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Abstract 

Latent state-trait (LST) models are increasingly applied in psychology. However, 

existing LST models are limited and do not allow researchers to relate time-varying or time-

invariant covariates, or a combination of both, to key parameters in LST models. We present a 

general framework for the inclusion of nominal and/or continuous time-varying and time-

invariant covariates in LST models. The new framework builds on modern LST theory and 

Bayesian moderated nonlinear factor analysis and is termed moderated nonlinear LST (MN-

LST) framework. The MN-LST framework offers new modeling possibilities and allows for a 

fine-grained analysis of trait change, synergistic interaction effects, as well as inter- or intra- 

individual variability. The new MN-LST approach is compared to multiple-indicator latent 

growth curve models. The advantages of the MN-LST are illustrated in an empirical 

application examining dyadic coping in romantic relationships. Finally, the advantages and 

limitations of the approach are discussed, and practical recommendations are provided.  

Keywords: latent state-trait models, moderated nonlinear factor analysis, time-varying 

covariates, time-invariant covariates, synergistic interaction effects 
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Translational Abstract: 

The person-situation controversy is arguably one of the most influential debates in the 

history of psychology. For many decades, scholars have argued about the relative importance 

of trait versus situation effects on human personality and behavior. Latent state-trait theory 

represents a firm mathematical foundation for studying trait, situation and/or person × 

situation effects by means of latent variables. However, existing latent state-trait (LST) 

models do not allow researchers to test whether key parameters in the model vary as a 

function of time-varying and time-invariant covariates, or combinations of both. In this 

article, we introduce a general framework for relating continuous and/or nominal time-

varying and time-invariant covariates to key parameters in LST models. Our framework 

allows for a fine-grained analysis of trait change, synergistic interaction effects, as well as 

inter- or intra-individual variability. The new approach is compared to multiple indicator 

latent growth curve (LGC) models. We highlight the advantages of the MN-LST framework 

using real data, investigating the effects of neuroticism and momentary stress on dyadic 

coping in romantic relationships over time. Finally, we discuss the advantages and limitations 

of the MN-LST framework and provide practical recommendations for applied researchers. 
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A General Framework for the Inclusion of Time-Varying and Time-Invariant 

Covariates in Latent State Trait Models  

The person-situation controversy is one of the most influential debates in the history of 

personality psychology (Lucas & Donnellan, 2009). For many decades, scholars have 

discussed the relative importance of trait versus situation effects as the driving forces of 

human behavior (Fleeson & Noftle, 2009, Schmitt et al., 2003). The debate centered around 

two rival positions. On the one hand, the “dispositionists” believed in relatively stable 

interindividual differences in personality and assumed that these substantially contribute to 

the prediction of human behavior. On the other hand, the “situationists” were convinced that 

thoughts, feelings and behavior at a given moment are largely determined by the situation and 

even questioned the existence of personality “traits” in the sense of enduring individual 

differences (Lucas & Donnellan, 2009).  

Today, most researchers agree that the two positions are indefensible scientific 

stances, as both traits and situations contribute to human behavior. More importantly, scholars 

have argued that their interaction might account for the largest amount of behavioral 

variability (Cronbach, 1975; Krueger, 2009; Schmitt et al., 2003). Many psychologists seek to 

better understand the interplay (or synergistic interaction effects) between the person and the 

situation (Schmitt et al., 2003). The term “synergistic interaction” describes a condition in 

which the overall effect of two contributing factors (e.g., the person and the situation) is larger 

than the sum of their unique effects (Schmitt et al., 2003).   

Synergistic interactions are commonly investigated in diathesis-stress models, which 

attempt to explain why certain people develop mental disorders. According to diathesis-stress 

theories, persons differ in their vulnerabilities toward stressful situations and situations differ 

in their straining potential. The theories suggest that both effects multiply and that the stress 

level of a situation has a larger impact on vulnerable individuals. State-trait emotion theories 
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(Bushman, 1995; Stemmler, 1997) as well as motivation theories (Heckhausen, 1989) also 

postulate synergistic interaction effects. Both theories assume that a person’s trait level (e.g., 

trait anxiety or motivational capacity) determines the impact of a corresponding situation.  

Ideally, to study person, situation, as well as person × situation effects, longitudinal 

study designs and a firm psychometric theory are needed. In the early 1990s, Steyer and 

colleagues proposed classical latent state-trait (LST) theory to measure inter-individual 

differences that are attributable to a) person-specific effects (latent trait variable), b) situation 

effects and/or person-situation interaction effects (latent state-residual variable), and c) 

unsystematic measurement error (latent error variable) (Steyer et al., 1992, 1999). More 

recently, Steyer, Mayer, Geiser, and Cole (2015) proposed a revised and more general LST 

theory (LST-R) that explicitly accounts for the dynamic nature of traits and trait change due to 

past experiences. It is worth noting that LST as well as LST-R theory build on a general 

definition of the term “situation”, including both inner as well as outer situations (see Steyer 

et al., 1992, 1999, 2015). Outer situations refer to objectively describable and/or 

manipulatable external circumstances that could potentially be reproduced in experiments. 

Inner situations refer to subjective phenomena, for example, perceptions, feelings, beliefs, or 

evaluations of a specific setting (Rauthmann et al., 2015).  

Another line of current research refers to the analysis of intra-individual variability 

processes around a fixed or changing trait. For instance, Geukes and colleagues (2017) 

proposed a framework to disentangle within-person variability occurring across different 

situations (i.e., cross-context or cross-roll variability) and within-contexts variability (i.e., 

internal inconsistency). Studying intra-individual variability becomes increasing popular in 

many areas of psychological research, such as in personality psychology (e.g., Wundrack et 

al., 2018), in clinical psychology (e.g., Shalom et al., 2018), in health psychology (e.g., Hardy 

& Segerstrom, 2017), in organizational psychology (e.g., Lievens et al., 2018), and in 
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cognitive psychology (e.g., Jones et al. 2020). In sum, many researchers are interested in 

studying intra-individual variability around a stable or changing trait.  

In this study, we present a general framework for the inclusion of time-varying and 

time-invariant covariates in LST-R models and the investigation of synergistic interaction 

effects (i.e., the combined effect of person and situational characteristics). Our approach 

combines Bayesian moderated nonlinear confirmatory factor analysis and LST modeling and 

is termed moderated nonlinear LST (MN-LST) approach. The MN-LST approach bears 

several advantages. First, it allows researchers to explain trait change as a function of personal 

characteristics, situational characteristics, and the combination of both. To this regard, it 

enables researchers to study synergistic interaction effects (i.e., the combined effect of 

personal and situational characteristics). Second, it allows researchers to examine key 

predictor variables of inter- or intra-individual variability processes. Third, it permits 

researchers to model key variance coefficients in LST-R models (i.e., consistency and 

specificity coefficients, or intra-individual variability) as a function of external explanatory 

variables. Fourth, using Bayesian estimation it is possible to jointly estimate trait change, 

synergistic interaction effects and intra-individual variability processes in a single analysis. 

Fifth, the new MN-LST framework is more general than most traditional approaches for the 

analysis of trait change trajectories as well as variability processes by means of time-varying 

and time-invariant predictors. 

We believe that the new MN-LST approach will be of relevance to many applied 

researchers. Prior research, especially in the area of social and personality psychology, 

focused either on cross-sectional designs investigating inter-individual differences on well-

known taxonomies or on longitudinal designs investigating mean change of certain traits 

(Cervone & Little, 2019; Costa et al., 2019). The integration of modeling interindividual 

differences, trait change, variability and person × situation interactions in a common 
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framework would foster a better understanding of their interrelations. In health and clinical 

psychology, individual-centered approaches (often referred to as personalized or precision 

medicine) are becoming increasingly important, as many patients do not benefit sufficiently 

from the standard therapy. To develop individual-centered approaches, appropriate statistical 

models are required which enable researchers to identify personal and situational factors that 

moderate the effect of specific therapeutic interventions (Cuijpers et al., 2012, Schneider et 

al., 2015; Simon & Perlis, 2010).  

Throughout this article, we will concentrate on a prototypical example in which person 

effects, situational effects, and person × situation interaction effects are key moderators for 

the dynamics of a person’s behavior over time. Specifically, we will examine the additive and 

multiplicative effects of neuroticism (as a trait or person-specific characteristic) and the 

experienced stress level at work (as an inner situational characteristic) on the longitudinal 

development and variability of dyadic coping (i.e., the joint and supportive coping) behavior 

in romantic couples. According to several empirical studies, external situational stressors, like 

stress at work, can spill over into the relationship and have detrimental effects on dyadic 

coping and marital satisfaction (Breitenstein et al., 2017; Ferguson, 2012; Fuenfhausen & 

Cashwell, 2013; Martos et al., 2019; Randall & Bodenmann, 2017; van Steenbergen et al., 

2014). Furthermore, personality traits like neuroticism are associated with less engagement in 

coping strategies (Merz et al., 2014) as well as with increased intra-individual behavioral 

variability (Judge et al., 2014). With respect to this prototypical example, we will highlight 

the methodological advantages of the new MN-LST framework. 

Overview 

The article is structured as follows. First, we provide an overview on existing methods 

for the inclusion of time-varying and time-invariant covariates in LST models. Second, we 

describe in detail how trait change is represented in two key parameters in LST-R models, 
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which allow for a flexible representation of different trait change trajectories. Furthermore, 

we show how intra-individual variability can be assessed in extended LST-R or extended 

latent growth curve (LGC) models. Third, we introduce the new moderated nonlinear LST 

approach and discuss how time-varying and time-invariant covariates can be included 

simultaneously to study trait change, synergistic interaction effects as well as inter- or intra-

individual variability processes. Fourth, we illustrate the new MN-LST approach in an 

empirical application investigating time-varying and time-invariant predictors of dyadic 

coping in romantic relationships. Finally, we discuss the advantages and limitations of the 

MN-LST approach with reference to alternative modeling strategies and provide practical 

recommendations for applied researchers.  

Traditional Approaches for the Inclusion of Time-Varying and Time-Invariant 

Covariates in LST Models 

Traditionally, explanatory variables are included in LST models using a) a multiple 

group approach (Geiser et al., 2016; Steyer et al., 2015), b) a multilevel approach (Geiser, 

Bishop et al., 2013; Holtmann et al., 2020; Koch et al., 2017), c) a finite mixture modeling 

approach (Courvoisier et al., 2007; Crayen et al., 2017; Eid & Langeheine, 2003; Hohmann et 

al., 2018; Litson et al., 2019), d) a multiple indicator multiple cause (MIMIC; Ploubidis & 

Frangou, 2011) or a multiple construct LST modeling approach (Courvoisier et al., 2007; 

Koch et al., 2018; Schermelleh-Engel et al., 2004), or e) a combination of the above.  

In a multiple group LST (MG-LST) approach, a given data set is first split into the 

different levels of an observed, time-invariant categorical covariate (e.g., gender). The values 

on the observed, time-invariant nominal covariate (0 = male, 1 = female) represent the group 

membership. MG-LST model parameters are then estimated simultaneously in each group. 

Measurement equivalence assumptions can be tested using classical fit statistics for model 

comparisons. MG-LST models are flexible, as they allow key parameters in the model to vary 
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across groups (e.g., intercepts, factor loadings, factor means or factor variances and 

covariances). However, MG-LST models may become unpractical if the covariate is a random 

factor with many factor levels.   

Multilevel LST (ML-LST) models can be conceived as an extension of MG-LST 

models, as they allow to include observed, time-invariant categorical covariates with many 

factor levels (e.g., a covariate with multiple factor levels that indicate different nations). In 

ML-LST models, a given LST model is specified on multiple levels. For example, trait and 

state components of well-being may be studied within nations (level 1) and between nations 

(level 2) using a ML-LST approach. Unobserved heterogeneity in key LST model parameters 

(e.g., random intercept or random slopes) can be modeled as random effects via latent 

variables on the between level. To explore potential predictors of heterogeneity, researchers 

can link additional explanatory variables to the random effects. ML-LST models are attractive 

whenever researchers seek to investigate heterogeneity in LST models across many randomly 

sampled factor levels. Examples of ML-LST applications are the study by Koch et al. (2017) 

and Holtmann et al. (2020), where ML-LST models were used to study the convergent and 

discriminant validity in longitudinal multirater measurement designs.  

Finite mixture distribution LST models have been proposed to model heterogeneity in 

LST models as a function of a latent (hidden or unknown) nominal time-invariant covariate 

(Crayen et al., 2017; Eid & Langeheine, 2003; Litson et al., 2019). Contrary to multigroup 

and multilevel LST models, finite mixture distribution LST models allow researchers to 

account for heterogeneity in LST models even if the covariate is not (directly) observed. 

Litson et al. (2019) provide a tutorial and recommendations on how to apply mixture 

distribution LST models to longitudinal multirater data.  

Another possibility is to include time-varying and time-invariant covariates in LST 

models using a MIMIC approach (see Ploubidis & Frangou, 2011) or a multiple construct 
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LST approach (Courvoisier, et al., 2007; Koch et al., 2018; Schermelleh-Engel et al., 2004). 

Multiple construct LST approaches use latent variables as explanatory variables. Time-

varying explanatory variables are decomposed into latent traits and multiple occasion-specific 

variables, which are linked to the latent factors in the original LST model. We will address the 

multiple construct LST approach in the discussion of this article. In MIMIC models, 

covariates are directly linked to the latent variables in LST models. The covariate can be a 

nominal or continuous observed variable or a continuous latent variable. Furthermore, the 

covariate can be time-invariant or time-varying. The main advantage of the MIMIC approach 

is that researchers can simultaneously include time-varying and time-invariant (continuous or 

nominal) covariates into LST models. However, one limitation of the MIMIC approach is that 

the latent variables are typically related to external variables, while the remaining parameters 

in the model (e.g., trait loadings, intercepts, variances) are not directly related to the 

covariates. Hence, it cannot be tested whether key parameters in LST models vary as a 

function of the external covariates in MIMIC models. 

In sum, all of the aforementioned approaches are limited in some aspects: Multiple 

group, multilevel and finite mixture models do allow key parameters of LST models (i.e. trait 

factor loadings, intercepts and latent state residual variances) to vary depending on external 

observed (MG and ML-LST models) or unknown latent (finite mixture LST models) 

covariates. However, these methods require categorial and time-invariant covariates, which 

limits their applicability. In contrast, MIMIC or multi-construct LST models allow researchers 

to also include continuous and time-variable covariates. However, they do not allow to define 

all model parameters as a function of these covariates. The goal of the present study is to 

present a Bayesian approach for the joint analysis of trait-change, synergistic interaction 

effects as well as inter- or intra-individual variability processes by simultaneously including 

time-varying, time-invariant or a combination of both types of covariates in LST-R models. 
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Modeling Different Types of Trait Change in LST and LGC Models 

Latent state-trait (LST) models as well as latent growth curve (LGC) models are 

frequently applied in psychology to study long-lasting trait change as well as variability 

processes. Here, we summarize the key similarities and differences between LST-R and LGC 

models that are vital for studying different types of trait change and variability processes (see 

also Geiser, Bishop et al., 2013; Geiser, Keller, & Lockhart 2013; Steyer et al., 2012; Tisak & 

Tisak, 2000). We will focus on the meaning of LST-R model parameters representing trait 

change as well as situation effects and/or person × situation effects.  

The basic idea of LST-R theory (Eid et al., 2017; Steyer et al., 2015) is that an 

observed variable 𝑌𝑖𝑡 (i: indicator; t: time) is decomposed into a latent trait, a latent state 

residual, and a latent measurement error variable at each (point in) time t, 

𝑌𝑖𝑡 = 𝜏𝑖𝑡 +  𝜖𝑖𝑡 = 𝜉𝑖𝑡 + 𝜁𝑖𝑡 + 𝜖𝑖𝑡    (1) 

where 𝜏𝑖𝑡 is the latent true score (state) variable (with 𝜏𝑖𝑡 =  𝜉𝑖𝑡 + 𝜁𝑖𝑡), 𝜉𝑖𝑡 is the latent 

trait factor, 𝜁𝑖𝑡 is the latent state-residual, and 𝜖𝑖𝑡 is the latent measurement error variable 

pertaining to indicator i at time t. For illustrative purposes, we will explicitly denote those 

variables that can vary by person with an index p (for person) in the following (that is, 

Equation (1) corresponds to: 𝑌𝑖𝑡𝑝 = 𝜉𝑖𝑡𝑝 + 𝜁𝑖𝑡𝑝 + 𝜖𝑖𝑡𝑝).  

A key feature of LST-R theory is that latent trait variables are time-specific such that a 

person’s trait can change over time due to experiences made in the past (see Eid et al., 2017; 

Steyer et al., 2015). That is, LST-R models allow researchers to explicitly model trait change 

over time. To identify model parameters of LST-R models, several assumptions must be 

made, with different sets of assumptions defining different models of LST-R theory. In the 

following, we will focus on models that fall into the category of multistate-singletrait models, 

as they are discussed in Steyer et al. (2015). The most general of these models assumes that 
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latent trait variables of different time points are positive linear functions of each other. That is, 

it is assumed that a person’s trait 𝜉𝑖𝑡𝑝 (of indicator i at time t) is a positive linear function of 

the person’s initial trait at t = 1, 𝜉𝑖1𝑝: 

𝜉𝑖𝑡𝑝 = 𝛼𝑖𝑡 + 𝜆𝑖𝑡𝜉𝑖1𝑝  for  t > 1  (2) 

with 𝜆𝑖𝑡 ≥ 0. According to Equation (2), a person’s trait score 𝜉𝑖𝑡𝑝 at time t changed 

from time point 1 by an additive constant 𝛼𝑖𝑡 and a multiplicative term 𝜆𝑖𝑡. Furthermore, it is 

assumed that the latent state residual variables pertaining to different observed variables (𝜁𝑖𝑡𝑝 

and 𝜁𝑖′𝑡𝑝, where 𝑖 ≠  𝑖’) are perfectly correlated across indicators and thus can be replaced by 

a common latent residual variable: 

𝜁𝑖𝑡𝑝 = 𝛿𝑖𝑡𝜁𝑡𝑝      (3) 

where 𝛿𝑖𝑡 is the factor loading pertaining to the common latent state residual factor 𝜁𝑡𝑝. 

The values on the latent state residual factor 𝜁𝑡𝑝 denote the difference of a person’s trait score  

𝜉𝑖𝑡𝑝 from the person’s true score (𝜏𝑖𝑡𝑝, latent state variable) at time t. Formally, the latent state 

residual variables are defined as latent residual variables with respect to the corresponding 

latent trait variable at time t. 

 Inserting Equation (2) and Equation (3) into Equation (1) yields the general 

measurement equation of an LST-R model: 

𝑌𝑖𝑡𝑝 = 𝛼𝑖𝑡 + 𝜆𝑖𝑡𝜉𝑖1𝑝 + 𝛿𝑖𝑡𝜁𝑡𝑝 + 𝜖𝑖𝑡𝑝     (4) 

where i refers to the indicator and t denotes the time point. Again, the index p in 

Equation (4) is used to indicate person-specific parameters in the model. Typically, the index 

p is dropped when using the standard notion of confirmatory factors analysis. The latent state 

residual as well as measurement error variables are defined as latent residual variables (see 

Steyer et al., 2015) and thus have the same properties as residual variables (e.g., 𝔼(𝜁𝑡𝑝) =
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𝔼(𝜖𝑖𝑡𝑝) = 0 for all i, t). Figure 1 shows an LST-R model with indicator-specific trait factors 

for a minimal measurement design with two indicators measured on three time points.  

========================================== 

Insert Figure 1 about here 

========================================== 

To achieve identification, commonly made restrictions are to a) either fix the intercept 

at the first time point or fix the expectation of the latent trait factor, and b) either fix one 

loading per latent factor to one (e.g., 𝜆𝑖1 = 1 and 𝛿1𝑡 = 1) or to fix the variance of the latent 

factors to one, that is 𝑉𝑎𝑟(𝜉𝑖1𝑝) = 𝑉𝑎𝑟(𝜁𝑡𝑝) = 1. Note that the interpretation of the 

parameters changes with the identification restrictions chosen to set the scale of the latent 

variables. If, for example, 𝛼𝑖1 = 0 and 𝔼(𝜉𝑖1𝑝) is freely estimated, then 𝛼𝑖𝑡 parameters for 𝑡 > 

1 can be interpreted similar to the intercept parameter in a linear regression analysis with 

uncentered predictor variables. If 𝔼(𝜉𝑖1𝑝) is set to zero and all 𝛼𝑖𝑡 are freely estimated, then 

𝛼𝑖𝑡 is equivalent to 𝔼(𝑌𝑖𝑡). 

In the following, we will build on the standard parametrization implemented by 

default in most statistical software by fixing the first factor loading to one and fixing the 

expectation of the latent trait variable 𝜉𝑖1𝑝 to zero, i.e., we freely estimate all intercepts 𝛼𝑖𝑡 

and variances of latent variables. Hence, in our model 𝛼𝑖𝑡 is equivalent to 𝔼(𝑌𝑖𝑡). Since we are 

not interested in 𝛼𝑖𝑡 measured at a certain time point but aim to model differences between 𝛼𝑖𝑡 

and 𝛼𝑖1 (i.e., in the change from the first to a subsequent time point), we insert 𝛼𝑖1 into each 

measurement equation of the observed variables 𝑌𝑖𝑡 pertaining to subsequent time points 𝑡 >1, 

that is:  

                                         𝑌𝑖𝑡𝑝 = 𝛥𝛼𝑖𝑡 + 𝜆𝑖𝑡𝜉𝑖1𝑝 + 𝛿𝑖𝑡𝜁𝑡𝑝 + 𝜖𝑖𝑡𝑝 +  𝛼𝑖1          for 𝑡 >1            (5)                  
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In the above Equation (5), 𝛥𝛼𝑖𝑡 denotes the additive (or mean) change parameter and 

is defined as the expected difference of the observed variables 𝑌𝑖𝑡 and 𝑌𝑖1:  

                                             𝛥𝛼𝑖𝑡 : = 𝛼𝑖𝑡 − 𝛼𝑖1 = 𝔼(𝑌𝑖𝑡) −  𝔼(𝑌𝑖1)                                          (6) 

Note that 𝛥𝛼𝑖𝑡
 is equal to 𝔼(𝜉𝑖1𝑝 − 𝜉𝑖1𝑝) if 𝛼𝑖1 is set to zero and 𝜆𝑖𝑡 is set to one in the 

following reformulation of the above model using expected values, 𝔼(𝜉𝑖1𝑝 − 𝜉𝑖1𝑝) = 𝛥𝛼𝑖𝑡
+

(𝜆𝑖𝑡 − 1)𝔼(𝜉𝑖1𝑝) + 𝛼𝑖1. The advantage of the difference score parameterization (see Equation 

5) is that it allows researchers to model two distinctive trait change parameters, with 

𝛥𝛼𝑖𝑡 denoting additive (trait) change and 𝜆𝑖𝑡 (for t > 1) denoting multiplicative trait change. If 

𝛥𝛼𝑖𝑡 ≠ 0, then the observed scores, on average, shift upwards (𝛥𝛼𝑖𝑡 > 0) or downwards 

(𝛥𝛼𝑖𝑡 < 0)  by an additive constant.  The trait factor loadings 𝜆𝑖𝑡 in Equation (5) represent the 

increase or decrease of interindividual differences in the latent trait at time t as the variance of 

a latent trait for t > 1 is a function of the latent trait at time 1: 

                                              𝑉𝑎𝑟(𝜉𝑖𝑡) = 𝜆𝑖1
2 𝑉𝑎𝑟(𝜉𝑖1)                  for t > 1                 (7) 

Hence, the parameter 𝜆𝑖𝑡 for t > 1 can be interpreted as the multiplicative (or 

weighted) change of the person’s individual initial trait values. If 𝜆𝑖𝑡 > 1, initial trait values 

are amplified which indicates an increase of interindividual trait differences. If 𝜆𝑖𝑡 < 1, initial 

trait values are attenuated and interindividual trait differences decrease. Note that the rank 

order of the trait scores is invariant under positive linear transformations1. 

The difference score parametrization is advantageous for various reasons: First, 

additive trait change is represented by a unique parameter 𝛥𝛼𝑖𝑡
 that is easy to interpret. 

Second, the parametrization allows for an independent consideration of additive and 

                                                           
1 Note, however, that the rank order of the persons with respect to the persons’ time-specific true scores are not 
necessarily constant across time, as the model does not impose any restrictions on the (rank order of the) state 
residual variables (i.e., a person’s time-specific deviation of his or her true score from the time-specific trait 
value is free to vary across time). 
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multiplicative trait change (i.e., 𝛥𝛼𝑖𝑡
 always represents the difference of the expectation of 

two observed variables even if 𝜆𝑖𝑡 ≠ 1). Third, parameter equality constraints can be imposed 

distinctively on the two change parameters. A list of reasonable parameter constraints can be 

found in Appendix A.  

One key limitation of the aforementioned LST-R models is that they assume that the 

additive and the multiplicative trait change parameters (𝛥𝛼𝑖𝑡  and 𝜆𝑖𝑡) are constant across all 

persons. That is, trait change is assumed to occur in terms of the same linear function of the 

initial trait value for all persons. Consequently, time-varying and time-invariant variables 

cannot be directly linked to the key parameters in LST-R models (e.g., using a MIMIC 

approach) to explain interindividual differences in trait change.   

An alternative modeling approach are latent growth curve (LGC) models, where trait 

change is modeled by means of latent intercept and latent slope factors. The values on the 

latent intercept and slope factors in LGC models represent a person’s initial trait and the 

amount of a person’s trait change over time, respectively. While the amount of change in 

LGC models is modeled to be person-specific (captured in latent slope factor scores), the 

shape of the change trajectories across time are the same across individuals, given by the 

slope factor loadings and typically specified as a (linear or quadratic) function of time. 

External (time-invariant) variables may be linked to the latent intercept and slope factors to 

study key predictors of individual trait change. Figure 2 shows a multiple-indicator latent 

growth curve model with indicator-specific intercept and linear slope factors, for a minimal 

measurement design with two indicators measured on three time points.  

========================================== 

Insert Figure 2 about here 

========================================== 
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A key difference between LST-R and LGC models is that, instead of the assumption 

stated in Equation (2), a growth function 𝑓 is assumed for the shape of trait change for t > 1 

(see also Geiser, Bishop et al., 2013): 

𝜉𝑖𝑡𝑝 = 𝜉𝑖1𝑝 + 𝑓(𝜉𝑖2𝑝 − 𝜉𝑖1𝑝)      (8) 

If we assume linear change (as we do for the remainder of this article), 𝜉𝑖1𝑝 is defined 

as latent intercept factor (𝐼𝑛𝑡𝑖𝑝), (𝜉𝑖𝑡𝑝 − 𝜉𝑖1𝑝) is defined as latent linear slope factor (𝑆𝑙𝑜𝑖𝑝), 

and the state residual variables are assumed to be perfectly correlated across indicators within 

a time point, obtaining the following multiple indicator latent linear growth curve model (see 

Figure 2): 

𝑌𝑖𝑡𝑝 = 𝐼𝑛𝑡𝑖𝑝 + (𝑡 − 1)𝑆𝑙𝑜𝑖𝑝 + 𝛿𝑖𝑡𝜁𝑡𝑝 + 𝜖𝑖𝑡𝑝    (9) 

As shown in Figure 2, the latent intercept and slope factors can correlate with each 

other. A negative correlation implies that higher initial values are associated with lower slope 

scores and lower initial values are associated with higher slope scores (Duncan & Duncan, 

2004). If there are no theoretical assumptions about the growth function, researchers may also 

freely estimate some of the linear slope factor loadings (e.g., freely estimating the factor 

loadings of the linear slope factor for t > 2) to determine the shape of change over time. These 

models may be termed hybrid LGC models, as the shape of trait change is not explicitly 

defined beforehand by the researcher, but instead estimated from the data. However, freely 

estimating the loadings of the linear slope factor undermines in some way the nature of latent 

growth curve modeling, that is, modeling and testing the shape of trait change. LST-R models 

represent a less restrictive variant of LGC models in that they do not require researchers to 

make specific assumptions regarding the shape of trait change (e.g., linear trait change) across 

time. Furthermore, in the MN-LST models introduced in the following, the shape of change 
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trajectories may vary across individuals. In the discussion, we consider the relation between 

MN-LST models and LGC model in greater detail. 

Modeling Different Variability Processes in LST-R and LGC Models 

Both LST-R and LGC models allow researchers to study different variability 

processes around a stable or changing trait. In LST-R models (as given by Equations (2) – 

(4)), the variance of each observed variable can be decomposed as follows: 

 𝜎𝑌𝑖𝑡

2 = 𝜆𝑖𝑡
2 𝜎𝜉𝑖1

2 + 𝛿𝑖𝑡
2 𝜎𝜁𝑡

2 + 𝜎𝜖𝑖𝑡

2      (10) 

where  𝜎𝑌𝑖𝑡

2  is the variance of an observed variable, 𝜎𝜉𝑖1
2  is the variance of the initial 

latent trait variable (weighted by 𝜆𝑖𝑡
2 , squared loading of the trait factor), 𝜎𝜁𝑡

2  is the variance of 

the latent state residual variable (weighted by 𝛿𝑖𝑡
2 , squared loading of the state-residual factor), 

and 𝜎𝜖𝑖𝑡

2  is the variance of the measurement error variable. The variance of a state residual 

variable 𝜎𝜁𝑡
2  provides information about the extent to which persons fluctuate around their 

individual trait levels. Typically, this variance is conceptualized as the variance of the true 

scores around the trait values at a specific time point, that is, the state residuals at time t are 

assumed to be normally distributed with mean zero and a time-specific variance:  

𝜁𝑡𝑝~𝑁(0, 𝜎𝜁𝑡
2 )      (11) 

Similarly, in LGC models, the variance of a state residual variable reflects the degree 

to which the true scores deviate from the person-specific trait values at a specific time point. 

In LST models, the specificity coefficient quantifies the proportion of reliable interindividual 

differences that are due to time-specific effects (i.e., situation and/or person- situation 

interaction effects). The specificity coefficient is computed as the proportion of true score 

variance (𝜎𝜏𝑖𝑡

2 =  𝜎𝑌𝑖𝑡

2 − 𝜎𝜖𝑖𝑡

2 ) that is due to variance in the state residual variables at time t: 
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The counterpart of the specificity coefficient is the consistency coefficient. The 

consistency coefficient is defined as 𝐶𝑜𝑛(𝜏𝑖𝑡) = 1 −  𝑆𝑝𝑒(𝜏𝑖𝑡) and represents the proportion 

of reliable interindividual differences that are attributable to the latent trait factor in LST-R 

models or to the latent intercept and slope factors in LGC models. 

An increasing number of studies are devoted to the analysis of intra-individual 

(within-person) variability (e.g., Geukes et al. 2017; Lievens et al., 2018; Wundrack et al., 

2018). Several approaches have been proposed for estimating intra-individual variability 

parameters from repeated measurement data (e.g., Asparouhov et al., 2018; Driver & Voelkle, 

2018; Eid & Diener, 1999; Nordgren et al., 2019; Wang et al., 2012). Recent developments in 

the context of dynamic structural equation modeling (see Asparouhov et al., 2018) allow 

researchers to estimate within-person variability in multilevel time series models using 

Bayesian estimation methods. In this article, we use a Bayesian approach to extend LST-R 

and LGC models to person-specific variances of the latent state-residual variables across time 

(intra-individual variability). These models will be termed extended LST-R and extended 

LGC models in the remainder of the article. Although we do not assume autoregressive 

effects in the above models, autoregressive effects may be incorporated in empirical 

applications. To model intra-individual variability across time, the variance of the latent state 

residual variables is modeled to be person-specific, that is,  

𝜁𝑡𝑝~𝑁(0, 𝜎𝜁𝑝
2 )      (13) 

Equation (13) states that the state-residuals of person p are assumed to be normally 

distributed, with a mean of zero and a person-specific variance 𝜎𝜁𝑝
2  which is constant across 

time. Note that in contrast to the time specific variance 𝜎𝜁𝑡
2 , the person-specific variance 𝜎𝜁𝑝

2  

𝑆𝑝𝑒(𝜏𝑖𝑡) =
𝛿𝑖𝑡

2 𝜎𝜁𝑡
2

𝜎𝜏𝑖𝑡
2

 (12) 
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can correlate with latent trait variables 𝜉𝑖𝑡𝑝. By regressing the log of the person-specific 

variability parameter 𝑙𝑜𝑔 (𝜎𝜁𝑝
2 ) on external explanatory variables, it is possible to identify 

predictors of intra-individual variability. Next, we introduce a general framework for 

explaining trait change as well as inter-or intra-individual variability processes by external 

covariates using a Bayesian moderated nonlinear latent state-trait (MN-LST) approach. 

Bayesian Moderated Nonlinear Latent State-Trait Framework 

The basic idea of the MN-LST framework is to link time-varying and time-invariant 

covariates to trait change and variability parameters in LST models. The MN-LST framework 

builds on moderated nonlinear factor analysis (Bauer & Hussong, 2009; Curran et al., 2014; 

Hildebrandt et al., 2016; Molenaar et al., 2011) and Bayesian Markov-Chain Monte-Carlo 

(MCMC) sampling techniques. The MN-LST framework allows researchers to include time-

varying and time-invariant (nominal or continuous) covariates, as well as interaction terms 

between the covariates as predictors for trait change as well as variability processes. It is also 

possible to include higher-order polynomial terms in MN-LST models to test nonlinear (e.g. 

quadratic) moderation effects.  

For simplicity, we will focus on a minimal example with one time-invariant and one 

time-varying covariate and discuss the inclusion of the covariates in a step-by-step fashion. 

First, we will discuss the inclusion of time-invariant covariates in MN-LST models. Second, 

we will explain how time-varying covariates can be included in MN-LST models. Third, we 

discuss how interaction terms between the covariates can be specified in order to test 

synergistic interaction effects. Fourth, we clarify how external covariates can be used to 

predict the amount of occasion-specificity (i.e., predicting variance coefficients) and explain 

intra-individual variability parameters across time. Throughout the remainder of the article, 

we will focus on observed covariates. An extension to latent continuous covariates is 

discussed in the discussion. 
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Inclusion of Time-Invariant Covariates  

Consider a researcher who seeks to explain interindividual differences in coping 

behavior over time by a time-invariant covariate (e.g., neuroticism, 𝑋𝑣(𝑝)). We use the 

notation 𝑋𝑣(𝑝) to make clear that the time-invariant covariate in the data set is a vector of 

length 𝑝 =  1, … , 𝑃, which can take on values from 𝑣 =  1, … , 𝑉.  

Figure 3 shows a path diagram of a MN-LST model with a time-invariant covariate.  

========================================== 

Insert Figure 3 about here 

========================================== 

Again, trait change in LST-R models is reflected in differences between intercepts 

𝛥𝛼𝑖𝑡 (additive trait change parameter) and the trait loadings 𝜆𝑖𝑡 (multiplicative trait change 

parameter) pertaining to time points t > 1. In the MN-LST framework, these key parameters 

can vary as a (linear or nonlinear) function of the values 𝑣 on the time-invariant covariate 

𝑋𝑣(𝑝):  

𝛥𝛼𝑖𝑡𝑣
= 𝛽0𝑖𝑡

𝛥 + 𝛽1𝑖𝑡
𝛥 𝑋𝑣(𝑝) + 𝜀𝑖𝑡𝑣

𝛥        (14) 

𝜆𝑖𝑡𝑣 = 𝛽0𝑖𝑡
𝜆 + 𝛽1𝑖𝑡

𝜆 𝑋𝑣(𝑝) + 𝜀𝑖𝑡𝑣
𝜆           (15) 

where 𝛥𝛼𝑖𝑡𝑣  and 𝜆𝑖𝑡𝑣 represent the additive and multiplicative trait change parameters, 

respectively, for indicator i at time t for each value v of the time-invariant covariate 𝑋𝑣(𝑝) with 

values ranging from v = 1, …, V. 

 The parameters 𝛥𝛼𝑖𝑡𝑣 and 𝜆𝑖𝑡𝑣 do not vary across persons 𝑝, but across different values 

𝑣 of the external covariate 𝑋𝑣(𝑝) that are present in a given sample. Hence, moderated 

nonlinear factor analysis is a generalization of multiple group analysis, where the values 𝑣 on 

the covariate 𝑋𝑣(𝑝) represent different groups (see Bauer, 2017). Theoretically, all parameters 

in LST-R models (see Equation (5)) could be regressed on a time-invariant covariate. 

However, we focus on the two trait change parameters 𝛥𝛼𝑖𝑡𝑣 and 𝜆𝑖𝑡𝑣. Additionally, 
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researchers may relate external variables to initial intercept parameter 𝛼𝑖1 to model mean 

differences in the initial (trait) scores (i.e., mean differences in dyadic copying at time 1). 

The parameters 𝛽0𝑖𝑡
𝛥 , 𝛽1𝑖𝑡

𝛥 , 𝛽0𝑖𝑡
𝜆 , and 𝛽1𝑖𝑡

𝜆  in Equation (14) and (15) represent regression 

coefficients and the error terms 𝜀𝑖𝑡𝑣
𝛥  and 𝜀𝑖𝑡𝑣

𝜆  capture unexplained parameter heterogeneity in 

the intercept-changes and trait loadings across different values of the covariates (e.g., due to 

deviations from the linearity assumption, see Hildebrandt et al., 2016). Hence, we assume a 

stochastic relationship2 between the intercepts and trait loadings on the one hand and the 

observed time-invariant covariate 𝑋𝑣(𝑝) on the other hand. A more restrictive variant of the 

above MN-LST model can be obtained if the error terms are dropped, implying a 

deterministic relationship (see Bauer, 2017).  

To clarify the interpretation of the coefficients in Equation (14) and (15), we refer to 

the simplified example of a single time-invariant, grand-mean centered covariate 

(neuroticism) predicting the intercept and trait factor loading of indicator 1 at time 2. In this 

case, 𝛽012
𝛥  and 𝛽012

𝜆  would denote the expected additive trait change and the expected 

multiplicative trait change for an averagely neurotic person (i.e., 𝑋𝑣(𝑝) = 0). The regression 

coefficients 𝛽1𝑖2
𝛥   and 𝛽1𝑖2

𝜆  can be interpreted as the expected change in the corresponding trait 

change parameters when neuroticism increases by one unit. 

Inclusion of Time-Varying Covariates  

Next, we consider the inclusion of a time-varying covariate (e.g., stress at work, 

𝑋𝑡𝑣(𝑝)) in MN-LST models. The additional index t in the subscript indicates that the 

explanatory variable is a time-varying covariate with values 𝑣 =  1, … , 𝑉. Figure 4 shows a 

                                                           
2 To empirically model and estimate the error terms in Equations (9) and (10), it is necessary to sample a 
sufficient number of observations for each value on the time-invariant covariate. To this end, researchers might 
consider rounding the values on continuous moderating covariates to one or two decimal places before the 
analysis. In case the covariate is dichotomous (or covariates are dummy-coded to include nominal variables), the 
error terms have to be dropped from the equations.   
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path diagram of a MN-LST model with a single time-varying covariate measured at three time 

points. 

========================================== 

Insert Figure 4 about here 

========================================== 

It is worth noting that both 𝛥𝛼𝑖𝑡 and 𝜆𝑖𝑡 can be directly linked to the time-varying 

covariates measured at the same time point (𝑋𝑡𝑣(𝑝)) or at previous time points (e.g., 

𝑋(𝑡−1)𝑣(𝑝)) in the MN-LST framework: 

𝛥𝛼𝑖𝑡𝑣 = 𝛽0𝑖𝑡
𝛥 + 𝛽1𝑖𝑡

𝛥 𝑋𝑡𝑣(𝑝) + 𝛽2𝑖𝑡
𝛥 𝑋(𝑡−1)𝑣(𝑝) + 𝜀𝑖𝑡𝑣

𝛥    (16) 

𝜆𝑖𝑡𝑣 = 𝛽0𝑖𝑡
𝜆 + 𝛽1𝑖𝑡

𝜆 𝑋𝑡𝑣(𝑝) + 𝛽2𝑖𝑡
𝜆 𝑋(𝑡−1)𝑣(𝑝) + 𝜀𝑖𝑡𝑣

𝜆    (17) 

where 𝛽0𝑖𝑡
𝛥 , 𝛽1𝑖𝑡

𝛥 , and 𝛽2𝑖𝑡
𝛥  denote the regression coefficients with respect to the additive 

change parameter 𝛥𝛼𝑖𝑡𝑣
, and 𝛽0𝑖𝑡

𝜆 , 𝛽1𝑖𝑡
𝜆 , and 𝛽2𝑖𝑡

𝜆  represent the regression coefficients with 

respect to the trait loadings 𝜆𝑖𝑡𝑣. Note that covariates measured at lags greater than one are not 

included in Equations (16) and (17) for parsimony but may principally be modeled. The error 

terms 𝜀𝑖𝑡𝑣
𝛥  and 𝜀𝑖𝑡𝑣

𝜆  capture unexplained heterogeneity in the intercepts and trait loadings. 

Equations (16) and (17) state that 𝛥𝛼𝑖𝑡𝑣  as well as 𝜆𝑖𝑡𝑣 may vary as a function of the values 

(or combinations of values) on a time-varying covariate measured at the same time point 

𝑋𝑡𝑣(𝑝) and at the previous time point 𝑋(𝑡−1)𝑣(𝑝).  

An example where this general MN-LST model may be suitable is when critical life 

events are considered as time-varying covariates. Critical life events can have long-lasting 

effects on a person’s trait that diminish only slowly over time (e.g., Hentschel et al., 2017). 

Consider, for example, a person who experiences a divorce at the first time point. 

Experiencing a divorce at time 1 might not only affect the person’s well-being at time 1 but 

also at time 2 and thereby also the trait changes from time 1 to time 2 (or later time points). At 

the second time point, the person may for instance experience a positive life event. The 
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positive effect of this event might, however, be attenuated by the lasting negative effect of the 

foregoing divorce. The MN-LST framework allows researchers to include lagged effects of 

time-varying covariates. However, for simplicity, in the present study we will focus on 

situations where the time-varying covariate only affects the person’s trait at the same time 

point.  

The regression coefficients in Equation (16) and (17) can be interpreted in a similar 

way as discussed before. We generally recommend researchers to center the external 

covariates. There are two possible centering techniques with respect to time-varying 

covariates: centering at the overall grand-mean or centering at the person-specific or group-

mean (Enders & Tofighi, 2007; Kreft et al., 1995). Selecting an appropriate centering 

technique is crucial for the interpretation of 𝛽0𝑖𝑡
𝛥  and 𝛽0𝑖𝑡

𝜆  parameters, as they reflect the 

expected parameter for a person scoring 0 on all covariates. We recommend researchers to 

choose an appropriate centering technique that eases the interpretation of the model 

parameters and helps to answer the research question at hand. If researchers decide to center 

the covariate at the person-specific mean (group-mean centering), we recommend to 

additionally include the person-specific mean as a time-invariant covariate in the model. In 

the discussion, we explain how researchers may also use latent (person-centered) covariates 

(see Lüdtke et al., 2008) in MN-LST models. 

Inclusion of Synergistic Person × Situation Interaction Effects 

Referring to the above example, a researcher may seek to investigate whether 

neuroticism (the time-invariant covariate) and stress at work (the time-varying covariate) have 

a multiplicative effect on (the change of) dyadic coping behavior over time. It can reasonably 

be assumed that stress at work has a stronger impact on the coping behavior of comparatively 

more neurotic than on emotionally more stable individuals. To study this synergistic 

interaction effect, researchers need to include a product variable of the time-invariant and the 

time-varying covariate as an additional explanatory variable into the MN-LST model. 
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Specifically, the model parameters 𝛥𝛼𝑖𝑡𝑣𝑤 and 𝜆𝑖𝑡𝑣𝑤 in the MN-LST model are linked to a 

time-invariant covariate 𝑋1𝑣, a time-varying covariate 𝑋2𝑡𝑤, and a product term of the two 

covariates (𝑋1𝑣𝑋2𝑡𝑤):  

𝛥𝛼𝑖𝑡𝑣𝑤 = 𝛽0𝑖𝑡
𝛥 + 𝛽1𝑖𝑡

𝛥 𝑋1𝑣 + 𝛽2𝑖𝑡
𝛥 𝑋2𝑡𝑤 + 𝛽3𝑖𝑡

𝛥 (𝑋1𝑣𝑋2𝑡𝑤) + 𝜀𝑖𝑡𝑣𝑤
𝛥     (18) 

𝜆𝑖𝑡𝑣𝑤 = 𝛽0𝑖𝑡
𝜆 + 𝛽1𝑖𝑡

𝜆 𝑋1𝑣 + 𝛽2𝑖𝑡
𝜆 𝑋2𝑡𝑤 + 𝛽3𝑖𝑡

𝜆 (𝑋1𝑣𝑋2𝑡𝑤) + 𝜀𝑖𝑡𝑣𝑤
𝜆     (19) 

For simplicity, we dropped the index p in the above Equation (18) and (19). The 

indices 𝑣 =  1, … , 𝑉 and 𝑤 = 1, … , 𝑊 are used to clarify that the time-invariant covariate 

𝑋1𝑣 and the time-varying covariate 𝑋2𝑡𝑤 can take on different values and the parameters 

𝛥𝛼𝑖𝑡𝑣𝑤 and 𝜆𝑖𝑡𝑣𝑤 may vary as a function of the combination of the values on both covariates. 

The coefficients 𝛽0𝑖𝑡
𝛥 , 𝛽1𝑖𝑡

𝛥 , 𝛽2𝑖𝑡
𝛥 , and 𝛽3𝑖𝑡

𝛥  represent regression coefficients with respect to 

𝛥𝛼𝑖𝑡𝑣𝑤 (additive trait change parameter), while 𝛽0𝑖𝑡
𝜆 , 𝛽1𝑖𝑡

𝜆 , 𝛽2𝑖𝑡
𝜆  and 𝛽3𝑖𝑡

𝜆  denote the regression 

coefficients with respect to 𝜆𝑖𝑡𝑣𝑤 (multiplicative trait change parameter), and 𝜀𝑖𝑡𝑣𝑤
𝛥  and 𝜀𝑖𝑡𝑣𝑤

𝜆  

are the error terms.  

The product term (𝑋1𝑣𝑋2𝑡𝑤) and its’ coefficients 𝛽312
𝛥  and 𝛽312

𝜆  represent the 

synergistic (person × situation) interaction effects between trait neuroticism and time-varying 

stress at work with respect to the additive 𝛥𝛼𝑖𝑡𝑣𝑤 and the multiplicative 𝜆𝑖𝑡𝑣𝑤 trait change 

parameters. For example, the regression coefficient 𝛽312
𝛥  characterizes the expected change in 

the additive trait change parameter 𝛥𝛼𝑖𝑡𝑣𝑤  of dyadic coping if both stress at work and 

neuroticism increase by one unit simultaneously (above and beyond the main effects). The 

synergistic interaction effect for the trait loading 𝜆12 can be interpreted accordingly.  

Predicting Variance Coefficients 

The MN-LST framework also allows researchers to link external covariates to 

different variance parameters in the model. Thereby, it is possible to explain inter- or intra-

individual variability processes around a moving trait. Furthermore, consistency and 

occasion-specificity coefficients may be investigated as a function of external covariates.  
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Explaining Inter-Individual Variability Processes 

The occasion-specificity coefficient (see Equation (12)) reflects the amount of true 

inter-individual variability that is due to time-specific inter-individual differences (i.e., 

situation and/or person × situation effects). In the MN-LST framework, time-varying as well 

as time-invariant covariates can be linked to latent state residual variation using a logarithmic 

function. A researcher might, for instance, assume that persons with high state-stress levels 

show more variability and larger time-specific deviations from their dyadic coping skill traits 

at this time point as compared to persons with lower state-stress levels. To test such a 

hypothesis, researchers can regress the log (natural logarithm) of the latent state residual 

variance 𝑙𝑜𝑔(𝜎𝜁𝑡𝑣
2 ) on a time-varying covariate 𝑋𝑡𝑣(𝑝) measured at the same time point t: 

𝑙𝑜𝑔(𝜎𝜁𝑡𝑣
2 ) =  𝛽0𝑡

𝜎 +  𝛽1𝑡
𝜎 𝑋𝑡𝑣(𝑝) + 𝜀𝑡𝑣

𝜎     (20) 

or equivalently written as 𝜎𝜁𝑡𝑣
2 =  𝑒𝑥𝑝(𝛽0𝑡

𝜎 +  𝛽1𝑡
𝜎 𝑋𝑡𝑣(𝑝) + 𝜀𝑡𝑣

𝜎 ), where 𝑒𝑥𝑝(.) refers to the 

(natural) exponential function. Note that the variance of the latent state residual 𝜎𝜁𝑡𝑣
2  varies as 

a function of the values of the time-varying covariate 𝑋𝑡𝑣(𝑝). The coefficient 𝑒𝑥𝑝(𝛽0𝑡
𝜎 ) is the 

expected latent state residual variance at time t given the time-varying covariate takes on the 

value zero. The coefficient 𝑒𝑥𝑝(𝛽1𝑡
𝜎 ) represents the expected multiplicative change in the 

latent state residual variance if the covariate increases by one unit. 

By regressing the latent state residual variances 𝜎𝜁𝑡𝑣
2  and the trait factor loadings 𝜆𝑖𝑡𝑣 

on time-varying or time-invariant covariates, the consistency and occasion specificity 

coefficients are inherently predicted as well. In sum, the MN-LST framework allows the 

consistency and specificity coefficients to vary as a function of time-varying and time-

invariant covariates. In the empirical application, we illustrate how the consistency coefficient 

varies in dependence of a persons’ general stress level and neuroticism.   

Explaining Intra-Individual Variability Processes  
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Following a similar logic, intra-individual variability processes (i.e., person-specific 

variabilities around a changing trait) can be predicted by time-invariant covariates. In 

practice, researchers need to specify an extended MN-LST model to explain intra-individual 

variance in addition to the trait change parameters. The person-specific state residual variance 

𝜎𝜁𝑝
2  (see Equation (13)) can be considered as a trait-like coefficient for intra-individual 

variability. As this parameter is time-invariant, it can only be defined as a function of time-

invariant covariates. Again, a log-linear function is used to relate intra-individual variability 

parameters 𝜎𝜁𝑝
2   to a time-invariant covariate 𝑋𝑣(𝑝) (e.g., a person trait-level of neuroticism), 

that is, 

𝑙𝑜𝑔(𝜎𝜁𝑝
2 ) =  𝛽0

𝜎 +  𝛽1
𝜎𝑋𝑣(𝑝) + 𝜀𝑝

𝜎,    (21) 

where 𝛽0
𝜎and 𝛽1

𝜎 are regression coefficients and the error term 𝜀𝑝
𝜎 captures unexplained inter-

individual heterogeneity in intra-individual variability. Note that the intra-individual 

variability parameters 𝜎𝜁𝑝
2  in Equation (21) vary across persons p (not across values v of the 

covariate as in Equation (14)). The coefficient exp(𝛽0
𝜎) is the expected within-person 

variability across time for a person scoring zero on the time-invariant covariate 𝑋𝑣(𝑝) (for 

instance, the expected intra-individual variability in coping behavior across time for a person 

with an average level of neuroticism). The coefficient exp(𝛽1
𝜎) is the expected multiplicative 

change in 𝜎𝑝
2 if the time-invariant covariate increases by one unit, with exp(𝛽1

𝜎) < 1 indicating 

a decrease and exp(𝛽1
𝜎) > 1 indicating an increase in intra-individual variability with an 

increase in the covariate 𝑋𝑣(𝑝).  

Empirical Application 

Next, we illustrate the MN-LST approach using real data from a large German multi-

wave study. In the present application, we investigate the effect of the time-invariant covariate 

neuroticism and time-varying covariate stress at work on variability and change in dyadic 

coping behavior. As we are especially interested in the synergistic person × situation 
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interaction and do not have any theoretical assumptions about the shape of trait change, we 

focus on the MN-LST approach.   

Data description 

Data was taken from the Panel Analysis of Intimate Relationships and Family 

Dynamics (pairfam; Brüderl et al. 2019). Pairfam is a longitudinal multi-perspective study 

launched in 2008/09, which annually assesses partnership and family dynamics in Germany 

(for a detailed description of the study, see Huinink et al., 2011). We investigated the 

development and variability of dyadic coping behavior in romantic couples over a period of 

nine years with 5 occasions of measurement (including waves 1, 3, 5, 7 and 9). In this study, 

we focused on the self-evaluations of anchor persons of the first birth cohort, born between 

1971 and 1973, as this cohort provided most data on the included variables. Participants with 

missing values on the covariates were excluded, resulting in a final sample of N = 854. 

Dyadic coping behavior was measured with 3 items stemming from the Dyadic Coping 

Questionnaire (FDCT-N, Bodenmann, 2000), neuroticism was assessed with 4 items from the 

short version of the Big Five Inventory (BFI-K; Rammstedt & John, 2005), and current stress 

level at work was assessed with two questions concerning time pressure and workload. All 

items were answered on a 5-point rating scale (1=low to 5=high).  

Specification and Estimation 

Models were estimated using Bayesian estimation via MCMC methods based on the 

Gibbs Sampler, as implemented in JAGS (v4.3.0; Plummer, 2003). Estimation was carried out 

using the rjags package (v4-10; Plummer 2019) in R (R Core Team, 2018). Previous to the 

MN-LST analysis, we evaluated the fit of the (unmoderated) baseline LST model using the 

maximum likelihood robust (MLR) estimator implemented in the lavaan package (v0.6-4; 

Rosseel, 2012). The LST model was specified with indicator-specific trait factors. The 
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following parameter constraints were imposed: 𝜆𝑖1 = 1, 𝛿𝑖𝑡 = 1, 𝔼(𝜉𝑖) = 0, 𝔼(𝜁𝑖) = 0,  and 

𝜎𝜁𝑡
2 = 𝜎𝜁𝑡′

2 . 

We estimated two MN-LST models. In the first model, we predicted both trait change 

parameters as well as the time-specific state residual variances (i.e., inter-individual 

variability in occasion-specific effects; model 1). In the second model, we fitted an extended 

MN-LST model to explain the intra-individual variability parameter 𝜎𝜁𝑝
2 , instead of the latent 

state-residual variance 𝜎𝜁𝑡
2  (model 2). In both models, we modeled intercepts at the first time 

point 𝛼𝑖1, intercept-changes 𝛥𝛼𝑖𝑡
, and trait loadings 𝜆𝑖𝑡 for t > 1 as a deterministic function of 

the time-stable covariate neuroticism, the time-varying covariate stress at work and their 

synergistic interaction. Following Bauer (2017), we choose a deterministic function to reduce 

model complexity and facilitate model estimation.  

The time-varying covariate (stress at work) was centered at the person-specific mean 

score. In addition, we included the person-specific mean level of stress as well as the 

interaction between time-invariant stress and neuroticism as time-invariant covariates. All 

time-invariant covariates were grand-mean centered. The effects of the covariates on the 

additive and the multiplicative trait change parameters were set invariant across indicators. 

Hence, we do not assume indicator-specific effects of the moderating covariates. Furthermore, 

𝛽0-coefficients for 𝛥𝛼𝑖𝑡
and 𝜆𝑖𝑡 were set invariant across indicators, which together with the 

above restriction implies that additive and multiplicative trait change is equal for different 

indicators (see parameter restrictions discussed in Appendix A in Equations (A.1) - (A.4)). 

However, we freely estimated the 𝛽0-coefficient with respect to 𝛼𝑖1 (the intercept at time 1), 

that is, indicators may differ in their initial mean level. We did not impose any longitudinal 

constraints on the covariate effects to allow for and investigate potential adaptation processes. 

Significance of trait change parameters and covariate effects was evaluated using Bayesian 

95% credibility intervals.  



Moderated Nonlinear Latent State-Trait Models 

29 
 

Bayesian estimation was conducted by running three MCMC chains with 40,000 

iterations and a thinning factor of 10. The first 20,000 sample iterations were discarded (burn-

in). Convergence of MCMC chains was evaluated by visually inspecting autocorrelation and 

trace plots. MCMC chains converged well for all parameters of both models. Traceplots can 

be retrieved from the open science framework OSF (Link: https://osf.io/4ejvz). All 

unconstrained parameters were modeled using uninformative priors. Details on prior 

specifications can be found in Appendix C, annotated JAGS code is provided in the 

supplemental material (Link: https://osf.io/bka6j).  

Results 

As described in the previous section, we evaluated the fit of the baseline LST model 

using MLR estimation. The model fitted the data well, 𝜒2(86) = 128.05, p = .002; CFI = .987, 

TLI = .984, RMSEA = .027, SRMR = .032. Considering that the MN-LST model is less 

restrictive than the baseline LST model, as it permits for differences in model parameters 

across values of the covariates, it can be assumed that the MN-LST model fits the data at least 

as good as the baseline model.  

Parameter estimates of model 1 are summarized in Table 1, results concerning model 

parameters of model 2 are summarized in Table 2. Parameters in column 𝛽0𝑖𝑡 are the 

respective expected parameter values for averagely neurotic individuals at an average mean 

stress level, experiencing a person-specific average amount of stress at work. The parameters 

𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_𝑖𝑡, 𝛽𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡, 𝛽𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡, 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_𝑥_𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡, and 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_𝑥_𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡  refer to 

the effects of the covariates and their interactions on the respective parameters (note that 

parameters are set invariant across indicators). 

Explaining trait change parameters.  
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Parameters 𝑎𝑖1 in Table 1 refer to the three initial intercept parameters at time 1, 

additive trait change parameters 𝛥𝛼𝑖𝑡 refer to the mean differences between time 1 and one of 

the four subsequent measurement occasions (T2, T3, T4, and T5; set invariant across 

indicators). Additive trait change is present if the 𝛥𝛼𝑖𝑡 parameters significantly differ from 0.  

 𝛽0𝑖𝑡
𝛥  parameters indicate a significant negative additive trait change, which means that 

averagely neurotic and stressed individuals show a decrease in dyadic coping behavior over 

time. Considering the Bayesian credibility intervals, only neuroticism has a significant effect 

on initial values 𝑎𝑖1, with persons with a level of neuroticism above average show less dyadic 

coping behavior at time 1. None of the included covariates was found to predict additive trait 

change.  

========================================== 

Insert Table 1 about here 

========================================== 

Recall that multiplicative trait change is present if trait factor loadings 𝜆𝑖𝑡 for t > 1 

significantly differ from 1. The parameters 𝛽0𝑖𝑡
𝜆  indicate that averagely neurotic and averagely 

stressed persons experience positive multiplicative trait change at the third and fourth 

measurement occasions with respect to time 1. That is, the initial trait values of individuals 

are further enhanced, leading to an increase of inter-interindividual trait differences. 

With respect to the effects of external covariates on multiplicative trait change, 

neuroticism has a significant positive effect on trait loadings of the fourth measurement 

occasion, i.e., an increase in neuroticism leads to increased interindividual trait heterogeneity. 

Furthermore, trait loadings of the third time point are predicted by the person-specific mean 

stress level and the neuroticism x mean stress interaction. That is, an increase in person-

specific stress levels is associated with increased trait heterogeneity in dyadic coping. This 
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effect is mainly present for persons low on neuroticism and is attenuated under high 

neuroticism levels. 

Explaining consistency or occasion specificity coefficients.  

By explaining the variance of the latent state residuals in addition to trait factor 

loadings, we indirectly also model consistency 𝐶𝑜𝑛(𝜏𝑡) and specificity 𝑆𝑝𝑒(𝜏𝑡) coefficients 

in dependence of external covariates. Figure 5 shows an illustrative example of the 

consistency coefficient on the third measurement occasion moderated by the (interaction) 

between time-stable neuroticism and time-stable stress at work. The figure reveals that 

consistency, that is, the amount of variance in dyadic coping attributable to reliable inter-

individual trait differences, decreases with an increase in neuroticism for individuals with a 

high mean stress level (i.e., one standard deviation above average). That is, situation- and 

time-specific inter-individual variation around the trait levels increases with increasing 

neuroticism, in highly stressed individuals. In contrast, for persons with a low mean stress 

level (i.e., one standard deviation below average), the consistency increases with an increase 

of neuroticism. The highest consistency is expected for below-average neurotic individuals 

experiencing a high mean level of stress at work. In general, differences in consistency 

between individuals with low and high stress levels are most pronounced for individuals low 

on neuroticism. 

========================================== 

Insert Figure 5 about here 

========================================== 

Explaining within-person variability parameters.  

Next, we specified an extended MN-LST model to estimate and moderate the person-

specific intra-individual variability parameter (see Table 2). With respect to trait change, 

results of the extended MN-LST model largely parallel those of the regular MN-LST analysis. 
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However, instead of modeling specificity or consistency coefficients, we now predict intra-

individual variability as a log-linear function of time-invariant external covariates (i.e., 

neuroticism, trait stress and the neuroticism × trait stress interaction). For averagely neurotic 

and stressed individuals we expect an intra-individual variability of exp(𝛽0
𝜎) = .057. 

Neuroticism has a significant impact on intra-individual variability: Persons scoring one unit 

above average on neuroticism are expected to show an increased intra-individual variability in 

dyadic coping of (.057 * 1.262 =) .072. The effect of neuroticism on intra-individual 

variability for different trait stress levels is illustrated in Figure 6. Figure 6 reveals that the 

highest intra-individual variability is expected for highly neurotic individuals on a high mean-

stress level. However, the effect of trait stress as well as the neuroticism × stress interaction 

are not significant. 

========================================== 

Insert Table 2 about here 

                                  ========================================== 

========================================== 

Insert Figure 6 about here 

========================================== 

Discussion of the Empirical Application 

Our findings can be summarized as follows. First, there is negative additive as well as 

positive multiplicative trait change in dyadic coping behavior over the course of 9 years. That 

is, dyadic coping behavior was observed to decrease across years, with a temporary increase 

in interindividual differences in dyadic coping behavior after 5 and 7 years. Second, trait 

neuroticism has a negative effect on initial values of additive change trajectories of dyadic 

coping over time, suggesting that persons with a high level of neuroticism tend to have lower 

coping skills in general, which is in line with previous research on dyadic coping (Merz et al., 



Moderated Nonlinear Latent State-Trait Models 

33 
 

2014). However, neuroticism was not found to affect changes in the level of dyadic coping 

over time. Instead, neuroticism was positively associated with within-person variability across 

time (i.e., the amount of person-specific fluctuations around a person’s changing trait). This 

indicates that persons who report a higher level of neuroticism tend to show more variability 

in their coping behavior across time than persons that report a lower level of neuroticism. This 

result supports previous findings suggesting that neuroticism is associated with an increased 

intra-individual behavioral variability (Judge et al., 2014). Fourth, occasion-specific stress at 

work was neither associated with trait change nor with situational variability. Similarly, trait 

stress was not found to affect levels of dyadic coping behavior and was associated with an 

increase in interindividual differences in trait coping behavior for persons low on neuroticism 

at only one measurement occasion. Fifth, we found no synergistic interaction effects of 

neuroticism with stress on coping behavior. One possible explanation for the non-significant 

effects of stress-at-work might be that the variables included in the current analyses (time 

pressure and workload) did not serve as good indicators of a person’s actually experienced 

overall level of stress. While some persons might experience a high workload in a job context 

as stressful and straining, others might experience them as positive (for instance, as they enjoy 

their work or interpret a high workload as a sign of a well-going business). It can be 

hypothesized that main effects of stress as well as synergistic effects of neuroticism and stress 

are more likely to occur if stress was assessed in terms of a personally experienced 

momentary overall stress level, considering personal as well as work-related stressors. 

However, the non-significant interaction effect might also be due to a lack of statistical power 

or because synergistic person × situations interactions do not exist as hypothesized.   

Overall Discussion 

Identifying key predictors of trait change and variability processes (inter- or intra-

individual variability) are two central goals in psychology. In this article, we introduced a 
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general framework for the inclusion of nominal and/or continuous time-varying and time-

invariant covariates, as well as their synergistic interactions in LST-R models. The new 

framework combines the advantages of modern LST theory and moderated nonlinear factor 

analysis using Bayesian MCMC estimation techniques. The MN-LST framework allows a 

fine-grained analysis of trait change, inter- or intra-individual variability, and synergistic 

interaction effects, which cannot be examined in a similar fashion in traditional LST modeling 

approaches. In the following, we discuss the advantages and limitations of the new MN-LST 

framework with reference to alternative modeling strategies. 

Relation to Latent Growth Curve Models 

  An alternative modeling approach are multiple-indicator latent growth curve models. 

Multiple-indicator LGC models can be specified as (traditional) single level or as multilevel 

CFA models (Geiser; Bishop et al., 2013). As explained above, the introduced MN-LST-R 

models is less restrictive than LGC models in that the MN-LST model allows researchers a) to 

flexibly model trait change without specifying a specific shape of change across time while b) 

shapes of trait change trajectories may differ across individuals, c) to flexibly test specific 

hypotheses about the shape of trait change, and c) easily integrate synergistic interaction 

effects of external covariates on the shape and amount of trait change. Table 3 summarizes the 

key differences and similarities between MN-LST and LGC analysis.  

========================================== 

Insert Table 3 about here 

                                  ========================================== 

A key difference between the approaches is that trait change is modeled by means of 

latent variables (i.e., slope factor) in LGC models, whereas in MN-LST models it is 

represented in the intercepts and trait loadings pertaining to different time points. In LGC 

models, the latent intercept and slope factor may be further regressed on time-invariant 

covariates (e.g., 𝑋𝑝 = a person’s gender): 
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𝐼𝑛𝑡𝑖𝑝 = 𝛽0𝑖
𝐼 + 𝛽1𝑖

𝐼 𝑋𝑝 + 𝜖𝑖𝑝
𝐼      (22) 

𝑆𝑙𝑜𝑖𝑝 = 𝛽0𝑖
𝑆 + 𝛽1𝑖

𝑆 𝑋𝑝 + 𝜖𝑖𝑝
𝑆       (23) 

Accordingly, LGC models allow researchers to model and explain inter-individual 

differences in person-specific degrees of trait change given change trajectories of a specified 

shape. The coefficients 𝛽0𝑖
𝐼  and 𝛽0𝑖

𝑆  represent the expected value on the intercept and slope 

factors of indicator i for a person scoring zero on the time-invariant covariate. The 

coefficients 𝛽1𝑖
𝐼  and 𝛽1𝑖

𝑆  denote the expected change in the intercept and slope factors if the 

time-invariant covariate increases by one unit. The error terms 𝜖𝑖𝑝
𝐼  and 𝜖𝑖𝑝

𝑆  capture 

unexplained inter-individual heterogeneity in the initial trait values (𝐼𝑛𝑡𝑖𝑝) and growth 

trajectories (𝑆𝑙𝑜𝑖𝑝). It can be shown that the same expected change trajectories given by 

Equations (22) and (23) can be modeled by use of MN-LST models. That is, the expected 

change trajectories modeled in the moderated LGC model can be reproduced by the MN-LST 

model given certain parameter restrictions (see Appendix B, for details). This shows that the 

MN-LST model is more flexible in modeling different forms or shapes of trait change. 

However, in MN-LST models change trajectories vary across levels of the covariate, while 

LGC models allow for person-specific degrees of trait change.  

A limitation of the multiple-indicator LGC models is that it does not permit 

researchers to relate time-varying covariates or the combination of time-invariant and time-

varying covariates directly to latent intercept and slope factors in the model. Hence, it is not 

possible to examine the effect of a time-varying covariate (e.g., daily stress) on the intercept 

and slope factors (i.e., trait change parameters). Furthermore, it is not possible to directly 

investigate synergistic interaction effects (i.e., interaction between person and situational 

factors) on the intercept and slope factors, as these latent variables are time-invariant. In 

contrast, the MN-LST framework allows researchers to relate time-varying covariates, time-
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invariant covariates, and the combination of both types of covariates directly to trait change 

parameters in the model.  

Another advantage of MN-LST models is that they are more flexible and allow the 

specification of any kind of trait change trajectories. In LGC models, researchers oftentimes 

assume linear trait change, which is often a too restrictive. In practice, researchers may start 

by fitting a MN-LST model with unrestrictive trait change to the data before fitting a 

traditional LGC model in order to test a specific form of trait change.  

By imposing certain equality constraints on the regression coefficients in MN-LST 

models, researchers may test specific hypothesis concerning the shape of trait change or trait 

stability. For example, a MN-LST models with time-invariant intercepts and time-invariant 

trait loadings would suggest that the latent trait is perfectly stable over time (i.e., no additive 

and no multiplicative trait change). Regressing the latent trait on the time-invariant covariate, 

while constraining the latent state-residuals as well as the latent errors to be equal across time, 

yields a random-intercept multilevel CFA model with a time-invariant covariate. 

Alternatively, researchers may test specific trait change patterns (e.g., adaptation processes) 

that may occur after an intervention or a critical life event. Consider, for example, a 

measurement design with three time points and an intervention which takes place between the 

first and the second measurement occasion. The aim of the intervention may be to reduce 

depression or unhealthy behavior (e.g., quitting smoking). It is reasonable to assume that 

individuals in the control group will not change on average over the course of the study (i.e., 

no additive trait change if X=0), where individuals in the intervention group (X=1) will 

experience a strong reduction (i.e., negative additive trait change) shortly after the 

intervention, but a less strong reduction over time. This specific additive trait change pattern 

can be tested in the new MN-LST framework by imposing certain parameter constraints on 

the regression coefficients pertaining to the additive trait change parameter. More specifically, 

the following constraint is needed to test whether there is no significant additive trait change 
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in the control group (𝛽0𝑖2
𝛥 = 𝛽0𝑖3

𝛥  = 0), whereas the following constraint is needed to test 

whether the reduction in depressive symptoms between T1 and T2 is larger than between T1 

and T3 (|𝛽1𝑖2
𝛥 | > |𝛽1𝑖3

𝛥 | or |𝛽1𝑖2
𝛥 | − |𝛽1𝑖3

𝛥 |  > 0). This shows that the new MN-LST framework 

is very flexible for testing differential trait change hypotheses, as any kind of trait change 

trajectory that is supported by a well-grounded theory can be flexibly modelled. 

Overall, MN-LST as well as LGC models bear advantages with respect to certain 

applications. To select an appropriate model in practice, researchers may focus on two key 

aspects. Does theory suggest a specific form of trait change? In this case, we recommend 

(hybrid) LGC models as they are more parsimonious and facilitate the specification of 

individual (person-specific) degrees of trait change. Second, do researchers aim at the 

investigation of synergistic interaction effects with regard to trait change parameter? That is, 

do researchers seek to include time-invariant variables, time-varying variables, and the 

interaction of both into the model in order to explain trait change? In this case, MN-LST 

models are recommended, as they allow for a flexible and a fine-grained analysis of 

synergetic interaction effects in LST-R models.  

Many social and personality researchers may find MN-LST models attractive for the 

investigation of moderated consistency and/or moderated specificity coefficients. For 

example, MN-LST models may be used to examine which personality traits (e.g., 

neuroticism), situational factors (e.g., stress), or the combination of both are most relevant to 

increase or decrease the consistency of human behavior over time (e.g., dyadic copying). 

Additionally, extended LGC as well as extended MN-LST models can be used to study 

person-specific variability around a fixed or changing trait. To this regard, simulation studies 

are needed to examine how many time points are sufficient to accurately predict inter- or 

intra-individual variability parameters in MN-LST models. 
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In sum, the MN-LST framework represents a generalization of many traditional 

approaches to model parameter heterogeneity in LST models. For example, a MN-LST model 

with a time-invariant covariate that can take two values (e.g., 0 = male; 1 = female) is equal to 

a multiple group LST model. If the time-invariant covariate can take multiple values (e.g., 

representing different nations), the MN-LST models can be viewed as a multilevel LST model 

with nation as a cluster variable. On the other hand, MN-LST model may also be viewed as a 

generalization of finite mixture LST models, where the covariate is used to uncover 

heterogeneity in the model parameters. The advantages of the MN-LST framework is that 

both nominal and continuous time-varying and time-invariant variables can be included 

simultaneously in the model, which is not always possible using the discussed traditional 

approaches. 

Relation to Modern Approaches to Investigate Parameter Heterogeneity 

Recently, two alternative approaches to model parameter heterogeneity in structural 

equation models have been suggested. The first approach uses recursive partitioning 

algorithms to explore possible splits of a given data set that are associated with significant 

differences in the model parameters. The approach is implemented in the R packages 

semtree (Brandmaier et al., 2013) and semforests (Brandmaier et al., 2016). SEM 

Trees as well as SEM Forests are exploratory approaches and allow researchers to examine 

parameter heterogeneity in a predefined structural equation model. Compared to our 

approach, SEM trees are particularly useful when researchers seek to (exploratory) identify 

predictors of parameter heterogeneity from a large set of potential covariates. Especially 

higher interactions between covariates as well as nonlinear associations are inherently 

modeled and accounted for when using this approach. One drawback is that continuous 

predictors often gain disproportionally high importance when carelessly using the default 

settings, as this will lead to multiple splits of the data sets. This can be circumvented by 
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splitting continuous covariates into theoretically meaningful parts. Using the MN-LST 

framework, it may be easier to impose parameter constraints and include time-varying 

covariates in addition to other covariates.  

The second approach is termed individual parameter contribution (IPC) regression 

proposed by Arnold, Oberski, Brandmaier and Voelkle, 2019. The IPC approach 

approximates the individual parameter values for each person and regresses these IPCs on 

external covariates following the principle of classical linear regression analysis. The IPC 

approach is based on maximum likelihood estimation and requires at least two steps. First, a 

structural equation model (without covariates) is fit to a given data set. In a second step, the 

IPC are computed and regressed on external covariates. The IPC approach is implemented in 

the R package ipcr (Arnold et al., 2019). The recently proposed IPC approach is a 

promising alternative to MNLFA as it also accounts for parameter heterogeneity building on 

the principals of classical regression analysis. However, the current version of the ipcr 

package does not yet enable researchers to easily impose certain constraints on the regression 

coefficients. Furthermore, Bayesian estimation, as compared to maximum likelihood 

estimation, allows to incorporate prior information into the model, which may be beneficial to 

increase statistical power to identify parameter heterogeneity. 

Inclusion of latent covariates 

The MN-LST approach can be extended to the inclusion of latent external covariates, 

which is another important advantage over traditional approaches like multiple group models, 

multilevel models, or MIMIC models. Psychological constructs are rarely assumed to be 

measured without measurement error. Measurement error in independent variables may lead 

to biased estimation of effects and may thus entail incorrect theoretical conclusions. 

Especially with respect to time-varying covariates, it has been recommended to include the 

latent person-specific mean instead of the observed person-specific mean score as a time-
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invariant covariate (Lüdtke et al., 2008). In order to include latent covariates in MN-LST 

models we use an extended multiple construct approach, in which a LST model is specified 

for each time-varying covariate to separate latent trait (mean) scores from time-specific 

deviations. Change and variability parameters of the MN-LST model are then regressed on 

the respective factor scores of the additional LST models. We provide an example code for a 

model with the latent group mean centered time-varying covariate stress at work in the 

supplemental material, which can be found on OSF (Link: https://osf.io/rdv74).  

Conclusion 

We presented a general framework for the inclusion of time-varying covariates, time-

invariant covariates, and their combined interaction effects in modern LST models. The new 

framework makes a fine-grained analysis of trait change, synergistic interaction effects, and 

within- or between-person variability processes possible. Furthermore, the new modeling 

framework was compared to extended LGC models and illustrated with an empirical 

application studying dyadic coping in romantic relationships. 
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Figures 

 

Figure 1: LST-R model of three measurement occasions with two indicators and indicator-
specific trait variables. 𝛼𝑖𝑡: intercept parameter of indicator 𝑖 at time 𝑡; 𝜖𝑖𝑡: measurement error 
variable of indicator 𝑖 at time 𝑡; 𝜆𝑖𝑡: trait factor loading of indicator 𝑖 at time 𝑡; 𝜉𝑖: indicator-
specific trait factors; 𝑌𝑖𝑡: observed indicator variable 𝑖 at time 𝑡; 𝜁𝑡: latent state-residual 
variable at time 𝑡; 𝑖: indicator; 𝑡: time point.  
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Figure 2: LGC model of three measurement occasions with two indicators. As is common 
practice, all intercept factor loadings and the first slope factor loading are fixed to 1. To model 
linear growth, slope factor loadings of the third measurement occasion are fixed to 2.   
Additionally, all intercepts of observed variables are fixed to 0 (they are omitted here in order 
to keep the figure as clear as possible). 𝛼𝑖𝑡: intercept parameter of indicator 𝑖 at time 𝑡; 𝜖𝑖𝑡: 
measurement error variable of indicator 𝑖 at time 𝑡; 𝔼 : expectation; 𝜆𝑖𝑡: trait factor loading of 
indicator 𝑖 at time 𝑡; 𝐼𝑛𝑡𝑖: indicator-specific intercept factors; 𝑆𝑙𝑜𝑖: indicator-specific slope 
factors; 𝜉𝑖: indicator-specific trait factors; 𝑌𝑖𝑡: observed indicator variable 𝑖 at time 𝑡; 𝜁𝑡: latent 
state-residual variable at time 𝑡; 𝑖: indicator; 𝑡: time point.   
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Figure 3: Nonlinear LST model with a time-invariant covariate 𝑋. Key parameters of trait 
change and variability (marked with a pentagon), i.e. intercepts, trait-factor loadings and 
latent state residual variances are allowed to vary across levels of the external covariate. 𝛼𝑖𝑡: 
intercept parameter of indicator 𝑖 at time 𝑡; 𝜖𝑖𝑡: measurement error variable of indicator 𝑖 at 
time 𝑡; 𝜆𝑖𝑡: trait factor loading of indicator 𝑖 at time 𝑡; 𝜉𝑖: indicator-specific trait factors; 𝑌𝑖𝑡: 
observed indicator variable 𝑖 at time 𝑡; 𝜁𝑡: latent state-residual variable at time 𝑡; 𝑖: indicator; 
𝑡: time point. 
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Figure 4: Nonlinear LST model with time-varying covariate 𝑋𝑡. Moderated parameters of 
trait change and variability are marked with geometric symbols (i.e., intercepts, trait-factor 
loadings and latent state-residual variances). These parameters are allowed to vary across 
levels of the external covariate of the corresponding measurement occasion. 𝛼𝑖𝑡: intercept 
parameter of indicator 𝑖 at time 𝑡; 𝜖𝑖𝑡: measurement error variable of indicator 𝑖 at time 𝑡; 𝜆𝑖𝑡: 
trait factor loading of indicator 𝑖 at time 𝑡; 𝜉𝑖: indicator-specific trait factors; 𝑌𝑖𝑡: observed 
indicator variable 𝑖 at time 𝑡; 𝜁𝑡: latent state-residual variable at time 𝑡; 𝑖: indicator; 𝑡: time 
point. 
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Figure 5: Illustration of moderated Consistency at time 3 by the interaction of time-stable 
(within-person averaged) stress at work (i.e., T_Stress) and time-invariant neuroticism 
(T_Neuroticism), given the persons’ time-specific stress level corresponds to the respective 
persons’ average stress level (i.e., controlling for state stress). The solid lines represent the 
effect of neuroticism on the consistency coefficient at time 3 for averagely stressed 
individuals (blue line), above-average stressed persons (+ 1 SD, green line) and below 
average stressed persons (- 1 SD, red line). The consistency coefficient was calculated for 
Markov-Chain Monte-Carlo samples at each post-burn-in iteration, with solid lines 
representing the mean of the resulting posterior distribution and dashed lines representing the 
corresponding 95% credibility intervals (2.5% and 97.5% quantiles of the respective 
distribution).  
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Figure 6: Illustration of moderated intraindividual variability in dependence of time-invariant 
neuroticism (i.e., T_Neuroticism) and time-invariant mean-stress (i.e., T_Stress ) and their 
interaction. The solid lines represent the effect of neuroticism on intraindividual variability for 
persons on an average mean stress level (blue line), persons on a mean stress level 1 SD above 
average, green line) and persons on a mean stress level 1 SD below average (red line). The 
specificity coefficient was calculated for Markov-Chain Monte-Carlo samples at each post-
burn-in iteration, with solid lines representing the mean of the resulting posterior distribution 
and dashed lines representing the corresponding 95% credibility intervals (2.5% and 97.5% 
quantiles of the respective distribution).  
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Tables 

Table 1 Unstandardized estimates from MN-LST analysis 

 



Moderated Nonlinear Latent State-Trait Models 

58 
 

Note. 𝛽0𝑖𝑡 parameters for trait factor loadings printed in bold type significantly differ from 1 (i.e., multiplicative trait change). 𝛽0𝑖𝑡 parameters for 
intercept change 𝛥𝛼𝑖𝑡

 and effects of covariates k (𝛽𝑘𝑖𝑡) printed in bold type significantly differ from 0. With the exception of 𝛽0𝑖𝑡 parameters for 
initial intercepts 𝛼𝑖1, all parameters are set invariant across indicators i. As variance-related parameters were exponentiated, values > 1 indicate a 
positive and values < 1 indicate a negative effect on situational variability (effects that significantly differ from 1 are printed in bold type). 𝛽0𝑖𝑡: 
expected parameter estimates for averagely neurotic individuals at an average inter- and intra-individual stress level. 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_𝑖𝑡: effects of the time-
stable covariate neuroticism; 𝛽𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the time-stable person-specific mean stress level; 𝛽𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the situation-specific 
level of stress at work; 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_×_𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the synergistic interaction between neuroticism an the situation-specific level of stress at 
work; 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_×_𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the interaction between neuroticism an the time-stable person-specific mean stress level. 𝛼𝑖1: intercept 
parameter of indicator 𝑖 at time 1; 𝛥𝛼𝑖𝑡: intercept change between time 1 and time t; 𝜆𝑖𝑡: trait factor loading at time 𝑡; 𝜎𝜁𝑡

2 : latent state residual 
variance at time 𝑡; 𝑖: indicator; 𝑡: time point. 
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Table 2 

Unstandardized estimates from extended MN-LST analysis 
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Note. 𝛽0𝑖𝑡 parameters for trait factor loadings printed in bold type significantly differ from 1 (i.e., multiplicative trait change). 𝛽0𝑖𝑡 parameters for 
intercept change 𝛥𝛼𝑖𝑡

 and effects of covariates k (𝛽𝑘𝑖𝑡) printed in bold type significantly differ from 0. With the exception of 𝛽0𝑖𝑡 parameters for 
initial intercepts 𝛼𝑖1, all parameters are set invariant across indicators i. As variance-related parameters were exponentiated, values > 1 indicate a 
positive and values < 1 indicate a negative effect on intra-individual variability (effects that significantly differ from 1 are printed in bold type).  
𝛽0𝑖𝑡: expected parameter estimates for averagely neurotic individuals at an average inter- and intra-individual stress level. 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_𝑖𝑡: effects of the 
time-stable covariate neuroticism; 𝛽𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the time-stable person-specific mean stress level; 𝛽𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the situation-
specific level of stress at work; 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_×_𝑂_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the synergistic interaction between neuroticism an the situation-specific level of 
stress at work; 𝛽𝑇_𝑁𝑒𝑢𝑟𝑜_×_𝑇_𝑆𝑡𝑟𝑒𝑠𝑠_𝑖𝑡: effects of the interaction between neuroticism and time-stable person-specific mean stress level; 𝛼𝑖1: intercept 
parameter of indicator 𝑖 at time 1; 𝛥𝛼𝑖𝑡: intercept change between time 1 and time t; 𝜆𝑖𝑡: trait factor loading at time 𝑡; 𝜎𝜁𝑝

2 : person-specific intra-
individual variability parameter; 𝑖: indicator; 𝑡: time point. 
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Table 3 

Comparison of MN-LST models and LGC models 

 

 MN-LST Models LGC Models 

Individual Trait Change  Trait change trajectories depend on the values 
of the given covariate(s). 
 

Trait change trajectories can be modeled by 
means of latent variables. Individual degrees of 
trait change is presented in the factor score of 
the latent intercept and slope factors. 

Shape of Trait Change MN-LST models are general and do not 
assume a specific shape of trait change. 
 

LGC models assume a specific (linear or 
nonlinear) form of trait change. This 
assumption may be relaxed in hybrid LGC 
models, where some factor loadings pertaining 
to the slope factor are freely estimated. 
Nevertheless, the shape of trait change is 
assumed to be the same across individuals. 

Deterministic or Stochastic 
Relationships between Trait 
Change Parameters and 
External Covariates  
 

Deterministic and stochastic relationships can 
be modeled. To be in line with LGC models, 
researchers must explicitly model error terms 
and allow correlations among error terms in 
MN-LST models. 

In general, a stochastic relationship is assumed 
and implemented in standard SEM software. 
Error terms and correlations among error terms 
are automatically estimated. 

Synergetic Interaction Effects Synergetic person by situation interaction 
effects can directly be related to trait change 
parameters in MN-LST models. 

Synergetic person by situation interaction 
effects cannot directly be linked to the latent 
factors in LGC models. Time varying 
covariates as well as product variables may be 
linked to the observed variables. 
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Relate Covariates to Inter- 
and Intra-Individual 
Variability Processes 
 

Yes. MN-LST models can be parameterized 
in such a way that external variables can be 
linked to inter- or intra-individual variability 
parameters. 

Yes. LGC models can be parameterized in such 
way that external variables can be linked to 
inter- or intra-individual variability parameters. 
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Appendix A: Parameter constraints 

Equality Restrictions Across Indicators 

 A reasonable restriction in the MN-LST framework with respect to parameters of 

additive and multiplicative trait change is to set the effects of a time-varying covariate 𝑋𝑡𝑤 or 

a time-invariant covariate 𝑋𝑣 to be equal across different indicators. We recommend imposing 

the following parameter equality restrictions to ensure that the effects of the covariates are 

invariant across different indicators (i and i’, where 𝑖 ≠ 𝑖′ ). Note that the effects can still 

differ across time points (t and t’ where 𝑡 ≠ 𝑡′) as well as different covariates. In case of one 

time-invariant or time-varying covariate, the following restrictions are recommended: 

                                                    𝛽1𝑖𝑡
𝛥 = 𝛽1𝑖′𝑡

𝛥 = 𝛽1𝑡
𝛥                         ∀ 𝑖, 𝑖′    (A.1) 

                                                    𝛽1𝑖𝑡
𝜆 = 𝛽1𝑖′𝑡

𝜆 = 𝛽1𝑡
𝜆                       ∀ 𝑖, 𝑖′                (A.2) 

 The above equality restrictions (Equation A.1 and A.2) imply that the effects of the 

covariates on 𝛥𝛼𝑖𝑡
 and 𝜆𝑖𝑡 (where t > 1) are equal across all indicators (i.e., no indicator-

specific effects of the covariates) of the same construct. In addition, researchers may also 

impose the following equality restrictions to test whether trait change is equal across 

indicators if the covariate has a value of zero: 

𝛽0𝑖𝑡
𝛥 = 𝛽0𝑖′𝑡

𝛥 = 𝛽0𝑡
𝛥      ∀ 𝑖, 𝑖′   (A.3) 

𝛽0𝑖𝑡
𝜆 = 𝛽0𝑖′𝑡

𝜆 = 𝛽0𝑡
𝜆      ∀ 𝑖, 𝑖′   (A.4) 

Note that 𝛽0𝑖𝑡
𝛥  and 𝛽0𝑖𝑡

𝜆  denote the expected intercept-change 𝛥𝛼𝑖𝑡
 and trait loadings 𝜆𝑖𝑡 for t > 

1, respectively, given the covariates have a value of zero. Together the restrictions in 

Equations (A.1) – (A.4) imply that trait change is perfectly homogenous across indicators, i.e., 

that all indicators show the same changes across time. These constraints may be too restrictive 

if indicators are heterogenous in empirical applications.  

Equality Restrictions Across Time  
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Many researchers are interested in adaptation processes (e.g., adaptation to a critical 

life event). An adaptation process is present if the effect of a covariate on the parameters 𝛥𝛼𝑖𝑡
 

and 𝜆𝑖𝑡 consistently decreases over time. For instance, time-varying covariates (e.g., an 

intervention taking place for all persons at the same time point) may have differential effects 

on trait change over time. In case of a critical life event (e.g., unemployment) the lagged 

effects on the intercepts or trait loadings may slowly approach zero over time, indicating that 

the effect of the time-varying (shock) variable diminishes over time. Hypotheses regarding 

adaptation processes can easily be integrated into the MN-LST framework by specifying 

parameter restrictions with respect to diminishing effects of an intervention or life event 

across time (e.g., for an event / intervention taking place just before time point t: 𝛽𝑘𝑖𝑡
𝛥 >

𝛽𝑘𝑖(𝑡+1)
𝛥 > 𝛽𝑘𝑖(𝑡+2)

𝛥 > ⋯). Furthermore, an event occurring at time t might cause a constant 

shift in trait levels that will not diminish across time, which could easily be tested by 

constraining the effect of the respective covariate on additive trait change parameters to be 

constant across time after the time of occurrence. 

In other contexts, it might be more reasonable to assume that a time-invariant 

covariate causes a constant (i.e., time-invariant) shift in the intercepts and trait loading 

parameters in the MN-LST model. A time-invariant shift in the intercepts implies that the 

covariate has a constant positive or negative effect on the general trait level while not 

affecting the amount of trait change. In the difference score parameterization of the MN-LST, 

a time-invariant level shift caused by a time-invariant covariate is present if the initial values 

𝛼𝑖1 are moderated by the respective covariate, while there is no effect of the covariate on the 

additive trait change parameters (i.e., 𝛽𝑘𝑖𝑡
𝛥 = 0 for covariate k).  

Consider the example of moderating change in dyadic coping behavior by the time-

invariant covariate neuroticism. If 𝛼𝑖1 is moderated by neuroticism but 𝛽𝑘𝑖𝑡
𝛥 = 0 for 

neuroticism, the average level of coping skills differs between neurotic and less neurotic 
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persons, but trait change in dyadic coping is not affected by neuroticism. If in addition 𝛽0𝑖𝑡
𝛥 =

0, there is no additive trait change in dyadic coping. If, in contrast, 𝛽0𝑖𝑡
𝛥 = 0 and 𝛽𝑘𝑖𝑡

𝛥 ≠ 0 for 

covariate neuroticism (centered), there is no level trait change for averagely neurotic persons 

over time, but neuroticism has an effect on additive trait change, that is, additive trait change 

differs by 𝛽𝑘𝑖𝑡
𝛥  between persons that differ in neuroticism by one unit.  

Following a similar logic, researchers can impose equality restrictions with regard to 

the trait factor loadings if all loadings are freely estimated and the variances of the latent 

factors in the MN-LST model are fixed to 1 (using a standardized latent variable 

parameterization).  

To test the above parameter equality restrictions, researcher may a) use fit statistics of 

overall model fit (e.g., DIC, AIC, BIC, Posterior Predictive P-Values, Bayesian RMSEA), b) 

specify individual parameter differences as new parameters in the MCMC sampling process, 

or c) inspect 95% credibility intervals for the 𝛽-coefficients in the unrestricted MN-LST 

model. 
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Appendix B: A Formel Comparison of LGC and MN-LST models 

To highlight some key differences between LGC and MN-LST modeling, we provide a 

more formal comparison. The basic measurement equation of both models can be written as 

follows:  

𝑌𝑖𝑡𝑝 = 𝜉𝑖𝑡𝑝 + 𝛿𝑖𝑡𝜁𝑡𝑝 + 𝜖𝑖𝑡𝑝      (B.1) 

where 𝜉𝑖𝑡𝑝 is the latent trait, 𝛿𝑖𝑡𝜁𝑡𝑝 is the weighted state residual, and 𝜖𝑖𝑡𝑝 is the 

measurement error variable. Again, i denotes the indicator, t represents the time point, and p 

denotes the person. In LGC models, the latent trait 𝜉𝑖𝑡𝑝 is decomposed as follows:  

𝜉𝑖𝑡𝑝 = 𝜉𝑖1𝑝 + 𝑓 ∙ (𝜉𝑖2𝑝 − 𝜉𝑖1𝑝)     (B.2) 

where 𝜉𝑖1𝑝 ≔ 𝐼𝑛𝑡𝑖𝑝 and (𝜉𝑖2𝑝 − 𝜉𝑖1𝑝) ≔ 𝑆𝑙𝑜𝑖𝑝. The function 𝑓 determines the shape of 

trait change. For example, in case of linear trait change 𝑓 = (𝑡 − 1), the above Equation is 

equal to: 𝜉𝑖𝑡𝑝 = 𝐼𝑛𝑡𝑖𝑝 + (𝑡 − 1) ∙ 𝑆𝑙𝑜𝑖𝑝. Next, the intercept and slope factors might be regressed 

on a time-invariant covariate: 

𝔼(𝐼𝑛𝑡𝑖𝑝|𝑋𝑣(𝑝)) = 𝛽0𝑖
𝐼 + 𝛽1𝑖

𝐼 𝑋𝑣(𝑝)     (B.3) 

𝔼(𝑆𝑙𝑜𝑖𝑝|𝑋𝑣(𝑝)) =  𝛽0𝑖
𝑆 + 𝛽1𝑖

𝑆 𝑋𝑣(𝑝)     (B.4) 

with possibly correlated residual terms 𝜖𝑖𝑝
𝐼  and 𝜖𝑖𝑝

𝑆 . 

In contrast, in MN-LST models, trait variables at t > 1 are modeled as 

𝜉𝑖𝑡𝑝 = 𝛥𝛼𝑖𝑡𝑣
+ 𝜆𝑖𝑡𝜉𝑖1𝑝 + 𝛼𝑖1𝑣     (B.5) 

where 𝛥𝛼𝑖𝑡𝑣
 represent the additive trait change parameter, 𝜆𝑖𝑡 is the multiplicative trait 

change parameter, and 𝛼𝑖1𝑣 is the initial average trait level. Note that the index v indicates that 

𝛥𝛼𝑖𝑡𝑣
 and 𝛼𝑖1𝑣 may vary across values v of a moderating covariate. The above Equation can 

equivalently be written as follows (in terms of expectations):  

𝔼(𝜉𝑖𝑡𝑝 − 𝜉𝑖1𝑝) = 𝔼(𝛥𝛼𝑖𝑡𝑣
) + (𝜆𝑖𝑡 − 1)𝔼(𝜉𝑖1𝑝) + 𝔼(𝛼𝑖1𝑣)    (B.6) 
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  Let 𝜆𝑖𝑡 = 1 and 𝔼(𝜉𝑖1𝑝) = 0. This restriction implies that there is no multiplicative 

trait change and the latent trait at time 1 is centered. Similar as in LGC models, the initial trait 

level 𝛼𝑖1𝑣 and additive trait parameter 𝛥𝛼𝑖𝑡𝑣
are regressed on a time-invariant covariate: 

𝔼(𝛼𝑖1𝑣|𝑋𝑣(𝑝)) = 𝛽0𝑖
𝐼 + 𝛽1𝑖

𝐼 𝑋𝑣(𝑝)     (B.7) 

𝔼(𝛥𝛼𝑖𝑡𝑣
|𝑋𝑣(𝑝)) = 𝑓(𝛽0𝑖𝑡

𝑆 ) + 𝑓(𝛽1𝑖𝑡
𝑆 )𝑋𝑣(𝑝)    (B.8) 

where 𝛽0𝑖
𝐼 , 𝛽1𝑖

𝐼 , 𝛽0𝑖𝑡
𝑆 , and 𝛽1𝑖𝑡

𝑆  represent the latent regression coefficients. For example, if 

𝑋𝑣(𝑝) is a categorical predictor which can take two values (0 = male, 1 = female), then 𝛽0𝑖
𝐼  

reflects the expected initial trait level for males and 𝛽1𝑖
𝐼  represents the expected mean difference 

in the initial trait level. According to Equation (B.8), the regression of the additive trait change 

parameter on the covariate is restricted to follow a specific function. For example, to specify a 

linear growth function 𝑓 = (𝑡 − 1), researchers must impose the following parameter 

restrictions on the regression coefficients: 

𝛽0𝑖𝑡
𝑆 =  (𝑡 − 1)𝛽0𝑖2

𝑆 , where 𝑡 >  1        (B.9) 

𝛽1𝑖𝑡
𝑆 =  (𝑡 − 1)𝛽0𝑖2

𝑆 , where 𝑡 >  1   (B.10) 

Equation (B.9) implies that the expected additive trait change for males 𝛽0𝑖𝑡
𝑆  follows a 

specific form (e.g. a linear form). Furthermore, Equation (B.10) states that the expected 

differences in the additive trait change parameter for males and females follows a specific form. 

These restrictions will lead to the same expected growth trajectories in the two groups as 

modeled in the LGC model given in Equations (B.3) and (B.4). However, in the MN-LST model 

it is not necessary to impose these restrictions. That is, the expected trait change trajectories 

modeled in the LGC model represent a restrictive variant of trajectories that could be modeled 

in the MN-LST framework. On the other hand, the LGC model includes person-specific 

residual terms for the slope factor, such that the degree of trait change is estimated as person-

specific in the LGC model. Allowing for a flexible estimation of 𝛽0𝑖𝑡
𝑆  and 𝛽1𝑖𝑡

𝑆  (not imposing 

any restrictions as made in Equations (B.9) and (B.10)), change trajectories in the MN-LST 
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model may vary across persons in dependence of their values on the included covariates. Note 

that person-specific initial values are also estimated in the MN-LST model in terms of the trait 

factor values. 

In sum, the MN-LST framework is more flexible in terms of modeling different forms 

of trait change, whereas LGC models allow to model person-specific degrees of trait change 

given the specified shape of the change trajectory.  
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Appendix C: Prior Settings Used in the Empirical Application 

The following uninformative priors were used for the specification of the MN-LST model 

explaining interindividual occasion-specific variability. The following priors were set on the 

respective parameters for all indicators i, covariates k, and time points t: 

𝛽0𝑖1
α  ~ 𝑁(0, 0.001) 

𝛽𝑘𝑖1
α  ~ 𝑁(0, 0.001)  

𝛽0𝑖𝑡
Δ  ~ 𝑁(0, 0.001) 

𝛽𝑘𝑖𝑡
Δ  ~ 𝑁(0, 0.001) 

𝛽0𝑖𝑡
𝜆  ~ 𝑁(1, 0.001) 

𝛽𝑘𝑖𝑡
𝜆  ~ 𝑁(0, 0.001) 

𝛽𝑘𝑡
𝜎  ~ 𝑁(0, 0.001) 

𝜖𝑖𝑡 ~ 𝐼𝐺(0.001, 0.001) 

[

𝜉11

𝜉21

𝜉31

] = 𝑀𝑉𝑁(𝝁, 𝑻) 

with T = [
𝜏1

2

𝜏12 𝜏1
2

𝜏13 𝜏13 𝜏2
2

] , 𝝁 =

𝜇1

𝜇2

𝜇3

 , and 

𝚻 ~ 𝐼𝑊(𝜳, 𝑣) 

with 𝜳 specified as a diagonal unit matrix of size d=3 and 𝑣 = 𝑑 + 1 = 4, N denoting the 

normal distribution, MVN denoting the multivariate normal distribution, IG the inverse 

gamma distribution, and IW the inverse Wishart distribution.  Parameter constraints were 

imposed by specifying highly informative priors on the respective parameters: 

𝜇𝑖 ~ (0, 110) 

𝛿𝑖𝑡 ~ 𝑁(1, 110) 

𝜆𝑖1 ~ 𝑁(1, 110) 

 


