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Abstract Stress position in English words is well-known to correlate with both their morphological
properties and their phonological organisation in terms of non-segmental, prosodic categories like syllable
and foot structure. While two generalisations capturing this correlation, directionality and stratification,
are well established, the exact nature of the interaction of phonological and morphological factors in
English stress assignment is a much debated issue in the literature. The present study investigates if and
how directionality and stratification effects in English can be learned by means of Naive Discriminative
Learning, a computational model that is trained using error-driven learning and that does not make
any a-priori assumptions about the higher-level phonological organisation and morphological structure
of words. Based on a series of simulation studies we show that neither directionality nor stratification
need to be stipulated as a-priori properties of words or constraints in the lexicon. Stress can be learned
solely on the basis of very flat word representations. Morphological stratification emerges as an effect of
the model learning that informativity with regard to stress position is unevenly distributed across all
trigrams constituting a word. Morphological affix classes like stress-preserving and stress-shifting affixes
are, hence, not predefined classes but sets of trigrams that have similar informativity values with regard
to stress position. Directionality, by contrast, emerges as spurious in our simulations; no syllable counting
or recourse to abstract prosodic representations seems to be necessary to learn stress position in English.
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1 Introduction

Stress position in English words is well-known to correlate with both their phonological and morphological
properties. For example, stress is often penultimate in morphologically simplex nouns with a heavy
penultimate syllable, as illustrated by the word ‘agenda’ a.gén.da. In derived words with a so-called
stress-preserving suflix, stress is always on the same syllable as it is in the base word. For example,
éffort-less is stressed on the same syllable as éffort, in spite of the fact that the word ‘effortless’ has
a heavy penultimate syllable. By contrast, stress in derived words with so-called stress-shifting suffixes
may be on a different syllable than it is in the base word (e.g empldy — employ-ée).*

In the present paper, we will be concerned with two descriptive generalisations about English stress
assignment that play a prominent role in virtually all formal accounts. The first is the principle of
directionality (Hayes (1982); see (Pater, 2000) for an optimality-theoretic account for English; see Kager
(2012) for a typological overview and a discussion of different modelling options within Optimality
Theory; see Alber (2020) for an overview on Germanic languages). Phonological generalisations about
stress position are usually thought to be directional in the sense that they count syllables from a word
edge. This also means that they crucially rely on word representations that incorporate syllables as
abstract units of prosodic organisation. The relevant word edge in English is usually assumed to be a
three-syllable window at the right word edge.

The examples in Table 1 illustrate the principle. Main stress is indicated by an acute accent, syllable
boundaries are marked by ’.’. A description of stress patterns that is in line with the principle of right
directionality will refer to stress as being on the word-final syllable in (1a), on the penultimate syllable
in (1b), and on the antepenultimate syllable in (1c). This generalisation captures the fact that, with the
exception of compound words, main stress in English words always lands on one of the last three syllables
of the word. However, the idea that main stress assignment is directional or even mono-directional in
nature is not without problems.

Table 1: Examples stress assignment in long English words. Main stress is indicated by an acute accent,
syllable boundaries are marked by °.".

a. Ka.la.ma.z6éo
b.  Mo.non.ga.hé.la
C. Ha.ma.me.li.ddn.the.mum

For example, Hammond (e.g. 1999, 318ff) and McCully (2003) argue that both right alignment and
left alignment play a role for main stress assignment in English. Furthermore, attempts to empirically
verify edge alignment face the problem that the number of English morphologically simplex words that
are longer than three syllables is rather low. Another, fundamental problem with the principle of direc-
tionality is that it is systematically constrained by morphological structure, in the sense that different
affixes require different adjustments to the syllable counting generalisation about stress position. This
phenomenon, among others, has led scholars to assume that the English lexicon is stratified, with the
different strata representing different morphological categories.

Morphological stratification in this sense is the second generalisation that we will be concerned with in
this article. Specifically, we will focus on suffixal strata, often referred to as 'stress-preserving’ and ’stress-
shifting’ suffixes. Stress-shifting suffixes fall into two different subgroups: those which themselves attract
stress (often called 'auto-stressed’) and those which do not; most of the latter suffixes are 'pre-stressing’,
which means that main stress is on the syllable immediately preceding the suffix. Table 2 provides
examples of all three classes. The suffixes -ness and -ly are examples of stress-preserving suffixes (2a),
-ity and -ical are pre-stressing stress-shifting suffixes (2b), and -ee and -ese are auto-stressed stress-
shifting suffixes.

The existence of stress-preserving and stress-shifting suffixes has prominently been used as evidence
in favour of stratal approaches to the morphology-phonology interaction such as Lexical Phonology and
Morphology (Kiparsky, 1982) and Stratal Phonology (Bermudez-Otero and McMahon, 2006; Bermudez-

1 The distinction between ’stress preserving’ and ’stress shifting’ affixes (Fudge, 1984) is largely co-referent with other
dichotomies, such as that of ’cohering’ - ’non-cohering’ affixes (Booij, 1983; Siegel, 1974; Booij and Rubach, 1987) and
‘class I’ - ’class II’ affixes (SPE Siegel, 1974; Chomsky and Halle, 1968).



Table 2: Examples of a) stress-preserving, b) stress-shifting and c¢) auto-stressed suffization. The accent
indicates the stressed syllable.

derived base

a.  happiness happy
politeness polite
productively prodictive
extrémely extréme

b.  productivity prodictive
monstrésity ménstrous
metaphérical ~ métaphor
symmétrical symmetry

c. employée empldy
interviewée interview
Japanése Japan
Portuguése Pértugal

Otero, 2012, 2018). These approaches assume that English morphology is organised into two (or more)
different strata, with interleaving phonological and morphological modules. The difference between stress
preserving and stress shifting suffixes is then modelled in terms of the point in time when a suffix is
attached to its base word or stem. So-called stress-shifting suffixes are attached before phonological stress
rules have applied, stress-preserving suffixes are attached after stress rule application. Other approaches
model the stress behaviour of different types of affixes in terms of affix-specific rule or constraint systems
(esp. Co-phonology approaches, cf. e.g. Stanton and Steriade, 2014).

However, the exact nature of the interaction of phonological and morphological factors in a stratified
lexicon is a much debated issue in the literature. Empirically, it is well-known that existing proposals
(stratal or non-stratal) integrating phonological and morphological factors fall short of convincingly
predicting stress position when tested on data sets of words, both actual and nonce words. Furthermore,
attempts to quantify accuracy of predictions are very rare and often limited to subsets of the lexicon. One
such attempt that focuses on derived words is Zamma (2012)’s study. The model developed in this study
includes variable constraint rankings, and accuracy is measured in terms of the number of predicted
rankings that conform to attested words (cf. Zamma, 2012, chpt. 6 for discussion). Domahs et al. (2014)
provide a statistical analysis of the predictive power of syllable structural factors in morphologically
simplex words, both nonce words and existing words. Simplex words are also studied by Moore-Cantwell
(2016, chpt. 4); the study investigates the match between a constraint-based MaxEnt model (Goldwater
and Johnson, 2003) that includes lexically specific constraints, and lexical distributions. Dabouis et al.
(2017) investigate the predictive power of both phonological and morphological factors for stress in some
5,000 verbs extracted from Jones (2006)’s English Pronouncing Dictionary. All works cited show that
the phonological and morphological factors they use in the analysis can explain a large portion of the
data, but also admit to considerable leakage. In all pertinent accounts, it is thus assumed that stress
assignment is subject to lexical idiosyncracy to some extent (cf. Alber (2020) for a recent overview of
the literature on stress in Germanic languages, including English). It is also unclear, how these studies
can be compared, since all of them use different kinds of baselines, constraints and evaluation metrics.

Another open question concerns how language users become aware of these principles. One poten-
tial answer is that learning takes place on the basis of abstract representations of the prosodic and
morphological structure of words, and on the basis of constraints that operate on the basis of those
abstract representations (cf. e.g. Moore-Cantwell (2016) for a recent OT model; cf. Pearl et al. (2016)
for a comparison of the learnability of classic pertinent approaches). Abstract representations include
syllables, morae, metrical feet, and the morphological stratum affiliation (e.g. level 1 or level 2) of affixes.
Constraints include constraints on edge alignment, on the relation between syllable weight and stress,
on extrametricality, as well as on the stressability of affixes. To what degree these representations and
constraints are innate or learned is a matter of debate.

In the present paper, we will pursue an alternative answer, which is in line with usage-based theories
of linguistic generalisation (Bybee, 2011, 2001, 2002). By ’usage-based’ approaches we mean a group
of theories that share the assumption that properties such as stress are associated with and may even
emerge from the distributional characteristics of words and sub-word units in the Mental Lexicon. For
stress assignment, this means that language users store words that they encounter with their stress



pattern, and assign stress to words they have not encountered before on the basis of the distribution of
stress patterns among stored words.

So far, only few attempts have been made to test this idea on stress assignment data with the help of
computational implementations of usage-based models (see Daelemans et al., 1994, on Dutch for one of
the few exceptions). One key challenge for a usage-based model of stress assignment is the definition and
selection of input features provided to the computational model. Computational modelling approaches
usually rely on flat and non-nested structures. This does not seem compatible with generalisations about
stress assignment that, as we have seen above, rely on highly abstract and elaborate representations of
phonological and morphological structure.

The present paper sets out to investigate if and how directionality and stratification effects in En-
glish can be learned by a computational model without any assumption about abstract phonological
and morphological representations of words. The particular implementation that we will use is Naive
Discriminative Learning ("NDL’, Arppe et al., 2018). Based on a series of simulation studies we will show
that neither directionality nor stratification need to be assumed to be a-priori properties of words or
constraints in the lexicon. Stress can be learned solely on the basis of very flat word representations in
terms of trigrams, by a system that is not given any explicit information about directionality or the mor-
phological class affiliation of constituent affixes. Instead, morphological stratification emerges as an effect
of the model learning that informativity with regard to stress position is unevenly distributed across all
trigrams constituting a word. Morphological affix classes like stress-preserving and stress-shifting affixes
are, hence, not predefined classes but sets of trigrams that have similar informativity values with regard
to stress position. Directionality, by contrast, emerges as spurious in our simulations; no syllable counting
or recourse to abstract prosodic representations seems to be necessary to learn stress position in English.

The paper is structured as follows. We will first introduce our computational framework in Section 2.
Section 3 will then explain the methodology of our simulation experiments. The simulations will then be
discussed in Section 4, in two steps. We will first be concerned with directionality (Section 4.1), and then
with morphological strata (Section 4.2). In each section, we will present both general simulation outcomes
and an in-depth analysis of our experiments, which shows why the algorithm makes the predictions it
does. The paper ends with a summary and conclusion in Section 5, which will also discuss the implications
for linguistic theory.

2 Discriminative learning and the error-driven learning rule

Different approaches to training a neural network are available. Due to hidden layers or complex learning
algorithms, as is the case in deep neural networks and recurrent neural networks (Graves and Schmid-
huber, 2005; Graves et al., 2013), the trained networks are usually hard to interpret from a cognitive
perspective. We therefore used a two-layer neural network that is trained with a simple error-driven learn-
ing rule (Rescorla and Wagner, 1972; Rescorla, 1988; Ng and Jordan, 2002; Widrow and Hoff, 1960),
implemented in Naive Discriminative Learning (the package 'NDL’ as implemented in R, Arppe et al.,
2018).

The error-driven learning rule mathematically formalizes general cognitive mechanisms assumed by
the cognitive theory of Discriminative Learning (Ramscar and Yarlett, 2007; Ramscar et al., 2010; Ram-
scar, Dye, M. and Klein, J., 2013). According to the theory of Discriminative Learning, learners build
cognitive representations of their environment by establishing associations between events in their en-
vironment on the basis prediction and prediction error. The algorithm formalizes this by establishing
association weights between input features (henceforth cues) and classes or categories (henceforth out-
comes) that co-occur in events. To name an example, in English the word final letter sequence ‘-ize’
serves as a cue to the outcome ’verb’, and the word final letter sequence ‘-ical’ serves as a cue to the
outcome ’adjective’.

According to Discriminative Learning, learning is shaped by prediction and prediction error. Error is
positive and increases association weights between a cue and an outcome every time that the predicted
outcome occurs (such as ‘-ize’ in the word ’realize’ indicating a verb). By contrast, error is negative and
decreases association weights whenever the predicted outcome does not occur (such as ‘ize’ in the noun
‘size’). As a result, weights and associations (and the resulting representations) are constantly updated
on the basis of new experiences. The strength of the adjustment depends a) on the number of cues
that are present in a learning event and b) on the size of the error between the prediction emerging



from the cues and the actual outcome in the learning event. This gives rise to cue competition, during
which cues compete for being informative about an outcome. As a result of learning through continuous
prediction and error, cognitive representations emerge. An in-depth description of the theory can be
found in (Ramscar, Dye, M. and Klein, J., 2013; Linke and Ramscar, 2020); a description of the NDL
model can be found in Baayen et al. (2011); an overview how different cue-to-outcome structures affect
learning can be found in Hoppe, Hendriks, Ramscar and Rij (2020).2

The error-driven learning rule has been shown to successfully model and predict a number of im-
portant effects observed in animal learning (Rescorla, 1988) and human learning. For example, Ramscar
et al. (2010) demonstrated how the presentation order of cues and predicted events during learning af-
fects the strength of learning. Learning is more effective when, for example in ‘wug’ experiments, the
orthographic (or acoustic) word precedes the corresponding picture than when the picture precedes the
word. This effect was also reported for phonetic learning (Nixon, 2020) and inflectional learning (Hoppe,
van Rij, Hendriks and Ramscar, 2020). Nixon (2020) demonstrated that a new cue for an outcome is
blocked from learning, once another cue has already been learned as informative about an outcome. This
finding mirrors the ‘blocking effect’ in animal learning studies first demonstrated by Kamin (1968).

In addition, the error-driven learning rule successfully models aspects of child language acquisition
(Ramscar et al., 2010, 2011; Ramscar, Dye and McCauley, 2013; Ramscar, Dye, M. and Klein, J., 2013),
acquisition and usage of allomorphic suffixes (Divjak et al., 2020), reaction times in lexical decision tasks
(Baayen et al., 2011; Milin, Feldman, Ramscar, Hendrix and Baayen, 2017), self-paced reading (Milin,
Divjak and Baayen, 2017), acoustic duration of American English word final [s] depending on their
morphological function (Tomaschek et al., 2019), auditory comprehension (Baayen et al., 2016; Arnold
et al., 2017) and acoustic single-word recognition (Shafaei-Bajestan and Baayen, 2018).

To summarize, the association weight between a cue and an outcome is formed through the expe-
rience with other cues and outcomes that have been encountered during the learning history in both
production and comprehension. The weight represents the support which a specific cue can provide for
a specific outcome. Cognitive representations of grammatical structures emerge from the association
weights between every encountered cue and every encountered outcome. In this model principles like the
principle of directionality and stratification have no independent status as constraints on representations
or grammatical outputs. The question then arises if and how the model can emulate and explain the
empirical effects that have traditionally been ascribed to these mechanisms.

3 Methods

For our simulation experiments, we trained NDL to discriminate stress positions and then used the
trained network to predict stress positions. The material for the simulations was obtained from the
CELEX lexical database of English (N = 33,407 word forms, Baayen et al., 1993). This data set served
as both the training set and the test set. We performed our analysis in two steps. In a first step we
focused on directionality and investigated which cue structure best predicts the attested stress patterns.
In a second step we focused on morphological stratification and studied if and how exactly morphological
strata emerged in our model. In what follows we discuss the methodological details of our modelling
approach.

The cues on which we trained the model were based on the orthographic transcriptions of all words
in CELEX. We used orthographic transcriptions because English stress is strongly correlated with vowel
quality. By presenting orthography to the model, we avoided the problem that in many English words,
knowing the vowel quality is already predictive of stress. This is because only a very restricted set of
vowels can occur in unstressed English syllables, a phenomenon that is usually accounted for in terms of
'vowel reduction’. The most common reduced vowel, schwa, is even restricted to exclusively occurring in
unstressed syllables. For example, a common pronunciation of the word ‘America’ is [omeroke]. Given this
sound structure, it is clear that the stress can only be on [g], the only full vowel. Given the orthographic
string <America>, however, all syllables are potentially stress-bearing. Providing the computational

2 This formalization of learning differs from other theories of learning, such as Bayesian models (Kleinschmidt and Jaeger,
2015), or distributional learning models (Wanrooij et al., 2014, 2015; Werker et al., 2012; Terry et al., 2015).The latter
class of models assumes that learners learn the frequency of occurrence of co-occurrences and the resulting distributions.
For a review of the differences between distributional learning and error-driven learning in the context of language, see
(Kapatsinski, 2018).



model with orthographic cues rather than with actual pronunciations, thus, serves to make its task more
difficult.

One potential set of cues are letter monographs. However, letter monographs miss out on the informa-
tive properties of orthotactics, i.e. sequential information about adjacent letters in words. Accordingly,
we decided to use higher-order n-grams, specifically bigrams and trigrams, as is common practice in lin-
guistic studies using error-driven learning (Baayen et al., 2011, 2016; Milin, Feldman, Ramscar, Hendrix
and Baayen, 2017; Tomaschek et al., 2019). The cue structure does not encode formally defined syllables
or syllable positions. We tested which kind of cue structure best predicted stress position: letter bigrams
(BG), or trigrams (TG), or both together (BGTG)?3.

Stress position was coded as outcomes in our simulations. We implemented three different types of
outcome structures. The first is a representation of the traditional account that the stress position in a
word is counted from the offset of the word (henceforth stress from right (e.g. Hayes, 1982; Pater, 2000;
Alber, 2020, as discussed in Section 1 above)). In order to examine the validity of this claim, we also
tested two other ways of representing stress as outcomes in our model. The first is to count the stress
position from the onset of the word (henceforth stress from left). The second is to select the vowel letter
present in the stressed syllable (henceforth stress in the vowel). The value of stress from right varied
between one and seven. Stress from left contained six values, ranging between stress on syllable number
one and stress on syllable number six. Stress in the vowel did not differentiate in which syllable the vowel
was located and contained 59 different values in total.

Take the word ‘realize’ as an example. Its letter bigram cues are #r, re, ea, al, 1li, iz, ze, e#,
its letter trigrams are #re, rea, eal, ali, liz, ize, ze# (where # represents the word boundary).
Crucially, the model is unaware what phone sequence the letter n-grams represents. The bigram <ea>
can represent the vowel [i] in ‘please’ but also the [iee] hiatus in ‘reanalyse’. Similarly to a naive reader,
the model has to learn to discriminate the outcomes on the basis of potentially ambiguous cues.

The outcomes of the models, — called ‘outputs’ in the terminology of neural networks — represent the
position of the stress. For ‘realize’, this means that Stress from left is: 1; stress from right is: 3, and stress
in the vowel is: ‘ea’.

We compared nine different networks in terms of how well they predict stress in our data set. Each
network was trained on a different combination of cue and outcome structures (3x3, i.e. bigram cues,
trigram cues, and a combination of bigram and trigram cues with the outcome stress from left, the
outcome stress from right, and the outcome stress in the vowel). We use the Danks Equilibrium Equations
(Danks, 2003) to train the model, as implemented in the NDL package.

After training, the network is evaluated in terms of whether it is able to discriminate among the
outcomes on the basis of presented cues (typically from a word of interest). Thus, it is presented by a set
of cues, e.g. #re, rea, eal, ali, liz, ize, ze#, and has to select which of the potential outcomes
(e.g. for stress from right 1, 2, 3, 4, 5, 6, or 7) is best predicted by the cue set. This is achieved by
means of an activation vector, summing up the association weights between the presented cues for each
of the possible outcomes in the network. The outcome with the highest activation is the winner of the
classification, thus the predicted stress position.

In formal approaches typically used to model stress assignment, such as Optimality Theory (e.g. Pa-
ter, 2000; Zamma, 2012; Moore-Cantwell, 2016), the selected outcome is one of the inputs ('candidates’
in OT) provided to the procedure. Note that this is not the case in neural networks. Instead, the test
procedure decides among a set of possible outcomes provided to the model, not among inputs. This can
be best exemplified by monosyllabic words. Naively, it should not be too hard to find the stressed position
in monosyllabic words. Whereas this line of thought is of course plausible in the real world, it is not in
our model. This is because this kind of reasoning follows the misconception that the model is aware of
the number of syllables in the cue set that is presented during the classification procedure. This is not
the case in the simulations presented in this paper. On the contrary, the model is absolutely unaware of
how many syllables the word contains that the presented cue set is based on. The discrimination among
the outcomes is based purely on the activation strength calculated on the basis of the presented cue
set. It is therefore even possible that due to cue competition and due to the distribution of weights,
the network predicts a stress position which is incompatible with the true number of syllables in the

3 Theoretically, we could also use higher-order n-grams such as 4-grams. However, the longer the n-gram, the stronger
the model is faced with a one-to-one mapping between cues and outcomes, which results in smaller cue-competition during
training.



presented word. For example, it is possible that the network erroneously predicts stress on the penultima
for a monosyllabic word.

4 Findings
4.1 Accuracy of prediction by cue-outcome structure

Each of our nine networks (cf. Section 3 above) was set the task of predicting stress position in all words
from CELEX. As can be seen in Table 3, the prediction accuracy for all cue-and-outcome combinations
ranges between 59.0% and 84.9%, i.e. highly above chance. As is clear from the table, the use of letter
bigrams consistently yields a lower prediction accuracy than the use of letter trigrams. Also, a combi-
nation of bigrams and trigrams did not improve classification accuracy. This means that letter trigrams

are sufficiently informative about stress positions®.

Table 3: Percentage of correctly categorized stress positions in whole data set.

Cue structure | left  right  vowel

letter bigrams 71.4 59.0 72.1
letter trigrams 80.7 74.9 84.9
both together 80.6 74.9 84.8

Given that letter trigrams yield better prediction accuracy, we focus on this cue structure in what
follows. We now inspect how it was used by the network to classify stress positions given different assump-
tions about directionality. Table 3 demonstrates that stress can be learned without syllable counting. The
model trained to predict stress in terms of the orthographic vowel has the highest prediction accuracy,
followed by the model that was trained to predict stress from the left word edge. The weakest model
is the one that was trained to predict stress from the right word edge. All differences between model
accuracies are significant (counting stress from left vs. counting stress from right: x* = 246.4, df = 1, p
< 0.001; stress in vowel vs. counting stress from left: x*> = 961.5, df = 1, p < 0.001). Using trigrams as
cues, we tested the stress from left and stress in vowel models in twenty cross-validation runs. In each
run, we trained the models on 70% of the data that were randomly selected and tested on the remaining
unseen 30% of the data. The average prediction accuracy was 71.6% (sd = 0.005) in the stress from left
model and 75.8% (sd = 0.003) in the stress in vowel model. Thus, even if the model has not encountered
a word form, it was able to predict its stress position with a fairly high accuracy.

Since the model had no a-priori information about morphological structure, and since suffixing in-
fluences stress position in English, it is not surprising that the stress from right model showed only
weak performance. This is because the descriptive generalisation that English stress always lands in a
three-syllable window at the right edge is not true for complex words with so-called stress-preserving
suffixes (cf. Section 1 above for discussion).® What is surprising, however, is that stress is best predicted
by the vowel model, as none of the existing theories predicted this result.

Looking only at prediction accuracies, however, does not tell us much about why the models performed
as well as they did. With regard to the vowel model, a very likely confounding factor is that orthographic

4 The question arises why trigrams yield a higher accuracy than bigrams. Given that trigrams capture a larger portion of
a word than bigrams, the uncertainty about the relation between cues and the stress position should be lower for trigrams
than for bigrams. We assessed this uncertainty by calculating the entropy (Shannon, 1948) for each bigram and for each
trigram in relation to the stress position. To obtain the entropy for each n-gram cue, we assessed how often each n-gram
occurs with each stress position. To calculate entropy, we calculated the co-occurrence probability by dividing a cue’s
frequency by the summed frequencies of that cue and all stress positions. We found that the average entropy in relation to
stress position is significantly lower for trigrams (H = 0.84) than for bigrams (H = 1.48, dH = 0.64, t = 24.54, df = 844.83,
p-value < 0.001).

5 Readers might wonder why the stress from left model performed so well, given that prefixes should also have an
influence on stress assignment. This may be due to the fact that when a word is prefixed with one prefix it typically
reoccurs with other, prosodically similar prefixes. For example, the adjective ‘interpretable’ occurs with ‘un-’; ‘re-’; and
‘mis-’. In all cases, the prefixed word has the third stress position, which provides the model with strong support for that
position. A critical inspection of stress shifts due to prefixing is beyond the scope of this paper.



vowels may occur multiple times in words. It is thus unclear whether the high prediction accuracy of the
vowel model results from the fact that vowel repetition increases the probability of finding the correct
stress position. In the following section, we turn to a more detailed statistical analysis of our most
successful model, the vowel model. We have two aims: The first is to learn more about the potential
confounding factors mentioned. The second is to inspect how the emerging structure in the network
affects the accuracy of stress assignment.

4.2 Prediction accuracy, model certainty, and the linguistic properties of words

We use linear logistic regression to study how the prediction accuracy (our dependent variable) is corre-
lated with the word’s linguistic properties, and with the network’s certainty /uncertainty about the stress
position. We first explain the linguistic predictors.

One interesting question that we will pursue here is how the vowel model predicts stress in words of
different length. This is important because the vast majority of English words are short, with monosyl-
lables having a particularly large share in the vocabulary. Model accuracy on short words will therefore
also have a large share in the general accuracy score of the model. Recall from Section 3 that, in principle,
NDL is ignorant of word length in our dataset and, hence, it is possible that a monosyllabic word, for
example, is predicted to be stressed in other positions than the first. However, due to cue competition
the association strength between cues and the stress position in a monosyllabic word is very likely to be
stronger than in polysyllabic words. We thus expect that prediction accuracy will be very high for short
words and will decrease in words with a greater number of syllables. This was tested with the predictor
‘number of syllables’.

Since the outcomes in the vowel model did not differentiate in which syllable a vowel was located, the
probability that the model correctly predicts stress is higher, when a word contains the identical vowel
multiple times. Accordingly, we expect prediction accuracy to be higher if the word contains multiple
instances of an identical vowel rather than different vowels. This was tested with the predictor ‘double
vowels’ (with TRUE representing a word that contains the identical vowel multiple times).

In the upcoming analysis, we also wanted to gain an initial understanding of how morphological
effects on stress assignment are represented in the model, and how they affect stress assignment. To do
so, we used the information included in CELEX about whether words are derived, inflected, or simplex
as a predictor variable in our regression model. Inflectional suffixes are generally stress-preserving in
English. Thus, cues in the word stem should be good predictors for stress position. This is why we expect
higher prediction accuracy for inflected words than for uninflected words. With respect to derivation,
derivational processes can be stress-preserving or stress-shifting. This means that the variability of the
stress position in derived words is very high, which should create more uncertainty about the stress
position for the learning model. Accordingly, we expect accuracies for derived words to be lower than
for underived words. These two hypotheses were tested with the predictors ‘inflected word’” and ‘derived
word’ (with TRUE representing inflected or derived words). The distinction between stress-preserving
and stress-shifting derivation is not part of following analysis. We will look at this issue in greater detail
in Section 4.4.

In addition to linguistic properties of words, we analyze how prediction accuracy is affected by the
network’s certainty /uncertainty about a stress position. We do so with the help of two measures. The
first is ‘activation’, i.e. the sum of the weights between a word’s cues and the outcomes in the network
(cf. section 2). Activation gauges the amount of support, or certainty, from a word’s cues to its true
stress position. Usually, activations are used as predictors in regression models. Higher activations have
been shown to be correlated with faster response times and lower error rates (Baayen et al., 2011; Arnold
et al., 2017; Milin, Feldman, Ramscar, Hendrix and Baayen, 2017). Accordingly, we predict that higher
activations should be associated with better prediction accuracy.

The second measure we use to assess the network’s certainty/uncertainty, is ’activation diversity’.
This measure reflects the amount of competition among possible outcomes for a word’s cue set. This
competition is associated with the amount of uncertainty about an outcome. The stronger the activation
of competing outcomes, the more uncertainty a cue set creates about the actual outcome. This is reflected
by a higher ‘activation diversity’ (Arnold et al., 2017; Tucker et al., 2019; Tomaschek et al., 2019).
Accordingly, we expect greater activation diversity to be associated with lower prediction accuracy.



4.3 Closeup on the ‘vowel model’

We tested these predictions with a linear logistic model. Activations and activation diversities were log
transformed, centered and scaled to obtain a data set with a less skewed distribution. We excluded strong
outliers in the NDL measures (~ 2.5 standard deviation away from the mean, loss of 2.65% of the data).
We subtracted 1 from number of syllables to obtain an intercept located in the value space (which was
back-transformed to original values in the plots).

In pilot analyses, we found that ‘number of syllables’ was collinear with ‘derived word’. This is because
derived words have, on average, one syllable more than underived words (8 = 1.1, sd = 0.011, t = 98.0, p
< 0.0001). This significant correlation caused suppression in the regression model. i.e. a change in sign for
one predictor, when the other, correlated, predictor was added (see Tomaschek et al., 2018, for inspection
of collinearity in regression). Testing the effects of ‘derived word’ indicated that the stress position of
derived words was less accurately predicted than that of underived words, when ‘derived word’ was used
as a predictor on its own (8 = -0.5, sd = 0.031, z = -15.89, p < 0.0001). However, due to the collinearity
issue, ‘derived word’ was excluded from the following analysis.

We fitted prediction accuracy (logit) in the stress in the vowel model with an interaction between
‘number of syllables’ and ‘double vowels’, and main effect for ‘inflected word’, ‘activation’ and ‘activation
diversity’. Table 4 presents the summary table. All predictors turned out to be significant. The intercept
has a value of logit = 3.32 which corresponds to an accuracy of 96.4%.

Table 4: Model summary of stress classification in the ‘stress in vowels’ model

‘ Estimate Std. Error  z value p value
(Intercept) 3.32 0.06 58.09 < 0.001
DoubleVowels = TRUE -0.64 0.08 -7.70 < 0.001
Number of Syllables -0.56 0.03 -17.00 < 0.001
DoubleVowels = TRUE : Number of Syllables 0.28 0.04 7.10 < 0.001
Inflected = TRUE 0.76 0.13 5.86 < 0.001
Activation 1.26 0.02 56.52 < 0.001
Activation diversity -0.91 0.02 -47.00 < 0.001

Figure 1 (a) illustrates the estimated interaction between ‘number of syllables’ and ‘double vowels’.
The y-axis represents back-transformed accuracy. As expected, the number of syllables is negatively
correlated with prediction accuracy. Note, however, that estimated accuracy of prediction drops below
80% only for words with more than five syllables. Words with more than five syllables are better predicted
if they contain repetitions of the same orthographic vowel (cf. ’double vowels’ in Figure 1a) than if they
do not (cf. ’different vowels’ in Figure 1a). In the former case, accuracy never drops substantially below
80% regardless of word length; in the latter case, accuracy drops to about 40% for words with eight
syllables.

Figure 1 (b) shows that, as expected, prediction accuracy is higher for inflected words than for
uninflected words. The difference is rather small (roughly 2.5%), which may be due to the fact that, with
regard to their stress properties, uninflected words form a heterogenous group comprising derived words
with different stress properties and simplex words. We will return to this problem in section 4.4 below.

Next we turn to the measures gauging the network’s certainty /uncertainty (Figure 1, c&d). Prediction
accuracy is proportional to ‘activation’. It is very low for very low-activated stress positions, but reaches
ceiling level very fast, i.e. an accuracy of almost 100%, when activation increases. This means that those
cases in which prediction accuracy is (comparatively) low are characterised also by low activation of
the stressed syllable, reflecting weaker support for its true stress position. Finally, prediction accuracy
is inversely proportional to ‘activation diversity’, indicating that that when the uncertainty in the cues
about the outcome increases, the model cannot make a well informed choice about stress. In conclusion,
the higher the model’s certainty about a stress position, the better its prediction accuracy® .

6 We inspected the performance of the stress from left model in the same way as we did for the performance of the stress
in vowel model. As it turned out, effect sizes and directions are very similar between the two models.
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Figure 1: Estimated prediction accuracy of the logistic regression for the ‘stress in the vowel’ NDL model.
The y-azxes represent the back-transformed prediction accuracy. The confidence intervals in c¢) and d) are
so small that they are not visible in the plots. Note that scales may vary between plots.

4.4 Derived words in the 'vowel model’: a case study

Since we have excluded ‘derived word’ as a predictor from our models, the models described above ignore
any complexities arising in stress assignment due to derivation. For example, suffixes such as ‘-ion’, ‘-
ity’ or ‘-ical’ (and their equivalent derivations) attract stress on the preceding syllable (pre-stressing).
Suffixes such as ‘-ness’ or ’-less’ preserve basal stress (stress preserving), whereas suffixes such as ‘-ese’,

‘“teen’ or ‘-ee’ carry stress themselves (auto-stressed, cf. section 1 above for discussion).

We expect that prediction accuracy should be associated with the suffix type. In words with stress
preserving suffixes, the stress position should be strongly supported by the cues in the base. By contrast,
in words with pre-stressing and auto-stressed suffixes, the stress position is different in derivatives and
corresponding bases, which should result in more uncertainty about the stress position. In words with
stress-shifting suffixes, cues from the suffix support the stress position in the derived word. Thus, the
cues in the base will have to support multiple stress positions (at least one for the derived word and
one for the base word). This is why we expect higher predictive accuracy for stress preserving suffixes
than for pre-stressing and auto-stressed suffixes. We do not make any predictions about the difference
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between auto-stressed and pre-stressing suffixes, as they both increase the uncertainty about the stress
position.

We tested these hypotheses with the help of a case study of a subset of 4,626 words that contained
only words with clearly stress preserving, pre-stressing, and auto-stressed suffixes.” The stress preserving
suffixes that we considered were -ness (as in happi-ness), -less (as in piti-less), and -ly (as in happi-ly).
The pre-stressing suffixes that we considered were -ion (as in constrict-ion or informat-ion), -ity (as in
divin-ity), and -ical (as in satir-ical). The auto-stressed group comprised the largest number of different
suffixes, as these suffixes occur in much fewer different words in English than the suffixes belonging to
the other two groups. By including a larger number of different suffixes in this group we made sure that
we would have a sufficient number of data for analysis. These suffixes are -ese, -teen, -ee, -ana, -esque,
and -ette (as in e.g., Japan-ese, seven-teen, employ-ee, Smithsoni-ana, Kafka-esque).

Like in section 4.2, we ran a generalized linear regression model with ’prediction accuracy’ as a
dependent variable. The model was based on the stress in the vowel model that used trigrams as cues.
We used the same model structure as in the section above, but excluded the predictor ‘inflected words’
from the analysis and added ‘morphological class’, which represents the different stress conditions stress
preserving, pre-stressing and auto-stressed. Table 5 provides a model summary. Results are illustrated in
Figure 2.

We observe that words with stress preserving suffixes yielded the highest accuracy score (intercept,
logit = 3.71, P = 0.98), followed by pre-stressing suffixes (logit = 3.4, P = 0.97). Auto-stressed suffixes
caused indeed uncertainty during classification, reducing the accuracy slightly more (logit = 2.2, P =
0.90). The effect size and direction of the effects of the number of syllables, activation and activation
diversity are very similar to the preceding model (Figure 2 b-d). This indicates that the effect of network
measures is valid even for a smaller data set.

Table 5: Model summary of stress classification accuracy on different morphological stress categories.

‘ Estimate  Std. Error z value p value

(Intercept) 3.71 0.21 18.00 < 0.001
Stress Shift = auto -1.45 0.26 -5.61 < 0.001
Stress Shift = prestressing -0.28 0.10 -2.92 < 0.001
Number of Syllables -0.95 0.12 -7.97 < 0.001
Double vowels = TRUE -0.72 0.25 -2.93 < 0.001
Number of Syllables : Double vowels = TRUE 0.51 0.13 3.89 < 0.001
Activation 1.22 0.06 20.58 < 0.001
Activation Diversity -0.83 0.05 -15.46 < 0.001

4.5 Learning morphological stratification

So far, we have shown that the NDL network is capable of learning stress position and that the network’s
certainty /uncertainty of stress position is reflected in prediction accuracy. In the following, we turn our
attention to the problem of how much morphological stratification has been learned by the network.
We hypothesize that the network indeed learned stratification of suffixes. Specifically, we assume that
stratification will be mirrored in differences in the activation of the stress position coming from the stem
and coming from the suffix.

Suffixes that attract stress (auto stressed suffixes) and suffixes which attract stress to the preceding
syllable (prestressing suffixes) systematically indicate the stress position, whereas the cues in the stem
discriminate variable stress positions (i.e. those of the base word and those of its derivatives). Accordingly,
suffix cues should be better cues for the stress position than the stem on its own. From this we predict
that stress-shifting suffixes will have a relatively higher activation than their stems. By contrast, suffixes
which preserve the stress position from the stem are worse cues for the stress position than the stem.
Accordingly, these suffixes should yield a lower activation than the stem.

7 Note that running the analysis on the whole set of derived words in our CELEX dataset rather than on a set of selected
derivational categories was not an option. The reason is that assignment to stratal categories is not straightforward for all
suffixes. Cf. e.g. Bauer et al. (2013, chpt. 9) for discussion.
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Figure 2: Estimated prediction accuracy of the logistic regression for the ‘stress in the vowel’ NDL model,
when the data is restricted only to derived, suffized words. The y-axes represent the back-transformed
prediction accuracy. Note that scales may vary between plots.

We operationalized the relative support of stem and suffixes for the stress position by calculating the
ratio between the activation of the stem and activation of the suffix for a word’s stress position. Ratios
larger than 1 indicate that the suffix has stronger activation than the stem. We based these calculations
on 6,097 derived words, but excluding outliers with overly strong activation ratios (roughly 7.2%). The
data were subjected to standard regression analysis, with activation ratio as the dependent variable, and
stress position as a factorial predictor (with preserving as the reference level). Table 6 reports the model
summary. Figure 3 visualizes the results.

The intercept of the model, i.e. the average activation ratio for stress preserving suffixes, is 0.06. We
see that the levels auto stressed and prestressing yield significantly higher activation ratios than the level
stress preserving. However, average activation ratios are always below 1, which means that the stem is
more strongly activated for the word’s stress position than the suffix, regardless of its stratal affiliation.
A very likely explanation is that stems have on average more cues (u = 7.2, sd = 2.5 ) than suffixes (u
= 2.9, sd = 1.0). As a consequence, they contribute more weights for summation than suffixes, yielding
overall higher activation scores.

In spite of suffixes having smaller activations than stems, the direction of the observed effects supports
our hypothesis. Stratification is indeed mirrored in the activation profiles of derived words. Auto stressed
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Figure 3: Average activation ratio between suffizes and stems depending on stress shifts due to suffization.

and prestressing suffixes yield significantly higher activation ratios than stress preserving suffixes. In
other words, stratification is reflected in the model in systematic differences in the activation of the
stress positions.

Table 6: Summary for model fitting the activation ratio (suffiz/stem) as a function of stress position
shifts depending on suffixation. Intercept represents ‘preserving’ stress.

‘ Estimate Std. Error t value p value

(Intercept) 0.06 0.01 10.52 < 0.001
morphological class = auto 0.09 0.03 2.99 < 0.001
morphological class = prestressing 0.13 0.01 13.23 < 0.001

5 Discussion

In the present study we set the Naive Discriminative Learner model (NDL, Arppe et al., 2018) to the task
of classifying stress position in simplex and morphologically complex English words from the CELEX
Lexical Database. The representation of words that the model was given as input comprised bigrams and
trigrams, i.e. flat representations that encode sequences of sounds or letters and as such, intrinsically
encode phonotactic information. The most important lesson to be learned from our modelling experiments
is that stress position in English words can be learned extremely successfully without assuming an a-
priori setting of a directionality parameter, and without an a-priori specification of morphological strata
in the Mental Lexicon.

With regard to directionality, we saw that orthographic vowels provide better cues for stress position
outcomes than a outcomes based on syllable count from either word edge. This finding provides a sub-
stantial challenge to existing formal accounts, which all assume that directionality is an indispensable
parameter in stress assignment. The present findings also raise interesting questions about the role of
orthography in stress assignment. In the present paper, orthographic representations were used as input
simply because this offered a pragmatic solution to the problem that stress position and vowel quality
are strongly correlated in English. Our simulations do, however, converge with previous work done in
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research on the acquisition of reading skills, which has provided support for the idea that orthography
is indeed predictive of stress position (Arciuli et al., 2010; Abasq et al., 2019)

While this was not our aim, the present results suggest that it might be so on a larger scale than
expected. English orthography has already been shown to provide informative cues about morphological
structure in words (Berg, 2013). Our study indicates that its graphemic structure discriminates stress
position. In order to explore this issue further, however, more research is needed to better understand how
exactly trigrams encode information that is relevant for language processing. For example, a comparison
of studies employing NDL to model language processing tasks seems to suggest that trigrams seem to be
more successful cues than bigrams in some modelling tasks, but less successful in others (Baayen et al.,
2011; Baayen and Smolka, 2020; Tucker et al., 2019). Why this is so, is not fully understood, and choice
of input cues in pertinent studies (like the present one) is often opportunistic rather than motivated
by considerations about theoretical plausibility. For example, to model auditory comprehension, Arnold
et al. (2017) and Shafaei-Bajestan and Baayen (2018) used acoustic features, and Linke et al. (2017)
used low-level visual features of letters to model visual word recognition by baboons.

With regard to morphological stratification, we saw that differences between morphological categories
can be understood as differences in the activation profiles of pertinent words. Activation profiles refer to
the way in which the distribution of stored weights are skewed within a word, as a result of linguistic
experience when learning complex words with their stress patterns. According to this account, what
speakers learn when they learn words with stress-preserving suffixes is that cues for stress are relatively
stronger in the base than in the suffix. Conversely, learning stress shift in this account means learning
that cues for stress position are relatively stronger in the suffix. The model therefore offers an articulate
hypothesis about what underlies stratification effects. This hypothesis is testable. One prediction worth
exploring is that, if stratum-specific stress behavior is emergent from activation profiles, the model should
predict stress variation to occur exactly in cases in which both the suffix and its stem are strongly acti-
vated (cf. Bell (2015) for evidence that variation in English compound stress arises in similar situations).
This prediction could be tested with the help of actual pronunciations of complex words, something that
is clearly beyond the scope of this paper.
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