1 Description

This is the codebook of “Study 2” from the manuscript http://dx.doi.org/10.23668/psycharchives.3364 .
Data is embeded in this file. To download the data as CSV click here.

Structure of the codebook:

  • Participants consecuatively received two abstracts (stimulus)
  • They answered the scales in response to one abstract (stimulus) at a time.
  • The codebook reports each item and scale for the abstracts separately
  • “abs1_” or “abs2_” in the scale name indicates if the item/scale refers to the first or second abstract

2 Metadata

load(here("9_data+codebooks/rbt_study2_scientists.RData"))
rbt_sci <- rbt


# define several variables as character so they get plotted better
rbt_sci$position <- as.character(rbt_sci$position)
rbt_sci$country <- as.character(rbt_sci$country)

rbt_sci <- rbt_sci %>%
  rename_at(vars(abs1_tsc_2, abs2_tsc_2),  add_R)

rbt_sci <- rbt_sci %>% 
    mutate_at(vars(matches("\\dR$")), reverse_labelled_values)


rbt_sci <- detect_scales(rbt_sci, quiet = FALSE)
metadata(rbt_sci)$name <- "Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample."
metadata(rbt_sci)$description <- "Code book to manuscript"
metadata(rbt_sci)$identifier <- ""
metadata(rbt_sci)$datePublished <- "2021-07-12"
metadata(rbt_sci)$creator <- list(
      "@type" = "Person",
      givenName = "Schneider", familyName = "Jürgen",
      email = "juergen.schneider@uni-tuebingen.de", 
      affiliation = list("@type" = "Organization",
        name = "University of Tübingen"))
metadata(rbt_sci)$citation <- "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample"
# add variable labels
var_label(rbt_sci) <- list(
        treat1 = "First treatment condition, the participant was assigned to.",
        treat2 = "Second treatment condition, the participant was assigned to.",
        first_topic = "Topic the participant received first.",
        country = "Country of residence",
        abs1_tru_exp_1 = "competent - incompetent",
        abs1_tru_exp_2 = "intelligent - unintelligent",
        abs1_tru_exp_3 = "well educated -   poorly educated",
        abs1_tru_exp_4 = "professional - unprofessional",
        abs1_tru_exp_5 = "experienced - inexperienced",
        abs1_tru_exp_6 = "qualified - unqualified",
        abs1_tru_int_1 = "sincere - insincere",
        abs1_tru_int_2 = "honest - dishonest",
        abs1_tru_int_3 = "just - unjust",
        abs1_tru_int_4 = "fair - unfair",
        abs1_tru_ben_1 = "moral - immoral",
        abs1_tru_ben_2 = "ethical - unethical",
        abs1_tru_ben_3 = "responsible - irresponsible",
        abs1_tru_ben_4 = "considerate - inconsiderate",
        abs2_tru_exp_1 = "competent - incompetent",
        abs2_tru_exp_2 = "intelligent - unintelligent",
        abs2_tru_exp_3 = "well educated -   poorly educated",
        abs2_tru_exp_4 = "professional - unprofessional",
        abs2_tru_exp_5 = "experienced - inexperienced",
        abs2_tru_exp_6 = "qualified - unqualified",
        abs2_tru_int_1 = "sincere - insincere",
        abs2_tru_int_2 = "honest - dishonest",
        abs2_tru_int_3 = "just - unjust",
        abs2_tru_int_4 = "fair - unfair",
        abs2_tru_ben_1 = "moral - immoral",
        abs2_tru_ben_2 = "ethical - unethical",
        abs2_tru_ben_3 = "responsible - irresponsible",
        abs2_tru_ben_4 = "considerate - inconsiderate",
        position = "What is your current position?",
        position_oth = "please specify other position"
)


# add value labels ##################################
val_labels(rbt_sci$treat1) <- c("Greyed out badges (no adherence to Open Science standards)" = "GB",
                                "Control Condition (no badges)" = "CC",
                                "Colored out badges (adherence to Open Science standards)" = "CB")

val_labels(rbt_sci$treat2) <- c("Greyed out badges (no adherence to Open Science standards)" = "GB",
                                "Control Condition (no badges)" = "CC",
                                "Colored out badges (adherence to Open Science standards)" = "CB")


# semantic differentials
add_semantic_diff <- function(x) {
  val_labels(x) <- c("1" = 1,
                     "2" = 2,
                     "3" = 3,
                     "4" = 4,
                     "5" = 5,
                     "6" = 6,
                     "7" = 7)
  x
}

rbt_sci <- rbt_sci %>%
  mutate_at(vars(abs1_tru_exp_1:abs1_tru_ben_4, abs2_tru_exp_1:abs2_tru_ben_4),  add_semantic_diff)

# position
val_labels(rbt_sci$position) <- c("Graduate Research Assistant/ Postgraduate Researcher" = "1",
                                  "Postdoctoral Researcher" = "2",
                                  "Lecturers" = "3",
                                  "Senior Lecturers" = "4",
                                  "Professors/ Readers" = "5",
                                  "other" = "-999")

# country
val_labels(rbt_sci$country) <- c("United Kingdom" = "1",
                                 "Republic of Ireland" = "2",
                                 "USA" = "3",
                                 "Canada" = "4",
                                 "other" = "-999")

3 Codebook

3.0.1 Metadata

3.0.1.1 Description

Dataset name: Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample.

Code book to manuscript

Metadata for search engines

  • Citation: Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample

  • Identifier:

  • Date published: 2021-07-12

  • Creator:

name value
@type Person
givenName Schneider
familyName Jürgen
email
affiliation Organization , University of Tübingen
x
session
abs1_tsm_1
abs1_tsm_2
abs1_tsm_3
abs1_tsm_4
abs1_tsc_1
abs1_tsc_2R
abs1_tsc_3
abs1_tru_exp_1
abs1_tru_exp_2
abs1_tru_exp_3
abs1_tru_exp_4
abs1_tru_exp_5
abs1_tru_exp_6
abs1_tru_int_1
abs1_tru_int_2
abs1_tru_int_3
abs1_tru_int_4
abs1_tru_ben_1
abs1_tru_ben_2
abs1_tru_ben_3
abs1_tru_ben_4
abs1_tch_1
abs1_tch_2
abs1_tch_3
abs1_tch_4
abs1_tch_5
abs2_tsm_1
abs2_tsm_2
abs2_tsm_3
abs2_tsm_4
abs2_tsc_1
abs2_tsc_2R
abs2_tsc_3
abs2_tru_exp_1
abs2_tru_exp_2
abs2_tru_exp_3
abs2_tru_exp_4
abs2_tru_exp_5
abs2_tru_exp_6
abs2_tru_int_1
abs2_tru_int_2
abs2_tru_int_3
abs2_tru_int_4
abs2_tru_ben_1
abs2_tru_ben_2
abs2_tru_ben_3
abs2_tru_ben_4
abs2_tch_1
abs2_tch_2
abs2_tch_3
abs2_tch_4
abs2_tch_5
tsm_1
tsm_2
tsm_3
sex
age
position
position_oth
country
country_oth
abs1_tsm
abs1_tsc
abs1_tru_exp
abs1_tru_int
abs1_tru_ben
abs1_tch
abs2_tsm
abs2_tsc
abs2_tru_exp
abs2_tru_int
abs2_tru_ben
abs2_tch
tsm
treat1
treat2
first_topic

#Variables

3.0.2 sex

Sex

3.0.2.1 Distribution

Distribution of values for sex

Distribution of values for sex

0 missing values.

3.0.2.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min median max whitespace n_value_labels
sex Sex mc_button haven_labelled 0 79 0 1 2 0 1 NA 1 0 2

3.0.2.3 Item

Item options
type type_options name label optional class showif value block_order item_order
mc_button sex Sex 0 79

3.0.2.4 Value labels

Response choices
name value
1 f
2 m

3.0.3 age

Age

3.0.3.1 Distribution

Distribution of values for age

Distribution of values for age

0 missing values.

3.0.3.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
age Age mc_button haven_labelled 0 80 0 1 16 16 50 21.532 10.75956 4 ▇▁▁▁▂▁▁▁

3.0.3.3 Item

Item options
type type_options name label optional class showif value block_order item_order
mc_button age Age 0 80

3.0.3.4 Value labels

Response choices
name value
16-34 16
35-49 35
50 and above 50
Item was never rendered for this user. NA

3.0.4 position

What is your current position?

3.0.4.1 Distribution

Distribution of values for position

Distribution of values for position

0 missing values.

3.0.4.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
position What is your current position? haven_labelled 0 1 6 0 1 NA 4 0 6

3.0.4.3 Value labels

Response choices
name value
1 1
2 2
3 3
4 4
5 5
6 -999

3.0.5 position_oth

please specify other position

3.0.5.1 Distribution

Distribution of values for position_oth

Distribution of values for position_oth

135 missing values.

3.0.5.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min max whitespace
position_oth please specify other position text 100 character 1 position == -999 82 135 0.46 103 0 2 97 0

3.0.5.3 Item

Item options
type type_options name label optional class showif value block_order item_order
text 100 position_oth please specify other position 1 position == -999 82

3.0.5.4 Value labels

Response choices
name value

3.0.6 country

Country of residence

3.0.6.1 Distribution

Distribution of values for country

Distribution of values for country

0 missing values.

3.0.6.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
country Country of residence haven_labelled 0 1 4 0 1 NA 4 0 5

3.0.6.3 Value labels

Response choices
name value
1 1
2 2
3 3
4 4
5 -999

3.0.7 country_oth

please specify other country

3.0.7.1 Distribution

Distribution of values for country_oth

Distribution of values for country_oth

184 missing values.

3.0.7.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min max whitespace
country_oth please specify other country text 100 character 1 country == -999 84 184 0.264 28 0 5 15 0

3.0.7.3 Item

Item options
type type_options name label optional class showif value block_order item_order
text 100 country_oth please specify other country 1 country == -999 84

3.0.7.4 Value labels

Response choices
name value

3.0.8 Scale: abs1_tsm

3.0.8.1 Overview

Reliability: ωordinal [95% CI] = 0.74 [0.69;0.79].

Missing: 0.

Likert plot of scale abs1_tsm items

Likert plot of scale abs1_tsm items

Distribution of scale abs1_tsm

Distribution of scale abs1_tsm

3.0.8.2 Reliability details


3.0.8.2.1 Scale diagnosis
3.0.8.2.1.1 Reliability (internal consistency) estimates
3.0.8.2.1.1 Scale structure
3.0.8.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tsm_1, abs1_tsm_2, abs1_tsm_3 & abs1_tsm_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.8.2.1.1 Estimates assuming interval level
Omega (total): 0.69
Omega (hierarchical): 0.64
Revelle’s Omega (total): 0.77
Greatest Lower Bound (GLB): 0.77
Coefficient H: 0.76
Coefficient Alpha: 0.69

3.0.8.2.1.1 Confidence intervals

Omega (total): [0.63; 0.75]
Coefficient Alpha: [0.62; 0.75]
3.0.8.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.74
Ordinal Omega (hierarch.): 0.72
Ordinal Coefficient Alpha: 0.74

3.0.8.2.1.1 Confidence intervals

Ordinal Omega (total): [0.69; 0.79]
Ordinal Coefficient Alpha: [0.69; 0.79]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.8.2.1.2 Eigen values

2.078, 0.873, 0.641 & 0.408

3.0.8.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tsm_1 0.487
abs1_tsm_2 0.726
abs1_tsm_3 0.379
abs1_tsm_4 0.775
3.0.8.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tsm_1 0.696
abs1_tsm_2 0.776
abs1_tsm_3 0.602
abs1_tsm_4 0.793
3.0.8.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tsm_1 1.98 2 0.7104 0.8429 2 0.0533 1 1 3 4 0.4031 -0.678 0.164 250 0 250
abs1_tsm_2 2.5 2 0.749 0.8654 1 0.0547 1 1 3 4 0.2248 -0.6485 0.152 250 0 250
abs1_tsm_3 2.288 2 0.7199 0.8485 1 0.0537 1 1 3 4 0.0871 -0.6717 0.17 250 0 250
abs1_tsm_4 2.772 3 0.6747 0.8214 1 0.052 1 2 4 4 -0.0812 -0.6708 0.166 250 0 250
3.0.8.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.8.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tsm_1 The insights from the text are arbitrary. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 43 left500 hide_label mc_width70 0 1 1 2 4 1.980 0.8428771 5 ▆▁▇▁▁▅▁▁
abs1_tsm_2 The knowledge contained in the text cannot be generalized to other situations at all. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 43 left500 hide_label mc_width70 0 1 1 2 4 2.500 0.8654455 5 ▂▁▇▁▁▆▁▂
abs1_tsm_3 The opposite of the knowledge formulated in the text would be equally right/wrong. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 43 left500 hide_label mc_width70 0 1 1 2 4 2.288 0.8484903 5 ▃▁▇▁▁▇▁▂
abs1_tsm_4 The knowledge formulated in the text cannot claim validity for other situations. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 43 left500 hide_label mc_width70 0 1 1 3 4 2.772 0.8214103 5 ▁▁▆▁▁▇▁▃

3.0.9 Scale: abs1_tsc

3.0.9.1 Overview

Reliability: ωordinal [95% CI] = 0.92 [0.9;0.94].

Missing: 0.

Likert plot of scale abs1_tsc items

Likert plot of scale abs1_tsc items

Distribution of scale abs1_tsc

Distribution of scale abs1_tsc

3.0.9.2 Reliability details


3.0.9.2.1 Scale diagnosis
3.0.9.2.1.1 Reliability (internal consistency) estimates
3.0.9.2.1.1 Scale structure
3.0.9.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tsc_1, abs1_tsc_2R & abs1_tsc_3
Observations: 250
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.9.2.1.1 Estimates assuming interval level
Omega (total): 0.86
Omega (hierarchical): 0.03
Revelle’s Omega (total): 0.87
Greatest Lower Bound (GLB): 0.89
Coefficient H: 0.90
Coefficient Alpha: 0.86

3.0.9.2.1.1 Confidence intervals

Omega (total): [0.84; 0.89]
Coefficient Alpha: [0.83; 0.89]
3.0.9.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.92
Ordinal Omega (hierarch.): 0.91
Ordinal Coefficient Alpha: 0.92

3.0.9.2.1.1 Confidence intervals

Ordinal Omega (total): [0.9; 0.94]
Ordinal Coefficient Alpha: [0.9; 0.93]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.9.2.1.2 Eigen values

2.36, 0.409 & 0.231

3.0.9.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tsc_1 0.830
abs1_tsc_2R 0.731
abs1_tsc_3 0.916
3.0.9.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tsc_1 0.892
abs1_tsc_2R 0.850
abs1_tsc_3 0.917
3.0.9.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tsc_1 2.904 3 0.5048 0.7105 1 0.0449 1 2 4 4 -0.1984 -0.2229 0.122 250 0 250
abs1_tsc_2R 3.156 3 0.5659 0.7523 1 0.0476 1 2 4 4 -0.5506 -0.1796 0.176 250 0 250
abs1_tsc_3 2.944 3 0.4948 0.7035 0 0.0445 1 2 4 4 -0.41 0.2864 0.096 250 0 250
3.0.9.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.9.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tsc_1 The statements of the just-read text are consistent with my personal opinion on the subject. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 44 left500 hide_label mc_width70 0 1 1 3 4 2.904 0.7104950 5 ▁▁▃▁▁▇▁▃
abs1_tsc_2R The statements of the text excerpt I just read contradict what I myself think about the topic. mc haven_labelled 4. fully <br />disagree,
3. &nbsp;,
2. &nbsp;&nbsp;,
1. fully <br />agree,
NA. Item was never rendered for this user.
0 44 left500 hide_label mc_width70 0 1 1 3 4 3.156 0.7522817 5 ▁▁▂▁▁▇▁▆
abs1_tsc_3 I agree with the statements I just read in the text excerpt. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 44 left500 hide_label mc_width70 0 1 1 3 4 2.944 0.7034510 5 ▁▁▂▁▁▇▁▂

3.0.10 Scale: abs1_tru_exp

3.0.10.1 Overview

Reliability: ωtotal [95% CI] = 0.94 [not computed].

Missing: 0.

Likert plot of scale abs1_tru_exp items

Likert plot of scale abs1_tru_exp items

Distribution of scale abs1_tru_exp

Distribution of scale abs1_tru_exp

3.0.10.2 Reliability details


3.0.10.2.1 Scale diagnosis
3.0.10.2.1.1 Reliability (internal consistency) estimates
3.0.10.2.1.1 Scale structure
3.0.10.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_exp_1, abs1_tru_exp_2, abs1_tru_exp_3, abs1_tru_exp_4, abs1_tru_exp_5 & abs1_tru_exp_6
Observations: 250
Positive correlations: 15
Number of correlations: 15
Percentage positive correlations: 100
3.0.10.2.1.1 Estimates assuming interval level
Omega (total): 0.94
Omega (hierarchical): 0.89
Revelle’s Omega (total): 0.95
Greatest Lower Bound (GLB): 0.96
Coefficient H: 0.94
Coefficient Alpha: 0.94

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.10.2.1.2 Eigen values

4.654, 0.387, 0.313, 0.247, 0.225 & 0.174

3.0.10.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_exp_1 0.880
abs1_tru_exp_2 0.850
abs1_tru_exp_3 0.829
abs1_tru_exp_4 0.863
abs1_tru_exp_5 0.819
abs1_tru_exp_6 0.887
3.0.10.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_exp_1 0.896
abs1_tru_exp_2 0.882
abs1_tru_exp_3 0.864
abs1_tru_exp_4 0.885
abs1_tru_exp_5 0.853
abs1_tru_exp_6 0.903
3.0.10.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_exp_1 2.532 2 1.6154 1.271 1 0.0804 1 1 3 6 0.6613 -0.1543 0.128 250 0 250
abs1_tru_exp_2 2.412 2 1.3195 1.1487 1 0.0727 1 1 3 6 0.6822 0.2342 0.13 250 0 250
abs1_tru_exp_3 2.268 2 1.3616 1.1669 2 0.0738 1 1 3 6 0.8857 0.2498 0.144 250 0 250
abs1_tru_exp_4 2.512 2 1.8814 1.3716 2 0.0867 1 1 4 7 0.7889 0.0018 0.14 250 0 250
abs1_tru_exp_5 2.944 3 1.9005 1.3786 2 0.0872 1 2 4 7 0.5185 -0.3025 0.132 250 0 250
abs1_tru_exp_6 2.592 2 1.6803 1.2962 1 0.082 1 1 3 6 0.6043 -0.2711 0.126 250 0 250
3.0.10.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.10.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_exp_1 competent - incompetent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 6 2.532 1.270999 7 ▆▇▁▇▃▁▂▁
abs1_tru_exp_2 intelligent - unintelligent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 6 2.412 1.148710 7 ▆▇▁▆▃▁▁▁
abs1_tru_exp_3 well educated - poorly educated haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 6 2.268 1.166886 7 ▆▇▁▃▂▁▁▁
abs1_tru_exp_4 professional - unprofessional haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 7 2.512 1.371635 7 ▇▇▆▃▁▂▁▁
abs1_tru_exp_5 experienced - inexperienced haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.944 1.378574 7 ▅▇▇▅▁▂▂▁
abs1_tru_exp_6 qualified - unqualified haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 6 2.592 1.296247 7 ▆▇▁▇▃▁▂▁

3.0.11 Scale: abs1_tru_int

3.0.11.1 Overview

Reliability: ωtotal [95% CI] = 0.91 [not computed].

Missing: 0.

Likert plot of scale abs1_tru_int items

Likert plot of scale abs1_tru_int items

Distribution of scale abs1_tru_int

Distribution of scale abs1_tru_int

3.0.11.2 Reliability details


3.0.11.2.1 Scale diagnosis
3.0.11.2.1.1 Reliability (internal consistency) estimates
3.0.11.2.1.1 Scale structure
3.0.11.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_int_1, abs1_tru_int_2, abs1_tru_int_3 & abs1_tru_int_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.11.2.1.1 Estimates assuming interval level
Omega (total): 0.91
Omega (hierarchical): 0.87
Revelle’s Omega (total): 0.93
Greatest Lower Bound (GLB): 0.93
Coefficient H: 0.91
Coefficient Alpha: 0.91

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.11.2.1.2 Eigen values

3.124, 0.414, 0.254 & 0.207

3.0.11.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_int_1 0.775
abs1_tru_int_2 0.854
abs1_tru_int_3 0.852
abs1_tru_int_4 0.884
3.0.11.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_int_1 0.850
abs1_tru_int_2 0.899
abs1_tru_int_3 0.884
abs1_tru_int_4 0.902
3.0.11.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_int_1 2.696 2.5 1.3851 1.1769 2 0.0744 1 2 4 6 0.282 -0.822 0.116 250 0 250
abs1_tru_int_2 2.68 3 1.6402 1.2807 2 0.081 1 2 4 6 0.3744 -0.6369 0.122 250 0 250
abs1_tru_int_3 2.952 3 1.4756 1.2147 2 0.0768 1 2 4 6 0.0111 -0.7619 0.124 250 0 250
abs1_tru_int_4 2.9 3 1.7209 1.3118 2 0.083 1 2 4 7 0.283 -0.5354 0.124 250 0 250
3.0.11.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.11.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_int_1 sincere - insincere haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2.5 6 2.696 1.176913 7 ▃▇▁▅▆▁▁▁
abs1_tru_int_2 honest - dishonest haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3.0 6 2.680 1.280688 7 ▆▇▁▇▆▁▂▁
abs1_tru_int_3 just - unjust haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3.0 6 2.952 1.214742 7 ▃▆▁▇▇▁▂▁
abs1_tru_int_4 fair - unfair haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3.0 7 2.900 1.311824 7 ▅▇▇▇▁▂▁▁

3.0.12 Scale: abs1_tru_ben

3.0.12.1 Overview

Reliability: ωtotal [95% CI] = 0.9 [not computed].

Missing: 0.

Likert plot of scale abs1_tru_ben items

Likert plot of scale abs1_tru_ben items

Distribution of scale abs1_tru_ben

Distribution of scale abs1_tru_ben

3.0.12.2 Reliability details


3.0.12.2.1 Scale diagnosis
3.0.12.2.1.1 Reliability (internal consistency) estimates
3.0.12.2.1.1 Scale structure
3.0.12.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_ben_1, abs1_tru_ben_2, abs1_tru_ben_3 & abs1_tru_ben_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.12.2.1.1 Estimates assuming interval level
Omega (total): 0.90
Omega (hierarchical): 0.89
Revelle’s Omega (total): 0.91
Greatest Lower Bound (GLB): 0.91
Coefficient H: 0.90
Coefficient Alpha: 0.90

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.12.2.1.2 Eigen values

3.068, 0.386, 0.3 & 0.246

3.0.12.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_ben_1 0.827
abs1_tru_ben_2 0.849
abs1_tru_ben_3 0.871
abs1_tru_ben_4 0.773
3.0.12.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_ben_1 0.876
abs1_tru_ben_2 0.884
abs1_tru_ben_3 0.898
abs1_tru_ben_4 0.844
3.0.12.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_ben_1 2.924 3 1.4279 1.195 2 0.0756 1 2 4 6 0.0479 -0.5128 0.132 250 0 250
abs1_tru_ben_2 2.788 3 1.9348 1.391 2 0.088 1 2 4 7 0.5111 -0.4223 0.108 250 0 250
abs1_tru_ben_3 2.78 3 1.851 1.3605 2 0.086 1 2 4 7 0.5785 -0.1748 0.118 250 0 250
abs1_tru_ben_4 3.012 3 1.5219 1.2337 2 0.078 1 2 4 6 0.0029 -0.6164 0.114 250 0 250
3.0.12.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.12.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_ben_1 moral - immoral haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 2.924 1.194963 7 ▃▅▁▇▇▁▂▁
abs1_tru_ben_2 ethical - unethical haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.788 1.390969 7 ▆▇▆▆▁▂▁▁
abs1_tru_ben_3 responsible - irresponsible haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.780 1.360516 7 ▅▇▆▅▁▂▁▁
abs1_tru_ben_4 considerate - inconsiderate haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 3.012 1.233671 7 ▃▅▁▆▇▁▁▁

3.0.13 Scale: abs1_tch

3.0.13.1 Overview

Reliability: ωtotal [95% CI] = 0.87 [0.85;0.9].

Missing: 0.

Likert plot of scale abs1_tch items

Likert plot of scale abs1_tch items

Distribution of scale abs1_tch

Distribution of scale abs1_tch

3.0.13.2 Reliability details


3.0.13.2.1 Scale diagnosis
3.0.13.2.1.1 Reliability (internal consistency) estimates
3.0.13.2.1.1 Scale structure
3.0.13.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tch_1, abs1_tch_2, abs1_tch_3, abs1_tch_4 & abs1_tch_5
Observations: 250
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
3.0.13.2.1.1 Estimates assuming interval level
Omega (total): 0.87
Omega (hierarchical): 0.67
Revelle’s Omega (total): 0.90
Greatest Lower Bound (GLB): 0.88
Coefficient H: 0.90
Coefficient Alpha: 0.86

3.0.13.2.1.1 Confidence intervals

Omega (total): [0.85; 0.9]
Coefficient Alpha: [0; 0.2]

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.13.2.1.2 Eigen values

3.176, 0.791, 0.503, 0.298 & 0.231

3.0.13.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tch_1 0.548
abs1_tch_2 0.889
abs1_tch_3 0.845
abs1_tch_4 0.549
abs1_tch_5 0.818
3.0.13.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tch_1 0.694
abs1_tch_2 0.885
abs1_tch_3 0.853
abs1_tch_4 0.688
abs1_tch_5 0.842
3.0.13.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tch_1 -113.488 3 103309.4717 321.4179 3 20.3283 -999 1 4 4 -2.4128 3.8523 0.124 250 0 250
abs1_tch_2 -221.608 2 175150.1268 418.5094 3 26.4689 -999 1 4 4 -1.332 -0.2277 0.118 250 0 250
abs1_tch_3 -209.576 2 168335.0886 410.2866 3 25.9488 -999 1 4 4 -1.4178 0.0101 0.128 250 0 250
abs1_tch_4 -109.5 3 100194.2189 316.5347 3 20.0194 -999 1 4 4 -2.4755 4.1612 0.116 250 0 250
abs1_tch_5 -221.652 2 175130.284 418.4857 3 26.4674 -999 1 4 4 -1.332 -0.2277 0.118 250 0 250
3.0.13.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.13.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tch_1 It is transparent which data form the basis of the study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 49 left500 hide_label mc_width70 0 1 -999 3 4 -113.488 321.4179 6 ▁▁▁▁▁▁▁▇
abs1_tch_2 Interested parties can have a close look at the questionnaire of the described study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 49 left500 hide_label mc_width70 0 1 -999 2 4 -221.608 418.5094 6 ▂▁▁▁▁▁▁▇
abs1_tch_3 The data collected in the study are publicly available. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 49 left500 hide_label mc_width70 0 1 -999 2 4 -209.576 410.2866 6 ▂▁▁▁▁▁▁▇
abs1_tch_4 The authors make it easy for other researchers to understand their statistical analyses. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 49 left500 hide_label mc_width70 0 1 -999 3 4 -109.500 316.5347 6 ▁▁▁▁▁▁▁▇
abs1_tch_5 If other researchers want to repeat the study, they have easy access to the questionnaires used. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 49 left500 hide_label mc_width70 0 1 -999 2 4 -221.652 418.4857 6 ▂▁▁▁▁▁▁▇

3.0.14 Scale: abs2_tsm

3.0.14.1 Overview

Reliability: ωordinal [95% CI] = 0.7 [0.64;0.76].

Missing: 0.

Likert plot of scale abs2_tsm items

Likert plot of scale abs2_tsm items

Distribution of scale abs2_tsm

Distribution of scale abs2_tsm

3.0.14.2 Reliability details


3.0.14.2.1 Scale diagnosis
3.0.14.2.1.1 Reliability (internal consistency) estimates
3.0.14.2.1.1 Scale structure
3.0.14.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tsm_1, abs2_tsm_2, abs2_tsm_3 & abs2_tsm_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.14.2.1.1 Estimates assuming interval level
Omega (total): 0.64
Omega (hierarchical): 0.57
Revelle’s Omega (total): 0.72
Greatest Lower Bound (GLB): 0.72
Coefficient H: 0.70
Coefficient Alpha: 0.65

3.0.14.2.1.1 Confidence intervals

Omega (total): [0.57; 0.72]
Coefficient Alpha: [0.58; 0.72]
3.0.14.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.70
Ordinal Omega (hierarch.): 0.68
Ordinal Coefficient Alpha: 0.70

3.0.14.2.1.1 Confidence intervals

Ordinal Omega (total): [0.64; 0.76]
Ordinal Coefficient Alpha: [0.64; 0.76]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.14.2.1.2 Eigen values

1.959, 0.947, 0.604 & 0.49

3.0.14.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tsm_1 0.360
abs2_tsm_2 0.670
abs2_tsm_3 0.490
abs2_tsm_4 0.712
3.0.14.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tsm_1 0.589
abs2_tsm_2 0.732
abs2_tsm_3 0.710
abs2_tsm_4 0.756
3.0.14.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tsm_1 2.076 2 0.6729 0.8203 2 0.0519 1 1 3 4 0.3424 -0.4836 0.128 250 0 250
abs2_tsm_2 2.456 2 0.6025 0.7762 1 0.0491 1 1 3 4 0.2517 -0.3276 0.172 250 0 250
abs2_tsm_3 2.26 2 0.6108 0.7816 1 0.0494 1 1 3 4 0.2202 -0.3114 0.15 250 0 250
abs2_tsm_4 2.576 2.5 0.5745 0.758 1 0.0479 1 2 3 4 0.2698 -0.4585 0.19 250 0 250
3.0.14.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.14.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tsm_1 The insights from the text are arbitrary. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 59 left500 hide_label mc_width70 0 1 1 2.0 4 2.076 0.8203144 5 ▅▁▇▁▁▅▁▁
abs2_tsm_2 The knowledge contained in the text cannot be generalized to other situations at all. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 59 left500 hide_label mc_width70 0 1 1 2.0 4 2.456 0.7761919 5 ▁▁▇▁▁▆▁▂
abs2_tsm_3 The opposite of the knowledge formulated in the text would be equally right/wrong. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 59 left500 hide_label mc_width70 0 1 1 2.0 4 2.260 0.7815647 5 ▂▁▇▁▁▅▁▁
abs2_tsm_4 The knowledge formulated in the text cannot claim validity for other situations. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 59 left500 hide_label mc_width70 0 1 1 2.5 4 2.576 0.7579724 5 ▁▁▇▁▁▇▁▂

3.0.15 Scale: abs2_tsc

3.0.15.1 Overview

Reliability: ωordinal [95% CI] = 0.87 [0.85;0.9].

Missing: 0.

Likert plot of scale abs2_tsc items

Likert plot of scale abs2_tsc items

Distribution of scale abs2_tsc

Distribution of scale abs2_tsc

3.0.15.2 Reliability details


3.0.15.2.1 Scale diagnosis
3.0.15.2.1.1 Reliability (internal consistency) estimates
3.0.15.2.1.1 Scale structure
3.0.15.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tsc_1, abs2_tsc_2R & abs2_tsc_3
Observations: 250
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.15.2.1.1 Estimates assuming interval level
Omega (total): 0.82
Omega (hierarchical): 0.03
Revelle’s Omega (total): 0.82
Greatest Lower Bound (GLB): 0.85
Coefficient H: 0.89
Coefficient Alpha: 0.80

3.0.15.2.1.1 Confidence intervals

Omega (total): [0.79; 0.86]
Coefficient Alpha: [0.76; 0.85]
3.0.15.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.87
Ordinal Omega (hierarch.): 0.87
Ordinal Coefficient Alpha: 0.85

3.0.15.2.1.1 Confidence intervals

Ordinal Omega (total): [0.85; 0.9]
Ordinal Coefficient Alpha: [0.82; 0.89]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.15.2.1.2 Eigen values

2.156, 0.619 & 0.225

3.0.15.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tsc_1 0.841
abs2_tsc_2R 0.534
abs2_tsc_3 0.919
3.0.15.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tsc_1 0.892
abs2_tsc_2R 0.732
abs2_tsc_3 0.908
3.0.15.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tsc_1 2.788 3 0.5292 0.7274 1 0.046 1 2 4 4 -0.0927 -0.3408 0.154 250 0 250
abs2_tsc_2R 2.996 3 0.4699 0.6855 0 0.0434 1 2 4 4 -0.2966 0.031 0.108 250 0 250
abs2_tsc_3 2.856 3 0.4932 0.7023 1 0.0444 1 2 4 4 -0.2127 -0.0919 0.128 250 0 250
3.0.15.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.15.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tsc_1 The statements of the just-read text are consistent with my personal opinion on the subject. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 60 left500 hide_label mc_width70 0 1 1 3 4 2.788 0.7274426 5 ▁▁▅▁▁▇▁▂
abs2_tsc_2R The statements of the text excerpt I just read contradict what I myself think about the topic. mc haven_labelled 4. fully <br />disagree,
3. &nbsp;,
2. &nbsp;&nbsp;,
1. fully <br />agree,
NA. Item was never rendered for this user.
0 60 left500 hide_label mc_width70 0 1 1 3 4 2.996 0.6854659 5 ▁▁▂▁▁▇▁▃
abs2_tsc_3 I agree with the statements I just read in the text excerpt. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 60 left500 hide_label mc_width70 0 1 1 3 4 2.856 0.7023083 5 ▁▁▃▁▁▇▁▂

3.0.16 Scale: abs2_tru_exp

3.0.16.1 Overview

Reliability: ωtotal [95% CI] = 0.96 [not computed].

Missing: 0.

Likert plot of scale abs2_tru_exp items

Likert plot of scale abs2_tru_exp items

Distribution of scale abs2_tru_exp

Distribution of scale abs2_tru_exp

3.0.16.2 Reliability details


3.0.16.2.1 Scale diagnosis
3.0.16.2.1.1 Reliability (internal consistency) estimates
3.0.16.2.1.1 Scale structure
3.0.16.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_exp_1, abs2_tru_exp_2, abs2_tru_exp_3, abs2_tru_exp_4, abs2_tru_exp_5 & abs2_tru_exp_6
Observations: 250
Positive correlations: 15
Number of correlations: 15
Percentage positive correlations: 100
3.0.16.2.1.1 Estimates assuming interval level
Omega (total): 0.96
Omega (hierarchical): 0.93
Revelle’s Omega (total): 0.97
Greatest Lower Bound (GLB): 0.97
Coefficient H: 0.96
Coefficient Alpha: 0.96

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.16.2.1.2 Eigen values

5.057, 0.252, 0.22, 0.186, 0.154 & 0.13

3.0.16.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_exp_1 0.886
abs2_tru_exp_2 0.910
abs2_tru_exp_3 0.911
abs2_tru_exp_4 0.901
abs2_tru_exp_5 0.894
abs2_tru_exp_6 0.902
3.0.16.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_exp_1 0.908
abs2_tru_exp_2 0.923
abs2_tru_exp_3 0.924
abs2_tru_exp_4 0.920
abs2_tru_exp_5 0.914
abs2_tru_exp_6 0.919
3.0.16.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_exp_1 2.496 2 1.6968 1.3026 2 0.0824 1 1 4 7 0.6682 -0.1422 0.136 250 0 250
abs2_tru_exp_2 2.468 2 1.4387 1.1995 1 0.0759 1 1 4 7 0.5827 -0.0926 0.122 250 0 250
abs2_tru_exp_3 2.408 2 1.4393 1.1997 2 0.0759 1 1 3 7 0.5917 -0.0431 0.14 250 0 250
abs2_tru_exp_4 2.54 2 1.8719 1.3682 2 0.0865 1 1 4 7 0.7027 -0.1176 0.138 250 0 250
abs2_tru_exp_5 2.788 3 1.8946 1.3765 2 0.0871 1 2 4 7 0.4245 -0.5757 0.122 250 0 250
abs2_tru_exp_6 2.608 2 1.6208 1.2731 2 0.0805 1 1 4 6 0.4153 -0.65 0.12 250 0 250
3.0.16.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.16.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_exp_1 competent - incompetent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 7 2.496 1.302602 7 ▇▇▆▅▁▂▁▁
abs2_tru_exp_2 intelligent - unintelligent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 7 2.468 1.199471 7 ▆▇▆▅▁▁▁▁
abs2_tru_exp_3 well educated - poorly educated haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 7 2.408 1.199706 7 ▇▇▇▅▁▁▁▁
abs2_tru_exp_4 professional - unprofessional haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 7 2.540 1.368169 7 ▇▇▆▅▁▂▁▁
abs2_tru_exp_5 experienced - inexperienced haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.788 1.376457 7 ▇▇▇▅▁▃▁▁
abs2_tru_exp_6 qualified - unqualified haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 2 6 2.608 1.273114 7 ▇▇▁▇▅▁▂▁

3.0.17 Scale: abs2_tru_int

3.0.17.1 Overview

Reliability: ωtotal [95% CI] = 0.92 [not computed].

Missing: 0.

Likert plot of scale abs2_tru_int items

Likert plot of scale abs2_tru_int items

Distribution of scale abs2_tru_int

Distribution of scale abs2_tru_int

3.0.17.2 Reliability details


3.0.17.2.1 Scale diagnosis
3.0.17.2.1.1 Reliability (internal consistency) estimates
3.0.17.2.1.1 Scale structure
3.0.17.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_int_1, abs2_tru_int_2, abs2_tru_int_3 & abs2_tru_int_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.17.2.1.1 Estimates assuming interval level
Omega (total): 0.92
Omega (hierarchical): 0.90
Revelle’s Omega (total): 0.94
Greatest Lower Bound (GLB): 0.94
Coefficient H: 0.92
Coefficient Alpha: 0.92

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.17.2.1.2 Eigen values

3.195, 0.328, 0.304 & 0.172

3.0.17.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_int_1 0.803
abs2_tru_int_2 0.882
abs2_tru_int_3 0.833
abs2_tru_int_4 0.901
3.0.17.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_int_1 0.870
abs2_tru_int_2 0.906
abs2_tru_int_3 0.885
abs2_tru_int_4 0.913
3.0.17.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_int_1 2.772 3 1.4056 1.1856 2 0.075 1 2 4 7 0.3774 0.0594 0.134 250 0 250
abs2_tru_int_2 2.74 3 1.7353 1.3173 2 0.0833 1 2 4 6 0.447 -0.5021 0.122 250 0 250
abs2_tru_int_3 2.848 3 1.3824 1.1758 2 0.0744 1 2 4 6 0.164 -0.5691 0.142 250 0 250
abs2_tru_int_4 2.752 3 1.6812 1.2966 2 0.082 1 2 4 6 0.2921 -0.6923 0.12 250 0 250
3.0.17.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.17.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_int_1 sincere - insincere haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.772 1.185596 7 ▅▇▇▆▁▁▁▁
abs2_tru_int_2 honest - dishonest haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 2.740 1.317324 7 ▆▇▁▇▆▁▂▁
abs2_tru_int_3 just - unjust haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 2.848 1.175766 7 ▃▇▁▇▇▁▁▁
abs2_tru_int_4 fair - unfair haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 2.752 1.296619 7 ▇▇▁▇▇▁▂▁

3.0.18 Scale: abs2_tru_ben

3.0.18.1 Overview

Reliability: ωtotal [95% CI] = 0.91 [not computed].

Missing: 0.

Likert plot of scale abs2_tru_ben items

Likert plot of scale abs2_tru_ben items

Distribution of scale abs2_tru_ben

Distribution of scale abs2_tru_ben

3.0.18.2 Reliability details


3.0.18.2.1 Scale diagnosis
3.0.18.2.1.1 Reliability (internal consistency) estimates
3.0.18.2.1.1 Scale structure
3.0.18.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_ben_1, abs2_tru_ben_2, abs2_tru_ben_3 & abs2_tru_ben_4
Observations: 250
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.18.2.1.1 Estimates assuming interval level
Omega (total): 0.91
Omega (hierarchical): 0.90
Revelle’s Omega (total): 0.93
Greatest Lower Bound (GLB): 0.93
Coefficient H: 0.91
Coefficient Alpha: 0.91

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.18.2.1.2 Eigen values

3.153, 0.354, 0.272 & 0.221

3.0.18.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_ben_1 0.859
abs2_tru_ben_2 0.869
abs2_tru_ben_3 0.868
abs2_tru_ben_4 0.793
3.0.18.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_ben_1 0.895
abs2_tru_ben_2 0.897
abs2_tru_ben_3 0.901
abs2_tru_ben_4 0.858
3.0.18.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_ben_1 2.872 3 1.4695 1.2122 2 0.0767 1 2 4 6 0.0569 -0.7755 0.124 250 0 250
abs2_tru_ben_2 2.772 3 1.7591 1.3263 2 0.0839 1 2 4 7 0.3949 -0.3172 0.12 250 0 250
abs2_tru_ben_3 2.7 3 1.6566 1.2871 2 0.0814 1 2 4 7 0.5867 0.0111 0.116 250 0 250
abs2_tru_ben_4 2.952 3 1.564 1.2506 2 0.0791 1 2 4 7 0.1534 -0.4482 0.128 250 0 250
3.0.18.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.18.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_ben_1 moral - immoral haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 2.872 1.212227 7 ▅▇▁▆▇▁▂▁
abs2_tru_ben_2 ethical - unethical haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.772 1.326293 7 ▇▇▇▇▁▂▁▁
abs2_tru_ben_3 responsible - irresponsible haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.700 1.287100 7 ▅▇▆▅▁▂▁▁
abs2_tru_ben_4 considerate - inconsiderate haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.952 1.250581 7 ▅▆▇▇▁▂▁▁

3.0.19 Scale: abs2_tch

3.0.19.1 Overview

Reliability: ωtotal [95% CI] = 0.91 [0.9;0.93].

Missing: 0.

Likert plot of scale abs2_tch items

Likert plot of scale abs2_tch items

Distribution of scale abs2_tch

Distribution of scale abs2_tch

3.0.19.2 Reliability details


3.0.19.2.1 Scale diagnosis
3.0.19.2.1.1 Reliability (internal consistency) estimates
3.0.19.2.1.1 Scale structure
3.0.19.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tch_1, abs2_tch_2, abs2_tch_3, abs2_tch_4 & abs2_tch_5
Observations: 250
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
3.0.19.2.1.1 Estimates assuming interval level
Omega (total): 0.91
Omega (hierarchical): 0.89
Revelle’s Omega (total): 0.92
Greatest Lower Bound (GLB): 0.92
Coefficient H: 0.95
Coefficient Alpha: 0.90

3.0.19.2.1.1 Confidence intervals

Omega (total): [0.9; 0.93]
Coefficient Alpha: [0; 0.2]

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.19.2.1.2 Eigen values

3.557, 0.687, 0.461, 0.164 & 0.132

3.0.19.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tch_1 0.505
abs2_tch_2 0.914
abs2_tch_3 0.906
abs2_tch_4 0.697
abs2_tch_5 0.940
3.0.19.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tch_1 0.631
abs2_tch_2 0.922
abs2_tch_3 0.905
abs2_tch_4 0.791
abs2_tch_5 0.930
3.0.19.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tch_1 -109.656 2 100159.1342 316.4793 3 20.0159 -999 1 4 4 -2.4754 4.1612 0.122 250 0 250
abs2_tch_2 -209.968 1 168167.8464 410.0827 2 25.9359 -999 -999 4 4 -1.4178 0.0101 0.124 250 0 250
abs2_tch_3 -209.98 1 168162.8871 410.0767 3 25.9355 -999 -999 4 4 -1.4177 0.0101 0.142 250 0 250
abs2_tch_4 -157.756 2 135340.9804 367.8872 3 23.2672 -999 1 4 4 -1.866 1.494 0.126 250 0 250
abs2_tch_5 -201.936 1 163473.7469 404.3189 3 25.5714 -999 -999 4 4 -1.4779 0.1858 0.142 250 0 250
3.0.19.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.19.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tch_1 It is transparent which data form the basis of the study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 70 left500 hide_label mc_width70 0 1 -999 2 4 -109.656 316.4793 6 ▁▁▁▁▁▁▁▇
abs2_tch_2 Interested parties can have a close look at the questionnaire of the described study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 70 left500 hide_label mc_width70 0 1 -999 1 4 -209.968 410.0827 6 ▂▁▁▁▁▁▁▇
abs2_tch_3 The data collected in the study are publicly available. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 70 left500 hide_label mc_width70 0 1 -999 1 4 -209.980 410.0767 6 ▂▁▁▁▁▁▁▇
abs2_tch_4 The authors make it easy for other researchers to understand their statistical analyses. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 70 left500 hide_label mc_width70 0 1 -999 2 4 -157.756 367.8872 6 ▂▁▁▁▁▁▁▇
abs2_tch_5 If other researchers want to repeat the study, they have easy access to the questionnaires used. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 70 left500 hide_label mc_width70 0 1 -999 1 4 -201.936 404.3189 6 ▂▁▁▁▁▁▁▇

3.0.20 Scale: tsm

3.0.20.1 Overview

Reliability: ωordinal [95% CI] = 0.73 [0.67;0.78].

Missing: 0.

Likert plot of scale tsm items

Likert plot of scale tsm items

Distribution of scale tsm

Distribution of scale tsm

3.0.20.2 Reliability details


3.0.20.2.1 Scale diagnosis
3.0.20.2.1.1 Reliability (internal consistency) estimates
3.0.20.2.1.1 Scale structure
3.0.20.2.1.1 Information about this scale
Dataframe: res$dat
Items: tsm_1, tsm_2 & tsm_3
Observations: 250
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.20.2.1.1 Estimates assuming interval level
Omega (total): 0.57
Omega (hierarchical): 0.12
Revelle’s Omega (total): 0.60
Greatest Lower Bound (GLB): 0.61
Coefficient H: 0.62
Coefficient Alpha: 0.57

3.0.20.2.1.1 Confidence intervals

Omega (total): [0.48; 0.66]
Coefficient Alpha: [0.48; 0.66]
3.0.20.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.73
Ordinal Omega (hierarch.): 0.72
Ordinal Coefficient Alpha: 0.71

3.0.20.2.1.1 Confidence intervals

Ordinal Omega (total): [0.67; 0.78]
Ordinal Coefficient Alpha: [0.65; 0.77]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.20.2.1.2 Eigen values

1.653, 0.762 & 0.585

3.0.20.2.1.3 Factor analysis (reproducing only shared variance)
ML1
tsm_1 0.627
tsm_2 0.661
tsm_3 0.433
3.0.20.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
tsm_1 0.773
tsm_2 0.783
tsm_3 0.665
3.0.20.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tsm_1 3.64 4 0.392 0.6261 1 0.0396 1 3 NA 4 -1.632 1.8758 0.106 250 0 250
tsm_2 3.716 4 0.3728 0.6106 0 0.0386 1 3 NA 4 -2.4217 6.0716 0.082 250 0 250
tsm_3 3.368 4 0.6512 0.807 1 0.051 1 3 NA 4 -0.9975 -0.0265 0.138 250 0 250
3.0.20.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.20.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
tsm_1 The explanations (grey text boxes) were helpful for understanding the badges (“Open Materials”, “Open Data”, “Open Code”). mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 77 left500 hide_label mc_width70 0 1 1 4 4 3.640 0.6260734 5 ▁▁▁▁▁▂▁▇
tsm_2 I read all additional explanations (grey text boxes) on the front pages. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 77 left500 hide_label mc_width70 0 1 1 4 4 3.716 0.6106024 5 ▁▁▁▁▁▂▁▇
tsm_3 The badges (“Open Materials”, “Open Data”, “Open Code”) influenced my assessment of the authors. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 77 left500 hide_label mc_width70 0 1 1 4 4 3.368 0.8069577 5 ▁▁▂▁▁▃▁▇

3.0.21 treat1

First treatment condition, the participant was assigned to.

3.0.21.1 Distribution

Distribution of values for treat1

Distribution of values for treat1

0 missing values.

3.0.21.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
treat1 First treatment condition, the participant was assigned to. haven_labelled 0 1 3 0 2 NA 2 0 3

3.0.21.3 Value labels

Response choices
name value
1 GB
2 CC
3 CB

3.0.22 treat2

Second treatment condition, the participant was assigned to.

3.0.22.1 Distribution

Distribution of values for treat2

Distribution of values for treat2

0 missing values.

3.0.22.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
treat2 Second treatment condition, the participant was assigned to. haven_labelled 0 1 3 0 2 NA 2 0 3

3.0.22.3 Value labels

Response choices
name value
1 GB
2 CC
3 CB

3.0.23 first_topic

Topic the participant received first.

3.0.23.1 Distribution

Distribution of values for first_topic

Distribution of values for first_topic

0 missing values.

3.0.23.2 Summary statistics

name label type data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min max whitespace
first_topic Topic the participant received first. calculate character 0 sample(c(“mobility”, “savings”), 1, replace = F) 24 0 1 2 0 7 8 0

3.0.23.3 Item

Item options
type name label optional class showif value block_order item_order
calculate first_topic 0 sample(c(“mobility”, “savings”), 1, replace = F) 24

3.0.23.4 Value labels

Response choices
name value

3.1 Missingness report

3.2 Codebook table

JSON-LD metadata The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.

{
  "name": "Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample.",
  "description": "Code book to manuscript\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
  "identifier": "",
  "datePublished": "2021-07-12",
  "creator": {
    "@type": "Person",
    "givenName": "Schneider",
    "familyName": "Jürgen",
    "email": "juergen.schneider@uni-tuebingen.de",
    "affiliation": {
      "@type": "Organization",
      "name": "University of Tübingen"
    }
  },
  "citation": "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample",
  "keywords": ["session", "abs1_tsm_1", "abs1_tsm_2", "abs1_tsm_3", "abs1_tsm_4", "abs1_tsc_1", "abs1_tsc_2R", "abs1_tsc_3", "abs1_tru_exp_1", "abs1_tru_exp_2", "abs1_tru_exp_3", "abs1_tru_exp_4", "abs1_tru_exp_5", "abs1_tru_exp_6", "abs1_tru_int_1", "abs1_tru_int_2", "abs1_tru_int_3", "abs1_tru_int_4", "abs1_tru_ben_1", "abs1_tru_ben_2", "abs1_tru_ben_3", "abs1_tru_ben_4", "abs1_tch_1", "abs1_tch_2", "abs1_tch_3", "abs1_tch_4", "abs1_tch_5", "abs2_tsm_1", "abs2_tsm_2", "abs2_tsm_3", "abs2_tsm_4", "abs2_tsc_1", "abs2_tsc_2R", "abs2_tsc_3", "abs2_tru_exp_1", "abs2_tru_exp_2", "abs2_tru_exp_3", "abs2_tru_exp_4", "abs2_tru_exp_5", "abs2_tru_exp_6", "abs2_tru_int_1", "abs2_tru_int_2", "abs2_tru_int_3", "abs2_tru_int_4", "abs2_tru_ben_1", "abs2_tru_ben_2", "abs2_tru_ben_3", "abs2_tru_ben_4", "abs2_tch_1", "abs2_tch_2", "abs2_tch_3", "abs2_tch_4", "abs2_tch_5", "tsm_1", "tsm_2", "tsm_3", "sex", "age", "position", "position_oth", "country", "country_oth", "abs1_tsm", "abs1_tsc", "abs1_tru_exp", "abs1_tru_int", "abs1_tru_ben", "abs1_tch", "abs2_tsm", "abs2_tsc", "abs2_tru_exp", "abs2_tru_int", "abs2_tru_ben", "abs2_tch", "tsm", "treat1", "treat2", "first_topic"],
  "@context": "http://schema.org/",
  "@type": "Dataset",
  "variableMeasured": [
    {
      "name": "session",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_1",
      "description": "The insights from the text are arbitrary.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_2",
      "description": "The knowledge contained in the text cannot be generalized to other situations at all.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_3",
      "description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_4",
      "description": "The knowledge formulated in the text cannot claim validity for other situations.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_1",
      "description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_2R",
      "description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
      "value": "4. __fully <br />disagree__,\n3. &nbsp;,\n2. &nbsp;&nbsp;,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_3",
      "description": "I agree with the statements I just read in the text excerpt.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_1",
      "description": "competent - incompetent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_2",
      "description": "intelligent - unintelligent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_3",
      "description": "well educated -\tpoorly educated",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_4",
      "description": "professional - unprofessional",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_5",
      "description": "experienced - inexperienced",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_6",
      "description": "qualified - unqualified",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_1",
      "description": "sincere - insincere",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_2",
      "description": "honest - dishonest",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_3",
      "description": "just - unjust",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_4",
      "description": "fair - unfair",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_1",
      "description": "moral - immoral",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_2",
      "description": "ethical - unethical",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_3",
      "description": "responsible - irresponsible",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_4",
      "description": "considerate - inconsiderate",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_1",
      "description": "It is transparent which data form the basis of the study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_2",
      "description": "Interested parties can have a close look at the questionnaire of the described study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_3",
      "description": "The data collected in the study are publicly available.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_4",
      "description": "The authors make it easy for other researchers to understand their statistical analyses.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_5",
      "description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_1",
      "description": "The insights from the text are arbitrary.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_2",
      "description": "The knowledge contained in the text cannot be generalized to other situations at all.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_3",
      "description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_4",
      "description": "The knowledge formulated in the text cannot claim validity for other situations.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_1",
      "description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_2R",
      "description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
      "value": "4. __fully <br />disagree__,\n3. &nbsp;,\n2. &nbsp;&nbsp;,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_3",
      "description": "I agree with the statements I just read in the text excerpt.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_1",
      "description": "competent - incompetent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_2",
      "description": "intelligent - unintelligent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_3",
      "description": "well educated -\tpoorly educated",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_4",
      "description": "professional - unprofessional",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_5",
      "description": "experienced - inexperienced",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_6",
      "description": "qualified - unqualified",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_1",
      "description": "sincere - insincere",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_2",
      "description": "honest - dishonest",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_3",
      "description": "just - unjust",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_4",
      "description": "fair - unfair",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_1",
      "description": "moral - immoral",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_2",
      "description": "ethical - unethical",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_3",
      "description": "responsible - irresponsible",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_4",
      "description": "considerate - inconsiderate",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_1",
      "description": "It is transparent which data form the basis of the study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_2",
      "description": "Interested parties can have a close look at the questionnaire of the described study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_3",
      "description": "The data collected in the study are publicly available.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_4",
      "description": "The authors make it easy for other researchers to understand their statistical analyses.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_5",
      "description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_1",
      "description": "The explanations (grey text boxes) were helpful for understanding the badges (\"Open Materials\", \"Open Data\", \"Open Code\").",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_2",
      "description": "I read all additional explanations (grey text boxes) on the front pages.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_3",
      "description": "The badges (\"Open Materials\", \"Open Data\", \"Open Code\") influenced my assessment of the authors.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "sex",
      "description": "Sex",
      "value": "f. female,\nm. male",
      "maxValue": "m",
      "minValue": "f",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "age",
      "description": "Age",
      "value": "16. 16-34,\n35. 35-49,\n50. 50 and above,\nNA. Item was never rendered for this user.",
      "maxValue": 50,
      "minValue": 16,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "position",
      "description": "What is your current position?",
      "value": "1. Graduate Research Assistant/ Postgraduate Researcher,\n2. Postdoctoral Researcher,\n3. Lecturers,\n4. Senior Lecturers,\n5. Professors/ Readers,\n-999. other",
      "maxValue": "5",
      "minValue": "-999",
      "@type": "propertyValue"
    },
    {
      "name": "position_oth",
      "description": "please specify other position",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "country",
      "description": "Country of residence",
      "value": "1. United Kingdom,\n2. Republic of Ireland,\n3. USA,\n4. Canada,\n-999. other",
      "maxValue": "4",
      "minValue": "-999",
      "@type": "propertyValue"
    },
    {
      "name": "country_oth",
      "description": "please specify other country",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm",
      "description": "aggregate of 4 abs1_tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc",
      "description": "aggregate of 3 abs1_tsc items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp",
      "description": "aggregate of 6 abs1_tru_exp items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int",
      "description": "aggregate of 4 abs1_tru_int items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben",
      "description": "aggregate of 4 abs1_tru_ben items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch",
      "description": "aggregate of 5 abs1_tch items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm",
      "description": "aggregate of 4 abs2_tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc",
      "description": "aggregate of 3 abs2_tsc items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp",
      "description": "aggregate of 6 abs2_tru_exp items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int",
      "description": "aggregate of 4 abs2_tru_int items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben",
      "description": "aggregate of 4 abs2_tru_ben items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch",
      "description": "aggregate of 5 abs2_tch items",
      "@type": "propertyValue"
    },
    {
      "name": "tsm",
      "description": "aggregate of 3 tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "treat1",
      "description": "First treatment condition, the participant was assigned to.",
      "value": "GB. Greyed out badges (no adherence to Open Science standards),\nCC. Control Condition (no badges),\nCB. Colored out badges (adherence to Open Science standards)",
      "maxValue": "GB",
      "minValue": "CB",
      "@type": "propertyValue"
    },
    {
      "name": "treat2",
      "description": "Second treatment condition, the participant was assigned to.",
      "value": "GB. Greyed out badges (no adherence to Open Science standards),\nCC. Control Condition (no badges),\nCB. Colored out badges (adherence to Open Science standards)",
      "maxValue": "GB",
      "minValue": "CB",
      "@type": "propertyValue"
    },
    {
      "name": "first_topic",
      "description": "Topic the participant received first.",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    }
  ]
}`