1         0         1 
## 0.1882022 0.2837079 0.5280899
prop.table(table(subset_barth_version_new$s_funding_2_3))
## 
##        -1         0         1 
## 0.2008343 0.2622169 0.5369487
Awareness Check Pass
table(subset_barth_pass$s_funding_2_3, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            30           151
##   0             65           260
##   1            152           719
chisq.test(subset_barth_pass$s_funding_2_3, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_3 and subset_barth_pass$version
## X-squared = 1.3075, df = 2, p-value = 0.5201
prop.table(table(subset_barth_version_old_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1214575 0.2631579 0.6153846
prop.table(table(subset_barth_version_new_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1336283 0.2300885 0.6362832

T2, Faerber et al.

table(subset_faerber$s_funding_2_3, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           337            67
##   0            440           101
##   1            901           188
chisq.test(subset_faerber$s_funding_2_3, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_3 and subset_faerber$version
## X-squared = 0.78898, df = 2, p-value = 0.674
prop.table(table(subset_faerber_version_old$s_funding_2_3))
## 
##        -1         0         1 
## 0.1882022 0.2837079 0.5280899
prop.table(table(subset_faerber_version_new$s_funding_2_3))
## 
##        -1         0         1 
## 0.2008343 0.2622169 0.5369487
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_3, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            30           151
##   0             65           260
##   1            152           719
chisq.test(subset_faerber_pass$s_funding_2_3, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_3 and subset_faerber_pass$version
## X-squared = 1.3075, df = 2, p-value = 0.5201
prop.table(table(subset_faerber_version_old_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1214575 0.2631579 0.6153846
prop.table(table(subset_faerber_version_new_pass$s_funding_2_3))
## 
##        -1         0         1 
## 0.1336283 0.2300885 0.6362832

Item 4

T1

table(data2_long$s_funding_1_4,data2_long$version)
##     
##      new guideline old guideline
##   -1           832           164
##   0           1150           228
##   1           1370           318
chisq.test(data2_long$s_funding_1_4, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_4 and data2_long$version
## X-squared = 3.705, df = 2, p-value = 0.1568
prop.table(table(data2_long_version_old$s_funding_1_4))
## 
##        -1         0         1 
## 0.2309859 0.3211268 0.4478873
prop.table(table(data2_long_version_new$s_funding_1_4))
## 
##        -1         0         1 
## 0.2482100 0.3430788 0.4087112
Awareness Check Pass
table(data2_long_pass$s_funding_1_4,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            96           436
##   0            152           770
##   1            244          1050
chisq.test(data2_long_pass$s_funding_1_4, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_4 and data2_long_pass$version
## X-squared = 2.067, df = 2, p-value = 0.3558
prop.table(table(data2_long_version_old_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1951220 0.3089431 0.4959350
prop.table(table(data2_long_version_new_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1932624 0.3413121 0.4654255

T1, Barth et al.

table(subset_barth$s_funding_1_4, subset_barth$version)
##     
##      new guideline old guideline
##   -1           416            82
##   0            575           114
##   1            685           159
chisq.test(subset_barth$s_funding_1_4, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_4 and subset_barth$version
## X-squared = 1.8525, df = 2, p-value = 0.396
prop.table(table(subset_barth_version_old$s_funding_1_4))
## 
##        -1         0         1 
## 0.2309859 0.3211268 0.4478873
prop.table(table(subset_barth_version_new$s_funding_1_4))
## 
##        -1         0         1 
## 0.2482100 0.3430788 0.4087112
Awareness Check Pass
table(subset_barth_pass$s_funding_1_4, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            48           218
##   0             76           385
##   1            122           525
chisq.test(subset_barth_pass$s_funding_1_4, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_4 and subset_barth_pass$version
## X-squared = 1.0335, df = 2, p-value = 0.5965
prop.table(table(subset_barth_version_old_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1951220 0.3089431 0.4959350
prop.table(table(subset_barth_version_new_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1932624 0.3413121 0.4654255

T1, Faerber et al.

table(subset_faerber$s_funding_1_4, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           416            82
##   0            575           114
##   1            685           159
chisq.test(subset_faerber$s_funding_1_4, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_4 and subset_faerber$version
## X-squared = 1.8525, df = 2, p-value = 0.396
prop.table(table(subset_faerber_version_old$s_funding_1_4))
## 
##        -1         0         1 
## 0.2309859 0.3211268 0.4478873
prop.table(table(subset_faerber_version_new$s_funding_1_4))
## 
##        -1         0         1 
## 0.2482100 0.3430788 0.4087112
Awareness Check Pass
table(subset_faerber_pass$s_funding_1_4, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            48           218
##   0             76           385
##   1            122           525
chisq.test(subset_faerber_pass$s_funding_1_4, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_4 and subset_faerber_pass$version
## X-squared = 1.0335, df = 2, p-value = 0.5965
prop.table(table(subset_faerber_version_old_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1951220 0.3089431 0.4959350
prop.table(table(subset_faerber_version_new_pass$s_funding_1_4))
## 
##        -1         0         1 
## 0.1932624 0.3413121 0.4654255

T2

table(data2_long$s_funding_2_4,data2_long$version)
##     
##      new guideline old guideline
##   -1           826           182
##   0            882           180
##   1           1648           352
chisq.test(data2_long$s_funding_2_4, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_4 and data2_long$version
## X-squared = 0.44647, df = 2, p-value = 0.7999
prop.table(table(data2_long_version_old$s_funding_2_4))
## 
##        -1         0         1 
## 0.2549020 0.2521008 0.4929972
prop.table(table(data2_long_version_new$s_funding_2_4))
## 
##        -1         0         1 
## 0.2461263 0.2628129 0.4910608
Awareness Check Pass
table(data2_long_pass$s_funding_2_4,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           110           472
##   0            110           508
##   1            274          1284
chisq.test(data2_long_pass$s_funding_2_4, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_4 and data2_long_pass$version
## X-squared = 0.50415, df = 2, p-value = 0.7772
prop.table(table(data2_long_version_old_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2226721 0.2226721 0.5546559
prop.table(table(data2_long_version_new_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2084806 0.2243816 0.5671378

T2, Barth et al.

table(subset_barth$s_funding_2_4, subset_barth$version)
##     
##      new guideline old guideline
##   -1           413            91
##   0            441            90
##   1            824           176
chisq.test(subset_barth$s_funding_2_4, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_4 and subset_barth$version
## X-squared = 0.22323, df = 2, p-value = 0.8944
prop.table(table(subset_barth_version_old$s_funding_2_4))
## 
##        -1         0         1 
## 0.2549020 0.2521008 0.4929972
prop.table(table(subset_barth_version_new$s_funding_2_4))
## 
##        -1         0         1 
## 0.2461263 0.2628129 0.4910608
Awareness Check Pass
table(subset_barth_pass$s_funding_2_4, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            55           236
##   0             55           254
##   1            137           642
chisq.test(subset_barth_pass$s_funding_2_4, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_4 and subset_barth_pass$version
## X-squared = 0.25208, df = 2, p-value = 0.8816
prop.table(table(subset_barth_version_old_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2226721 0.2226721 0.5546559
prop.table(table(subset_barth_version_new_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2084806 0.2243816 0.5671378

T2, Faerber et al.

table(subset_faerber$s_funding_2_4, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           413            91
##   0            441            90
##   1            824           176
chisq.test(subset_faerber$s_funding_2_4, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_4 and subset_faerber$version
## X-squared = 0.22323, df = 2, p-value = 0.8944
prop.table(table(subset_faerber_version_old$s_funding_2_4))
## 
##        -1         0         1 
## 0.2549020 0.2521008 0.4929972
prop.table(table(subset_faerber_version_new$s_funding_2_4))
## 
##        -1         0         1 
## 0.2461263 0.2628129 0.4910608
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_4, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            55           236
##   0             55           254
##   1            137           642
chisq.test(subset_faerber_pass$s_funding_2_4, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_4 and subset_faerber_pass$version
## X-squared = 0.25208, df = 2, p-value = 0.8816
prop.table(table(subset_faerber_version_old_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2226721 0.2226721 0.5546559
prop.table(table(subset_faerber_version_new_pass$s_funding_2_4))
## 
##        -1         0         1 
## 0.2084806 0.2243816 0.5671378

Item 5

T1

table(data2_long$s_funding_1_5,data2_long$version)
##     
##      new guideline old guideline
##   -1           844           180
##   0           1288           262
##   1           1220           266
chisq.test(data2_long$s_funding_1_5, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_5 and data2_long$version
## X-squared = 0.54254, df = 2, p-value = 0.7624
prop.table(table(data2_long_version_old$s_funding_1_5))
## 
##        -1         0         1 
## 0.2542373 0.3700565 0.3757062
prop.table(table(data2_long_version_new$s_funding_1_5))
## 
##        -1         0         1 
## 0.2517900 0.3842482 0.3639618
Awareness Check Pass
table(data2_long_pass$s_funding_1_5,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           102           474
##   0            178           878
##   1            212           910
chisq.test(data2_long_pass$s_funding_1_5, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_5 and data2_long_pass$version
## X-squared = 1.5532, df = 2, p-value = 0.46
prop.table(table(data2_long_version_old_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2073171 0.3617886 0.4308943
prop.table(table(data2_long_version_new_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2095491 0.3881521 0.4022989

T1, Barth et al.

table(subset_barth$s_funding_1_5, subset_barth$version)
##     
##      new guideline old guideline
##   -1           422            90
##   0            644           131
##   1            610           133
chisq.test(subset_barth$s_funding_1_5, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_5 and subset_barth$version
## X-squared = 0.27127, df = 2, p-value = 0.8732
prop.table(table(subset_barth_version_old$s_funding_1_5))
## 
##        -1         0         1 
## 0.2542373 0.3700565 0.3757062
prop.table(table(subset_barth_version_new$s_funding_1_5))
## 
##        -1         0         1 
## 0.2517900 0.3842482 0.3639618
Awareness Check Pass
table(subset_barth_pass$s_funding_1_5, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            51           237
##   0             89           439
##   1            106           455
chisq.test(subset_barth_pass$s_funding_1_5, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_5 and subset_barth_pass$version
## X-squared = 0.77659, df = 2, p-value = 0.6782
prop.table(table(subset_barth_version_old_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2073171 0.3617886 0.4308943
prop.table(table(subset_barth_version_new_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2095491 0.3881521 0.4022989

T1, Faerber et al.

table(subset_faerber$s_funding_1_5, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           422            90
##   0            644           131
##   1            610           133
chisq.test(subset_faerber$s_funding_1_5, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_5 and subset_faerber$version
## X-squared = 0.27127, df = 2, p-value = 0.8732
prop.table(table(subset_faerber_version_old$s_funding_1_5))
## 
##        -1         0         1 
## 0.2542373 0.3700565 0.3757062
prop.table(table(subset_faerber_version_new$s_funding_1_5))
## 
##        -1         0         1 
## 0.2517900 0.3842482 0.3639618
Awareness Check Pass
table(subset_faerber_pass$s_funding_1_5, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            51           237
##   0             89           439
##   1            106           455
chisq.test(subset_faerber_pass$s_funding_1_5, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_5 and subset_faerber_pass$version
## X-squared = 0.77659, df = 2, p-value = 0.6782
prop.table(table(subset_faerber_version_old_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2073171 0.3617886 0.4308943
prop.table(table(subset_faerber_version_new_pass$s_funding_1_5))
## 
##        -1         0         1 
## 0.2095491 0.3881521 0.4022989

T2

table(data2_long$s_funding_2_5,data2_long$version)
##     
##      new guideline old guideline
##   -1           864           204
##   0            912           190
##   1           1576           320
chisq.test(data2_long$s_funding_2_5, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_5 and data2_long$version
## X-squared = 2.4393, df = 2, p-value = 0.2953
prop.table(table(data2_long_version_old$s_funding_2_5))
## 
##        -1         0         1 
## 0.2857143 0.2661064 0.4481793
prop.table(table(data2_long_version_new$s_funding_2_5))
## 
##        -1         0         1 
## 0.2577566 0.2720764 0.4701671
Awareness Check Pass
table(data2_long_pass$s_funding_2_5,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           132           466
##   0            112           540
##   1            250          1254
chisq.test(data2_long_pass$s_funding_2_5, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_5 and data2_long_pass$version
## X-squared = 8.9726, df = 2, p-value = 0.01126
prop.table(table(data2_long_version_old_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2672065 0.2267206 0.5060729
prop.table(table(data2_long_version_new_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2061947 0.2389381 0.5548673

T2, Barth et al.

table(subset_barth$s_funding_2_5, subset_barth$version)
##     
##      new guideline old guideline
##   -1           432           102
##   0            456            95
##   1            788           160
chisq.test(subset_barth$s_funding_2_5, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_5 and subset_barth$version
## X-squared = 1.2196, df = 2, p-value = 0.5434
prop.table(table(subset_barth_version_old$s_funding_2_5))
## 
##        -1         0         1 
## 0.2857143 0.2661064 0.4481793
prop.table(table(subset_barth_version_new$s_funding_2_5))
## 
##        -1         0         1 
## 0.2577566 0.2720764 0.4701671
Awareness Check Pass
table(subset_barth_pass$s_funding_2_5, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            66           233
##   0             56           270
##   1            125           627
chisq.test(subset_barth_pass$s_funding_2_5, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_5 and subset_barth_pass$version
## X-squared = 4.4863, df = 2, p-value = 0.1061
prop.table(table(subset_barth_version_old_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2672065 0.2267206 0.5060729
prop.table(table(subset_barth_version_new_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2061947 0.2389381 0.5548673

T2, Faerber et al.

table(subset_faerber$s_funding_2_5, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           432           102
##   0            456            95
##   1            788           160
chisq.test(subset_faerber$s_funding_2_5, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_5 and subset_faerber$version
## X-squared = 1.2196, df = 2, p-value = 0.5434
prop.table(table(subset_faerber_version_old$s_funding_2_5))
## 
##        -1         0         1 
## 0.2857143 0.2661064 0.4481793
prop.table(table(subset_faerber_version_new$s_funding_2_5))
## 
##        -1         0         1 
## 0.2577566 0.2720764 0.4701671
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_5, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            66           233
##   0             56           270
##   1            125           627
chisq.test(subset_faerber_pass$s_funding_2_5, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_5 and subset_faerber_pass$version
## X-squared = 4.4863, df = 2, p-value = 0.1061
prop.table(table(subset_faerber_version_old_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2672065 0.2267206 0.5060729
prop.table(table(subset_faerber_version_new_pass$s_funding_2_5))
## 
##        -1         0         1 
## 0.2061947 0.2389381 0.5548673

Item 6

T1

table(data2_long$s_funding_1_6,data2_long$version)
##     
##      new guideline old guideline
##   -1           702           152
##   0           1186           244
##   1           1460           308
chisq.test(data2_long$s_funding_1_6, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_1_6 and data2_long$version
## X-squared = 0.20633, df = 2, p-value = 0.902
prop.table(table(data2_long_version_old$s_funding_1_6))
## 
##        -1         0         1 
## 0.2159091 0.3465909 0.4375000
prop.table(table(data2_long_version_new$s_funding_1_6))
## 
##        -1         0         1 
## 0.2096774 0.3542413 0.4360812
Awareness Check Pass
table(data2_long_pass$s_funding_1_6,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            92           376
##   0            162           774
##   1            234          1104
chisq.test(data2_long_pass$s_funding_1_6, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_1_6 and data2_long_pass$version
## X-squared = 1.3481, df = 2, p-value = 0.5096
prop.table(table(data2_long_version_old_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1885246 0.3319672 0.4795082
prop.table(table(data2_long_version_new_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1668146 0.3433895 0.4897959

T1, Barth et al.

table(subset_barth$s_funding_1_6, subset_barth$version)
##     
##      new guideline old guideline
##   -1           351            76
##   0            593           122
##   1            730           154
chisq.test(subset_barth$s_funding_1_6, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_1_6 and subset_barth$version
## X-squared = 0.10317, df = 2, p-value = 0.9497
prop.table(table(subset_barth_version_old$s_funding_1_6))
## 
##        -1         0         1 
## 0.2159091 0.3465909 0.4375000
prop.table(table(subset_barth_version_new$s_funding_1_6))
## 
##        -1         0         1 
## 0.2096774 0.3542413 0.4360812
Awareness Check Pass
table(subset_barth_pass$s_funding_1_6, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            46           188
##   0             81           387
##   1            117           552
chisq.test(subset_barth_pass$s_funding_1_6, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_1_6 and subset_barth_pass$version
## X-squared = 0.67405, df = 2, p-value = 0.7139
prop.table(table(subset_barth_version_old_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1885246 0.3319672 0.4795082
prop.table(table(subset_barth_version_new_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1668146 0.3433895 0.4897959

T1, Faerber et al.

table(subset_faerber$s_funding_1_6, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           351            76
##   0            593           122
##   1            730           154
chisq.test(subset_faerber$s_funding_1_6, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_1_6 and subset_faerber$version
## X-squared = 0.10317, df = 2, p-value = 0.9497
prop.table(table(subset_faerber_version_old$s_funding_1_6))
## 
##        -1         0         1 
## 0.2159091 0.3465909 0.4375000
prop.table(table(subset_faerber_version_new$s_funding_1_6))
## 
##        -1         0         1 
## 0.2096774 0.3542413 0.4360812
Awareness Check Pass
table(subset_faerber_pass$s_funding_1_6, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            46           188
##   0             81           387
##   1            117           552
chisq.test(subset_faerber_pass$s_funding_1_6, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_1_6 and subset_faerber_pass$version
## X-squared = 0.67405, df = 2, p-value = 0.7139
prop.table(table(subset_faerber_version_old_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1885246 0.3319672 0.4795082
prop.table(table(subset_faerber_version_new_pass$s_funding_1_6))
## 
##        -1         0         1 
## 0.1668146 0.3433895 0.4897959

T2

table(data2_long$s_funding_1_6,data2_long$version)
##     
##      new guideline old guideline
##   -1           702           152
##   0           1186           244
##   1           1460           308
chisq.test(data2_long$s_funding_2_6, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_funding_2_6 and data2_long$version
## X-squared = 1.9534, df = 2, p-value = 0.3766
prop.table(table(data2_long_version_old$s_funding_2_6))
## 
##        -1         0         1 
## 0.1680672 0.2689076 0.5630252
prop.table(table(data2_long_version_new$s_funding_2_6))
## 
##        -1         0         1 
## 0.1886567 0.2716418 0.5397015
Awareness Check Pass
table(data2_long_pass$s_funding_2_6,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            60           312
##   0            116           548
##   1            318          1400
chisq.test(data2_long_pass$s_funding_2_6, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_funding_2_6 and data2_long_pass$version
## X-squared = 1.3076, df = 2, p-value = 0.5201
prop.table(table(data2_long_version_old_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1214575 0.2348178 0.6437247
prop.table(table(data2_long_version_new_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1380531 0.2424779 0.6194690

T2, Barth et al.

table(subset_barth$s_funding_2_6, subset_barth$version)
##     
##      new guideline old guideline
##   -1           316            60
##   0            455            96
##   1            904           201
chisq.test(subset_barth$s_funding_2_6, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_funding_2_6 and subset_barth$version
## X-squared = 0.9767, df = 2, p-value = 0.6136
prop.table(table(subset_barth_version_old$s_funding_2_6))
## 
##        -1         0         1 
## 0.1680672 0.2689076 0.5630252
prop.table(table(subset_barth_version_new$s_funding_2_6))
## 
##        -1         0         1 
## 0.1886567 0.2716418 0.5397015
Awareness Check Pass
table(subset_barth_pass$s_funding_2_6, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            30           156
##   0             58           274
##   1            159           700
chisq.test(subset_barth_pass$s_funding_2_6, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_funding_2_6 and subset_barth_pass$version
## X-squared = 0.65378, df = 2, p-value = 0.7212
prop.table(table(subset_barth_version_old_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1214575 0.2348178 0.6437247
prop.table(table(subset_barth_version_new_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1380531 0.2424779 0.6194690

T2, Faerber et al.

table(subset_faerber$s_funding_2_6, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           316            60
##   0            455            96
##   1            904           201
chisq.test(subset_faerber$s_funding_2_6, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_funding_2_6 and subset_faerber$version
## X-squared = 0.9767, df = 2, p-value = 0.6136
prop.table(table(subset_faerber_version_old$s_funding_2_6))
## 
##        -1         0         1 
## 0.1680672 0.2689076 0.5630252
prop.table(table(subset_faerber_version_new$s_funding_2_6))
## 
##        -1         0         1 
## 0.1886567 0.2716418 0.5397015
Awareness Check Pass
table(subset_faerber_pass$s_funding_2_6, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            30           156
##   0             58           274
##   1            159           700
chisq.test(subset_faerber_pass$s_funding_2_6, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_funding_2_6 and subset_faerber_pass$version
## X-squared = 0.65378, df = 2, p-value = 0.7212
prop.table(table(subset_faerber_version_old_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1214575 0.2348178 0.6437247
prop.table(table(subset_faerber_version_new_pass$s_funding_2_6))
## 
##        -1         0         1 
## 0.1380531 0.2424779 0.6194690

COI-Item

Item 1

T1

table(data2_long$s_coi_1_1,data2_long$version)
##     
##      new guideline old guideline
##   -1           998           198
##   0           1138           218
##   1           1220           286
chisq.test(data2_long$s_coi_1_1, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_1 and data2_long$version
## X-squared = 4.8912, df = 2, p-value = 0.08668
prop.table(table(data2_long_version_old$s_coi_1_1))
## 
##        -1         0         1 
## 0.2820513 0.3105413 0.4074074
prop.table(table(data2_long_version_new$s_coi_1_1))
## 
##        -1         0         1 
## 0.2973778 0.3390942 0.3635280
Awareness Check Pass
table(data2_long_pass$s_coi_1_1,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           100           554
##   0            162           756
##   1            226           954
chisq.test(data2_long_pass$s_coi_1_1, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_1 and data2_long_pass$version
## X-squared = 4.3091, df = 2, p-value = 0.116
prop.table(table(data2_long_version_old_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2049180 0.3319672 0.4631148
prop.table(table(data2_long_version_new_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2446996 0.3339223 0.4213781

T1 Barth et al.

table(subset_barth$s_coi_1_1, subset_barth$version)
##     
##      new guideline old guideline
##   -1           499            99
##   0            569           109
##   1            610           143
chisq.test(subset_barth$s_coi_1_1, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_1 and subset_barth$version
## X-squared = 2.4456, df = 2, p-value = 0.2944
prop.table(table(subset_barth_version_old$s_coi_1_1))
## 
##        -1         0         1 
## 0.2820513 0.3105413 0.4074074
prop.table(table(subset_barth_version_new$s_coi_1_1))
## 
##        -1         0         1 
## 0.2973778 0.3390942 0.3635280
Awareness Check Pass
table(subset_barth_pass$s_coi_1_1, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            50           277
##   0             81           378
##   1            113           477
chisq.test(subset_barth_pass$s_coi_1_1, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_1 and subset_barth_pass$version
## X-squared = 2.1546, df = 2, p-value = 0.3405
prop.table(table(subset_barth_version_old_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2049180 0.3319672 0.4631148
prop.table(table(subset_barth_version_new_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2446996 0.3339223 0.4213781

T1 Faerber et al.

table(subset_faerber$s_coi_1_1, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           499            99
##   0            569           109
##   1            610           143
chisq.test(subset_faerber$s_coi_1_1, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_1 and subset_faerber$version
## X-squared = 2.4456, df = 2, p-value = 0.2944
prop.table(table(subset_faerber_version_old$s_coi_1_1))
## 
##        -1         0         1 
## 0.2820513 0.3105413 0.4074074
prop.table(table(subset_faerber_version_new$s_coi_1_1))
## 
##        -1         0         1 
## 0.2973778 0.3390942 0.3635280
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_1, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            50           277
##   0             81           378
##   1            113           477
chisq.test(subset_faerber_pass$s_coi_1_1, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_1 and subset_faerber_pass$version
## X-squared = 2.1546, df = 2, p-value = 0.3405
prop.table(table(subset_faerber_version_old_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2049180 0.3319672 0.4631148
prop.table(table(subset_faerber_version_new_pass$s_coi_1_1))
## 
##        -1         0         1 
## 0.2446996 0.3339223 0.4213781

T2

table(data2_long$s_coi_2_1,data2_long$version)
##     
##      new guideline old guideline
##   -1           946           176
##   0            902           158
##   1           1510           380
chisq.test(data2_long$s_coi_2_1, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_1 and data2_long$version
## X-squared = 16.359, df = 2, p-value = 0.0002804
prop.table(table(data2_long_version_old$s_coi_2_1))
## 
##        -1         0         1 
## 0.2464986 0.2212885 0.5322129
prop.table(table(data2_long_version_new$s_coi_2_1))
## 
##        -1         0         1 
## 0.2817153 0.2686123 0.4496724
Awareness Check Pass
table(data2_long_pass$s_coi_2_1,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            92           528
##   0             98           560
##   1            304          1178
chisq.test(data2_long_pass$s_coi_2_1, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_1 and data2_long_pass$version
## X-squared = 14.886, df = 2, p-value = 0.0005855
prop.table(table(data2_long_version_old_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.1862348 0.1983806 0.6153846
prop.table(table(data2_long_version_new_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.2330097 0.2471315 0.5198588

T2 Barth et al.

table(subset_barth$s_coi_2_1, subset_barth$version)
##     
##      new guideline old guideline
##   -1           473            88
##   0            451            79
##   1            755           190
chisq.test(subset_barth$s_coi_2_1, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_1 and subset_barth$version
## X-squared = 8.1793, df = 2, p-value = 0.01675
prop.table(table(subset_barth_version_old$s_coi_2_1))
## 
##        -1         0         1 
## 0.2464986 0.2212885 0.5322129
prop.table(table(subset_barth_version_new$s_coi_2_1))
## 
##        -1         0         1 
## 0.2817153 0.2686123 0.4496724
Awareness Check Pass
table(subset_barth_pass$s_coi_2_1, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            46           264
##   0             49           280
##   1            152           589
chisq.test(subset_barth_pass$s_coi_2_1, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_1 and subset_barth_pass$version
## X-squared = 7.443, df = 2, p-value = 0.0242
prop.table(table(subset_barth_version_old_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.1862348 0.1983806 0.6153846
prop.table(table(subset_barth_version_new_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.2330097 0.2471315 0.5198588

T2 Faerber et al.

table(subset_faerber$s_coi_2_1, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           473            88
##   0            451            79
##   1            755           190
chisq.test(subset_faerber$s_coi_2_1, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_1 and subset_faerber$version
## X-squared = 8.1793, df = 2, p-value = 0.01675
prop.table(table(subset_faerber_version_old$s_coi_2_1))
## 
##        -1         0         1 
## 0.2464986 0.2212885 0.5322129
prop.table(table(subset_faerber_version_new$s_coi_2_1))
## 
##        -1         0         1 
## 0.2817153 0.2686123 0.4496724
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_1, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            46           264
##   0             49           280
##   1            152           589
chisq.test(subset_faerber_pass$s_coi_2_1, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_1 and subset_faerber_pass$version
## X-squared = 7.443, df = 2, p-value = 0.0242
prop.table(table(subset_faerber_version_old_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.1862348 0.1983806 0.6153846
prop.table(table(subset_faerber_version_new_pass$s_coi_2_1))
## 
##        -1         0         1 
## 0.2330097 0.2471315 0.5198588

Item 2

T1

table(data2_long$s_coi_1_2,data2_long$version)
##     
##      new guideline old guideline
##   -1           932           194
##   0           1110           204
##   1           1294           304
chisq.test(data2_long$s_coi_1_2, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_2 and data2_long$version
## X-squared = 6.1718, df = 2, p-value = 0.04569
prop.table(table(data2_long_version_old$s_coi_1_2))
## 
##        -1         0         1 
## 0.2763533 0.2905983 0.4330484
prop.table(table(data2_long_version_new$s_coi_1_2))
## 
##        -1         0         1 
## 0.2793765 0.3327338 0.3878897
Awareness Check Pass
table(data2_long_pass$s_coi_1_2,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           100           538
##   0            146           710
##   1            242          1000
chisq.test(data2_long_pass$s_coi_1_2, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_2 and data2_long_pass$version
## X-squared = 4.6939, df = 2, p-value = 0.09566
prop.table(table(data2_long_version_old_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2049180 0.2991803 0.4959016
prop.table(table(data2_long_version_new_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2393238 0.3158363 0.4448399

T1 Barth et al.

table(subset_barth$s_coi_1_2, subset_barth$version)
##     
##      new guideline old guideline
##   -1           466            97
##   0            555           102
##   1            647           152
chisq.test(subset_barth$s_coi_1_2, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_2 and subset_barth$version
## X-squared = 3.0859, df = 2, p-value = 0.2137
prop.table(table(subset_barth_version_old$s_coi_1_2))
## 
##        -1         0         1 
## 0.2763533 0.2905983 0.4330484
prop.table(table(subset_barth_version_new$s_coi_1_2))
## 
##        -1         0         1 
## 0.2793765 0.3327338 0.3878897
Awareness Check Pass
table(subset_barth_pass$s_coi_1_2, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            50           269
##   0             73           355
##   1            121           500
chisq.test(subset_barth_pass$s_coi_1_2, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_2 and subset_barth_pass$version
## X-squared = 2.347, df = 2, p-value = 0.3093
prop.table(table(subset_barth_version_old_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2049180 0.2991803 0.4959016
prop.table(table(subset_barth_version_new_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2393238 0.3158363 0.4448399

T1 Faerber et al.

table(subset_faerber$s_coi_1_2, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           466            97
##   0            555           102
##   1            647           152
chisq.test(subset_faerber$s_coi_1_2, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_2 and subset_faerber$version
## X-squared = 3.0859, df = 2, p-value = 0.2137
prop.table(table(subset_faerber_version_old$s_coi_1_2))
## 
##        -1         0         1 
## 0.2763533 0.2905983 0.4330484
prop.table(table(subset_faerber_version_new$s_coi_1_2))
## 
##        -1         0         1 
## 0.2793765 0.3327338 0.3878897
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_2, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            50           269
##   0             73           355
##   1            121           500
chisq.test(subset_faerber_pass$s_coi_1_2, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_2 and subset_faerber_pass$version
## X-squared = 2.347, df = 2, p-value = 0.3093
prop.table(table(subset_faerber_version_old_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2049180 0.2991803 0.4959016
prop.table(table(subset_faerber_version_new_pass$s_coi_1_2))
## 
##        -1         0         1 
## 0.2393238 0.3158363 0.4448399

T2

table(data2_long$s_coi_2_2,data2_long$version)
##     
##      new guideline old guideline
##   -1           874           198
##   0            976           156
##   1           1502           358
chisq.test(data2_long$s_coi_2_2, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_2 and data2_long$version
## X-squared = 15.462, df = 2, p-value = 0.0004389
prop.table(table(data2_long_version_old$s_coi_2_2))
## 
##        -1         0         1 
## 0.2780899 0.2191011 0.5028090
prop.table(table(data2_long_version_new$s_coi_2_2))
## 
##        -1         0         1 
## 0.2607399 0.2911695 0.4480907
Awareness Check Pass
table(data2_long_pass$s_coi_2_2,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            98           442
##   0             96           600
##   1            298          1218
chisq.test(data2_long_pass$s_coi_2_2, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_2 and data2_long_pass$version
## X-squared = 11.205, df = 2, p-value = 0.003688
prop.table(table(data2_long_version_old_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1991870 0.1951220 0.6056911
prop.table(table(data2_long_version_new_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1955752 0.2654867 0.5389381

T2 Barth et al.

table(subset_barth$s_coi_2_2, subset_barth$version)
##     
##      new guideline old guideline
##   -1           437            99
##   0            488            78
##   1            751           179
chisq.test(subset_barth$s_coi_2_2, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_2 and subset_barth$version
## X-squared = 7.7312, df = 2, p-value = 0.02095
prop.table(table(subset_barth_version_old$s_coi_2_2))
## 
##        -1         0         1 
## 0.2780899 0.2191011 0.5028090
prop.table(table(subset_barth_version_new$s_coi_2_2))
## 
##        -1         0         1 
## 0.2607399 0.2911695 0.4480907
Awareness Check Pass
table(subset_barth_pass$s_coi_2_2, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            49           221
##   0             48           300
##   1            149           609
chisq.test(subset_barth_pass$s_coi_2_2, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_2 and subset_barth_pass$version
## X-squared = 5.6025, df = 2, p-value = 0.06073
prop.table(table(subset_barth_version_old_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1991870 0.1951220 0.6056911
prop.table(table(subset_barth_version_new_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1955752 0.2654867 0.5389381

T2 Faerber et al.

table(subset_faerber$s_coi_2_2, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           437            99
##   0            488            78
##   1            751           179
chisq.test(subset_faerber$s_coi_2_2, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_2 and subset_faerber$version
## X-squared = 7.7312, df = 2, p-value = 0.02095
prop.table(table(subset_faerber_version_old$s_coi_2_2))
## 
##        -1         0         1 
## 0.2780899 0.2191011 0.5028090
prop.table(table(subset_faerber_version_new$s_coi_2_2))
## 
##        -1         0         1 
## 0.2607399 0.2911695 0.4480907
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_2, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            49           221
##   0             48           300
##   1            149           609
chisq.test(subset_faerber_pass$s_coi_2_2, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_2 and subset_faerber_pass$version
## X-squared = 5.6025, df = 2, p-value = 0.06073
prop.table(table(subset_faerber_version_old_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1991870 0.1951220 0.6056911
prop.table(table(subset_faerber_version_new_pass$s_coi_2_2))
## 
##        -1         0         1 
## 0.1955752 0.2654867 0.5389381

Item 3

T1

table(data2_long$s_coi_1_3,data2_long$version)
##     
##      new guideline old guideline
##   -1           930           188
##   0           1106           234
##   1           1286           286
chisq.test(data2_long$s_coi_1_3, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_3 and data2_long$version
## X-squared = 0.87168, df = 2, p-value = 0.6467
prop.table(table(data2_long_version_old$s_coi_1_3))
## 
##        -1         0         1 
## 0.2655367 0.3305085 0.4039548
prop.table(table(data2_long_version_new$s_coi_1_3))
## 
##        -1         0         1 
## 0.2799518 0.3329320 0.3871162
Awareness Check Pass
table(data2_long_pass$s_coi_1_3,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            92           518
##   0            164           710
##   1            234          1014
chisq.test(data2_long_pass$s_coi_1_3, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_3 and data2_long_pass$version
## X-squared = 4.345, df = 2, p-value = 0.1139
prop.table(table(data2_long_version_old_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.1877551 0.3346939 0.4775510
prop.table(table(data2_long_version_new_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.2310437 0.3166815 0.4522748

T1 Barth et al.

table(subset_barth$s_coi_1_3, subset_barth$version)
##     
##      new guideline old guideline
##   -1           465            94
##   0            553           117
##   1            643           143
chisq.test(subset_barth$s_coi_1_3, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_3 and subset_barth$version
## X-squared = 0.43584, df = 2, p-value = 0.8042
prop.table(table(subset_barth_version_old$s_coi_1_3))
## 
##        -1         0         1 
## 0.2655367 0.3305085 0.4039548
prop.table(table(subset_barth_version_new$s_coi_1_3))
## 
##        -1         0         1 
## 0.2799518 0.3329320 0.3871162
Awareness Check Pass
table(subset_barth_pass$s_coi_1_3, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            46           259
##   0             82           355
##   1            117           507
chisq.test(subset_barth_pass$s_coi_1_3, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_3 and subset_barth_pass$version
## X-squared = 2.1725, df = 2, p-value = 0.3375
prop.table(table(subset_barth_version_old_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.1877551 0.3346939 0.4775510
prop.table(table(subset_barth_version_new_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.2310437 0.3166815 0.4522748

T1 Faerber et al.

table(subset_faerber$s_coi_1_3, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           465            94
##   0            553           117
##   1            643           143
chisq.test(subset_faerber$s_coi_1_3, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_3 and subset_faerber$version
## X-squared = 0.43584, df = 2, p-value = 0.8042
prop.table(table(subset_faerber_version_old$s_coi_1_3))
## 
##        -1         0         1 
## 0.2655367 0.3305085 0.4039548
prop.table(table(subset_faerber_version_new$s_coi_1_3))
## 
##        -1         0         1 
## 0.2799518 0.3329320 0.3871162
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_3, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            46           259
##   0             82           355
##   1            117           507
chisq.test(subset_faerber_pass$s_coi_1_3, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_3 and subset_faerber_pass$version
## X-squared = 2.1725, df = 2, p-value = 0.3375
prop.table(table(subset_faerber_version_old_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.1877551 0.3346939 0.4775510
prop.table(table(subset_faerber_version_new_pass$s_coi_1_3))
## 
##        -1         0         1 
## 0.2310437 0.3166815 0.4522748

T2

table(data2_long$s_coi_2_3,data2_long$version)
##     
##      new guideline old guideline
##   -1           842           190
##   0            922           174
##   1           1588           346
chisq.test(data2_long$s_coi_2_3, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_3 and data2_long$version
## X-squared = 2.8009, df = 2, p-value = 0.2465
prop.table(table(data2_long_version_old$s_coi_2_3))
## 
##        -1         0         1 
## 0.2676056 0.2450704 0.4873239
prop.table(table(data2_long_version_new$s_coi_2_3))
## 
##        -1         0         1 
## 0.2511933 0.2750597 0.4737470
Awareness Check Pass
table(data2_long_pass$s_coi_2_3,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            92           412
##   0            106           560
##   1            292          1292
chisq.test(data2_long_pass$s_coi_2_3, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_3 and data2_long_pass$version
## X-squared = 2.123, df = 2, p-value = 0.3459
prop.table(table(data2_long_version_old_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1877551 0.2163265 0.5959184
prop.table(table(data2_long_version_new_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1819788 0.2473498 0.5706714

T2 Barth et al.

table(subset_barth$s_coi_2_3, subset_barth$version)
##     
##      new guideline old guideline
##   -1           421            95
##   0            461            87
##   1            794           173
chisq.test(subset_barth$s_coi_2_3, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_3 and subset_barth$version
## X-squared = 1.4005, df = 2, p-value = 0.4965
prop.table(table(subset_barth_version_old$s_coi_2_3))
## 
##        -1         0         1 
## 0.2676056 0.2450704 0.4873239
prop.table(table(subset_barth_version_new$s_coi_2_3))
## 
##        -1         0         1 
## 0.2511933 0.2750597 0.4737470
Awareness Check Pass
table(subset_barth_pass$s_coi_2_3, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            46           206
##   0             53           280
##   1            146           646
chisq.test(subset_barth_pass$s_coi_2_3, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_3 and subset_barth_pass$version
## X-squared = 1.0615, df = 2, p-value = 0.5882
prop.table(table(subset_barth_version_old_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1877551 0.2163265 0.5959184
prop.table(table(subset_barth_version_new_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1819788 0.2473498 0.5706714

T2 Faerber et al.

table(subset_faerber$s_coi_2_3, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           421            95
##   0            461            87
##   1            794           173
chisq.test(subset_faerber$s_coi_2_3, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_3 and subset_faerber$version
## X-squared = 1.4005, df = 2, p-value = 0.4965
prop.table(table(subset_faerber_version_old$s_coi_2_3))
## 
##        -1         0         1 
## 0.2676056 0.2450704 0.4873239
prop.table(table(subset_faerber_version_new$s_coi_2_3))
## 
##        -1         0         1 
## 0.2511933 0.2750597 0.4737470
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_3, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            46           206
##   0             53           280
##   1            146           646
chisq.test(subset_faerber_pass$s_coi_2_3, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_3 and subset_faerber_pass$version
## X-squared = 1.0615, df = 2, p-value = 0.5882
prop.table(table(subset_faerber_version_old_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1877551 0.2163265 0.5959184
prop.table(table(subset_faerber_version_new_pass$s_coi_2_3))
## 
##        -1         0         1 
## 0.1819788 0.2473498 0.5706714

Item 4

T1

table(data2_long$s_coi_1_4,data2_long$version)
##     
##      new guideline old guideline
##   -1          1042           216
##   0           1120           230
##   1           1192           262
chisq.test(data2_long$s_coi_1_4, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_4 and data2_long$version
## X-squared = 0.55469, df = 2, p-value = 0.7578
prop.table(table(data2_long_version_old$s_coi_1_4))
## 
##        -1         0         1 
## 0.3050847 0.3248588 0.3700565
prop.table(table(data2_long_version_new$s_coi_1_4))
## 
##        -1         0         1 
## 0.3106738 0.3339296 0.3553965
Awareness Check Pass
table(data2_long_pass$s_coi_1_4,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           132           640
##   0            152           730
##   1            206           892
chisq.test(data2_long_pass$s_coi_1_4, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_4 and data2_long_pass$version
## X-squared = 1.1464, df = 2, p-value = 0.5637
prop.table(table(data2_long_version_old_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2693878 0.3102041 0.4204082
prop.table(table(data2_long_version_new_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2829355 0.3227233 0.3943413

T1 Barth et al.

table(subset_barth$s_coi_1_4, subset_barth$version)
##     
##      new guideline old guideline
##   -1           521           108
##   0            560           115
##   1            596           131
chisq.test(subset_barth$s_coi_1_4, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_4 and subset_barth$version
## X-squared = 0.27734, df = 2, p-value = 0.8705
prop.table(table(subset_barth_version_old$s_coi_1_4))
## 
##        -1         0         1 
## 0.3050847 0.3248588 0.3700565
prop.table(table(subset_barth_version_new$s_coi_1_4))
## 
##        -1         0         1 
## 0.3106738 0.3339296 0.3553965
Awareness Check Pass
table(subset_barth_pass$s_coi_1_4, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            66           320
##   0             76           365
##   1            103           446
chisq.test(subset_barth_pass$s_coi_1_4, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_4 and subset_barth_pass$version
## X-squared = 0.57319, df = 2, p-value = 0.7508
prop.table(table(subset_barth_version_old_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2693878 0.3102041 0.4204082
prop.table(table(subset_barth_version_new_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2829355 0.3227233 0.3943413

T1 Faerber et al.

table(subset_faerber$s_coi_1_4, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           521           108
##   0            560           115
##   1            596           131
chisq.test(subset_faerber$s_coi_1_4, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_4 and subset_faerber$version
## X-squared = 0.27734, df = 2, p-value = 0.8705
prop.table(table(subset_faerber_version_old$s_coi_1_4))
## 
##        -1         0         1 
## 0.3050847 0.3248588 0.3700565
prop.table(table(subset_faerber_version_new$s_coi_1_4))
## 
##        -1         0         1 
## 0.3106738 0.3339296 0.3553965
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_4, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            66           320
##   0             76           365
##   1            103           446
chisq.test(subset_faerber_pass$s_coi_1_4, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_4 and subset_faerber_pass$version
## X-squared = 0.57319, df = 2, p-value = 0.7508
prop.table(table(subset_faerber_version_old_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2693878 0.3102041 0.4204082
prop.table(table(subset_faerber_version_new_pass$s_coi_1_4))
## 
##        -1         0         1 
## 0.2829355 0.3227233 0.3943413

T2

table(data2_long$s_coi_2_4,data2_long$version)
##     
##      new guideline old guideline
##   -1           928           168
##   0            972           190
##   1           1454           356
chisq.test(data2_long$s_coi_2_4, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_4 and data2_long$version
## X-squared = 10.506, df = 2, p-value = 0.005233
prop.table(table(data2_long_version_old$s_coi_2_4))
## 
##        -1         0         1 
## 0.2352941 0.2661064 0.4985994
prop.table(table(data2_long_version_new$s_coi_2_4))
## 
##        -1         0         1 
## 0.2766846 0.2898032 0.4335122
Awareness Check Pass
table(data2_long_pass$s_coi_2_4,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            84           528
##   0            122           598
##   1            288          1136
chisq.test(data2_long_pass$s_coi_2_4, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_4 and data2_long_pass$version
## X-squared = 12.926, df = 2, p-value = 0.00156
prop.table(table(data2_long_version_old_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.1700405 0.2469636 0.5829960
prop.table(table(data2_long_version_new_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.2334218 0.2643678 0.5022104

T2 Barth et al.

table(subset_barth$s_coi_2_4, subset_barth$version)
##     
##      new guideline old guideline
##   -1           464            84
##   0            486            95
##   1            727           178
chisq.test(subset_barth$s_coi_2_4, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_4 and subset_barth$version
## X-squared = 5.2528, df = 2, p-value = 0.07234
prop.table(table(subset_barth_version_old$s_coi_2_4))
## 
##        -1         0         1 
## 0.2352941 0.2661064 0.4985994
prop.table(table(subset_barth_version_new$s_coi_2_4))
## 
##        -1         0         1 
## 0.2766846 0.2898032 0.4335122
Awareness Check Pass
table(subset_barth_pass$s_coi_2_4, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            42           264
##   0             61           299
##   1            144           568
chisq.test(subset_barth_pass$s_coi_2_4, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_4 and subset_barth_pass$version
## X-squared = 6.4631, df = 2, p-value = 0.0395
prop.table(table(subset_barth_version_old_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.1700405 0.2469636 0.5829960
prop.table(table(subset_barth_version_new_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.2334218 0.2643678 0.5022104

T2 Faerber et al.

table(subset_faerber$s_coi_2_4, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           464            84
##   0            486            95
##   1            727           178
chisq.test(subset_faerber$s_coi_2_4, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_4 and subset_faerber$version
## X-squared = 5.2528, df = 2, p-value = 0.07234
prop.table(table(subset_faerber_version_old$s_coi_2_4))
## 
##        -1         0         1 
## 0.2352941 0.2661064 0.4985994
prop.table(table(subset_faerber_version_new$s_coi_2_4))
## 
##        -1         0         1 
## 0.2766846 0.2898032 0.4335122
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_4, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            42           264
##   0             61           299
##   1            144           568
chisq.test(subset_faerber_pass$s_coi_2_4, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_4 and subset_faerber_pass$version
## X-squared = 6.4631, df = 2, p-value = 0.0395
prop.table(table(subset_faerber_version_old_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.1700405 0.2469636 0.5829960
prop.table(table(subset_faerber_version_new_pass$s_coi_2_4))
## 
##        -1         0         1 
## 0.2334218 0.2643678 0.5022104

Item 5

T1

table(data2_long$s_coi_1_5,data2_long$version)
##     
##      new guideline old guideline
##   -1           858           166
##   0           1092           246
##   1           1390           294
chisq.test(data2_long$s_coi_1_5, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_5 and data2_long$version
## X-squared = 1.9047, df = 2, p-value = 0.3858
prop.table(table(data2_long_version_old$s_coi_1_5))
## 
##        -1         0         1 
## 0.2351275 0.3484419 0.4164306
prop.table(table(data2_long_version_new$s_coi_1_5))
## 
##        -1         0         1 
## 0.2568862 0.3269461 0.4161677
Awareness Check Pass
table(data2_long_pass$s_coi_1_5,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            90           492
##   0            154           694
##   1            246          1066
chisq.test(data2_long_pass$s_coi_1_5, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_5 and data2_long_pass$version
## X-squared = 3.0367, df = 2, p-value = 0.2191
prop.table(table(data2_long_version_old_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.1836735 0.3142857 0.5020408
prop.table(table(data2_long_version_new_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.2184725 0.3081705 0.4733570

T1 Barth et al.

table(subset_barth$s_coi_1_5, subset_barth$version)
##     
##      new guideline old guideline
##   -1           429            83
##   0            546           123
##   1            695           147
chisq.test(subset_barth$s_coi_1_5, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_5 and subset_barth$version
## X-squared = 0.95233, df = 2, p-value = 0.6212
prop.table(table(subset_barth_version_old$s_coi_1_5))
## 
##        -1         0         1 
## 0.2351275 0.3484419 0.4164306
prop.table(table(subset_barth_version_new$s_coi_1_5))
## 
##        -1         0         1 
## 0.2568862 0.3269461 0.4161677
Awareness Check Pass
table(subset_barth_pass$s_coi_1_5, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            45           246
##   0             77           347
##   1            123           533
chisq.test(subset_barth_pass$s_coi_1_5, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_5 and subset_barth_pass$version
## X-squared = 1.5183, df = 2, p-value = 0.4681
prop.table(table(subset_barth_version_old_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.1836735 0.3142857 0.5020408
prop.table(table(subset_barth_version_new_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.2184725 0.3081705 0.4733570

T1 Faerber et al.

table(subset_faerber$s_coi_1_5, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           429            83
##   0            546           123
##   1            695           147
chisq.test(subset_faerber$s_coi_1_5, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_5 and subset_faerber$version
## X-squared = 0.95233, df = 2, p-value = 0.6212
prop.table(table(subset_faerber_version_old$s_coi_1_5))
## 
##        -1         0         1 
## 0.2351275 0.3484419 0.4164306
prop.table(table(subset_faerber_version_new$s_coi_1_5))
## 
##        -1         0         1 
## 0.2568862 0.3269461 0.4161677
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_5, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            45           246
##   0             77           347
##   1            123           533
chisq.test(subset_faerber_pass$s_coi_1_5, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_5 and subset_faerber_pass$version
## X-squared = 1.5183, df = 2, p-value = 0.4681
prop.table(table(subset_faerber_version_old_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.1836735 0.3142857 0.5020408
prop.table(table(subset_faerber_version_new_pass$s_coi_1_5))
## 
##        -1         0         1 
## 0.2184725 0.3081705 0.4733570

T2

table(data2_long$s_coi_2_5,data2_long$version)
##     
##      new guideline old guideline
##   -1           830           172
##   0            958           180
##   1           1568           360
chisq.test(data2_long$s_coi_2_5, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_5 and data2_long$version
## X-squared = 4.1441, df = 2, p-value = 0.1259
prop.table(table(data2_long_version_old$s_coi_2_5))
## 
##       -1        0        1 
## 0.241573 0.252809 0.505618
prop.table(table(data2_long_version_new$s_coi_2_5))
## 
##        -1         0         1 
## 0.2473182 0.2854589 0.4672229
Awareness Check Pass
table(data2_long_pass$s_coi_2_5,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1            98           436
##   0            108           562
##   1            286          1264
chisq.test(data2_long_pass$s_coi_2_5, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_5 and data2_long_pass$version
## X-squared = 1.8412, df = 2, p-value = 0.3983
prop.table(table(data2_long_version_old_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1991870 0.2195122 0.5813008
prop.table(table(data2_long_version_new_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1927498 0.2484527 0.5587975

T2 Barth et al.

table(subset_barth$s_coi_2_5, subset_barth$version)
##     
##      new guideline old guideline
##   -1           415            86
##   0            479            90
##   1            784           180
chisq.test(subset_barth$s_coi_2_5, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_5 and subset_barth$version
## X-squared = 2.072, df = 2, p-value = 0.3549
prop.table(table(subset_barth_version_old$s_coi_2_5))
## 
##       -1        0        1 
## 0.241573 0.252809 0.505618
prop.table(table(subset_barth_version_new$s_coi_2_5))
## 
##        -1         0         1 
## 0.2473182 0.2854589 0.4672229
Awareness Check Pass
table(subset_barth_pass$s_coi_2_5, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            49           218
##   0             54           281
##   1            143           632
chisq.test(subset_barth_pass$s_coi_2_5, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_5 and subset_barth_pass$version
## X-squared = 0.92059, df = 2, p-value = 0.6311
prop.table(table(subset_barth_version_old_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1991870 0.2195122 0.5813008
prop.table(table(subset_barth_version_new_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1927498 0.2484527 0.5587975

T2 Faerber et al.

table(subset_faerber$s_coi_2_5, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           415            86
##   0            479            90
##   1            784           180
chisq.test(subset_faerber$s_coi_2_5, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_5 and subset_faerber$version
## X-squared = 2.072, df = 2, p-value = 0.3549
prop.table(table(subset_faerber_version_old$s_coi_2_5))
## 
##       -1        0        1 
## 0.241573 0.252809 0.505618
prop.table(table(subset_faerber_version_new$s_coi_2_5))
## 
##        -1         0         1 
## 0.2473182 0.2854589 0.4672229
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_5, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            49           218
##   0             54           281
##   1            143           632
chisq.test(subset_faerber_pass$s_coi_2_5, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_5 and subset_faerber_pass$version
## X-squared = 0.92059, df = 2, p-value = 0.6311
prop.table(table(subset_faerber_version_old_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1991870 0.2195122 0.5813008
prop.table(table(subset_faerber_version_new_pass$s_coi_2_5))
## 
##        -1         0         1 
## 0.1927498 0.2484527 0.5587975

Item 6

T1

table(data2_long$s_coi_1_6, data2_long$version)
##     
##      new guideline old guideline
##   -1           928           206
##   0           1116           226
##   1           1304           276
chisq.test(data2_long$s_coi_1_6, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_1_6 and data2_long$version
## X-squared = 0.74947, df = 2, p-value = 0.6875
prop.table(table(data2_long_version_old$s_coi_1_6))
## 
##        -1         0         1 
## 0.2909605 0.3192090 0.3898305
prop.table(table(data2_long_version_new$s_coi_1_6))
## 
##        -1         0         1 
## 0.2771804 0.3333333 0.3894863
Awareness Check Pass
table(data2_long_pass$s_coi_1_6,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           150           608
##   0            144           712
##   1            198           936
chisq.test(data2_long_pass$s_coi_1_6, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_1_6 and data2_long_pass$version
## X-squared = 2.6654, df = 2, p-value = 0.2638
prop.table(table(data2_long_version_old_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.3048780 0.2926829 0.4024390
prop.table(table(data2_long_version_new_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.2695035 0.3156028 0.4148936

T1 Barth et al.

table(subset_barth$s_coi_1_6, subset_barth$version)
##     
##      new guideline old guideline
##   -1           464           103
##   0            558           113
##   1            652           138
chisq.test(subset_barth$s_coi_1_6, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_1_6 and subset_barth$version
## X-squared = 0.37474, df = 2, p-value = 0.8291
prop.table(table(subset_barth_version_old$s_coi_1_6))
## 
##        -1         0         1 
## 0.2909605 0.3192090 0.3898305
prop.table(table(subset_barth_version_new$s_coi_1_6))
## 
##        -1         0         1 
## 0.2771804 0.3333333 0.3894863
Awareness Check Pass
table(subset_barth_pass$s_coi_1_6, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            75           304
##   0             72           356
##   1             99           468
chisq.test(subset_barth_pass$s_coi_1_6, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_1_6 and subset_barth_pass$version
## X-squared = 1.3327, df = 2, p-value = 0.5136
prop.table(table(subset_barth_version_old_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.3048780 0.2926829 0.4024390
prop.table(table(subset_barth_version_new_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.2695035 0.3156028 0.4148936

T1 Faerber et al.

table(subset_faerber$s_coi_1_6, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           464           103
##   0            558           113
##   1            652           138
chisq.test(subset_faerber$s_coi_1_6, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_1_6 and subset_faerber$version
## X-squared = 0.37474, df = 2, p-value = 0.8291
prop.table(table(subset_faerber_version_old$s_coi_1_6))
## 
##        -1         0         1 
## 0.2909605 0.3192090 0.3898305
prop.table(table(subset_faerber_version_new$s_coi_1_6))
## 
##        -1         0         1 
## 0.2771804 0.3333333 0.3894863
Awareness Check Pass
table(subset_faerber_pass$s_coi_1_6, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            75           304
##   0             72           356
##   1             99           468
chisq.test(subset_faerber_pass$s_coi_1_6, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_1_6 and subset_faerber_pass$version
## X-squared = 1.3327, df = 2, p-value = 0.5136
prop.table(table(subset_faerber_version_old_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.3048780 0.2926829 0.4024390
prop.table(table(subset_faerber_version_new_pass$s_coi_1_6))
## 
##        -1         0         1 
## 0.2695035 0.3156028 0.4148936

T2

table(data2_long$s_coi_2_6, data2_long$version)
##     
##      new guideline old guideline
##   -1           988           222
##   0            972           188
##   1           1390           300
chisq.test(data2_long$s_coi_2_6, data2_long$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long$s_coi_2_6 and data2_long$version
## X-squared = 2.0196, df = 2, p-value = 0.3643
prop.table(table(data2_long_version_old$s_coi_2_6))
## 
##        -1         0         1 
## 0.3126761 0.2647887 0.4225352
prop.table(table(data2_long_version_new$s_coi_2_6))
## 
##        -1         0         1 
## 0.2949254 0.2901493 0.4149254
Awareness Check Pass
table(data2_long_pass$s_coi_2_6,data2_long_pass$version)
##     
##      old guideline new guideline
##   -1           146           628
##   0            114           608
##   1            230          1024
chisq.test(data2_long_pass$s_coi_2_6, data2_long_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  data2_long_pass$s_coi_2_6 and data2_long_pass$version
## X-squared = 2.8407, df = 2, p-value = 0.2416
prop.table(table(data2_long_version_old_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2979592 0.2326531 0.4693878
prop.table(table(data2_long_version_new_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2778761 0.2690265 0.4530973

T2 Barth et al.

table(subset_barth$s_coi_2_6, subset_barth$version)
##     
##      new guideline old guideline
##   -1           494           111
##   0            486            94
##   1            695           150
chisq.test(subset_barth$s_coi_2_6, subset_barth$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth$s_coi_2_6 and subset_barth$version
## X-squared = 1.0098, df = 2, p-value = 0.6036
prop.table(table(subset_barth_version_old$s_coi_2_6))
## 
##        -1         0         1 
## 0.3126761 0.2647887 0.4225352
prop.table(table(subset_barth_version_new$s_coi_2_6))
## 
##        -1         0         1 
## 0.2949254 0.2901493 0.4149254
Awareness Check Pass
table(subset_barth_pass$s_coi_2_6, subset_barth_pass$version)
##     
##      old guideline new guideline
##   -1            73           314
##   0             57           304
##   1            115           512
chisq.test(subset_barth_pass$s_coi_2_6, subset_barth_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_barth_pass$s_coi_2_6 and subset_barth_pass$version
## X-squared = 1.4203, df = 2, p-value = 0.4916
prop.table(table(subset_barth_version_old_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2979592 0.2326531 0.4693878
prop.table(table(subset_barth_version_new_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2778761 0.2690265 0.4530973

T2 Faerber et al.

table(subset_faerber$s_coi_2_6, subset_faerber$version)
##     
##      new guideline old guideline
##   -1           494           111
##   0            486            94
##   1            695           150
chisq.test(subset_faerber$s_coi_2_6, subset_faerber$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber$s_coi_2_6 and subset_faerber$version
## X-squared = 1.0098, df = 2, p-value = 0.6036
prop.table(table(subset_faerber_version_old$s_coi_2_6))
## 
##        -1         0         1 
## 0.3126761 0.2647887 0.4225352
prop.table(table(subset_faerber_version_new$s_coi_2_6))
## 
##        -1         0         1 
## 0.2949254 0.2901493 0.4149254
Awareness Check Pass
table(subset_faerber_pass$s_coi_2_6, subset_faerber_pass$version)
##     
##      old guideline new guideline
##   -1            73           314
##   0             57           304
##   1            115           512
chisq.test(subset_faerber_pass$s_coi_2_6, subset_faerber_pass$version)
## 
##  Pearson's Chi-squared test
## 
## data:  subset_faerber_pass$s_coi_2_6 and subset_faerber_pass$version
## X-squared = 1.4203, df = 2, p-value = 0.4916
prop.table(table(subset_faerber_version_old_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2979592 0.2326531 0.4693878
prop.table(table(subset_faerber_version_new_pass$s_coi_2_6))
## 
##        -1         0         1 
## 0.2778761 0.2690265 0.4530973

Save Dataframes

#write.csv2(data, "data.csv", row.names = FALSE)

#write.csv2(data_wide, "data_wide.csv", row.names = FALSE)
#write.csv2(data2_wide, "data2_wide.csv", row.names = FALSE)
#write.csv2(data2_wide_pass, "data2_wide_pass.csv", #row.names = FALSE)

#write.csv2(data_long, "data_long.csv", row.names = FALSE)
#write.csv2(data2_long, "data2_long.csv", row.names = FALSE)
#write.csv2(data2_long_pass, "data2_long_pass.csv", #row.names = FALSE)

Appendix: Descriptive Statistics by Experimental Group

describeBy(data2_wide_pass$s_extent, group = data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 217 0.85 2.31      1     0.8 2.97  -4   6    10 0.14    -0.68 0.16
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 249 0.87 2.43      0    0.81 2.97  -6   6    12 0.15    -0.69 0.15
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 213 0.53 2.16      0    0.47 2.97  -6   6    12 0.12    -0.09 0.15
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 204 1.31 2.47      1    1.27 2.97  -4   6    10 0.07    -0.89 0.17
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 232 0.85 2.46      0    0.72 2.97  -5   6    11 0.37     -0.4 0.16
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 0.93 2.27      1    0.87 2.97  -4   6    10 0.22    -0.63 0.15
a <- data2_wide_pass %>%
  group_by(condition) %>%
  reframe(quantile(s_extent, na.rm = TRUE))
a <- data.frame(a)
a
##    condition quantile.s_extent..na.rm...TRUE.
## 1          1                            -4.00
## 2          1                            -1.00
## 3          1                             1.00
## 4          1                             2.00
## 5          1                             6.00
## 6          2                            -6.00
## 7          2                            -1.00
## 8          2                             0.00
## 9          2                             3.00
## 10         2                             6.00
## 11         3                            -6.00
## 12         3                            -1.00
## 13         3                             0.00
## 14         3                             2.00
## 15         3                             6.00
## 16         4                            -4.00
## 17         4                             0.00
## 18         4                             1.00
## 19         4                             3.25
## 20         4                             6.00
## 21         5                            -5.00
## 22         5                            -1.00
## 23         5                             0.00
## 24         5                             2.00
## 25         5                             6.00
## 26         6                            -4.00
## 27         6                            -1.00
## 28         6                             1.00
## 29         6                             3.00
## 30         6                             6.00
describeBy(data2_wide_pass$s_diff, group = data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 216 0.26 2.05      0    0.27 1.48  -6   6    12 -0.06     0.29 0.14
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 238 0.19 2.03      0     0.1 2.97  -4   6    10 0.31     0.08 0.13
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 216 0.51 2.16      0    0.45 2.97  -6   6    12 0.17     0.22 0.15
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 200 0.72 2.14      0    0.61 2.97  -6   6    12 0.28      0.3 0.15
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean sd median trimmed  mad min max range skew kurtosis   se
## X1    1 234 0.42  2      0    0.35 1.48  -6   6    12 0.19     0.29 0.13
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.58  2      0    0.56 1.48  -6   6    12 -0.07     0.24 0.13
b <- data2_wide_pass %>%
  group_by(condition) %>%
  reframe(quantile(s_diff, na.rm = TRUE))
b <- data.frame(b)
b
##    condition quantile.s_diff..na.rm...TRUE.
## 1          1                          -6.00
## 2          1                          -1.00
## 3          1                           0.00
## 4          1                           2.00
## 5          1                           6.00
## 6          2                          -4.00
## 7          2                          -1.00
## 8          2                           0.00
## 9          2                           2.00
## 10         2                           6.00
## 11         3                          -6.00
## 12         3                          -1.00
## 13         3                           0.00
## 14         3                           2.00
## 15         3                           6.00
## 16         4                          -6.00
## 17         4                          -0.25
## 18         4                           0.00
## 19         4                           2.00
## 20         4                           6.00
## 21         5                          -6.00
## 22         5                          -1.00
## 23         5                           0.00
## 24         5                           2.00
## 25         5                           6.00
## 26         6                          -6.00
## 27         6                           0.00
## 28         6                           0.00
## 29         6                           2.00
## 30         6                           6.00
describeBy(data2_wide_pass$s_causality, group = data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 215 -0.12 3.85      0   -0.19 4.45  -8  10    18 0.15    -0.39 0.26
## ------------------------------------------------------------ 
## group: 2
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 242 -0.86 3.88     -1   -0.91 4.45 -10  10    20 0.12    -0.16 0.25
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 209 0.08 3.92      0    0.05 2.97  -8  10    18 0.11    -0.23 0.27
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 196 0.14 3.98      0    0.11 2.97  -9  12    21  0.1     -0.2 0.28
## ------------------------------------------------------------ 
## group: 5
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 224 -0.68 3.73      0   -0.69 2.97 -10  12    22 0.16     0.25 0.25
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 239    0 3.85      0   -0.06 2.97  -8  10    18 0.15    -0.27 0.25
c <- data2_wide_pass %>%
  group_by(condition) %>%
  reframe(quantile(s_causality, na.rm = TRUE))
c <- data.frame(c)
c
##    condition quantile.s_causality..na.rm...TRUE.
## 1          1                               -8.00
## 2          1                               -3.00
## 3          1                                0.00
## 4          1                                2.00
## 5          1                               10.00
## 6          2                              -10.00
## 7          2                               -3.75
## 8          2                               -1.00
## 9          2                                2.00
## 10         2                               10.00
## 11         3                               -8.00
## 12         3                               -2.00
## 13         3                                0.00
## 14         3                                2.00
## 15         3                               10.00
## 16         4                               -9.00
## 17         4                               -2.00
## 18         4                                0.00
## 19         4                                2.00
## 20         4                               12.00
## 21         5                              -10.00
## 22         5                               -3.00
## 23         5                                0.00
## 24         5                                2.00
## 25         5                               12.00
## 26         6                               -8.00
## 27         6                               -2.00
## 28         6                                0.00
## 29         6                                2.50
## 30         6                               10.00
describeBy(data2_wide_pass$s_CAMA, group = data2_wide_pass$condition)
## Warning in min(x, na.rm = na.rm): kein nicht-fehlendes Argument für min; gebe
## Inf zurück
## Warning in max(x, na.rm = na.rm): kein nicht-fehlendes Argument für max; gebe
## -Inf zurück
## Warning in min(x, na.rm = na.rm): kein nicht-fehlendes Argument für min; gebe
## Inf zurück
## Warning in max(x, na.rm = na.rm): kein nicht-fehlendes Argument für max; gebe
## -Inf zurück
## Warning in min(x, na.rm = na.rm): kein nicht-fehlendes Argument für min; gebe
## Inf zurück
## Warning in max(x, na.rm = na.rm): kein nicht-fehlendes Argument für max; gebe
## -Inf zurück
## 
##  Descriptive statistics by group 
## group: 1
##    vars n mean sd median trimmed mad min  max range skew kurtosis se
## X1    1 0  NaN NA     NA     NaN  NA Inf -Inf  -Inf   NA       NA NA
## ------------------------------------------------------------ 
## group: 2
##    vars n mean sd median trimmed mad min  max range skew kurtosis se
## X1    1 0  NaN NA     NA     NaN  NA Inf -Inf  -Inf   NA       NA NA
## ------------------------------------------------------------ 
## group: 3
##    vars n mean sd median trimmed mad min  max range skew kurtosis se
## X1    1 0  NaN NA     NA     NaN  NA Inf -Inf  -Inf   NA       NA NA
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 193  0.3 3.01      0    0.32 2.97  -9   7    16 -0.09     0.12 0.22
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 225 1.66 4.2      1     1.7 4.45 -11  13    24 -0.01    -0.05 0.28
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 0.77 3.36      0    0.83 2.97  -7  11    18 -0.04     0.12 0.22
d <- data2_wide_pass %>%
  group_by(condition) %>%
  reframe(quantile(s_CAMA, na.rm = TRUE))
d <- data.frame(d)
d
##    condition quantile.s_CAMA..na.rm...TRUE.
## 1          1                             NA
## 2          1                             NA
## 3          1                             NA
## 4          1                             NA
## 5          1                             NA
## 6          2                             NA
## 7          2                             NA
## 8          2                             NA
## 9          2                             NA
## 10         2                             NA
## 11         3                             NA
## 12         3                             NA
## 13         3                             NA
## 14         3                             NA
## 15         3                             NA
## 16         4                             -9
## 17         4                             -1
## 18         4                              0
## 19         4                              2
## 20         4                              7
## 21         5                            -11
## 22         5                             -1
## 23         5                              1
## 24         5                              5
## 25         5                             13
## 26         6                             -7
## 27         6                             -1
## 28         6                              0
## 29         6                              3
## 30         6                             11
describeBy(data2_wide_pass$user_experience, group = data2_wide_pass$condition)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 217 5.26 1.37   5.33    5.28 1.48 1.67   8  6.33 -0.17    -0.55 0.09
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 247  5.4 1.45   5.67    5.48 1.48   1   8     7 -0.47    -0.33 0.09
## ------------------------------------------------------------ 
## group: 3
##    vars   n mean  sd median trimmed  mad  min max range  skew kurtosis  se
## X1    1 207 5.36 1.4   5.67    5.48 1.24 1.17   8  6.83 -0.73     0.33 0.1
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 204 5.27 1.39   5.33    5.33 1.48 1.5   8   6.5 -0.37    -0.34 0.1
## ------------------------------------------------------------ 
## group: 5
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis  se
## X1    1 227 5.09 1.46   5.17    5.15 1.73 1.33   8  6.67 -0.35    -0.44 0.1
## ------------------------------------------------------------ 
## group: 6
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 239 5.37 1.43    5.5    5.41 1.48 1.5   8   6.5 -0.26    -0.41 0.09

Session Info

sessionInfo()
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=German_Germany.utf8  LC_CTYPE=German_Germany.utf8   
## [3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C                   
## [5] LC_TIME=German_Germany.utf8    
## 
## time zone: Europe/Berlin
## tzcode source: internal
## 
## attached base packages:
## [1] splines   stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] gmodels_2.18.1.1     equivUMP_0.1.1       egg_0.4.5           
##  [4] gridExtra_2.3        regclass_1.6         randomForest_4.7-1.1
##  [7] rpart_4.1.21         VGAM_1.1-8           bestglm_0.37.3      
## [10] leaps_3.1            car_3.1-2            carData_3.0-5       
## [13] emmeans_1.8.6        multcomp_1.4-24      TH.data_1.1-2       
## [16] MASS_7.3-60          survival_3.5-7       mvtnorm_1.1-3       
## [19] tidyr_1.3.0          rcompanion_2.4.30    ordinal_2022.11-16  
## [22] semTools_0.5-6       lavaan_0.6-16        data.table_1.14.8   
## [25] ggplot2_3.4.2        pastecs_1.3.21       psych_2.3.6         
## [28] dplyr_1.1.2          plyr_1.8.8          
## 
## loaded via a namespace (and not attached):
##   [1] mnormt_2.1.1        gld_2.6.6           sandwich_3.0-2     
##   [4] readxl_1.4.3        rlang_1.1.1         magrittr_2.0.3     
##   [7] rpart.plot_3.1.1    matrixStats_1.0.0   e1071_1.7-13       
##  [10] compiler_4.3.2      mgcv_1.9-0          gdata_3.0.0        
##  [13] systemfonts_1.0.4   vctrs_0.6.2         stringr_1.5.0      
##  [16] quadprog_1.5-8      crayon_1.5.2        pkgconfig_2.0.3    
##  [19] shape_1.4.6         fastmap_1.1.1       backports_1.4.1    
##  [22] labeling_0.4.2      pbivnorm_0.6.0      utf8_1.2.3         
##  [25] rmarkdown_2.23      ragg_1.2.5          purrr_1.0.1        
##  [28] xfun_0.39           glmnet_4.1-7        modeltools_0.2-23  
##  [31] cachem_1.0.8        jsonlite_1.8.7      highr_0.10         
##  [34] cluster_2.1.4       parallel_4.3.2      DescTools_0.99.49  
##  [37] R6_2.5.1            stringi_1.7.12      RColorBrewer_1.1-3 
##  [40] coin_1.4-2          bslib_0.5.0         boot_1.3-28.1      
##  [43] lmtest_0.9-40       jquerylib_0.1.4     cellranger_1.1.0   
##  [46] numDeriv_2016.8-1.1 estimability_1.4.1  Rcpp_1.0.10        
##  [49] iterators_1.0.14    knitr_1.43          zoo_1.8-12         
##  [52] base64enc_0.1-3     nnet_7.3-19         Matrix_1.6-0       
##  [55] tidyselect_1.2.0    rstudioapi_0.15.0   abind_1.4-5        
##  [58] yaml_2.3.7          codetools_0.2-19    lattice_0.21-9     
##  [61] tibble_3.2.1        withr_2.5.0         coda_0.19-4        
##  [64] evaluate_0.21       foreign_0.8-85      proxy_0.4-27       
##  [67] grpreg_3.4.0        pillar_1.9.0        checkmate_2.2.0    
##  [70] nortest_1.0-4       foreach_1.5.2       generics_0.1.3     
##  [73] munsell_0.5.0       scales_1.2.1        rootSolve_1.8.2.3  
##  [76] gtools_3.9.5        xtable_1.8-4        class_7.3-22       
##  [79] glue_1.6.2          Hmisc_5.1-0         lmom_2.9           
##  [82] tools_4.3.2         Exact_3.2           grid_4.3.2         
##  [85] libcoin_1.0-9       colorspace_2.1-0    nlme_3.1-162       
##  [88] htmlTable_2.4.1     Formula_1.2-5       cli_3.6.1          
##  [91] textshaping_0.3.6   fansi_1.0.4         expm_0.999-7       
##  [94] gtable_0.3.3        pls_2.8-2           sass_0.4.7         
##  [97] digest_0.6.31       ucminf_1.2.0        htmlwidgets_1.6.2  
## [100] farver_2.1.1        htmltools_0.5.5     lifecycle_1.0.3    
## [103] httr_1.4.6          multcompView_0.1-9