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Abstract 27 

Purpose: Multiple methods have been suggested for quantifying syntactic complexity in 28 

speech. We compared the performance of eight automated syntactic complexity metrics to 29 

determine which best captured differences in syntactic complexity between two age groups. 30 

Method: We used natural speech samples produced in a picture description task by younger 31 

(n=76) and older (n=36) healthy participants, manually transcribed and segmented into 32 

sentences. We manually verified that older participants produced fewer complex structures. 33 

We developed a metric of syntactic complexity using automatically extracted syntactic 34 

structures as features in a multi-dimensional metric. Then, we compared our methods to 35 

seven other different methods: Yngve score, Frazier score, Frazier-Roark score, d-level, 36 

syntactic frequency, mean dependency distance and sentence length. We examined the 37 

success of each method in distinguishing the age group of speakers using logistic regression 38 

models. We repeated the same analysis with automatic transcription and segmentation using 39 

an ASR system. 40 

Results: Our multi-dimensional metric was successful in predicting age group (AUC=0.87), 41 

and it performed better than all the other metrics. High AUCs were also achieved by Yngve 42 

score (0.84) and sentence length (0.84). However, in a fully automated pipeline with ASR, 43 

their performance dropped, while the performance of the multi-dimensional metric remained 44 

high.  45 

Conclusions: Syntactic complexity in spontaneous speech can be quantified by directly 46 

assessing syntactic structures. It can be derived automatically, saving considerable time, cost 47 

and effort compared to manually analyzing large-scale corpora, while maintaining high face 48 

validity and parsimony.   49 



1. Introduction 50 

Words in a sentence do not come in a random order. They are systematically organized by a 51 

language's syntax, rules by which words can be combined to create larger units of meaning. 52 

Native speakers' implicit knowledge of syntax is assumed to be a basic cognitive capacity 53 

(Chomsky, 1980; Fodor et al., 1974). Therefore, studying syntax has been focal in 54 

psycholinguistics and neurolinguistics, where researchers have been trying to link syntactic 55 

structures with online language processing, focusing mostly on comprehension (Grodzinsky 56 

et al., 2021; Grodzinsky & Friederici, 2006; Lewis & Phillips, 2015). In particular, syntactic 57 

processing has been associated with cognitive measures such as reaction times, accuracy 58 

rates, and brain activation, providing an index of complexity (Cooke et al., 2002; Friederici et 59 

al., 2002; Ben-Shachar et al., 2003; Wingfield et al., 2003; Grodzinsky and Santi, 2008 60 

among many others). 61 

Cognitive methods for assessing individual linguistic capacity are challenging to 62 

implement when studying speech production. Yet, assessment of linguistic capacity is an 63 

important goal when it concerns clinical populations (Ash & Grossman, 2015), when 64 

linguistic capacity has deteriorated or is impaired (Friedmann, 2002; Grodzinsky, 1986; 65 

Grodzinsky et al., 1999; Zurif et al., 1993). Analyzing language production, particularly in 66 

spontaneous speech, offers new ways for assessing linguistic capacity at the individual level. 67 

Previous literature has shown that syntactic complexity in language production can be 68 

quantified and is useful for assessing neural pathologies that affect language in general and 69 

syntax in particular (Calzà et al., 2021; Eyigoz et al., 2020; Fraser et al., 2015; Roark et al., 70 

2007, 2011; Silva et al., 2022; Tavabi et al., 2022).  71 

To make methods for syntactic complexity applicable to a large-scale dataset, we 72 

focus on automated methods. Automated scoring systems have been previously developed to 73 

assess proficiency or coherence in language learning or language development (Channell, 74 



2003; L. Chen et al., 2018; Graesser et al., 2014; Hassanali et al., 2014; Kyle, 2016; X. Lu, 75 

2009, 2010; McNamara et al., 2014; Polio & Yoon, 2018; Sheehan et al., 2014; Yoon et al., 76 

2020; Zechner et al., 2017). Although these automated methods often contain a grammatical 77 

component, they are less geared towards detecting fine syntactic distinctions, which is the 78 

focus of our current study. In particular, subtle changes in syntax can be a result of cognitive 79 

decline due to healthy aging or pathological degeneration. To this end, we compared seven of 80 

the most frequently employed methods of quantifying syntactic complexity in spontaneous 81 

speech and one novel metric that we developed. We used known and verified syntactic 82 

differences between two age groups as a test case, based on the well-attested decline in the 83 

processing of syntax in older persons (Burke & Shafto, 2008; Kemper et al., 2003; Kynette & 84 

Kemper, 1986; Obler et al., 1991; Peelle, 2019; Poulisse et al., 2019; Zhu et al., 2018; Zurif 85 

et al., 1995). A well-performing metric is expected to be sensitive to the decrease of complex 86 

syntactic structures in the older participants’ speech and to allow accurate predictions of the 87 

age of the speaker. 88 

1.1. Quantifying syntactic complexity 89 

According to phrase structure grammar, sentence structure is hierarchical: words are 90 

combined into phrases, which are combined to form larger phrases, through a recursive set of 91 

rules (Bar-Hillel, 1953; Chomsky, n.d.; Hauser et al., 2002). The syntactic integration of 92 

words into phrases and sentences is cognitively costly (Brennan et al., 2016; Nelson et al., 93 

2017), and therefore it is assumed that the degree of the cognitive cost for these syntactic 94 

integrational processes can be quantified from the sentence structure itself (e.g., T-unit 95 

length, Yngve score, Frazier score, mean dependency distance; see below). Other metrics 96 

assign a complexity score to characteristics of identified rules or structure, such as their 97 

frequency of use (Kyle & Crossley, 2017; Rezaii et al., 2022) or their expected age of 98 

acquisition (Botel & Granowsky, 1972; Lee, 1974; Rosenberg & Abbeduto, 1987; 99 



Scarborough, 1990). For comparison to all these unidimensional scores, we developed a 100 

method that assessed individual complex syntactic structures and used them in a multi-101 

dimensional model (see 1.1.8). We explain below and in Fig. 1 the metrics that we employed. 102 

1.1.1. Utterance length: Syntactic complexity is correlated with the length of the utterance, 103 

as complex syntactic structures inevitably require more words (Ferrer-i-Cancho & Liu, 2014; 104 

Mandel Glazer, 1974; J. W. Miller & Hintzman, 1975; Szmrecsanyi, 2004). Utterance length 105 

on its own does not necessarily reflect syntactic complexity, because length can theoretically 106 

be increased without increasing complexity (e.g., by conjoining words). However, it has been 107 

used as a simple proxy for syntactic complexity (Nutter, 1981; O’Donnell, 1974; Pallier et 108 

al., 2011; Szmrecsanyi, 2004). Reduced utterance length both in writing and in speech has 109 

been shown to be associated with Alzheimer’s disease (Kemper et al., 1993; Pakhomov et al., 110 

2011) and with healthy aging (Cheung & Kemper, 1992).  111 

1.1.2. Yngve score: This model was developed by Victor Yngve, a pioneer in computational 112 

linguistics, to reflect syntactic complexity based on the hierarchical phrase structure of the 113 

sentence (Yngve, 1960). Yngve’s system assigns a score to each node in the hierarchy, to 114 

reflect the word-by-word short-term memory cost during the representation build-up in a top-115 

down left-to-right traversal (Fig. 1a and Supp. Material). The total score per utterance is 116 

usually taken as the average of the word-level scores. The Yngve score has been shown to be 117 

reduced in older people (Cheung & Kemper, 1992; Kemper et al., 2001; Kemper & Rash, 118 

1988) and in states of dementia (Fraser et al., 2015; Pakhomov et al., 2011; Roark et al., 119 

2011). 120 

1.1.3. Frazier score: Like the Yngve score, the method suggested by Frazier (1985) also 121 

relies on the hierarchical phrase structure representation of the sentence. The scoring of the 122 

tree nodes in Frazier’s method is through a bottom-up traversal that examines the incremental 123 

built-up of the phrase structure representation (Fig. 1b). Each additional word in the sentence 124 



is scored by the number of nodes that it introduces in the partial representation. Sentence 125 

complexity increases when a large number of nodes are introduced within a short interval (~3 126 

words). Although Frazier's scoring system was intended to quantify syntactic complexity in 127 

comprehension, it has also been shown to decrease in speech production during healthy aging 128 

(Cheung & Kemper, 1992). 129 

1.1.4. Frazier-Roark score: A variation on Frazier's score takes the average of all word-130 

level scores rather than just considering short intervals within the sentence (Fig. 1b). To 131 

highlight the fact that this score is a variation on Frazier’s original proposal (see Discussion), 132 

and since we were able to track its usage only to Roark et al. (2007), Roark et al. (2011) and 133 

Pakhomov et al. (2011), we termed it the Frazier-Roark score.  134 

1.1.5. Mean dependency distance (MDD): MDD reflects the average distance between 135 

related words in a sentence, and it is derived from Dependency Grammar (DG), which is an 136 

alternative way of representing the structure of a sentence (Hudson, 1984; Mel’čuk, 1988; 137 

Tesnière, 2015). Unlike in phrase structure grammar, words in DG are not grouped into 138 

constituents, but rather, they are related to other individual words in an asymmetrical 139 

relationship, called a head-dependent relationship (Fig. 1c). A dependency distance is defined 140 

as the linear distance between a dependent word and its head. The arithmetic average of all 141 

dependency distances in one sentence is the sentence's mean dependency distance (MDD) (H. 142 

Liu, 2008). MDD is based on the idea that it is easier to integrate syntactically related words 143 

when they are closer to each other (Gibson, 1998, 2000; Gibson & Pearlmutter, 1998). 144 

Previous studies have shown that MDD is increased for certain complex syntactic structures 145 

(M. X. Collins, 2014; Hudson, 1995; Jaeger & Tily, 2011) and have suggested that a larger 146 

MDD is associated with increased cognitive demands (Gildea & Temperley, 2010; Hudson, 147 

1995; Lin, 1996; H. Liu, 2008; H. Liu et al., 2017). Reduced MDD in dementia has been 148 



attested (Aronsson et al., 2021; Pakhomov et al., 2011), although some reports have produced 149 

conflicting findings (Fors et al., 2018; Orimaye et al., 2017). 150 

1.1.6. Syntactic Frequency: A different approach from computing a complexity metric out 151 

of the tree structure itself is to assign a score to the structure based on external features. One 152 

of these features is the frequency of use, which was implemented by Rezaii et al. (2022) to 153 

demonstrate reduced syntactic complexity in speech production of patients with primary 154 

progressive aphasia. In this method, syntactic rules are extracted from the DG representation 155 

of the sentence (Fig. 1d) and assigned frequency scores that were previously derived from an 156 

analysis of a large corpus (see Supp. Material for additional information). 157 

1.1.7. D-level: In this scoring system for developmental level syntactic complexity (d-level), 158 

the sentence is given a score based on the expected developmental stage of its syntactic 159 

structures in language acquisition (Fig. 1e). The scale was developed by Rosenberg & 160 

Abbeduto (1987), revised by Covington (2006), and fully automated by Lu (2009). D-level 161 

was shown to decline in healthy aging and in dementia (Cheung & Kemper, 1992; Kemper et 162 

al., 2001; Kemper & Sumner, 2001). 163 

1.1.8. Syntactic Structures: We developed a novel metric, which instead of extracting one 164 

single number to represent syntactic complexity, examines multiple complex syntactic 165 

structures multi-dimensionally. These syntactic structures include subordination, center 166 

embedding, relative clauses and modification in noun phrases and adjectival phrases (Fig. 1f). 167 

Subordination is the embedding of a clause within another clause. It is cognitively effortful, 168 

as corroborated by cognitive studies on language comprehension and by clinical studies on 169 

production in older adults and in agrammatic aphasia (Cheung & Kemper, 1992; Friedmann, 170 

2001, 2006; Friedmann & Grodzinsky, 1997; Holmes et al., 1987; Kemper, 1986, 1987a; 171 

Kemper et al., 2003; Shetreet et al., 2009). Previous studies have even used the total number 172 

of clauses per sentence as an index of syntactic complexity (Beaman, 1984; C. Lu et al., 173 



2019; Szmrecsanyi, 2004). 174 

A relative clause is a particular case of subordination: a relativized noun appears at the head 175 

of a relative clause, yet it is semantically interpreted within the relative clause (Fig. 1f, blue). 176 

Notice, for example, that in the sentence "The mother, who is washing dishes, is not aware 177 

…", the word "mother" is interpreted twice: as the subject of "washing dishes" and as the 178 

subject of “not aware”. Such constructions are cognitively costly (Ben-Shachar et al., 2003, 179 

2004; Kaan et al., 2000; Kluender & Kutas, 1993; Lau & Tanaka, 2021). Older adults 180 

perform more poorly than younger adults in processing such constructions (Baum, 1993). 181 

Difficulties of agrammatic aphasia patients in processing relative constructions are also 182 

reported (Caramazza & Zurif, 1976; Grodzinsky, 1986, 1995; Zurif et al., 1993). 183 

Finally, although an embedded clause usually comes after the main clause (final embedding), 184 

this is not always the case, as it can be embedded within the main clause, in a construction 185 

called center embedding1 (Fig. 1f, green). When processing a subordinate clause while the 186 

main clause has not been concluded yet, working memory load increases (Caplan et al., 1998; 187 

G. A. Miller & Isard, 1964; Pattamadilok et al., 2016). In particular, older adults perform 188 

worse than younger adults in recall tasks of such constructions (Kemper, 1987b; Norman et 189 

al., 1991). Note that relative clauses and centrally embedded clauses are special types of 190 

subordinate clauses (others include complement clauses and adverbial clauses). 191 

Finally, cognitive cost can emerge through word integration below the clause level, such as 192 

when adjectives modify nouns (Poortman & Pylkkänen, 2016; Pylkkänen, 2019; Ziegler & 193 

Pylkkänen, 2016). There is evidence such integrational processes are affected by aging 194 

(Huang et al., 2012). 195 

                                                 
1 More accurately, "left-branching" is the more general term for both center embedding and initial 

embedding. Cases of left-branching can emerge either by subordination or by generation of other heavy phrases, 
such as noun phrases or prepositional phrases (e.g., Stallings & MacDonald, 2011). To keep nomenclature as 
simple as possible, we will use the term "center embedding" to refer to all cases of left-branching. 



 196 
Figure 1: The calculation of complexity metrics. The first row (a, b) depicts a phrase structure tree 197 
representation of the syntactic structure of the sentence “The kids are reaching for the cookie jar”. Node 198 
annotations are abbreviations of the Penn Treebank Part-of-Speech Tags (Bies et al., 1995) (e.g., S=sentence, 199 
NP=Noun Phrase, VP=Verb Phrase). The second row (c, d) depicts the same sentence in a dependency grammar 200 
representation. Each arrow represents a dependency between a head (plain end) and its dependent (pointed end). 201 
(a) The Yngve score assigns a score to each node of the number of its right siblings (siblings=nodes that share a 202 
parent). The path of each word is defined as the nodes that connect that word to the root of the tree (the S node). 203 
The score of each word is the sum of scores along its path (red), and the score of the sentence is the average of 204 
the word-level scores (blue). (b) The Frazier and Frazier-Roark scores assign a score of 1 to any node with no 205 
left siblings. When this node is headed by an S, the score is 1.5. The x symbol represents a node without a score. 206 



The path of the word is defined as all the nodes that connect that word with either the root of the sentence (S) or 207 
the first x symbol. As with the Yngve score, the word-level score is the sum of scores along its path (red). The 208 
Frazier-Roark sentence-level score is the average of the word-level scores. The Frazier sentence-level score is 209 
the maximum of the sums of the word-level scores of every three adjacent words (here, the first three words, in 210 
the frame). (c) We used SpaCy’s output for dependency grammar representation. The dependency distance of 211 
each word is defined as the number of words it is separated from its head. The word-level dependency distances 212 
(red) are averaged to obtain the sentence-level MDD score (blue). (d) We used enhanced dependency to match 213 
the Stanford Enhanced Universal Dependencies representation (Schuster & Manning, 2016) used by Rezaii et al. 214 
(2022). A rule is defined as a head (underlined word) with all its dependency relations. Each rule (color-coded) 215 
was given a frequency score. The frequency scores for each rule were averaged to calculate sentence-level 216 
scores. (e) According to the revised scale of expected developmental stage (X. Lu, 2009), syntactic features of a 217 
sentence are located on a scale from 0 to 6 (a higher score being a later acquisition stage). If two features of 218 
different developmental stages co-occur in the same sentence, that sentence is given a score of 7. To obtain the 219 
individual level scores, all sentences’ d-level scores were averaged. (f) A simplified phrase structure 220 
representation. Phrases are represented here with brackets rather than tree nodes. Subscripts on opening brackets 221 
represent the node label. From this representation, we extracted the number of S nodes (orange, 3). We counted 222 
the number of relative clause (‘relc’) dependencies (1) and their average dependency distance (3). Heavy 223 
phrases associated with center embedding (green) were detected by counting the number of closing nodes. 224 
Modifications on the noun and adjective level (purple) were quantified by averaging the length of noun phrases 225 
which are not embedded under another noun phrase (purple underline), and by counting the number of AdjP 226 
(adjectival phrase) and AdvP (adverbial phrase) nodes per sentence.  227 

In sum, all metrics have previously been shown to be sensitive to aging or dementia. The 228 

multiplicity of metrics for quantifying syntactic complexity calls for investigating the 229 

relationship among them. To test the different metrics, we focused on age-related differences. 230 

In this study, we used cohorts of old and young healthy speakers, where we manually 231 

identified and labeled syntactic differences, and we tested which of the above metrics was the 232 

most successful in capturing these differences. 233 

2. Methods 234 

2.1. Participants 235 

We examined speech samples produced by two groups, a group of young adults (n=76) and a 236 

group of older healthy participants (n=36). Demographic characteristics of the participants 237 

are summarized in Table 1. The younger participants were mostly undergraduates at the 238 

University of Pennsylvania. The older participants were mostly caregivers of patients at the 239 

Frontotemporal Degeneration Center of the Hospital of the University of Pennsylvania. None 240 

of the older participants reported any hearing or speaking difficulties, nor did they report any 241 



medical conditions that could have interfered with their speech such as stroke, closed head 242 

injury, brain surgery or hypothyroidism. All reported being native speakers of English (two 243 

participants from the older group did not provide primary language). The young participants 244 

have not completed yet their bachelor's degree and therefore had fewer years of formal 245 

education compared to the older group (13.5 vs. 15.8). We previously used the same dataset 246 

to test the possibility of applying automated acoustic and lexical pipelines in studying natural, 247 

spontaneous speech (Cho et al., 2021). 248 

Table 1: Demographic characteristics of the participants 249 

Characteristic Older (n=36) Younger (n=76) p 
Age (y)    

Mean±SE 67.9±1.3 20.0±0.1 <.001 
Range 53-89 18-22  

Sex (M)    
Count 11 40 .03 
Percentage 31% 53%  

Education (y)    
Mean±SE 15.8±0.4 13.5±0.1 <.001 
Range 12-20 11.5-15.5  

2.2. Task 250 

All participants were asked to describe the Cookie Theft picture, a picture of a mother 251 

washing dishes while two children are stealing cookies from the cookie jar behind her. This 252 

picture is part of the clinical protocol of the Boston Diagnostic Aphasia Examination 253 

(Goodglass & Kaplan, 1983). Participants described the picture for 70 seconds on average. 254 

The younger participants were recorded while sitting in a quiet booth. The older participants 255 

were recorded by an interviewer sitting with them in the same room. The Institutional Review 256 

Board of the University of Pennsylvania approved the study of human participants, and all 257 

participants provided written consent to participate in the study.   258 



2.3. Transcription and preprocessing 259 

The audio files were transcribed in two ways, manually and automatically. For the manual 260 

pre-processing, all audio files were transcribed by trained annotators and a linguist (SA). 261 

Fillers ("um", "uh"), repetitions, partial words and false starts were manually flagged during 262 

transcription and later removed from the analysis. All transcripts were then manually 263 

segmented into utterances, defined as a predicate in an independent clause with all its 264 

arguments and adjuncts (also known as a T-unit (Hunt, 1965)). This was used as the basic 265 

unit for our syntactic complexity analysis. The segmentation into utterances (T-units) was 266 

done by a trained linguist (GA) and reviewed by a second trained linguist (SA). The 267 

categorization of clauses was discussed and agreed upon by the two linguists. All transcripts 268 

included punctuation marks (commas, hyphens, and a period at the end of each utterance). 269 

 To compare with manual pre-processing, we also implemented a fully automated 270 

pipeline, using a state-of-the-art automatic speech recognition (ASR) system, OpenAI’s 271 

Whisper (Radford et al., 2022). Whisper is a speech-to-text algorithm that automatically 272 

transcribes audio files as text. The transcribed output is clean of disfluencies, and it also 273 

includes punctuation marks (periods and commas), which allowed us to automatically 274 

segment the transcript into utterances (sentences) based on the position of the period. For the 275 

automated transcription and segmentation, we used Whisper’s medium model, which 276 

includes 769M parameters and transcribes with a word error rate (WER) of 2.7%-43.0% 277 

(average of 12.5% across multiple types of speech), implemented through the python package 278 

whisper (https://pypi.org/project/openai-whisper/). 279 

The cleaned and segmented transcript provided the utterances (T-units in the manual 280 

pre-processing, sentences in the automated pre-processing) that served as input to the 281 

automatic parsing. For meaningful parsing, we considered only utterances that were at least 2 282 

words long. 1-word utterances were exclamations with no syntax, such as “yes”, “okay” or 283 



“great” and were produced only by the older group, probably as a pragmatic signal to the 284 

interviewer who was present in the room. We also performed the same analyses after 285 

excluding all utterances that were shorter than three words. Results from this second analysis 286 

did not differ qualitatively from the first one, so we report in this paper only the results of the 287 

first analysis with all utterances of 2 or more words. See Supplemental Table S1 for a 288 

summary of results of the analysis with utterances of 4 or more words. 289 

2.4.  Automated parsing 290 

The syntactic structure of utterances was automatically analyzed using two different parsers: 291 

a dependency parser and a phrase structure parser. To obtain the dependency structure, we 292 

processed the speech data samples using spaCy 3.2.2 (Honnibal & Johnson, 2015; 293 

https://spacy.io), an NLP library in Python, using one of its largest language models for 294 

English (“en_core_web_lg”). To obtain the phrase structure, we used the Charniak-295 

Johnson Parser, which performed N-best parse fusion (Charniak & Johnson, 2005; Choe et 296 

al., 2015), implemented through the python package bllipparser (Johnson & Charniak, 2006). 297 

From these parses, we extracted our automated syntactic measures, described in the following 298 

section. 299 

2.5.  Syntactic complexity scores derived by unidimensional metrics 300 

We followed the algorithms that were used in previous studies to measure these metrics. 301 

Please find a general description in Section 1.1 and in Fig. 1. For a detailed description, see 302 

Supplemental Material. 303 

2.6.  Syntactic complexity scores derived by measuring syntactic structures 304 

We compared the seven previously described unidimensional metrics with a novel multi-305 

dimensional metric, for which we automatically approximated the prevalence of the four 306 



complex syntactic structures in the transcripts, using seven features that were automatically 307 

extracted from the phrase structure and dependency representations (GA, SP and SC). 308 

a) Total clauses: We automatically counted the number of S nodes per utterance from the 309 

output of the phrase structure parser and averaged this number across utterances to obtain a 310 

score per subject. Included in this count are all nodes labeled as S, SQ and SINV. Notice that 311 

this number included the main clause in addition to the subordinate clauses, as the main 312 

clause was also marked with an S tag. 313 

b) Relative clauses: We automatically counted the number of relative clauses (marked with 314 

a 'relcl' label) from the output of the dependency parser, then averaged this number across 315 

utterances to obtain a score per subject. Since ‘relc’ is not assigned in cases of headless WH-316 

clauses (e.g., “I know [what this is supposed to be]”), we complemented this measure by 317 

counting the number of WHNP nodes from the phrase structure parser. In addition to 318 

counting the number of relative clauses, we extracted the distance associated with the 'relcl' 319 

label, assuming that a longer distance should be associated with increased complexity (Cooke 320 

et al., 2002; Fiebach et al., 2002; Grodzinsky & Santi, 2008; Lau & Tanaka, 2021; Müller et 321 

al., 1997) and particularly with lower scores for older adults (Davis & Ball, 1989; X. Liu & 322 

Wang, 2019). We averaged these distances within utterances (in case there was more than 323 

one relative clause in an utterance), and then averaged across all utterances where the parser 324 

identified a relative clause (i.e., that had a ‘relcl’ label), to compute the relative clause 325 

distance per subject. 326 

c) Center embeddings: We assessed initial and center embedding in an utterance by 327 

examining the number of closed nodes per word, as obtained from the phrase structure parser 328 

(Fig. 1f, green). For each utterance, we calculated the number of nodes that were closed by 329 

each word (excluding the last word), assuming that closing a syntactic node is a source of 330 

cognitive effort (Brennan et al., 2016; Nelson et al., 2017). A large number of closed nodes in 331 



a non-final position in a sentence should indicate a heavy phrase in the beginning or middle 332 

of the sentence. To count the number of centrally embedded constructions, we employed a 333 

threshold of 3 on the number of mid-utterance closing nodes. We experimented with other 334 

threshold values and chose 3 because a smaller threshold captured many simple noun phrases 335 

that were not considered center embeddings. "A big kid", for example, is a phrase where the 336 

word "kid" closes 3 nodes. A higher threshold missed many cases of short center 337 

embeddings, thus increasing the chance of having a floor effect on this measure. For 338 

example, in "the woman [who [is [the [mother]]]] is washing a dish", the word “mother” 339 

closes 4 nodes, marked by having 4 right brackets. In addition to counting center embeddings 340 

as defined above, we calculated the maximal number of mid-utterance closing nodes as an 341 

approximation of the depth of a centrally embedded phrase in an utterance, assuming that 342 

deeper center embeddings result in increased complexity. We averaged the depths of center 343 

embeddings across the relevant utterances to compute scores per subject. 344 

d) Complex NP and adjectival modifications: We extracted three features that reflect the 345 

level of nominal, adjectival and adverbial modification in a sentence. For noun phrases, we 346 

extracted all of the NPs that were not embedded under another NP and counted the number of 347 

words. We then averaged this number within utterances and across utterances to obtain an 348 

individual-level score. For adjectival and adverbial phrases, we counted the number of AdjP 349 

and AdvP nodes in each utterance and then averaged this number across utterances to obtain 350 

a score per individual. 351 

2.7. Validation of syntactic differences and automated measures 352 

We first verified true differences in syntactic structures between the two groups. Subordinate 353 

clauses, and in particular relative clauses and centrally embedded (or initially embedded2) 354 

constructions were manually identified by the two linguists (GA and SA). We averaged these 355 
                                                 

2 Initially embedded constructions included an initial subordinate clause followed by a main clause, 
topicalized noun phrases and fronted prepositional phrases. 



counts across utterances to get the manual scores of total clauses, relative clauses and center 356 

embeddings. We then compared the scores of manual measurements of total clauses, relative 357 

clauses and center embeddings by group. The distributions could not be considered normal 358 

due to the lower bound at zero. Hence, significance was assessed using one-tailed Mann-359 

Whitney tests. When the directionality of the effect was not expected (i.e., higher complexity 360 

for older adults), we ran a two-tailed Mann-Whitney as a post-hoc test. Due to the slight sex 361 

imbalance between the groups, we also adjusted for sex-related differences by including sex 362 

as a covariate in a regression analysis. Since sex did not turn out to be significant and did not 363 

change the significance of the syntactic scores compared to the Mann-Whitney tests, we 364 

report only the latter in the Results section.  365 

To test the validity of the multi-dimensional Syntactic Structures method, we 366 

correlated the syntactic structures that were derived automatically with their manual 367 

counterparts (if available), using Spearman correlations to avoid susceptibility to extreme 368 

scores. To test the validity of the unidimensional automated metrics, we tested for group 369 

differences, using one-tailed Mann-Whitney tests (assuming higher scores for younger 370 

speakers for all metrics but frequency). 371 

2.8. Statistical Analysis 372 

We examined the correlations among the different metrics. Note that for syntactic frequency, 373 

we expected to find a negative correlation with the other metrics, since it is assumed that 374 

more complex syntax is associated with lower frequency in use (Rezaii et al., 2022). For the 375 

multi-dimensional Syntactic Structures metric, the score for the correlational analysis was 376 

taken from the predicted values (logit scores) of a logistic regression predicting Group from 377 

all the features described in Section 2.6. 378 

Next, we tested which metric best explained age-related group differences. For this 379 

analysis, missing values of Syntactic Structures features were replaced with zeros (i.e., the 380 



average relative clause distance of a participant that produced no relative clauses was set to 381 

0). We fitted a logistic model that predicted Group using each of the eight automated metrics: 382 

utterance length, Yngve score, Frazier score, Frazier-Roark score, MDD, syntactic frequency, 383 

D-level and the multi-dimensional Syntactic Structures. Since the multi-dimensional model 384 

was more specified than the unidimensional models, to avoid over-fitting, we employed a 5-385 

fold cross-validation: We divided the data into 5 balanced folds and trained the data on a pool 386 

of 4 of the 5 folds. We used the parameters from the training to predict the logit scores of the 387 

fifth fold. We repeated this procedure five times, once for each of the five folds, to obtain the 388 

predicted values (logit scores) for the full data set. Model performance was assessed by the 389 

area under the curve (AUC) of the receiver-operating characteristic (ROC), provided by R’s 390 

pROC package (Robin et al., 2011). We calculated the AUC of the logit scores for each fold, 391 

from which we calculated the mean and standard deviation of the AUC for the metric. We 392 

performed this analysis twice: one time with transcripts that were manually pre-processed 393 

and a second time with transcripts that were automatically transcribed and segmented into 394 

sentences using ASR. 395 

3. Results 396 

3.1.  Validation of group differences in manual and automated measures 397 

We found a significant group difference in the manual counts of syntactic structures (Fig. 2). 398 

Compared to the younger group, the older group exhibited fewer subordinate clauses per 399 

utterance (W = 781.5, p < .001), fewer relative clauses per utterance (W = 589.5, p < .0001) 400 

and fewer center embeddings per utterance (W= 828, p < .001).  401 

The manual counts were significantly correlated with their automated counterparts. 402 

The automated counts of total clauses were strongly correlated with their corresponding 403 

manual counts (ρ = .90, p < .0001). The automated counts of headed (‘relcl’) and headless 404 

(WHNP) relative clauses were strongly correlated with the corresponding manual counts ( 405 



= .93, p < .0001). The automated counts of center embeddings, which were inferred and not 406 

counted directly from the parser output, were also correlated with our manual counts of 407 

center embeddings (ρ = .37, p < .0001). The correlation between the automated and manual 408 

scores of the center embedding measures was lower than those of the other two measures, 409 

likely due in part to the floor effect in the manual count: Some participants in both age groups 410 

did not produce center embeddings according to our manual counts, while the automated 411 

counts assigned a score higher than zero in the majority of cases. After removing participants 412 

with a manual count of zero (23 [64%] old and 31 [41%] young), we obtained a stronger 413 

correlation with 58 participants (ρ = .53, p < .0001). 414 

The group differences in counts of syntactic structures were replicated using our 415 

automated measures for all features except relative clause distance (p < .001 for all the 416 

others). Among those who were automatically detected as producing relative clauses, the 417 

older participants’ automated score for distance was larger (3.3) than that of the younger 418 

participants (2.9). Since this was not in the predicted direction, the planned one-tailed test 419 

was not significant, but when employing post-hoc a two-tailed test, the difference turned out 420 

to be significant (W = 1073, p = .04). 421 



 422 
Figure 2: (a) Group differences in frequency of syntactic structures produced. Each point represents an 423 
individual. P-values from a one-tailed Mann-Whitney test are given. (b) Group differences in syntactic 424 
complexity scores. Scores are derived after manual pre-processing. Length represents number of words in a T-425 
unit. All p-values are from a one-tailed Mann-Whitney test. Notice that for Syntactic Frequency, lower scores 426 
correspond to more complex syntax.  427 

Group differences based on scores from the automated metrics were almost all in the 428 

expected direction: younger participants scored higher on utterance length (W = 424.5, p < 429 

.0001), Yngve score (W = 438, p < .0001), MDD (W = 515, p < .0001), d-level (W = 793, p 430 

< .001), Frazier score (W = 1064.5, p = .03), and lower on frequency (W = 1653, p = .04). 431 

Logit scores of Syntactic Structures also showed the expected group difference of young > 432 



old (W = 253, p < .0001). Only the Frazier-Roark metric, which averages word-level scores 433 

rather than taking the maximum, showed the opposite trend, with higher scores for the older 434 

participants. Since this direction was unexpected, we tested its significance post-hoc using a 435 

two-tailed test (W = 1771, p = .01). 436 

Examining the correlations between the metrics, we found that besides the Frazier-437 

Roark score, all metrics were highly correlated with each other. The strongest correlations 438 

were between Syntactic Structures, utterance length, Yngve score and MDD. Frequency, as 439 

expected, had an inverse correlation with all the metrics, as lower complexity was expected 440 

to be associated with higher frequency. 441 

 442 

Figure 3: Correlation matrix of syntactic complexity scores. Correlations among the eight metrics, across all 443 
participants, ordered by Syntactic Structures score. For the multi-dimensional Syntactic Structures metric, 444 
scores were the weighted sum of syntactic features in logit space, weights extracted from a logistic regression 445 
that predicts Group from syntactic features. Only significant correlations (p < .05) are shown. 446 

3.2.  Comparing metrics of syntactic complexity 447 

In an examination of the automated metrics, the Syntactic Structures model performed better 448 

than any of the other metrics in predicting Group, with AUC = 87.0% (Table 2). The Yngve 449 



score and T-unit length were not far behind, both with AUCs of 84.0%. In a fully automated 450 

pipeline with ASR, we also observed that the highest performance was that of the Syntactic 451 

Structures model (AUC = 78.8%). Importantly, while utterances manually defined based on 452 

T-units were significantly different between groups, sentences defined by ASR (Whisper) 453 

showed no group difference (p = 0.9). This made the performance of sentence length drop to 454 

an AUC of 46.4%. The performance of the Yngve score, the second highest performing 455 

metric, dropped to 72.5%. All the other metrics performed at less than 69%, suggesting the 456 

sensitivity of syntactic complexity metrics to the way a sentence is defined. 457 

Table 2: Performance of the automated metrics in distinguishing between age groups: Sample mean and 458 
standard deviation of AUC, measured over the five folds of test set. 459 

 Manual transcription and 
sentence segmentation 

Automatic transcription 
and sentence segmentation 

 AUC SD AUC SD 

Syntactic structures 87.0% 12.9% 78.8% 19.3% 

Yngve score 84.0% 8.9% 72.5% 13.2% 

Sentence length 84.0% 7.8% 46.4% 25.0% 

Mean dependency distance 80.8% 7.4% 68.0% 5.2% 

Developmental level 71.2% 7.1% 66.3% 10.1% 

Frazier-Roark score 63.8% 8.7% 67.7% 8.8% 

Frazier score 60.1% 10.6% 49.8% 11.9% 

Syntactic frequency 37.8% 8.6% 33.8% 8.6% 



4. Discussion 460 

Many metrics have been proposed for quantifying syntactic complexity (e.g., Covington 461 

et al., 2006; DiStefano & Howie, 1979; Frazier, 1985; Gibson, 1998; H. Liu, 2008; Rezaii et 462 

al., 2022; Scarborough, 1990; Uddén et al., 2022; Yngve, 1960). In this study we compared 463 

seven automated metrics that quantify syntactic complexity and have been shown to be 464 

associated with aging or dementia. In addition, we proposed a new multi-dimensional metric 465 

that assessed the prevalence of syntactic structures that were previously shown to be 466 

cognitively costly and found that this metric was the most sensitive of all in detecting group 467 

differences in syntactic complexity. Our metric is easy to interpret, grounded in the psycho-468 

linguistic literature, and offers a fast and easy-to-implement protocol for the analysis of 469 

syntactic complexity in speech. Previous studies of spontaneous speech have been able to 470 

distinguish healthy participants from patients such as those with mild cognitive impairment 471 

(Calzà et al., 2021; Roark et al., 2011), Alzheimer’s Disease (Eyigoz et al., 2020; Tavabi et 472 

al., 2022) and schizophrenia (Silva et al., 2022). In future work, we plan to use our automated 473 

syntactic measures to assess syntactic complexity in speech production in clinical populations 474 

with neural degeneration.  475 

This study is consistent with past results and suggests that aging affects the syntactic 476 

complexity of language production. In line with previous literature, our cross-sectional 477 

comparison shows that the speech of older speakers contains less complex syntax, with fewer 478 

clauses, relative clauses and center embeddings per utterance. Surprisingly, the distance of 479 

relative clauses was longer for older adults, contrary to previous findings (Davis & Ball, 480 

1989; X. Liu & Wang, 2019; Peelle et al., 2010; Wingfield et al., 2003; Zurif et al., 1995). 481 

This result, although not very strong, was still significant with an alpha of .05. Yet we were 482 

not able to replicate this finding when we tried to approximate relative clause distance 483 

manually. This issue could profitably be investigated further in future research. 484 



A possible reason for not finding a longer distance in relative clauses of the younger 485 

group could be due to the automated method that was used. It is possible that using a 486 

dependency parser is not the best way to assess long-distance relationships, particularly for 487 

relative clauses. When a dependency parser analyzes a relative clause, it relates the 488 

relativized noun to the main verb of the relative clause. However, according to linguistic 489 

theory, the distance should be between the noun and the verb that assigns that noun its 490 

thematic role, which is not necessarily the main verb. For example, the sentence “The dishes 491 

[which <I guess the mother is cleaning>] are on the counter” contains a relative clause 492 

(square brackets), which itself contains another embedded clause that starts with “I guess” 493 

(triangular brackets). Our method of approximating the relative clause distance was to 494 

calculate the dependency distance of the ‘relcl’ arc, which connects “dishes” with the verb 495 

“guess”. That is, it is the distance between the relativized noun (“dishes”) and the main verb 496 

in the relative clause (“guess”), which turns out to be 3. However, according to linguistic 497 

theory, the distance that is associated with cognitive cost should be to the verb that gives the 498 

noun its semantic interpretation (“cleaning”), which is actually 7. Using dependency distance 499 

therefore truncates long distances in cases of multiply embedded sentences. To assess aging 500 

effects on the distance of relative clauses more reliably, it is important to correctly identify 501 

the constituents that are dislocated from the position where they are semantically interpreted.  502 

4.1.  Dependency Grammar: Mean Dependency Distance and syntactic frequency 503 

 Dependency distance should increase for more complex structures. Although there is 504 

not much research on the psychological reality of dependency grammar (DG) (though see 505 

Lopopolo et al. (2021)), in theory a higher MDD is associated with structures of increased 506 

syntactic complexity (M. X. Collins, 2014; Hudson, 1995). Subordination, relative clauses 507 

and center embedding all increase dependency distances, which explains the relatively well 508 

performance of MDD. However, it seems that a single-dimensional score like MDD flattens 509 



the richness of syntactic structures and washes out some of the group differences. For 510 

example, it could be that a center embedded clause is more cognitively costly than a relative 511 

clause, yet in the dependency framework, dependencies of both structures weigh similarly in 512 

their contribution to MDD. Moreover, it could even be that some variables weigh in different 513 

directions, as we report in the current study, where older participants scored lower on all 514 

measures but the distance of the relative clause. A metric like MDD, which takes into account 515 

linear distances regardless of the structure that they stem from or its depth, is liable to be 516 

weaker than a metric that considers each structure individually. 517 

Various versions and modifications to dependency distances exist. Some suggest that 518 

the distance should not be measured linearly, but structurally, as nodes in the syntactic tree or 519 

as hierarchical distance (Baumann, 2014; R. Chen et al., 2021; Jing & Liu, 2015) or a more 520 

intricate distance measure that takes utterance length into account (Lei & Jockers, 2020). We 521 

expect these metrics to suffer from similar weaknesses for reasons discussed above, but 522 

future research might determine the usefulness of other dependency metrics in modelling 523 

syntactic complexity. 524 

Syntactic frequency was a second metric we considered that was based on DG. 525 

Although group differences were significant and in the predicted direction, the effect was not 526 

very strong, and this metric was not very successful compared to the other metrics in 527 

predicting age group. This can be explained if we consider the psychological reality of DG, 528 

and particularly of DG rules. There are over 70,000 DG rules in Rezaii et al. (2022). From a 529 

cognitive perspective, it is unlikely that the language system is sensitive to rules or encodes 530 

rules at this level of detail. For example, relative clauses are considered a difficult structure 531 

with high cognitive cost, and therefore we should expect a high complexity score assigned to 532 

them. This score should be similar across realizations of the relative clause which are trivially 533 

different, such as whether the head has a definite article or not. However, there are multiple 534 



rules that match a relative clause in the list of rules constructed by Rezaii et al. (2022), such 535 

as det + NOUN + acl:relcl and NOUN + acl:relcl, which differ only in the presence of a 536 

determiner. Yet, each rule has its own frequency score. If frequency is indeed associated with 537 

cognitive cost, it should be evaluated with respect to rules that have a cognitive 538 

representation. As mentioned, as far as we know, the cognitive reality of DG rules has never 539 

been investigated. Future cognitive research should address this question. 540 

4.2.  Frazier score and Frazier-Roark score 541 

The metric that performed differently from all the other measures in this study was the 542 

Frazier-Roark score. Group differences in this measure were actually in the unpredicted 543 

direction, with the older adults scoring higher than the younger adults. Moreover, this scoring 544 

system did not positively correlate with any of the other systems. A negative correlation 545 

between Frazier’s score and Yngve’s score was reported also in Roark (2011), who compared 546 

the two scoring systems in classifying mild cognitive impairment. The explanation for this 547 

seemingly unexpected low performance is actually quite simple: Given that by the end of the 548 

sentence all nodes are eventually introduced, then averaging all word-level scores 549 

approximates no more than the ratio between total number of nodes and total number of 550 

words. A sophisticated algorithm is not needed for simply counting the nodes and dividing 551 

them by the number of words. A node count across the entire sentence is not sensitive to the 552 

distribution of nodes within the sentence and hence is not sensitive to syntactic structures. It 553 

has even been criticized by Frazier herself (1985, p. 157): "The major problem with the 554 

nonterminal-to-terminal node ratio stems from the fact that it is not sensitive to the precise 555 

distribution of non-terminals over the lexical string." 556 

For this reason, in this study we diverged from Roark's (2011, 2007) algorithm and 557 

computed a second version of the Frazier score which was more in the spirit of her original 558 

proposal. Yet, the Frazier score in our study, although showing the expected group 559 



differences and being correlated with the other metrics, did not perform as well as the other 560 

metrics in capturing group differences. The reason for this could be due to the fact that even 561 

our version was still not exactly what Frazier had in mind. As mentioned in the Introduction, 562 

Frazier’s original proposal was to examine sentence tree representation incrementally, as it 563 

unfolds word-by-word, to explain complexity in speech comprehension, rather than 564 

production. Each word is scored by the number of nodes that are introduced into the partial 565 

representation at that point. Yet, current NLP parsers do not provide partial representations, 566 

and therefore our algorithm is also not the full implementation of this bottom-up incremental 567 

build-up of syntactic representations3. Based on our results, it seems that the Frazier score, 568 

when computed based on the final tree representation, is not a good representation of 569 

syntactic complexity in speech production. 570 

4.3.  Sensitivity to sentence definition and automatic transcription 571 

We implemented ASR to transcribe and segment spontaneous speech automatically, and we 572 

calculated the same automated measures of syntactic complexity in order to test the 573 

possibility of fully automating the process. We confirmed that the results were similar to 574 

those produced by a semi-automated pipeline, with the Syntactic Structures metric still 575 

performing the best of all the metrics. However, we also noticed that the performance of the 576 

models that were trained with automated transcripts dropped substantially from their 577 

manually transcribed counterparts, replicating previous findings on reduced parser 578 

performance when employed on ASR output (L. Chen & Yoon, 2012; M. Chen & Zechner, 579 

2011). While all metrics dropped in performance by 4%-38%, the performance of utterance 580 

                                                 
3 For example, consider the sentence “A friend from Milwaukee came”. According to the incremental 

proposal of Frazier, the word “a” introduces two non-terminal nodes to the partial representation ([S [NP a]]), 
since upon receiving only “a” as input, listeners can only minimally assume a noun phrase (NP) and a sentence 
(S). At this point, it is not yet known that “a” is actually embedded under a second noun phrase ([S [NP [NP a 
friend] [P from Milwaukee] ]). This fact will be revealed and incorporated into the structure only later on, upon 
hitting the word “from”. However, an algorithm based on the final tree representation scores ends up ascribing 
the word “a” the score of 3.5 rather than 2.5, due to that extra noun phrase. 



length decreased the most (about 38%). Considering that the performance of utterance length 581 

in manually segmented transcripts showed a much higher AUC (over 80%) compared to the 582 

one trained with ASR transcripts (AUC = 46%), this result seems to suggest that utterance 583 

length in automated transcripts is not reliable enough to capture minor group differences. 584 

When utterance boundaries were not accurate, it was inevitable that the other measures of 585 

syntactic complexity were also affected. Future research on fully automating the process of 586 

measuring syntactic complexity should develop a model (ASR or NLP) that segments speech 587 

into utterances in a way that represents T-units more closely. 588 

4.4.  Limitations 589 

There are several limitations of this study that future research needs to address. First, when 590 

comparing metrics, we used a heterogeneous set of parsers. These included the blipparser for 591 

the Frazier and Yngve scores and SpaCy for MDD. For d-level analysis, we used the 592 

algorithm of Lu (2009), which makes use of the Collins parser (M. Collins, 1996). For 593 

syntactic frequency we used SpaCy and modified its output to match the enhanced DG 594 

representation provided by the Stanford Lexicalized Parser (Klein & Manning, 2003). All 595 

these parsers may perform at different levels of accuracy and therefore might affect a fair 596 

comparison between the metrics. Although we believe that the use of different parsers should 597 

not have such a large effect as we report in this paper, future research should examine 598 

different NLP parsers to find the most accurate one for measuring syntactic complexity. 599 

 A limitation to the approach of counting syntactic structures is the risk of floor effects 600 

in cases where complex syntactic structures are not present in the input. Such floor 601 

performance could result in low sensitivity of this metric, making it less useful for monitoring 602 

pathological cases with severe syntactic deficits. Future research should consider syntactic 603 

features that can be detected even in such cases.  604 



Finally, despite statistically robust findings, our study is limited in the conclusions 605 

that can be drawn about healthy aging. Without longitudinal data, any cross-sectional 606 

difference might be the result of generational differences. For example, it could be that the 607 

younger adults were speaking more casually, which resulted in an increase of subject relative 608 

clauses. In addition, some factors were not controlled for in our study, such as the presence of 609 

a human interviewer or years of education. Regarding education, considering that most of the 610 

younger participants would finish their BA degrees within a couple of years and all 611 

participants’ education level was at ceiling given their age, we assumed that the small gap in 612 

years of education did not reflect a meaningful group difference. Future research should use 613 

larger, longitudinal samples and identical data collection methods to test how healthy aging 614 

affects syntactic complexity. 615 

Conclusion 616 

To evaluate heterogeneous methods of quantifying individual-level scores of syntactic 617 

complexity, we compared eight automated ways of measuring syntactic complexity. We 618 

advocate a method that considers individual structures that are known to be cognitively 619 

costly. Our implementation of syntactic complexity measures has proven useful in examining 620 

spontaneous speech samples produced by two age groups of speakers. 621 

Data Availability Statement 622 

Anonymized transcripts of the recordings analyzed in this study, as well as the code used to 623 

analyze them, are available from the authors on reasonable request.  624 
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