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Abstract
We investigated whether training the Approximate Number System (ANS) would transfer to improved arithmetic performance in 7-8 year
olds compared to a control group. All children participated in Pre- and Post-Training assessments of exact symbolic arithmetic (additions
and subtractions) and approximate symbolic arithmetic abilities (a novel test). During 3 weeks of training (approximately 25 minutes per
day, two days per week), we found that children in the ANS Training group had stable individual differences in ANS efficiency and
increased in ANS efficiency, both within and across the training days. We also found that individual differences in ANS efficiency were
related to symbolic arithmetic performance. Regarding arithmetic performance, both the ANS training group and the control group improved
in all tests (exact and approximate arithmetics tests). Thus, the ANS training did not show a specific effect on arithmetic performance.
However, considering the initial arithmetic level of children, we found that the trained children showed a higher improvement on the novel
approximate arithmetic test compared to the control group, but only for those children with a low pre-training arithmetic score. Nevertheless,
this difference within the low pre-training arithmetic score level was not observed in the exact arithmetic test. The limited benefits observed
in these results suggest that this type of ANS discrimination training, through quantity comparison tasks, may not have an impact on
symbolic arithmetics overall, although we cautiously propose that it could help with approximate arithmetic abilities for children at this age
with below-average arithmetic performance.
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When children begin their explicit mathematical training, typically their skills vary considerably (Haworth, Kovas,
Petrill, & Plomin, 2007; Simzar, Domina, & Tran, 2016). The mathematical abilities required in the early school
years range from simpler skills like intuitive estimation and comparison of numbers of items to more complex
abilities involved in operations such as multiplication. Moreover, early mathematical skills are an important
predictor of life outcomes such as health and salary (Parsons & Bynner, 2005; Peters, Hart, Tusler, & Fraenkel,
2014; Ritchie & Bates, 2013), and of later achievements in school and in college (Geary, Hoard, Nugent, &
Bailey, 2013; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Papay, Murnane, & Willett, 2014; Watts, Duncan,
Siegler, & Davis-Kean, 2014). Thus children who fall behind their peers are at a higher risk of being left behind
throughout their schooling, resulting in lower academic achievement and continuing difficulties into adulthood
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(Aubrey, Godfrey, & Dahl, 2006; Geary, 2013; Watts et al., 2014). Helping those students whose performance is
weaker may be particularly challenging, because factors such as motivation (Simzar et al., 2016), math anxiety
(Pletzer, Kronbichler, Nuerk, & Kerschbaum, 2015; Z. Wang et al., 2014), lack of a predisposition towards
mathematics (Cerda et al., 2015), and teacher effects (Demaray & Elliot, 1998; Tournaki, 2003) come into
play. Game-based training of basic math skills may be helpful, as it may be less threatening to those who
have difficulty learning mathematics. Indeed, training math-related basic cognitive skills may increase students’
confidence in their sense of number, and this might then transfer to their more school-based math abilities
(Odic, Hock, & Halberda, 2014; Wang, Odic, Halberda, & Feigenson, 2016; but see Merkley, Matejko, & Ansari,
2017; Wang, Odic, Halberda, & Feigenson, 2017). The search for cognitively motivated, easily implemented,
enjoyable and efficient training regimes is currently very active. Here, we implement a one-month intervention
to test whether it can improve performance of arithmetic operations in children.

Classroom-based interventions and teaching have not always been found to be effective in helping students
who struggle with math (e.g., Desimone & Long, 2010; Morgan, Farkas, & Maczuga, 2015). However, experi-
mental results suggest that even very basic intuitive practice, for example in estimating and comparing the
quantities of items in collections, might help them (e.g., Bonny & Lourenco, 2013; Bugden & Ansari, 2016). Pre-
vious research has found a relationship between individual differences in formal mathematics and the precision
of a basic intuitive sense of number (for a review see Feigenson, Libertus, & Halberda, 2013). Although contro-
versial (Butterworth, 2011; Dehaene, 2009; Elliott, Feigenson, Halberda, & Libertus, 2019; Fuhs, Nesbitt, &
O’Rear, 2018; Gilmore et al., 2013; Le Corre & Carey, 2007; Li, Zhang, Wang, Ding, & Si, 2018; Libertus, Odic,
Feigenson, & Halberda, 2016; Malone, Burgoyne, & Hulme, 2020; Mussolin, Nys, Content, & Leybaert, 2014;
Noël & Rousselle, 2011; Núñez, 2017; Odic, Le Corre, & Halberda, 2015; Odic et al., 2016; Rips, Bloomfield,
& Asmuth, 2008; Shusterman, Slusser, Halberda, & Odic, 2016; Soltész et al., 2010), this relationship can be
found at multiple ages: in preschoolers (Bonny & Lourenco, 2013; Gray & Reeve, 2014; Libertus, Feigenson,
& Halberda, 2011; Mazzocco, Feigenson, & Halberda, 2011b; Moore, VanMarle, & Geary, 2016; Shusterman
et al., 2016; Starr, Libertus, & Brannon, 2013b), in primary school children (Gilmore, McCarthy, & Spelke,
2010; Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013; Pinheiro-Chagas et al., 2014; Valle-Lisboa et al.,
2016), in adolescents (Geary et al., 2013; Halberda, Mazzocco, & Feigenson, 2008) and in adults (Amalric &
Dehaene, 2016; Castronovo & Göbel, 2012; Halberda, Ly, Wilmer, Naiman, & Germine, 2012).

The intuitive sense of number comes from a cognitive system often described as the Approximate Number
System (ANS), comprising several components needed to understand and manipulate numerical quantities;
among them, a rough ability to estimate magnitudes (“there are many/few marbles in that jar”), magnitude com-
parisons (“this jar has more marbles than that jar”), and the manipulation of numerical quantities through basic
approximate arithmetic operations (“I can remove around half of the marbles from this jar to make it roughly
equal to that jar”). Although not necessarily innate (Leibovich, Katzin, Harel, & Henik, 2017), the ANS seems
to be present in young infants (Feigenson, Dehaene, & Spelke, 2004; Hyde, 2011; Hyde & Spelke, 2011), in
people of all cultures (McCrink, Spelke, Dehaene, & Pica, 2013; Pica, Lemer, Izard, & Dehaene, 2004), and
ages (Halberda et al., 2012), and even in other animals (e.g., Agrillo, Piffer, & Bisazza, 2011; Beran, Evans,
& Harris, 2008; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Jones & Brannon, 2012). While all people may
have an ANS, the precision of the ANS varies across individuals throughout the lifespan (Halberda et al.,
2012). A more precise ANS allows a person to make more confident distinctions between large close numbers,
making more confident numerical distinctions. Interestingly, preschoolers, students across ages, and adults
who have a more precise and accurate ANS also tend to do better on tests of formal, written, mathematics
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(Amalric & Dehaene, 2016; Halberda et al., 2008; Y. He et al., 2016; Libertus et al., 2011). Importantly, this
relationship holds even when general intelligence, verbal ability, and many other cognitive factors are controlled
for (Halberda et al., 2008; Libertus, Feigenson, & Halberda, 2013).

While some studies suggest that executive functions (EF) might serve as the underlying link between better
ANS performance and better school mathematics performance (Gilmore et al., 2013; Li et al., 2018), some
recent work has found the opposite to be true (i.e., that ANS precision and number language or number
knowledge survive as the only unique predictors of school math ability while EF are not unique (Malone et al.,
2020, 2019; Purpura & Logan, 2015). This is an area that will benefit from additional exploration.

Also, early differences in ANS precision, but not other factors such as verbal or performance IQ, executive
functions, language knowledge or visuospatial skills, predict later math performance at school (Mazzocco et
al., 2011b). Because links between the ANS and formal mathematics abilities are not universally accepted, it
remains important to test if ANS precision relates to arithmetic abilities.

The precision of the ANS may improve across life, especially during the school-age years, attaining its highest
precision sometime around age 30 years (Halberda et al., 2012). These improvements justify the hope that
interventions aimed at training the ANS might transfer to improvements in some arithmetic skills. Because
these basic arithmetic skills can be built into computer tasks (Halberda et al., 2008; Hyde, Khanum, & Spelke,
2014; Park & Brannon, 2014), game-based ANS practice could help to train these early skills, with perhaps
a more marked effect in students who are from particularly fragile social environments (Fuhs & McNeil, 2016;
Valle-Lisboa et al., 2016; Wilson, Dehaene, Dubois, & Fayol, 2009) or possess low numeracy skills (Liang,
Zhang, Long, Deng, & Liu, 2020; Praet & Desoete, 2014; Räsänen, Salminen, Wilson, Aunio, & Dehaene,
2009). Although several recent papers suggest that interventions can improve the ANS (e.g., Cochrane, Cui,
Hubbard, & Green, 2019; Liang, Zhang, Long, Deng, & Liu, 2020; Van Herwegen, Costa, & Passolunghi,
2017; J. Wang et al., 2016), potentially transferring to school mathematics performance, these results remain
controversial (Szűcs & Myers, 2017). The exact nature of the training and the strength of the results are
still unknown. For example, in a brief (5-minute) intervention to improve ANS confidence, children showed
immediate gains in symbolic arithmetic (Wang, Odic, Halberda, & Feigenson, 2016) although the causal link
was questioned based on concerns about the study design (Merkley, Matejko, et al., 2017). That is, Merkley,
Matejko, and Ansari (2017) argued that randomized control trials, with pre-testing of all participants, supported
stronger inferences while the Wang et al. (2016) procedure relied on a treatment with post-test design (see
also Wang, Odic, Halberda, & Feigenson, 2017). Thus, the possibility of ANS training transferring to symbolic
math abilities remains an area of controversy. Even under the assumption that there is some transfer, it is also
true that the persistence of these potential gains over an extended period remains unexplored. Other studies
showed that training in ANS arithmetic (e.g., estimating the results of adding and subtracting clouds of dots)
can lead to improvements in symbolic mathematics in children (Hyde et al., 2014; Obersteiner, Reiss, & Ufer,
2013; Park, Bermudez, Roberts, & Brannon, 2016), in adolescents (Knoll et al., 2016), and in adults (DeWind &
Brannon, 2012; Park & Brannon, 2014), but training in simple magnitude comparisons of two collections (e.g.,
which jar has more marbles) did not produce comparable transfer (Lindskog & Winman, 2016; Park & Brannon,
2014, 2016; Pinheiro-Chagas et al., 2014).

In the present study, we aimed to add a contribution to the debate surrounding the possible link between
the ANS (NB: whose very existence remains controversial) and symbolic arithmetic, using a robust pre-test,
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intervention, post-test design with a well-matched control group. In the school system where we realized our
study, the second-grade math program includes arithmetic (additions, subtractions, and some multiplications),
basic geometry (spatial orientation, figures, measure of figures), measure of magnitudes (weight, volumes,
distances, units of measurement), and basic statistics and probability, among other topics. While the specific
program covered by other systems may vary in other countries, it is reasonable to expect that any school
system at the target age will include arithmetic, as it gives children the basic steps necessary to succeed in
other parts of mathematics. Thus, in our study we focused on arithmetic as the privileged area to test potential
effects of ANS training.

In the current study, we focused on one grade level in a controlled environment, while carefully controlling
dosing time and conditions of exposure to the ANS training game relative to its control. We studied sec-
ond-graders, aged 7- to 8-years, for two reasons. First, previous studies have shown that many developmental
changes occur around that age (Holloway & Ansari, 2009; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013;
Siegler & Booth, 2004); and, second, at this grade students know enough arithmetics to be tested with a
variety of arithmetic operations, including additions, subtractions, and even some multiplications. The arithmetic
operations in second grade (additions, subtractions, and multiplications) represent different levels of difficulty
for a child; for example additions are easier than subtractions (e.g., Knops, Dehaene, Berteletti, & Zorzi,
2014), and subtractions are easier than multiplications (Prado et al., 2011). In the present study, due to the
approximative nature of the training, we introduced a novel arithmetic operations test to assess performance in
approximate symbolic arithmetics, alongside a school-like test of exact symbolic arithmetics.

We asked if three-weeks of ANS training in approximate quantity comparisons could enhance arithmetic skills
in children, and if improvements were related to their initial arithmetic abilities. This aspect of our work was
motivated by the literature, as several studies suggest that children who are struggling the most may benefit
from extended ANS game-based interventions (Langfus et al., 2019; Mazzocco, Feigenson, & Halberda, 2011a;
Purpura & Logan, 2015; Valle-Lisboa et al., 2016). In order to understand the sources of children's differences
in mathematical achievements, we must understand how the content taught in school relates to basic cognitive
abilities. A crucial aspect of this endeavor – one with pivotal societal consequences – is to determine if some
training can help struggling students improve. We believe that school-based training is a powerful way to
progress in this direction.

In the present study, through our school-based intervention, we aimed to further test the controversial ANS
construct and its possible link to symbolic arithmetic. Specifically, we evaluate whether individual differences
in ANS efficiency are related to symbolic arithmetic performance; whether training the ANS for an extended
period can improve children’s ANS efficiency; whether such improvement will transfer to any arithmetic skills;
and whether the initial arithmetic level of children before the training helps to determine the efficacy of such an
intervention.

Method

Participants

Ninety-one second-graders (44 girls; average age = 7 years 10 months, range = 7 years 3 months to
9 years 3 months) were recruited from Hamelin International Laie School (http://www.hamelininternacional-
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laie.com/school/) in Barcelona, Catalunya. The school is a non-elite private school with no academic require-
ments or admissions tests for entering, and does not exclude children along the course of the school years
based on academic performance. Tests scores for college entrance exams from the Hamelin International
Laie School do not differ from other national schools. Participants came from families of middle to high
socioeconomic status. According to teachers' reports, our sample did not include supremely gifted students or
students who were greatly below the typical level. Thus, the sample is a fair representation of Catalan school
students.

Participants came from four different classrooms (respectively, with n = 24, 24, 23 and 20). We compared a
control group, which relied on the standard school activities (Control, n = 44) with an ANS Training group (n =
47). Two teachers of mathematics served two classes each, randomly assigned to Control or ANS Training
group so that teacher effects were controlled. Training activity occurred during the computer technology class.
Throughout the study, computer and math classes were kept separate. Teachers and research staff never
discussed relationships between computer activity and math classes, so that students were unaware that
training was related with math performance.

Materials

Arithmetical Competence Assessment

We prepared three problem booklets for pencil-and-paper tests. Two of them contained straightforward arith-
metic problems: one additions (Figure 1a) and one subtractions test booklet (Figure 1b), based on the math
fluency subtest of the Woodcock-Johnson Tests of Achievement (Woodcock, McGrew, & Mather, 2001), with
additional problems and a 6-minute testing time to better detect individual differences. For these, children
had to write in the correct answer to the problems. The third booklet was a novel operations test, which we
designed (Figure 1c) and presented a kind of problem that had not been taught before: each problem was pre-
sented along with its result, but the operation sign was omitted from the equation. Children had to mark whether
the solution demanded an addition, a subtraction, or a multiplication sign. To correctly answer, students needed
not assess whether the given answer was correct (though it always was). Rather, by estimating whether the
solution resulted in a slightly larger, a much larger, or a smaller number, they could decide whether the correct
operation sign was, respectively, an addition, a multiplication or a subtraction. Our aim was to introduce a novel
test relating approximate arithmetic ability and ANS training not confounded with normal arithmetic activities at
school during the period of training.

Motivated by findings in the literature (Bonny & Lourenco, 2013; Langfus et al., 2019; Mazzocco et al., 2011a),
we wanted some way of characterizing children’s initial arithmetic abilities. Because children’s school grades
at this age were not detailed enough to classify them according to their mathematical abilities, we used the
additions and subtractions subtests before the training to identify three initial arithmetic performance groups
(Below-Average, Average and Above-Average tertiles) and then use the novel operations subtest to measure
pre- and post-training performance in approximate arithmetics.

Test difficulties were created under the supervision of the teachers. Two versions of each subtest were
prepared, with different problems, so that pre- and post-training booklets were unique and counterbalanced
across the sessions. Difficulty and problem order were randomized. The number of problems for each subtest
was large, so that children could not complete all of them during a 6-minute allotted time: (210 additions
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190 subtractions and 117 operations). In the Additions subtest, each addendum could reach at most 18, so
that the highest sum was 18 + 18 and the lowest 0 + 0. In the Subtractions subtest, both the minuend
and subtrahend ranged between 0 and 18; the result of the subtractions was always positive. Additions and
subtractions were presented in 10-sheet booklets, in a column operation algorithm form (Figure 1a and b);
and the operations subtest was presented on 3 sheets (Figure 1c). The Operations test included problems of
addition, subtraction and multiplication. For the additions in the Operations test, the maximum value for the
first and second addenda was, respectively, 7 and 10 (i.e., 7 ⬜ 10 = 17). For the subtractions in the Operation
test, both the minuend and subtrahend ranged between 1 and 11, with the result always positive (i.e., 11 ⬜
5 = 6). For the multiplications, the timetables of 1 to 5 and 10 were used (i.e., 4 ⬜ 5 = 20), because children
had been exposed only to them according to their teachers. The three types of operations and the problem
difficulties were presented in random order. The booklet contained a roughly equivalent distribution of problem
kinds (42 and 43 additions in the first and second version respectively; 38 and 39 subtractions; and 37 and 35
multiplications).

Figure 1. Examples of problems in additions subtest (a), subtractions subtest (b) and operations subtest (c). Examples of
the three models of object size control for surface area: size confounded (d), size controlled (e) and stochastic size-
control (f).

Computer Activities

The computer classroom had 25 laptops (HP 620, Pentium (R) Dual Core 2.30GHz, 4GB DRAM, 64-bit;
Windows 7 Home Premium), with individual headphones. Training and control groups ran different activities.
Controls practiced two commercial programs, Tux Paint, and Microsoft Word. ANS Training children practiced
a modified version of Panamath (Halberda et al., 2008). Written in Java SE6, the program generates trials
displaying collections of items inside two rectangles appearing side by side. For example, twelve teddy bears
could appear inside the left rectangle and 6 blue dots inside the right rectangle. The number of items within
each rectangle was always between 5 and 21. The items were presented in seven different ratios (larger
set/smaller set): 3, 2, 1.5, 1.25, 1.17, 1.14, 1.1. For example, in a 3-ratio trial children could see 21 blue vs.
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7 yellow dots. Smaller ratios generate more difficult trials. On each trial, items were displayed for 1382 ms.
To vary the relationship between surface area and number, there were 3 different models controlling object
size. Forty-two percent of the trials were size-confounded. In them, items average size was equal for both
sets, so that objects occupied cumulative surface areas congruent with number (Figure 1d). Forty-two percent
of the trails were size-controlled, with the object average size smaller for the larger set, so that the ratio of
the cumulative area occupied in each set was 1 (Figure 1e). In the remaining 16% of trails, object sizes were
stochastically varied, so that children had no consistent size cue for number. In these, the average size of the
objects varied randomly between being size-anticorrelated (where the numerically larger set had less total area
on the screen), size-controlled, and size-confounded. We called these runs stochastic size control (Figure 1f).
While there are a diversity of views about how to control for non-numerical cues in approximate number stimuli,
our method here recapitulates one such approach that has appeared in several papers (Hellgren, Halberda,
Forsman, Adén, & Libertus, 2013; Libertus et al., 2013; Libertus, Feigenson, Halberda, & Landau, 2014; Tosto
et al., 2014). But, in fact, we expected that our children would rely on continuous cues to some extent and we
did not desire to eliminate this possibility in our stimuli because this might be part and parcel of normal ANS
functioning (Halberda, 2019).

Procedure

The experiment had three phases: Pre-training, Experimental/Control training, and Post-training. The Pre-train-
ing and Post-training assessments were intended to measure the mathematical competence of the participants
before and after training. These were conducted in children's classrooms, in the presence of their math teacher.
From the child’s perspective, they were independent of the computer activities. Children had to answer as
many questions as possible in 6 minutes per test. The additions subtest was always ran first. Then children
had to stop and wait until they were given the subtractions subtest. The final test was the operations subtest;
as it contained a novel kind of problems teachers had to briefly explain what children were supposed to do
beforehand. Teachers completed 3 examples on the board, in front of the class, one per each problem kind,
after which children began the subtest. The Pre-training occurred two days before the first training session
(initial assessment); the Post-training one day after training completion (final assessment).

The training phase was administered in six different sessions within a three-week period, at a pace of two
sessions per week. This choice was motivated by previous studies (Langfus et al., 2019; Valle-Lisboa et al.,
2016). Both the intervention and control groups were trained on the same days (Wednesdays and Fridays), for
the same amount of time, and in the same computer classroom.

Control

Control children practiced Tux Paint and Microsoft Word, learning standard activities available in these pro-
grams. No activity involved approximate number comparison. Computer classes started with teachers' instruc-
tions, after which children worked individually, in the same class as for the same period as the experimental
group.

Approximate Number System Training (ANS Training)

Children practiced the Panamath quantity discrimination game. During training, the computer teacher and the
experimenter were always present. Children wore headphones and trained simultaneously. By observation,
children appeared to like this game. The ANS Training presented children with a sequence of pictures, asking
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them to make ordinal comparisons of the rapidly flashed collections appearing onscreen. On each trial, they
saw two collections of items appearing onscreen side by side, and needed to rapidly estimate which side had
more items (Figure 1 d-f), typing their answers on a keyboard (“f” and “j” keys for left or right side respectively).
As each presentation lasted about 1.3 s, children could not count the items, but had to rapidly estimate which
of the two sets was larger. Different collections of items were used on each run of trials, so that the game
maintained children's interest. For example, one run could present blue vs. yellow dots; another could present
cars vs. bears; yet another could display birds vs. dogs. There were 35 trials per run. Children completed
approximately 24 runs over the course of three weeks. Feedback was provided after every response, with a
high/low pitched beep indicating correct/incorrect answers.

When introducing ANS Training, children were told that they would play a game where they would see some
objects – for example, blue and yellow dots – and would have to choose if there were more blue or yellow dots.
They were informed that two different sounds would provide them with feedback. They were also told that the
game would vary in difficulty, and that both speed and accuracy were important. Most children completed 24
runs. Six participants completed 21, one 22 and one 20. Each run was composed of 35 trials (or about 6-7
minutes). Each run started with the easiest ratio in the first five trials. Then, every five trials the game increased
in difficulty, with the ratios becoming closer to 1, until the seven different ratios were presented in each run.
This confidence-scaffolding procedure was implemented to increase ANS precision and confidence, based on
previous studies with brief interventions (Odic, Hock, & Halberda, 2014; Wang et al., 2016). Children completed
the ANS Training during their regular computer class time.

Results

ANS Training: Approximate Number Comparison

For our purpose, the primary measure for the effectiveness of the ANS training is post-pretest differences
in symbolic math performance. However, before analyzing the effect of training, we assessed whether the
training did engage the ANS. We looked for the main signature, ratio-dependent performance that results in a
specific curve of percent correct as a function of ratio (Feigenson et al., 2004; Halberda et al., 2008; Libertus &
Brannon, 2009; Starr, Libertus, & Brannon, 2013a), in which participants' accuracy at determining the bigger of
two approximate numerosities decreases as the ratio between the numbers decreases. This ratio-dependence
is predicted by Weber’s law. Figure 2 presents the data from the ANS Training group, separated by the type
of size control of the stimuli. The ratio-dependent performance curve appears for all three size-control trial
types: as the numerical ratio between the two collections becomes easier, children's percentage of correct
responses improves. Furthermore, notice that even though overall percent correct is somewhat lower, the curve
of ratio-dependent performance appears also for the stochastic size-controlled and size-controlled trials. Chil-
dren chose the numerically greater collection well above chance; this suggests that while they may sometimes
have been led astray by the numerically smaller collection having a larger total surface area, they could still
succeed on a majority of trials. Some portion of the difference in performance across the stimulus sets could
be due to the differing EF demands of the stimuli (Gilmore et al., 2013; Li et al., 2018). And, we note that
although performance exhibits the smooth curve of the ANS, other dimensions of the stimuli we did not control
could contribute to number decisions (Abreu-Mendoza, Soto-Alba, & Arias-Trejo, 2013; Clayton, Gilmore, &
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Inglis, 2015; L. He, Zhou, Zhou, He, & Chen, 2015; Hollingsworth, Simmons, Coates, & Cross, 1991; Izard &
Dehaene, 2008; Leibovich & Henik, 2013; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004).

We note, however, that our main aim was not to identify which dimension is responsible for the ANS signature,
but rather to ensure that the ANS is engaged regardless of the cues that empower it. The question of which
perceptual features drive the ANS is an important one that continues to inspire debate, but it was not a focus of
our present work.

Using the standard psychological model and fitting methods (e.g., Odic et al., 2014) we estimated the observed
ANS precision for the whole ANS training group (i.e., Weber fraction or w). We found the best fit model returned
a w of 0.192 (SD = 0.09). This value is not much different from what other studies with young participants have
found (6-year-olds: w = 0.179, Halberda & Feigenson, 2008; Piazza & Izard, 2009). The curves in Figure 2 are
generated by fitting a model of Weber’s law to the mean performance of children in each ratio for each size
control type. That is, each child contributes equally to the curves, the curves are fit to the combined data from
all children, and the error bars are ± SE for the group performance.

Figure 2. Accuracy on the ANS acuity task is a function of the ratio between numerical values. X-axis shows the seven
different ratios presented during the training (1.1, 1.14, 1.17, 1.25, 1.5, 2, 3). The three ways of manipulating surface-area
are shown, each with a corresponding Weber curve. The children’s performance is consistent with their choice based on
number.

It is interesting to assess to what extent, across the training sessions, children improved. However, the
measure which best reveals such an improvement is not immediately obvious. Both response time (RT) and
accuracy have been shown to be reliable measures of performance in this and similar tasks with children as
young as four years of age. However, with few exceptions (e.g. Park & Brannon, 2014), the measures were
not taken across an extended period of training (Bartelet, Vaessen, Blomert, & Ansari, 2014; Cantlon et al.,
2009; Libertus et al., 2011, 2013; Mazzocco et al., 2011b; Murphy, Mazzocco, Hanich, & Early, 2007). During
an extended training period, children can improve either by reducing response time or by increasing accuracy.
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For this reason, efficiency, operationalized as the percentage correct divided by the RT, encompassing both
improvements in RT (i.e., getting faster) and in percent correct (i.e., becoming more accurate), seems most
appropriate (Bartelet et al., 2014; Libertus et al., 2013; Mazzocco et al., 2011b; Murphy et al., 2007; Park &
Brannon, 2014). It increased across the ANS Training task (R2 = .827, p < .001; Figure 3). While not crucial
to our purpose, we observe that while children greatly improved in their response times, they showed a
tendency to be less accurate across training; thus, the improvements in ANS efficiency are primarily driven by
improvements in RT.

Figure 3. Efficiency (Percentage correct / RT) on the ANS comparison task as a function of progress in training (composed
by 24 runs across three weeks; n = 47), The line is a fit of the mean efficiency of the group in each session. Error bars
present ± SE for the group performance.

ANS training was also effective across the three individual daily runs, as revealed by a one-way repeated
measures ANOVA with Run Order (first, second, third) as an independent factor and Efficiency as a dependent
variable, F(2,92) = 36.67, p < .0001, η2 = .072; Figure 4.

Figure 4. Efficiency (Percent Correct / RT) during the first, second and third run of each training day, showing improvement
in efficiency across runs within each day.
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Again, we stress that our main measure of interest is not improvement during training, but the effect of such
training on school math; nevertheless, we can show that training affected children's ANS responses, at least as
measured by efficiency.

Lastly, it remains an interest whether individual differences in ANS efficiency are stable over time. Here, we
could test for this stability, and for improvements in ANS, by looking at regressions across testing days. Figure
5 shows a regression between ANS efficiency in the first day with each of the following testing days. The
regressions were all significant (all p < .05) and the overall regression was significant (R2 = .2, p < .0001). This
demonstrates that individual differences in ANS efficiency were indeed stable over time.

Figure 5. ANS Efficiency (Percent Correct / RT) across training days, showing stable individual differences in ANS
Efficiency.

ANS Efficiency and Pre-Training Math Performance

While still controversial, some previous research suggests that ANS performance is related to symbolic math-
ematics performance. Our Pre-Training assessment of Additions, Subtractions and Operations allows us to
evaluate this claim for our participants. Indeed, the total number of correct answers in the Pre-Training math
tests correlated with the ANS Efficiency before training, R2 = .086, p < .05; Figure 6. Such a correlation held al-
so when analyzing the Pre-Training Symbolic Math Performance and the total ANS Efficiency across all training
sessions. Collapsing across all 3-weeks of ANS-Training Efficiency, we again found that Symbolic Mathematics
Performance in Pre-training correlated with ANS Efficiency (R2 = .146, p < .01). That is, the children with
higher symbolic mathematics performance before training also showed a higher ANS efficiency across training.
While previous demonstrations of this relationship between ANS acuity and math ability have relied on brief
measures of ANS acuity (Booth & Siegler, 2006; Gilmore et al., 2010; Halberda et al., 2012, 2008; Y. He et al.,
2016; Libertus et al., 2011; Libertus, Odic, & Halberda, 2012; Lyons & Beilock, 2011; Sasanguie, De Smedt,
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Defever, & Reynvoet, 2012) here we extend these results to a much longer temporal interval, showing that this
relationship holds even when ANS efficiency is measured across three weeks of training experience. These
results suggest that the few studies that failed to find such a relation may be exceptions to the general trend
(for discussion see Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler, 2014; Schneider et al., 2017).

Figure 6. Correlation between Approximate Number System performance before the training (measured as Efficiency during
the first day of testing on the approximate number comparison task) and Symbolic Math Ability (measured as the number of
correct answers in Additions, Subtractions and Operations in Pre-training). Each point represents a child (n = 47).

The Effect of ANS Training on Symbolic Math Performance

We now turn to our main interest: the effect of ANS training on symbolic math, or the difference between Pre-
and Post-Training Symbolic Math Performance. A first rough assessment of such an effect can be obtained
by collapsing into a single measure all Symbolic Math Tests (Additions, Subtractions, Operations) for all
children. In a 2 X 2 ANOVA, with Training Condition (Control, ANS Training) and Phase (Pre-, Post-training)
as independent variables, we found a main effect of Phase, F(1,89) = 111, p < .001, η2 = .067, no effect of
Training Condition, F(1,89) = 0.78, p = .38, η2 = .008, and no interaction, F(1,89) = 1.76, p = .19, η2 = .001;
Figure 7. The data were also examined by estimating the Bayes factor, which suggested that the data were
3.33:1 in favor of the null hypothesis, or rather, 3.33 times more likely to occur under the model which only
includes the main effect of Phase, rather than the model which includes the main effects of Phase and of
Group, and their interaction. In sum, the Bayesian ANOVA reveals that the data provides support for the
Phase main effect model, the null hypothesis, over any of the other models. Thus, when inspected globally,
no difference was found between the Control and ANS Training children: they all improved in our Symbolic
Math Tests during the period of the experiment. We notice that similar results were also found in a sample of
Uruguayan seven-year-olds when considering all children as a group (Langfus et al., 2019). Importantly, this
previous study (Langfus et al., 2019), along with others (Bonny & Lourenco, 2013; Mazzocco et al., 2011a)
have found stronger improvement for children who were initially low-performing in mathematics. These previous
studies found these effects by splitting their samples into smaller groups based on initial math performance.
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Motivated by this literature, and our own a priori interests, we planned to take this same approach here –
splitting our sample into smaller groups based on pre-training arithmetic scores.

Figure 7. Total correct answers in Symbolic Math Assessment (Additions, Subtractions, and Operations) in Pre- and Post-
training, for Control and ANS Training groups.

Considering the wide differences between children's mathematical abilities, and our interests in the potential
effect of training on children with different starting points, we next investigated the relationship between initial
math ability and improvement due to ANS training. To assess it, we inspected how the percentage of correct
responses varied from pre- to post-test. We regressed number of correct answers on the Symbolic Math
Test during pre-training against percentage growth in symbolic math performance from pre- to post-training.
The regression showed that children who gave fewer correct answers on the pre-training Symbolic Math Test
showed higher percentage gains in symbolic math ability from pre- to post-test (R2 = .103, p < .01; Figure 8).

This result suggested that an analysis at the level of tertiles (Below-Average, Average, Above-Average), which
has been done in previous publications, may be informative. Converging evidence across several labs sug-
gests that children who are lower-achieving in mathematics may show the strongest (or most easily detected)
relationship between the ANS and school mathematics ability (Bonny & Lourenco, 2013; Langfus et al., 2019;
Mazzocco et al., 2011a; Purpura & Logan, 2015; Valle-Lisboa et al., 2016). Therefore, inspired by this prior
work, we next turned to investigating possible heterogeneity in the gain scores for children according to initial
arithmetic performance. We split our groups into tertiles according to their results in the pre-training exact
Arithmetic test, comprised of Additions and Subtractions but not the Operations subtest (Figure 9) – our novel
measure which we planned to use as an outcome variable. We used the exact Arithmetic test because it
includes the problems children are most familiar with and have practiced in school prior to our training.
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Figure 8. Percentage improvement in symbolic math for both Control and ANS Training children as a function of Total
correct answers in the Symbolic Math Assessment in Pre-training.

Figure 9. Histogram for correct answers in the exact Symbolic Arithmetic pre-test (Additions and Subtractions subtests).

The split into Below-Average, Average, and Above-Average tertiles regarding their initial arithmetic scores was
carried out with a focus on creating roughly equal numbers of participants per group, and resulted in the
following cutoffs: below 65 correct responses for the Below-Average tertile, between 66 and 86 for the Average
tertile, and above 86 correct responses for the Above-Average tertile (Figure 9; nBelow-Control = 15, nBelow-ANS =
15, nAverage-Control = 16, nAverage-ANS = 16, nAbove-Control = 13, nAbove-ANS = 16). Notice that these tertiles are only
indicating performance relative to children’s own classmates on our exact Arithmetic test before the training;
they may not capture a more universal notion of “low-achieving” children (Desimone & Long, 2010), nor “gifted”
children (Swanson, 2006). However, given the typical breadth in the composition of our sample, and the fact
that our speeded arithmetic tasks are based on the math fluency subtest of the Woodcock-Johnson Tests of
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Achievement (Woodcock et al., 2001), our split is likely to capture differences valid beyond our limited sample
(see also Langfus et al., 2019; Valle-Lisboa et al., 2016).

Considering that the grouping variable was measured in the pretest, we expected no differences in the number
of correct answers for ANS Training and Control children in the Symbolic Math Pre-training Test. A 2 x 3
ANOVA, with Training Condition (ANS Training, Control) and Symbolic Math Level (Below-Average, Average,
and Above-Average tertiles) as independent variables, showed that, as expected Symbolic Math Level differed,
F(2,85) = 77.3, p < .001, η2 = .645, but Training Condition did not, F(1,85) = 3.0, p = .087, η2 = .034. Howev-
er, an interaction between Training Condition and Symbolic Math Level, F(2,85) = 5.53, p < .01, η2 = .115,
appeared. Bonferroni post hoc tests revealed that the interaction was driven by the Above-Average tertile
where the Control group obtained lower scores than the ANS Training group (p < .05; Figure 10). While this
difference appears to be a random result of grouping, it is worth bearing in mind that, because of a ceiling
effect, it may mask potential ANS training benefits in the Above-Average tertile.

Figure 10. Total correct answers in the Symbolic Math Pre-Training test (Additions, Subtractions and Operations) for each
level (Below-Average, Average, Above-Average) and for each condition (Control and ANS Training). For the Above-Average
tertile there was a significant difference between Control and ANS Training groups.

We relied on the Operations subtest as our outcome variable, as it assesses how children deal with aspects of
mathematical reasoning that they have not been trained to solve, and it was not used as a grouping variable for
grouping our children. At the same time, we found it comparable with more traditional arithmetic tests, because
it highly correlates with them both before and after training (Additions and Operations: at pre-test r = .68, p
< .001, at post-test r = .68, p < .001; Subtractions and Operations: at pre-test r = .64, p < .001, at post-test
r = .69, p < .001). In order to compare results across groups, we combined Pre- and Post-training scores
into percentage change scores (correct responses in Post-training - correct responses in Pre-training)/correct
responses in Pre-training. A two-way between-participants ANOVA with Symbolic Math Level (Below-Average,
Average, Above-Average) and Training Condition (ANS Training, Control) as factors and percent change on the
Operations subtest as the dependent variable revealed no effect of Symbolic Math Level, F(2,85) = 0.8, p = .45,
η2 = .019, or Training Condition, F(1,85) = 0.17, p = .68, η2 = .002. However, their interaction was significant,
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F(2,85) = 8.49, p < .001, η2 = .166; Figure 11. Bonferroni post-hoc tests revealed that the change was higher for
the ANS Training group than for the Control group in the Below-Average tertile of children (p < .05), but not for
the Average tertile (p = .41). The Above-Average tertile of children showed an effect in the opposite direction,
perhaps due to the ceiling effect in the ANS Training group: the Control group scored higher than the ANS
Training group (p < .01); however, as we noticed, in this tertile the ANS group was abnormally high, and better
than the Control group already at Pre-Training in all tests, including the Operations test, t(27) = 2.09, p < .05.
This makes it hard to interpret the results, probably contaminated by ceiling effects at baseline.

Figure 11. Percentage change in the Operations subtest by Symbolic Math Level (Below-Average, Average, Above-
Average) and Training Condition (Control, ANS Training).

Considering the size of the sample (91 participants: Control n = 44 and ANS Training n = 47), we wanted
to maintain all participants in order to not lose statistical power. However, with the concern that the observed
interaction in the improvement in the Operations test could be driven by the initial differences before the
training, specifically in the above-average tertile (Figure 10), and considering that precisely this tertile was
the only one not well matched regarding the number of participants between both groups (nAbove-Control = 13,
nAbove-ANS = 16), we proceeded to analyze all participants whose initial arithmetic scores were within 2.5 SDs
from the mean, consequently excluding three participants that coincidentally belonged to the Above-Average
tertile from the ANS Training group. This equates the number of subjects in Control (n = 44) and ANS Training
(n = 44) groups. Thus, with the sample of now 88 participants, we tested again if there were differences
in the number of correct answers for the Symbolic Math Pre-training Test. The 2 x 3 ANOVA, with Training
Condition (ANS Training, Control) and Symbolic Math Level (Below-Average, Average, and Above-Average
tertiles) as independent variables and number of correct answers for the Symbolic Math Pre-training Test as the
dependent variable, showed that Symbolic Math Level differed, F(2,82) = 85.5, p < .001, η2 = .67, but Training
Condition did not, F(1,82) = 0.77, p = .38, η2 = .009, and there was no interaction, F(2,82) = 2.64, p = .08,
η2 = .06. The three levels for both groups now had an equal number of participants and non-significantly
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different initial scores across Control and Training groups. Thus, we proceeded to analyze the improvement
in Operations subtest. The two-way between-participants ANOVA with Symbolic Math Level (Below-Average,
Average, Above-Average) and Training Condition (ANS Training, Control) as factors and percent change on
the Operations subtest as the dependent variable revealed no effect of Symbolic Math Level, F(2,82) = 0.78,
p = .46, η2 = .019, or Training Condition, F(1,82) = 0.15, p = .69, η2 = .002. However, again, their interaction
was significant, F(2,82) = 7.88, p < .001, η2 = .16. Bonferroni post-hoc tests once more revealed that the
change was higher for the ANS Training group than for the Control group in the Below-Average tertile of
children (p < .05), but not for the Average tertile (p = .41). The Above-Average tertile of children showed again
an effect in the opposite direction: the Control group scored higher than the ANS Training group (p < .01).
In this case, both groups in the Above-Average tertile had the same number of correct answers on average
in Operations post-test (MPreControl = 40, MPreANS = 50, MPostControl = 57, MPostANS = 57). Therefore, it may be
reasonable to consider that the limited time (six minutes) given to the children to do the test possibly caused
a ceiling effect of the number of correct problems to be solved. This prevents a detection of potentially greater
improvements in the Above-Average tertile in the ANS Training group.

Although our outcome variable was the percentage of change in the Operations subtest, we also analyzed
this improvement in the exact Arithmetic test (Addition and Subtraction subtests). Considering that, for the
whole sample, the number of correct answers in Operation subtest was highly correlated with the number of
correct answers obtained in the Addition and Subtraction subtests pre and post training, it may have been
expected for the exact Arithmetic test to show similar results in the percentage of change of the below-average
tertile. However, in a 2 X 2 ANOVA, with Symbolic Math Level (Below-Average, Average, Above-Average)
and Training Condition (ANS Training, Control) as factors and percent change on the exact Arithmetic test
as the dependent variable, showed that Symbolic Math Level differed, F(2,82) = 10.6, p < .001, η2 = .20, but
Training Condition did not, F(1,82) = 2.1, p = .15, η2 = .02, and no interaction was found, F(2,82) = 1.1, p = .34,
η2 = .02. Thus, no difference was found between the Control and the ANS Training groups regarding the exact
Arithmetic test, they all improved on exact additions and subtractions during the period of the experiment.
Notice that this is specifically relevant for the Below-Average level, in which there is a significant difference
of improvement between the ANS Training group and the control group but only in the Operations subtest
(approximate symbolic arithmetics) and not in the exact Arithmetic test.

With a concern that our one significant improvement based on training in the below-average tertile might be a
spurious result, we also checked if children showed improvement in all three problem types of the Operations
subtest. Focusing on the Below-Average level and the Operations subtest, where the training seemed to
be effective, we assessed if any specific equation type (additions, subtractions or multiplications) drove the
observed difference between groups. A 2 X 3 mixed ANOVA, with Training Condition (ANS Training, Control)
as a between-participant factor and Operation subtest equation type (addition, subtraction, multiplication) as
a within-participant factor revealed a main effect of Training Condition, with ANS Training children showing
greater percentage change than Control children, F(1,84) = 5.64, p < .05, η2 = .06, but no effect of problem
type, F(2,84) = 0.08, p = .9, η2 = .002, and no interaction, F(2,84) = 0.27, p = .76, η2 = .006. Thus, children who
performed Below-Average in the pre-training arithmetic scores and had ANS training, improved in all types of
equations of the Operations subtest, without any of the equation types solely driving the difference between
groups. This suggests some stability of this effect, but of course, more research is needed.
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In light of the obtained results, we focus our discussion on the Below-Average tertile regarding their initial
arithmetic level, where training may be effective, although only in approximate symbolic arithmetics (Operations
subtest) and not in exact symbolic arithmetics (exact Arithmetic test: Additions and Subtractions subtests).

Discussion

A considerable amount of research has highlighted the importance of the ANS to math ability, although this
role is still controversial and many questions need to be answered before any causal link can be claimed with
high confidence. In the present study, we try to make some contributions to this ongoing discussion. Here we
found severe restrictions on how and to whom training the ANS resulted in improvements of arithmetic skills.
We extensively trained children on an ANS confidence-scaffolding quantity discrimination task (increasing trial
difficulty during sessions). We found that training on speeded, non-symbolic, quantity comparison engages the
approximate number system, as shown by the size- ratio signature of the responses, even for size-controlled
and stochastic size-controlled trials. Furthermore, ANS training increased ANS efficiency both over the course
of the 3-week intervention and within daily sessions. These results confirm and extend the finding that ANS can
be partially trained (Knoll et al., 2016; Obersteiner et al., 2013; Park et al., 2016; Park & Brannon, 2014).

In relation to other ongoing debates, we found that initial symbolic math ability related to ANS efficiency (Figure
6), that individual differences in ANS efficiency were measurable, and that these individual differences were
stable throughout training (Figure 5).

Concerning another controversy, we think it is very likely that our children were relying on some continuous
extent cues (Leibovich & Henik, 2013; Leibovich et al., 2017; Merkley, Scerif, & Ansari, 2017; Szűcs & Myers,
2017), however, the resulting representations might still be numerical (Halberda, 2019).

Our main interest, though, was to assess to what extent ANS training would transfer to symbolic mathematics,
specifically, arithmetics. Here, our results showed limited benefits. Overall, both Control and ANS Training
children improved from Pre- to Post-training. As children's knowledge progresses over the course of a one-
month class activity, this overall improvement was expected. However, we also expected to detect some
training-induced improvements in the ANS training group compared to the Control group and, overall, these
were not observed. Taking the intervention group as a whole, the ANS training did not help children improve
their results in the exact Arithmetics test (Additions and Subtractions tests) nor in the novel Operations test.
This is in fact the null hypothesis of the present study, that is, that the training did not have an overall effect.
The one positive result of note was that, within the children who performed below-average in the pre-training
exact Arithmetic test, training the ANS did seem to show a transfer to approximate symbolic arithmetics. This
appears to be consistent with patterns seen in other samples of this age (Langfus et al., 2019; Valle-Lisboa et
al., 2016). Present results suggest that those who belonged in the ANS training group and had below-average
pre-training scores showed a higher improvement in the novel Operations test, which assesses approximate
symbolic arithmetics. This improvement, however, was not seen in the exact Arithmetic test (Additions and
Subtractions tests).

We would like to stress that the results obtained are positive solely regarding a marginal aspect of arithmetics
(symbolic approximate arithmetics), and for a limited number of children (below average in the Arithmetic
pre-test). Furthermore, considering the low number of participants per tertile, a word of caution is necessary
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when interpreting these results. They should be taken as a suggestion since further research with larger
sample sizes in each tertile is needed to support this claim.

This being said, and as an attempt at giving a possible explanation for the obtained results, we cautiously
present the following considerations. Different ANS training regimens may train different components of the
ANS, such as the approximate sense of cardinality, or of arithmetic transformations, or of quantity comparison,
or of a sense of ratios. Other training studies with adults (Park & Brannon, 2013, 2014) and preschoolers
(Park et al., 2016) improved exact symbolic arithmetic by training approximate arithmetic transformations. In
those studies, the cognitive component shared by their ANS training and the symbolic tests was the arithmetic
manipulation of numerical quantities. We tentatively suggest that the lack of this cognitive component in our
ANS training could be an explaining factor regarding why we obtained null results in the exact symbolic arith-
metic. In the present study, we instead focused on training the ANS through approximate quantity comparison,
a component also present in our measure, the Operations test. This test requires a previous understanding
of how basic arithmetic operations change quantities. It has the sensitivity to assesses approximate symbolic
arithmetics since no exact calculation is required; a comparison of both sides of the equal sign (3 ⬜ 5 =
15) allows for a correct answer. Simply stated, “more” for addition, “less” for subtraction, and “much more”
for multiplication. For this reason, this novel test may have detected improvements in approximate symbolic
arithmetics resulting from practice with the approximate nature of our ANS training procedure. The novel
Operations test as a measure of success could, therefore, constitute a strength of our study, allowing us to
better detect a positive transfer, if any, from ANS comparison training to approximate symbolic arithmetics.

There are further explanations to be considered. One potential tension in our results is that we found that Pre-
training Symbolic Math Test performance is significantly related to ANS performance (Figure 6) but that ANS
training did not lead to greater gains in Symbolic Maths performance (e.g., Figure 7). While not unexpected –
because the relationship in Figure 6 has developed over the lifetime of the child while the non-result in Figure
7 relies on just 1-month of training – this difference in results leaves open several possibilities: e.g., perhaps
1-month of training isn’t enough; or training the ANS through approximate quantity comparison is not the most
beneficial type of ANS training; or the relationship in Figure 6 relies on EF while the non-relationship in Figure
7 does not; or that the ANS is important to approximate symbolic arithmetic but not to exact arithmetic per
se; etc. In a way, the diverse results in the present study mirror the diversity of interpretations that are current
and appropriate in literature, since we are far from understanding the mechanisms that underlie the relation
between ANS and symbolic mathematics (Szkudlarek & Brannon, 2017).

We cautiously suggest that ANS quantity comparison training could help children who are struggling with
arithmetics to improve some very basic aspects, namely, symbolic approximation. Given that we found some
improvements only in approximate symbolic arithmetic, it remains to be studied if these could later positively
impact the comprehension and execution of exact symbolic arithmetic. While approximate symbolic arithmetic
is not typically taught in schools, exact symbolic arithmetic is, and it is a target outcome of math education.

In the present study, results suggest that the ANS exists, that individual differences in ANS efficiency exist and
are stable, and that ANS training can improve ANS efficiency. However, we found that training the ANS, by
approximate quantity comparisons, leads to very limited transfer in 7-8 year olds – only in children with low
pre-training arithmetic scores and only in approximate symbolic arithmetics.
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