This is the codebook of “Study 2” from the manuscript http://dx.doi.org/10.23668/psycharchives.3364 .
Data is embeded in this file. To download the data as CSV click here.
Structure of the codebook:
load(here("9_data+codebooks/rbt_study2_scientists.RData"))
rbt_sci <- rbt
# define several variables as character so they get plotted better
rbt_sci$position <- as.character(rbt_sci$position)
rbt_sci$country <- as.character(rbt_sci$country)
rbt_sci <- rbt_sci %>%
rename_at(vars(abs1_tsc_2, abs2_tsc_2), add_R)
rbt_sci <- rbt_sci %>%
mutate_at(vars(matches("\\dR$")), reverse_labelled_values)
rbt_sci <- detect_scales(rbt_sci, quiet = FALSE)
metadata(rbt_sci)$name <- "Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample."
metadata(rbt_sci)$description <- "Code book to manuscript"
metadata(rbt_sci)$identifier <- ""
metadata(rbt_sci)$datePublished <- "2021-07-12"
metadata(rbt_sci)$creator <- list(
"@type" = "Person",
givenName = "Schneider", familyName = "Jürgen",
email = "juergen.schneider@uni-tuebingen.de",
affiliation = list("@type" = "Organization",
name = "University of Tübingen"))
metadata(rbt_sci)$citation <- "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample"
# add variable labels
var_label(rbt_sci) <- list(
treat1 = "First treatment condition, the participant was assigned to.",
treat2 = "Second treatment condition, the participant was assigned to.",
first_topic = "Topic the participant received first.",
country = "Country of residence",
abs1_tru_exp_1 = "competent - incompetent",
abs1_tru_exp_2 = "intelligent - unintelligent",
abs1_tru_exp_3 = "well educated - poorly educated",
abs1_tru_exp_4 = "professional - unprofessional",
abs1_tru_exp_5 = "experienced - inexperienced",
abs1_tru_exp_6 = "qualified - unqualified",
abs1_tru_int_1 = "sincere - insincere",
abs1_tru_int_2 = "honest - dishonest",
abs1_tru_int_3 = "just - unjust",
abs1_tru_int_4 = "fair - unfair",
abs1_tru_ben_1 = "moral - immoral",
abs1_tru_ben_2 = "ethical - unethical",
abs1_tru_ben_3 = "responsible - irresponsible",
abs1_tru_ben_4 = "considerate - inconsiderate",
abs2_tru_exp_1 = "competent - incompetent",
abs2_tru_exp_2 = "intelligent - unintelligent",
abs2_tru_exp_3 = "well educated - poorly educated",
abs2_tru_exp_4 = "professional - unprofessional",
abs2_tru_exp_5 = "experienced - inexperienced",
abs2_tru_exp_6 = "qualified - unqualified",
abs2_tru_int_1 = "sincere - insincere",
abs2_tru_int_2 = "honest - dishonest",
abs2_tru_int_3 = "just - unjust",
abs2_tru_int_4 = "fair - unfair",
abs2_tru_ben_1 = "moral - immoral",
abs2_tru_ben_2 = "ethical - unethical",
abs2_tru_ben_3 = "responsible - irresponsible",
abs2_tru_ben_4 = "considerate - inconsiderate",
position = "What is your current position?",
position_oth = "please specify other position"
)
# add value labels ##################################
val_labels(rbt_sci$treat1) <- c("Greyed out badges (no adherence to Open Science standards)" = "GB",
"Control Condition (no badges)" = "CC",
"Colored out badges (adherence to Open Science standards)" = "CB")
val_labels(rbt_sci$treat2) <- c("Greyed out badges (no adherence to Open Science standards)" = "GB",
"Control Condition (no badges)" = "CC",
"Colored out badges (adherence to Open Science standards)" = "CB")
# semantic differentials
add_semantic_diff <- function(x) {
val_labels(x) <- c("1" = 1,
"2" = 2,
"3" = 3,
"4" = 4,
"5" = 5,
"6" = 6,
"7" = 7)
x
}
rbt_sci <- rbt_sci %>%
mutate_at(vars(abs1_tru_exp_1:abs1_tru_ben_4, abs2_tru_exp_1:abs2_tru_ben_4), add_semantic_diff)
# position
val_labels(rbt_sci$position) <- c("Graduate Research Assistant/ Postgraduate Researcher" = "1",
"Postdoctoral Researcher" = "2",
"Lecturers" = "3",
"Senior Lecturers" = "4",
"Professors/ Readers" = "5",
"other" = "-999")
# country
val_labels(rbt_sci$country) <- c("United Kingdom" = "1",
"Republic of Ireland" = "2",
"USA" = "3",
"Canada" = "4",
"other" = "-999")
Dataset name: Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample.
Code book to manuscript
Metadata for search engines
Citation: Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample
Identifier:
Date published: 2021-07-12
Creator:
name | value |
---|---|
@type | Person |
givenName | Schneider |
familyName | Jürgen |
juergen.schneider@uni-tuebingen.de | |
affiliation | Organization , University of Tübingen |
|
#Variables
Sex
Distribution of values for sex
0 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sex | Sex | mc_button | haven_labelled | 0 | 79 | 0 | 1 | 2 | 0 | 1 | NA | 1 | 0 | 2 |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
mc_button | sex | Sex | 0 | 79 |
name | value |
---|---|
1 | f |
2 | m |
Age
Distribution of values for age
0 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
age | Age | mc_button | haven_labelled | 0 | 80 | 0 | 1 | 16 | 16 | 50 | 21.532 | 10.75956 | 4 | ▇▁▁▁▂▁▁▁ |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
mc_button | age | Age | 0 | 80 |
name | value |
---|---|
16-34 | 16 |
35-49 | 35 |
50 and above | 50 |
Item was never rendered for this user. | NA |
What is your current position?
Distribution of values for position
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
position | What is your current position? | haven_labelled | 0 | 1 | 6 | 0 | 1 | NA | 4 | 0 | 6 |
name | value |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | -999 |
please specify other position
Distribution of values for position_oth
135 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
position_oth | please specify other position | text | 100 | character | 1 | position == -999 | 82 | 135 | 0.46 | 103 | 0 | 2 | 97 | 0 |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
text | 100 | position_oth | please specify other position | 1 | position == -999 | 82 |
name | value |
---|
Country of residence
Distribution of values for country
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
country | Country of residence | haven_labelled | 0 | 1 | 4 | 0 | 1 | NA | 4 | 0 | 5 |
name | value |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | -999 |
please specify other country
Distribution of values for country_oth
184 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
country_oth | please specify other country | text | 100 | character | 1 | country == -999 | 84 | 184 | 0.264 | 28 | 0 | 5 | 15 | 0 |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
text | 100 | country_oth | please specify other country | 1 | country == -999 | 84 |
name | value |
---|
Reliability: ωordinal [95% CI] = 0.74 [0.69;0.79].
Missing: 0.
Likert plot of scale abs1_tsm items
Distribution of scale abs1_tsm
Dataframe: | res$dat |
Items: | abs1_tsm_1, abs1_tsm_2, abs1_tsm_3 & abs1_tsm_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.69 |
Omega (hierarchical): | 0.64 |
Revelle’s Omega (total): | 0.77 |
Greatest Lower Bound (GLB): | 0.77 |
Coefficient H: | 0.76 |
Coefficient Alpha: | 0.69 |
3.0.8.2.1.1 Confidence intervals
Omega (total): | [0.63; 0.75] |
Coefficient Alpha: | [0.62; 0.75] |
Ordinal Omega (total): | 0.74 |
Ordinal Omega (hierarch.): | 0.72 |
Ordinal Coefficient Alpha: | 0.74 |
3.0.8.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.69; 0.79] |
Ordinal Coefficient Alpha: | [0.69; 0.79] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.078, 0.873, 0.641 & 0.408
PC1 | |
---|---|
abs1_tsm_1 | 0.696 |
abs1_tsm_2 | 0.776 |
abs1_tsm_3 | 0.602 |
abs1_tsm_4 | 0.793 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsm_1 | 1.98 | 2 | 0.7104 | 0.8429 | 2 | 0.0533 | 1 | 1 | 3 | 4 | 0.4031 | -0.678 | 0.164 | 250 | 0 | 250 |
abs1_tsm_2 | 2.5 | 2 | 0.749 | 0.8654 | 1 | 0.0547 | 1 | 1 | 3 | 4 | 0.2248 | -0.6485 | 0.152 | 250 | 0 | 250 |
abs1_tsm_3 | 2.288 | 2 | 0.7199 | 0.8485 | 1 | 0.0537 | 1 | 1 | 3 | 4 | 0.0871 | -0.6717 | 0.17 | 250 | 0 | 250 |
abs1_tsm_4 | 2.772 | 3 | 0.6747 | 0.8214 | 1 | 0.052 | 1 | 2 | 4 | 4 | -0.0812 | -0.6708 | 0.166 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsm_1 | The insights from the text are arbitrary. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 43 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2 | 4 | 1.980 | 0.8428771 | 5 | ▆▁▇▁▁▅▁▁ | ||||
abs1_tsm_2 | The knowledge contained in the text cannot be generalized to other situations at all. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 43 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2 | 4 | 2.500 | 0.8654455 | 5 | ▂▁▇▁▁▆▁▂ | ||||
abs1_tsm_3 | The opposite of the knowledge formulated in the text would be equally right/wrong. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 43 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2 | 4 | 2.288 | 0.8484903 | 5 | ▃▁▇▁▁▇▁▂ | ||||
abs1_tsm_4 | The knowledge formulated in the text cannot claim validity for other situations. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 43 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.772 | 0.8214103 | 5 | ▁▁▆▁▁▇▁▃ |
Reliability: ωordinal [95% CI] = 0.92 [0.9;0.94].
Missing: 0.
Likert plot of scale abs1_tsc items
Distribution of scale abs1_tsc
Dataframe: | res$dat |
Items: | abs1_tsc_1, abs1_tsc_2R & abs1_tsc_3 |
Observations: | 250 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.86 |
Omega (hierarchical): | 0.03 |
Revelle’s Omega (total): | 0.87 |
Greatest Lower Bound (GLB): | 0.89 |
Coefficient H: | 0.90 |
Coefficient Alpha: | 0.86 |
3.0.9.2.1.1 Confidence intervals
Omega (total): | [0.84; 0.89] |
Coefficient Alpha: | [0.83; 0.89] |
Ordinal Omega (total): | 0.92 |
Ordinal Omega (hierarch.): | 0.91 |
Ordinal Coefficient Alpha: | 0.92 |
3.0.9.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.9; 0.94] |
Ordinal Coefficient Alpha: | [0.9; 0.93] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.36, 0.409 & 0.231
PC1 | |
---|---|
abs1_tsc_1 | 0.892 |
abs1_tsc_2R | 0.850 |
abs1_tsc_3 | 0.917 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsc_1 | 2.904 | 3 | 0.5048 | 0.7105 | 1 | 0.0449 | 1 | 2 | 4 | 4 | -0.1984 | -0.2229 | 0.122 | 250 | 0 | 250 |
abs1_tsc_2R | 3.156 | 3 | 0.5659 | 0.7523 | 1 | 0.0476 | 1 | 2 | 4 | 4 | -0.5506 | -0.1796 | 0.176 | 250 | 0 | 250 |
abs1_tsc_3 | 2.944 | 3 | 0.4948 | 0.7035 | 0 | 0.0445 | 1 | 2 | 4 | 4 | -0.41 | 0.2864 | 0.096 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsc_1 | The statements of the just-read text are consistent with my personal opinion on the subject. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 44 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.904 | 0.7104950 | 5 | ▁▁▃▁▁▇▁▃ | ||||
abs1_tsc_2R | The statements of the text excerpt I just read contradict what I myself think about the topic. | mc | haven_labelled | 4. fully <br />disagree, 3. , 2. , 1. fully <br />agree, NA. Item was never rendered for this user. |
0 | 44 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 3.156 | 0.7522817 | 5 | ▁▁▂▁▁▇▁▆ | ||||
abs1_tsc_3 | I agree with the statements I just read in the text excerpt. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 44 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.944 | 0.7034510 | 5 | ▁▁▂▁▁▇▁▂ |
Reliability: ωtotal [95% CI] = 0.94 [not computed].
Missing: 0.
Likert plot of scale abs1_tru_exp items
Distribution of scale abs1_tru_exp
Dataframe: | res$dat |
Items: | abs1_tru_exp_1, abs1_tru_exp_2, abs1_tru_exp_3, abs1_tru_exp_4, abs1_tru_exp_5 & abs1_tru_exp_6 |
Observations: | 250 |
Positive correlations: | 15 |
Number of correlations: | 15 |
Percentage positive correlations: | 100 |
Omega (total): | 0.94 |
Omega (hierarchical): | 0.89 |
Revelle’s Omega (total): | 0.95 |
Greatest Lower Bound (GLB): | 0.96 |
Coefficient H: | 0.94 |
Coefficient Alpha: | 0.94 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
4.654, 0.387, 0.313, 0.247, 0.225 & 0.174
PC1 | |
---|---|
abs1_tru_exp_1 | 0.896 |
abs1_tru_exp_2 | 0.882 |
abs1_tru_exp_3 | 0.864 |
abs1_tru_exp_4 | 0.885 |
abs1_tru_exp_5 | 0.853 |
abs1_tru_exp_6 | 0.903 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_exp_1 | 2.532 | 2 | 1.6154 | 1.271 | 1 | 0.0804 | 1 | 1 | 3 | 6 | 0.6613 | -0.1543 | 0.128 | 250 | 0 | 250 |
abs1_tru_exp_2 | 2.412 | 2 | 1.3195 | 1.1487 | 1 | 0.0727 | 1 | 1 | 3 | 6 | 0.6822 | 0.2342 | 0.13 | 250 | 0 | 250 |
abs1_tru_exp_3 | 2.268 | 2 | 1.3616 | 1.1669 | 2 | 0.0738 | 1 | 1 | 3 | 6 | 0.8857 | 0.2498 | 0.144 | 250 | 0 | 250 |
abs1_tru_exp_4 | 2.512 | 2 | 1.8814 | 1.3716 | 2 | 0.0867 | 1 | 1 | 4 | 7 | 0.7889 | 0.0018 | 0.14 | 250 | 0 | 250 |
abs1_tru_exp_5 | 2.944 | 3 | 1.9005 | 1.3786 | 2 | 0.0872 | 1 | 2 | 4 | 7 | 0.5185 | -0.3025 | 0.132 | 250 | 0 | 250 |
abs1_tru_exp_6 | 2.592 | 2 | 1.6803 | 1.2962 | 1 | 0.082 | 1 | 1 | 3 | 6 | 0.6043 | -0.2711 | 0.126 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_exp_1 | competent - incompetent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.532 | 1.270999 | 7 | ▆▇▁▇▃▁▂▁ |
abs1_tru_exp_2 | intelligent - unintelligent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.412 | 1.148710 | 7 | ▆▇▁▆▃▁▁▁ |
abs1_tru_exp_3 | well educated - poorly educated | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.268 | 1.166886 | 7 | ▆▇▁▃▂▁▁▁ |
abs1_tru_exp_4 | professional - unprofessional | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.512 | 1.371635 | 7 | ▇▇▆▃▁▂▁▁ |
abs1_tru_exp_5 | experienced - inexperienced | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.944 | 1.378574 | 7 | ▅▇▇▅▁▂▂▁ |
abs1_tru_exp_6 | qualified - unqualified | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.592 | 1.296247 | 7 | ▆▇▁▇▃▁▂▁ |
Reliability: ωtotal [95% CI] = 0.91 [not computed].
Missing: 0.
Likert plot of scale abs1_tru_int items
Distribution of scale abs1_tru_int
Dataframe: | res$dat |
Items: | abs1_tru_int_1, abs1_tru_int_2, abs1_tru_int_3 & abs1_tru_int_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.91 |
Omega (hierarchical): | 0.87 |
Revelle’s Omega (total): | 0.93 |
Greatest Lower Bound (GLB): | 0.93 |
Coefficient H: | 0.91 |
Coefficient Alpha: | 0.91 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.124, 0.414, 0.254 & 0.207
PC1 | |
---|---|
abs1_tru_int_1 | 0.850 |
abs1_tru_int_2 | 0.899 |
abs1_tru_int_3 | 0.884 |
abs1_tru_int_4 | 0.902 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_int_1 | 2.696 | 2.5 | 1.3851 | 1.1769 | 2 | 0.0744 | 1 | 2 | 4 | 6 | 0.282 | -0.822 | 0.116 | 250 | 0 | 250 |
abs1_tru_int_2 | 2.68 | 3 | 1.6402 | 1.2807 | 2 | 0.081 | 1 | 2 | 4 | 6 | 0.3744 | -0.6369 | 0.122 | 250 | 0 | 250 |
abs1_tru_int_3 | 2.952 | 3 | 1.4756 | 1.2147 | 2 | 0.0768 | 1 | 2 | 4 | 6 | 0.0111 | -0.7619 | 0.124 | 250 | 0 | 250 |
abs1_tru_int_4 | 2.9 | 3 | 1.7209 | 1.3118 | 2 | 0.083 | 1 | 2 | 4 | 7 | 0.283 | -0.5354 | 0.124 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_int_1 | sincere - insincere | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2.5 | 6 | 2.696 | 1.176913 | 7 | ▃▇▁▅▆▁▁▁ |
abs1_tru_int_2 | honest - dishonest | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3.0 | 6 | 2.680 | 1.280688 | 7 | ▆▇▁▇▆▁▂▁ |
abs1_tru_int_3 | just - unjust | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3.0 | 6 | 2.952 | 1.214742 | 7 | ▃▆▁▇▇▁▂▁ |
abs1_tru_int_4 | fair - unfair | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3.0 | 7 | 2.900 | 1.311824 | 7 | ▅▇▇▇▁▂▁▁ |
Reliability: ωtotal [95% CI] = 0.9 [not computed].
Missing: 0.
Likert plot of scale abs1_tru_ben items
Distribution of scale abs1_tru_ben
Dataframe: | res$dat |
Items: | abs1_tru_ben_1, abs1_tru_ben_2, abs1_tru_ben_3 & abs1_tru_ben_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.90 |
Omega (hierarchical): | 0.89 |
Revelle’s Omega (total): | 0.91 |
Greatest Lower Bound (GLB): | 0.91 |
Coefficient H: | 0.90 |
Coefficient Alpha: | 0.90 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.068, 0.386, 0.3 & 0.246
PC1 | |
---|---|
abs1_tru_ben_1 | 0.876 |
abs1_tru_ben_2 | 0.884 |
abs1_tru_ben_3 | 0.898 |
abs1_tru_ben_4 | 0.844 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_ben_1 | 2.924 | 3 | 1.4279 | 1.195 | 2 | 0.0756 | 1 | 2 | 4 | 6 | 0.0479 | -0.5128 | 0.132 | 250 | 0 | 250 |
abs1_tru_ben_2 | 2.788 | 3 | 1.9348 | 1.391 | 2 | 0.088 | 1 | 2 | 4 | 7 | 0.5111 | -0.4223 | 0.108 | 250 | 0 | 250 |
abs1_tru_ben_3 | 2.78 | 3 | 1.851 | 1.3605 | 2 | 0.086 | 1 | 2 | 4 | 7 | 0.5785 | -0.1748 | 0.118 | 250 | 0 | 250 |
abs1_tru_ben_4 | 3.012 | 3 | 1.5219 | 1.2337 | 2 | 0.078 | 1 | 2 | 4 | 6 | 0.0029 | -0.6164 | 0.114 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_ben_1 | moral - immoral | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 2.924 | 1.194963 | 7 | ▃▅▁▇▇▁▂▁ |
abs1_tru_ben_2 | ethical - unethical | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.788 | 1.390969 | 7 | ▆▇▆▆▁▂▁▁ |
abs1_tru_ben_3 | responsible - irresponsible | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.780 | 1.360516 | 7 | ▅▇▆▅▁▂▁▁ |
abs1_tru_ben_4 | considerate - inconsiderate | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 3.012 | 1.233671 | 7 | ▃▅▁▆▇▁▁▁ |
Reliability: ωtotal [95% CI] = 0.87 [0.85;0.9].
Missing: 0.
Likert plot of scale abs1_tch items
Distribution of scale abs1_tch
Dataframe: | res$dat |
Items: | abs1_tch_1, abs1_tch_2, abs1_tch_3, abs1_tch_4 & abs1_tch_5 |
Observations: | 250 |
Positive correlations: | 10 |
Number of correlations: | 10 |
Percentage positive correlations: | 100 |
Omega (total): | 0.87 |
Omega (hierarchical): | 0.67 |
Revelle’s Omega (total): | 0.90 |
Greatest Lower Bound (GLB): | 0.88 |
Coefficient H: | 0.90 |
Coefficient Alpha: | 0.86 |
3.0.13.2.1.1 Confidence intervals
Omega (total): | [0.85; 0.9] |
Coefficient Alpha: | [0; 0.2] |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.176, 0.791, 0.503, 0.298 & 0.231
PC1 | |
---|---|
abs1_tch_1 | 0.694 |
abs1_tch_2 | 0.885 |
abs1_tch_3 | 0.853 |
abs1_tch_4 | 0.688 |
abs1_tch_5 | 0.842 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tch_1 | -113.488 | 3 | 103309.4717 | 321.4179 | 3 | 20.3283 | -999 | 1 | 4 | 4 | -2.4128 | 3.8523 | 0.124 | 250 | 0 | 250 |
abs1_tch_2 | -221.608 | 2 | 175150.1268 | 418.5094 | 3 | 26.4689 | -999 | 1 | 4 | 4 | -1.332 | -0.2277 | 0.118 | 250 | 0 | 250 |
abs1_tch_3 | -209.576 | 2 | 168335.0886 | 410.2866 | 3 | 25.9488 | -999 | 1 | 4 | 4 | -1.4178 | 0.0101 | 0.128 | 250 | 0 | 250 |
abs1_tch_4 | -109.5 | 3 | 100194.2189 | 316.5347 | 3 | 20.0194 | -999 | 1 | 4 | 4 | -2.4755 | 4.1612 | 0.116 | 250 | 0 | 250 |
abs1_tch_5 | -221.652 | 2 | 175130.284 | 418.4857 | 3 | 26.4674 | -999 | 1 | 4 | 4 | -1.332 | -0.2277 | 0.118 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tch_1 | It is transparent which data form the basis of the study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 49 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -113.488 | 321.4179 | 6 | ▁▁▁▁▁▁▁▇ | ||||
abs1_tch_2 | Interested parties can have a close look at the questionnaire of the described study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 49 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -221.608 | 418.5094 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs1_tch_3 | The data collected in the study are publicly available. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 49 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -209.576 | 410.2866 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs1_tch_4 | The authors make it easy for other researchers to understand their statistical analyses. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 49 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -109.500 | 316.5347 | 6 | ▁▁▁▁▁▁▁▇ | ||||
abs1_tch_5 | If other researchers want to repeat the study, they have easy access to the questionnaires used. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 49 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -221.652 | 418.4857 | 6 | ▂▁▁▁▁▁▁▇ |
Reliability: ωordinal [95% CI] = 0.7 [0.64;0.76].
Missing: 0.
Likert plot of scale abs2_tsm items
Distribution of scale abs2_tsm
Dataframe: | res$dat |
Items: | abs2_tsm_1, abs2_tsm_2, abs2_tsm_3 & abs2_tsm_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.64 |
Omega (hierarchical): | 0.57 |
Revelle’s Omega (total): | 0.72 |
Greatest Lower Bound (GLB): | 0.72 |
Coefficient H: | 0.70 |
Coefficient Alpha: | 0.65 |
3.0.14.2.1.1 Confidence intervals
Omega (total): | [0.57; 0.72] |
Coefficient Alpha: | [0.58; 0.72] |
Ordinal Omega (total): | 0.70 |
Ordinal Omega (hierarch.): | 0.68 |
Ordinal Coefficient Alpha: | 0.70 |
3.0.14.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.64; 0.76] |
Ordinal Coefficient Alpha: | [0.64; 0.76] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.959, 0.947, 0.604 & 0.49
PC1 | |
---|---|
abs2_tsm_1 | 0.589 |
abs2_tsm_2 | 0.732 |
abs2_tsm_3 | 0.710 |
abs2_tsm_4 | 0.756 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsm_1 | 2.076 | 2 | 0.6729 | 0.8203 | 2 | 0.0519 | 1 | 1 | 3 | 4 | 0.3424 | -0.4836 | 0.128 | 250 | 0 | 250 |
abs2_tsm_2 | 2.456 | 2 | 0.6025 | 0.7762 | 1 | 0.0491 | 1 | 1 | 3 | 4 | 0.2517 | -0.3276 | 0.172 | 250 | 0 | 250 |
abs2_tsm_3 | 2.26 | 2 | 0.6108 | 0.7816 | 1 | 0.0494 | 1 | 1 | 3 | 4 | 0.2202 | -0.3114 | 0.15 | 250 | 0 | 250 |
abs2_tsm_4 | 2.576 | 2.5 | 0.5745 | 0.758 | 1 | 0.0479 | 1 | 2 | 3 | 4 | 0.2698 | -0.4585 | 0.19 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsm_1 | The insights from the text are arbitrary. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 59 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2.0 | 4 | 2.076 | 0.8203144 | 5 | ▅▁▇▁▁▅▁▁ | ||||
abs2_tsm_2 | The knowledge contained in the text cannot be generalized to other situations at all. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 59 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2.0 | 4 | 2.456 | 0.7761919 | 5 | ▁▁▇▁▁▆▁▂ | ||||
abs2_tsm_3 | The opposite of the knowledge formulated in the text would be equally right/wrong. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 59 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2.0 | 4 | 2.260 | 0.7815647 | 5 | ▂▁▇▁▁▅▁▁ | ||||
abs2_tsm_4 | The knowledge formulated in the text cannot claim validity for other situations. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 59 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2.5 | 4 | 2.576 | 0.7579724 | 5 | ▁▁▇▁▁▇▁▂ |
Reliability: ωordinal [95% CI] = 0.87 [0.85;0.9].
Missing: 0.
Likert plot of scale abs2_tsc items
Distribution of scale abs2_tsc
Dataframe: | res$dat |
Items: | abs2_tsc_1, abs2_tsc_2R & abs2_tsc_3 |
Observations: | 250 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.82 |
Omega (hierarchical): | 0.03 |
Revelle’s Omega (total): | 0.82 |
Greatest Lower Bound (GLB): | 0.85 |
Coefficient H: | 0.89 |
Coefficient Alpha: | 0.80 |
3.0.15.2.1.1 Confidence intervals
Omega (total): | [0.79; 0.86] |
Coefficient Alpha: | [0.76; 0.85] |
Ordinal Omega (total): | 0.87 |
Ordinal Omega (hierarch.): | 0.87 |
Ordinal Coefficient Alpha: | 0.85 |
3.0.15.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.85; 0.9] |
Ordinal Coefficient Alpha: | [0.82; 0.89] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.156, 0.619 & 0.225
PC1 | |
---|---|
abs2_tsc_1 | 0.892 |
abs2_tsc_2R | 0.732 |
abs2_tsc_3 | 0.908 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsc_1 | 2.788 | 3 | 0.5292 | 0.7274 | 1 | 0.046 | 1 | 2 | 4 | 4 | -0.0927 | -0.3408 | 0.154 | 250 | 0 | 250 |
abs2_tsc_2R | 2.996 | 3 | 0.4699 | 0.6855 | 0 | 0.0434 | 1 | 2 | 4 | 4 | -0.2966 | 0.031 | 0.108 | 250 | 0 | 250 |
abs2_tsc_3 | 2.856 | 3 | 0.4932 | 0.7023 | 1 | 0.0444 | 1 | 2 | 4 | 4 | -0.2127 | -0.0919 | 0.128 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsc_1 | The statements of the just-read text are consistent with my personal opinion on the subject. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 60 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.788 | 0.7274426 | 5 | ▁▁▅▁▁▇▁▂ | ||||
abs2_tsc_2R | The statements of the text excerpt I just read contradict what I myself think about the topic. | mc | haven_labelled | 4. fully <br />disagree, 3. , 2. , 1. fully <br />agree, NA. Item was never rendered for this user. |
0 | 60 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.996 | 0.6854659 | 5 | ▁▁▂▁▁▇▁▃ | ||||
abs2_tsc_3 | I agree with the statements I just read in the text excerpt. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 60 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.856 | 0.7023083 | 5 | ▁▁▃▁▁▇▁▂ |
Reliability: ωtotal [95% CI] = 0.96 [not computed].
Missing: 0.
Likert plot of scale abs2_tru_exp items
Distribution of scale abs2_tru_exp
Dataframe: | res$dat |
Items: | abs2_tru_exp_1, abs2_tru_exp_2, abs2_tru_exp_3, abs2_tru_exp_4, abs2_tru_exp_5 & abs2_tru_exp_6 |
Observations: | 250 |
Positive correlations: | 15 |
Number of correlations: | 15 |
Percentage positive correlations: | 100 |
Omega (total): | 0.96 |
Omega (hierarchical): | 0.93 |
Revelle’s Omega (total): | 0.97 |
Greatest Lower Bound (GLB): | 0.97 |
Coefficient H: | 0.96 |
Coefficient Alpha: | 0.96 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
5.057, 0.252, 0.22, 0.186, 0.154 & 0.13
PC1 | |
---|---|
abs2_tru_exp_1 | 0.908 |
abs2_tru_exp_2 | 0.923 |
abs2_tru_exp_3 | 0.924 |
abs2_tru_exp_4 | 0.920 |
abs2_tru_exp_5 | 0.914 |
abs2_tru_exp_6 | 0.919 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_exp_1 | 2.496 | 2 | 1.6968 | 1.3026 | 2 | 0.0824 | 1 | 1 | 4 | 7 | 0.6682 | -0.1422 | 0.136 | 250 | 0 | 250 |
abs2_tru_exp_2 | 2.468 | 2 | 1.4387 | 1.1995 | 1 | 0.0759 | 1 | 1 | 4 | 7 | 0.5827 | -0.0926 | 0.122 | 250 | 0 | 250 |
abs2_tru_exp_3 | 2.408 | 2 | 1.4393 | 1.1997 | 2 | 0.0759 | 1 | 1 | 3 | 7 | 0.5917 | -0.0431 | 0.14 | 250 | 0 | 250 |
abs2_tru_exp_4 | 2.54 | 2 | 1.8719 | 1.3682 | 2 | 0.0865 | 1 | 1 | 4 | 7 | 0.7027 | -0.1176 | 0.138 | 250 | 0 | 250 |
abs2_tru_exp_5 | 2.788 | 3 | 1.8946 | 1.3765 | 2 | 0.0871 | 1 | 2 | 4 | 7 | 0.4245 | -0.5757 | 0.122 | 250 | 0 | 250 |
abs2_tru_exp_6 | 2.608 | 2 | 1.6208 | 1.2731 | 2 | 0.0805 | 1 | 1 | 4 | 6 | 0.4153 | -0.65 | 0.12 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_exp_1 | competent - incompetent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.496 | 1.302602 | 7 | ▇▇▆▅▁▂▁▁ |
abs2_tru_exp_2 | intelligent - unintelligent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.468 | 1.199471 | 7 | ▆▇▆▅▁▁▁▁ |
abs2_tru_exp_3 | well educated - poorly educated | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.408 | 1.199706 | 7 | ▇▇▇▅▁▁▁▁ |
abs2_tru_exp_4 | professional - unprofessional | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.540 | 1.368169 | 7 | ▇▇▆▅▁▂▁▁ |
abs2_tru_exp_5 | experienced - inexperienced | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.788 | 1.376457 | 7 | ▇▇▇▅▁▃▁▁ |
abs2_tru_exp_6 | qualified - unqualified | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.608 | 1.273114 | 7 | ▇▇▁▇▅▁▂▁ |
Reliability: ωtotal [95% CI] = 0.92 [not computed].
Missing: 0.
Likert plot of scale abs2_tru_int items
Distribution of scale abs2_tru_int
Dataframe: | res$dat |
Items: | abs2_tru_int_1, abs2_tru_int_2, abs2_tru_int_3 & abs2_tru_int_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.92 |
Omega (hierarchical): | 0.90 |
Revelle’s Omega (total): | 0.94 |
Greatest Lower Bound (GLB): | 0.94 |
Coefficient H: | 0.92 |
Coefficient Alpha: | 0.92 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.195, 0.328, 0.304 & 0.172
PC1 | |
---|---|
abs2_tru_int_1 | 0.870 |
abs2_tru_int_2 | 0.906 |
abs2_tru_int_3 | 0.885 |
abs2_tru_int_4 | 0.913 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_int_1 | 2.772 | 3 | 1.4056 | 1.1856 | 2 | 0.075 | 1 | 2 | 4 | 7 | 0.3774 | 0.0594 | 0.134 | 250 | 0 | 250 |
abs2_tru_int_2 | 2.74 | 3 | 1.7353 | 1.3173 | 2 | 0.0833 | 1 | 2 | 4 | 6 | 0.447 | -0.5021 | 0.122 | 250 | 0 | 250 |
abs2_tru_int_3 | 2.848 | 3 | 1.3824 | 1.1758 | 2 | 0.0744 | 1 | 2 | 4 | 6 | 0.164 | -0.5691 | 0.142 | 250 | 0 | 250 |
abs2_tru_int_4 | 2.752 | 3 | 1.6812 | 1.2966 | 2 | 0.082 | 1 | 2 | 4 | 6 | 0.2921 | -0.6923 | 0.12 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_int_1 | sincere - insincere | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.772 | 1.185596 | 7 | ▅▇▇▆▁▁▁▁ |
abs2_tru_int_2 | honest - dishonest | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 2.740 | 1.317324 | 7 | ▆▇▁▇▆▁▂▁ |
abs2_tru_int_3 | just - unjust | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 2.848 | 1.175766 | 7 | ▃▇▁▇▇▁▁▁ |
abs2_tru_int_4 | fair - unfair | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 2.752 | 1.296619 | 7 | ▇▇▁▇▇▁▂▁ |
Reliability: ωtotal [95% CI] = 0.91 [not computed].
Missing: 0.
Likert plot of scale abs2_tru_ben items
Distribution of scale abs2_tru_ben
Dataframe: | res$dat |
Items: | abs2_tru_ben_1, abs2_tru_ben_2, abs2_tru_ben_3 & abs2_tru_ben_4 |
Observations: | 250 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.91 |
Omega (hierarchical): | 0.90 |
Revelle’s Omega (total): | 0.93 |
Greatest Lower Bound (GLB): | 0.93 |
Coefficient H: | 0.91 |
Coefficient Alpha: | 0.91 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.153, 0.354, 0.272 & 0.221
PC1 | |
---|---|
abs2_tru_ben_1 | 0.895 |
abs2_tru_ben_2 | 0.897 |
abs2_tru_ben_3 | 0.901 |
abs2_tru_ben_4 | 0.858 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_ben_1 | 2.872 | 3 | 1.4695 | 1.2122 | 2 | 0.0767 | 1 | 2 | 4 | 6 | 0.0569 | -0.7755 | 0.124 | 250 | 0 | 250 |
abs2_tru_ben_2 | 2.772 | 3 | 1.7591 | 1.3263 | 2 | 0.0839 | 1 | 2 | 4 | 7 | 0.3949 | -0.3172 | 0.12 | 250 | 0 | 250 |
abs2_tru_ben_3 | 2.7 | 3 | 1.6566 | 1.2871 | 2 | 0.0814 | 1 | 2 | 4 | 7 | 0.5867 | 0.0111 | 0.116 | 250 | 0 | 250 |
abs2_tru_ben_4 | 2.952 | 3 | 1.564 | 1.2506 | 2 | 0.0791 | 1 | 2 | 4 | 7 | 0.1534 | -0.4482 | 0.128 | 250 | 0 | 250 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_ben_1 | moral - immoral | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 2.872 | 1.212227 | 7 | ▅▇▁▆▇▁▂▁ |
abs2_tru_ben_2 | ethical - unethical | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.772 | 1.326293 | 7 | ▇▇▇▇▁▂▁▁ |
abs2_tru_ben_3 | responsible - irresponsible | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.700 | 1.287100 | 7 | ▅▇▆▅▁▂▁▁ |
abs2_tru_ben_4 | considerate - inconsiderate | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.952 | 1.250581 | 7 | ▅▆▇▇▁▂▁▁ |
Reliability: ωtotal [95% CI] = 0.91 [0.9;0.93].
Missing: 0.
Likert plot of scale abs2_tch items
Distribution of scale abs2_tch
Dataframe: | res$dat |
Items: | abs2_tch_1, abs2_tch_2, abs2_tch_3, abs2_tch_4 & abs2_tch_5 |
Observations: | 250 |
Positive correlations: | 10 |
Number of correlations: | 10 |
Percentage positive correlations: | 100 |
Omega (total): | 0.91 |
Omega (hierarchical): | 0.89 |
Revelle’s Omega (total): | 0.92 |
Greatest Lower Bound (GLB): | 0.92 |
Coefficient H: | 0.95 |
Coefficient Alpha: | 0.90 |
3.0.19.2.1.1 Confidence intervals
Omega (total): | [0.9; 0.93] |
Coefficient Alpha: | [0; 0.2] |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.557, 0.687, 0.461, 0.164 & 0.132
PC1 | |
---|---|
abs2_tch_1 | 0.631 |
abs2_tch_2 | 0.922 |
abs2_tch_3 | 0.905 |
abs2_tch_4 | 0.791 |
abs2_tch_5 | 0.930 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tch_1 | -109.656 | 2 | 100159.1342 | 316.4793 | 3 | 20.0159 | -999 | 1 | 4 | 4 | -2.4754 | 4.1612 | 0.122 | 250 | 0 | 250 |
abs2_tch_2 | -209.968 | 1 | 168167.8464 | 410.0827 | 2 | 25.9359 | -999 | -999 | 4 | 4 | -1.4178 | 0.0101 | 0.124 | 250 | 0 | 250 |
abs2_tch_3 | -209.98 | 1 | 168162.8871 | 410.0767 | 3 | 25.9355 | -999 | -999 | 4 | 4 | -1.4177 | 0.0101 | 0.142 | 250 | 0 | 250 |
abs2_tch_4 | -157.756 | 2 | 135340.9804 | 367.8872 | 3 | 23.2672 | -999 | 1 | 4 | 4 | -1.866 | 1.494 | 0.126 | 250 | 0 | 250 |
abs2_tch_5 | -201.936 | 1 | 163473.7469 | 404.3189 | 3 | 25.5714 | -999 | -999 | 4 | 4 | -1.4779 | 0.1858 | 0.142 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tch_1 | It is transparent which data form the basis of the study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 70 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -109.656 | 316.4793 | 6 | ▁▁▁▁▁▁▁▇ | ||||
abs2_tch_2 | Interested parties can have a close look at the questionnaire of the described study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 70 | left500 hide_label mc_width70 | 0 | 1 | -999 | 1 | 4 | -209.968 | 410.0827 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_3 | The data collected in the study are publicly available. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 70 | left500 hide_label mc_width70 | 0 | 1 | -999 | 1 | 4 | -209.980 | 410.0767 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_4 | The authors make it easy for other researchers to understand their statistical analyses. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 70 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -157.756 | 367.8872 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_5 | If other researchers want to repeat the study, they have easy access to the questionnaires used. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 70 | left500 hide_label mc_width70 | 0 | 1 | -999 | 1 | 4 | -201.936 | 404.3189 | 6 | ▂▁▁▁▁▁▁▇ |
Reliability: ωordinal [95% CI] = 0.73 [0.67;0.78].
Missing: 0.
Likert plot of scale tsm items
Distribution of scale tsm
Dataframe: | res$dat |
Items: | tsm_1, tsm_2 & tsm_3 |
Observations: | 250 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.57 |
Omega (hierarchical): | 0.12 |
Revelle’s Omega (total): | 0.60 |
Greatest Lower Bound (GLB): | 0.61 |
Coefficient H: | 0.62 |
Coefficient Alpha: | 0.57 |
3.0.20.2.1.1 Confidence intervals
Omega (total): | [0.48; 0.66] |
Coefficient Alpha: | [0.48; 0.66] |
Ordinal Omega (total): | 0.73 |
Ordinal Omega (hierarch.): | 0.72 |
Ordinal Coefficient Alpha: | 0.71 |
3.0.20.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.67; 0.78] |
Ordinal Coefficient Alpha: | [0.65; 0.77] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.653, 0.762 & 0.585
PC1 | |
---|---|
tsm_1 | 0.773 |
tsm_2 | 0.783 |
tsm_3 | 0.665 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | 3.64 | 4 | 0.392 | 0.6261 | 1 | 0.0396 | 1 | 3 | NA | 4 | -1.632 | 1.8758 | 0.106 | 250 | 0 | 250 |
tsm_2 | 3.716 | 4 | 0.3728 | 0.6106 | 0 | 0.0386 | 1 | 3 | NA | 4 | -2.4217 | 6.0716 | 0.082 | 250 | 0 | 250 |
tsm_3 | 3.368 | 4 | 0.6512 | 0.807 | 1 | 0.051 | 1 | 3 | NA | 4 | -0.9975 | -0.0265 | 0.138 | 250 | 0 | 250 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | The explanations (grey text boxes) were helpful for understanding the badges (“Open Materials”, “Open Data”, “Open Code”). | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 77 | left500 hide_label mc_width70 | 0 | 1 | 1 | 4 | 4 | 3.640 | 0.6260734 | 5 | ▁▁▁▁▁▂▁▇ | ||||
tsm_2 | I read all additional explanations (grey text boxes) on the front pages. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 77 | left500 hide_label mc_width70 | 0 | 1 | 1 | 4 | 4 | 3.716 | 0.6106024 | 5 | ▁▁▁▁▁▂▁▇ | ||||
tsm_3 | The badges (“Open Materials”, “Open Data”, “Open Code”) influenced my assessment of the authors. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 77 | left500 hide_label mc_width70 | 0 | 1 | 1 | 4 | 4 | 3.368 | 0.8069577 | 5 | ▁▁▂▁▁▃▁▇ |
First treatment condition, the participant was assigned to.
Distribution of values for treat1
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
treat1 | First treatment condition, the participant was assigned to. | haven_labelled | 0 | 1 | 3 | 0 | 2 | NA | 2 | 0 | 3 |
name | value |
---|---|
1 | GB |
2 | CC |
3 | CB |
Second treatment condition, the participant was assigned to.
Distribution of values for treat2
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
treat2 | Second treatment condition, the participant was assigned to. | haven_labelled | 0 | 1 | 3 | 0 | 2 | NA | 2 | 0 | 3 |
name | value |
---|---|
1 | GB |
2 | CC |
3 | CB |
Topic the participant received first.
Distribution of values for first_topic
0 missing values.
name | label | type | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
first_topic | Topic the participant received first. | calculate | character | 0 | sample(c(“mobility”, “savings”), 1, replace = F) | 24 | 0 | 1 | 2 | 0 | 7 | 8 | 0 |
type | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|
calculate | first_topic | 0 | sample(c(“mobility”, “savings”), 1, replace = F) | 24 |
name | value |
---|
JSON-LD metadata
The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.
{
"name": "Journals’ Open Science Badges Foster Trust in Scientists. Study 2: Scientists Sample.",
"description": "Code book to manuscript\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
"identifier": "",
"datePublished": "2021-07-12",
"creator": {
"@type": "Person",
"givenName": "Schneider",
"familyName": "Jürgen",
"email": "juergen.schneider@uni-tuebingen.de",
"affiliation": {
"@type": "Organization",
"name": "University of Tübingen"
}
},
"citation": "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 2: Scientists sample",
"keywords": ["session", "abs1_tsm_1", "abs1_tsm_2", "abs1_tsm_3", "abs1_tsm_4", "abs1_tsc_1", "abs1_tsc_2R", "abs1_tsc_3", "abs1_tru_exp_1", "abs1_tru_exp_2", "abs1_tru_exp_3", "abs1_tru_exp_4", "abs1_tru_exp_5", "abs1_tru_exp_6", "abs1_tru_int_1", "abs1_tru_int_2", "abs1_tru_int_3", "abs1_tru_int_4", "abs1_tru_ben_1", "abs1_tru_ben_2", "abs1_tru_ben_3", "abs1_tru_ben_4", "abs1_tch_1", "abs1_tch_2", "abs1_tch_3", "abs1_tch_4", "abs1_tch_5", "abs2_tsm_1", "abs2_tsm_2", "abs2_tsm_3", "abs2_tsm_4", "abs2_tsc_1", "abs2_tsc_2R", "abs2_tsc_3", "abs2_tru_exp_1", "abs2_tru_exp_2", "abs2_tru_exp_3", "abs2_tru_exp_4", "abs2_tru_exp_5", "abs2_tru_exp_6", "abs2_tru_int_1", "abs2_tru_int_2", "abs2_tru_int_3", "abs2_tru_int_4", "abs2_tru_ben_1", "abs2_tru_ben_2", "abs2_tru_ben_3", "abs2_tru_ben_4", "abs2_tch_1", "abs2_tch_2", "abs2_tch_3", "abs2_tch_4", "abs2_tch_5", "tsm_1", "tsm_2", "tsm_3", "sex", "age", "position", "position_oth", "country", "country_oth", "abs1_tsm", "abs1_tsc", "abs1_tru_exp", "abs1_tru_int", "abs1_tru_ben", "abs1_tch", "abs2_tsm", "abs2_tsc", "abs2_tru_exp", "abs2_tru_int", "abs2_tru_ben", "abs2_tch", "tsm", "treat1", "treat2", "first_topic"],
"@context": "http://schema.org/",
"@type": "Dataset",
"variableMeasured": [
{
"name": "session",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_1",
"description": "The insights from the text are arbitrary.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_2",
"description": "The knowledge contained in the text cannot be generalized to other situations at all.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_3",
"description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_4",
"description": "The knowledge formulated in the text cannot claim validity for other situations.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_1",
"description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_2R",
"description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
"value": "4. __fully <br />disagree__,\n3. ,\n2. ,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_3",
"description": "I agree with the statements I just read in the text excerpt.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_1",
"description": "competent - incompetent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_2",
"description": "intelligent - unintelligent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_3",
"description": "well educated -\tpoorly educated",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_4",
"description": "professional - unprofessional",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_5",
"description": "experienced - inexperienced",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_6",
"description": "qualified - unqualified",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_1",
"description": "sincere - insincere",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_2",
"description": "honest - dishonest",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_3",
"description": "just - unjust",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_4",
"description": "fair - unfair",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_1",
"description": "moral - immoral",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_2",
"description": "ethical - unethical",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_3",
"description": "responsible - irresponsible",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_4",
"description": "considerate - inconsiderate",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tch_1",
"description": "It is transparent which data form the basis of the study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_2",
"description": "Interested parties can have a close look at the questionnaire of the described study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_3",
"description": "The data collected in the study are publicly available.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_4",
"description": "The authors make it easy for other researchers to understand their statistical analyses.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_5",
"description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_1",
"description": "The insights from the text are arbitrary.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_2",
"description": "The knowledge contained in the text cannot be generalized to other situations at all.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_3",
"description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_4",
"description": "The knowledge formulated in the text cannot claim validity for other situations.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_1",
"description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_2R",
"description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
"value": "4. __fully <br />disagree__,\n3. ,\n2. ,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_3",
"description": "I agree with the statements I just read in the text excerpt.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_1",
"description": "competent - incompetent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_2",
"description": "intelligent - unintelligent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_3",
"description": "well educated -\tpoorly educated",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_4",
"description": "professional - unprofessional",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_5",
"description": "experienced - inexperienced",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_6",
"description": "qualified - unqualified",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_1",
"description": "sincere - insincere",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_2",
"description": "honest - dishonest",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_3",
"description": "just - unjust",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_4",
"description": "fair - unfair",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_1",
"description": "moral - immoral",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_2",
"description": "ethical - unethical",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_3",
"description": "responsible - irresponsible",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_4",
"description": "considerate - inconsiderate",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tch_1",
"description": "It is transparent which data form the basis of the study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_2",
"description": "Interested parties can have a close look at the questionnaire of the described study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_3",
"description": "The data collected in the study are publicly available.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_4",
"description": "The authors make it easy for other researchers to understand their statistical analyses.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_5",
"description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_1",
"description": "The explanations (grey text boxes) were helpful for understanding the badges (\"Open Materials\", \"Open Data\", \"Open Code\").",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_2",
"description": "I read all additional explanations (grey text boxes) on the front pages.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_3",
"description": "The badges (\"Open Materials\", \"Open Data\", \"Open Code\") influenced my assessment of the authors.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "sex",
"description": "Sex",
"value": "f. female,\nm. male",
"maxValue": "m",
"minValue": "f",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "age",
"description": "Age",
"value": "16. 16-34,\n35. 35-49,\n50. 50 and above,\nNA. Item was never rendered for this user.",
"maxValue": 50,
"minValue": 16,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "position",
"description": "What is your current position?",
"value": "1. Graduate Research Assistant/ Postgraduate Researcher,\n2. Postdoctoral Researcher,\n3. Lecturers,\n4. Senior Lecturers,\n5. Professors/ Readers,\n-999. other",
"maxValue": "5",
"minValue": "-999",
"@type": "propertyValue"
},
{
"name": "position_oth",
"description": "please specify other position",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "country",
"description": "Country of residence",
"value": "1. United Kingdom,\n2. Republic of Ireland,\n3. USA,\n4. Canada,\n-999. other",
"maxValue": "4",
"minValue": "-999",
"@type": "propertyValue"
},
{
"name": "country_oth",
"description": "please specify other country",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm",
"description": "aggregate of 4 abs1_tsm items",
"@type": "propertyValue"
},
{
"name": "abs1_tsc",
"description": "aggregate of 3 abs1_tsc items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp",
"description": "aggregate of 6 abs1_tru_exp items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_int",
"description": "aggregate of 4 abs1_tru_int items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben",
"description": "aggregate of 4 abs1_tru_ben items",
"@type": "propertyValue"
},
{
"name": "abs1_tch",
"description": "aggregate of 5 abs1_tch items",
"@type": "propertyValue"
},
{
"name": "abs2_tsm",
"description": "aggregate of 4 abs2_tsm items",
"@type": "propertyValue"
},
{
"name": "abs2_tsc",
"description": "aggregate of 3 abs2_tsc items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp",
"description": "aggregate of 6 abs2_tru_exp items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_int",
"description": "aggregate of 4 abs2_tru_int items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben",
"description": "aggregate of 4 abs2_tru_ben items",
"@type": "propertyValue"
},
{
"name": "abs2_tch",
"description": "aggregate of 5 abs2_tch items",
"@type": "propertyValue"
},
{
"name": "tsm",
"description": "aggregate of 3 tsm items",
"@type": "propertyValue"
},
{
"name": "treat1",
"description": "First treatment condition, the participant was assigned to.",
"value": "GB. Greyed out badges (no adherence to Open Science standards),\nCC. Control Condition (no badges),\nCB. Colored out badges (adherence to Open Science standards)",
"maxValue": "GB",
"minValue": "CB",
"@type": "propertyValue"
},
{
"name": "treat2",
"description": "Second treatment condition, the participant was assigned to.",
"value": "GB. Greyed out badges (no adherence to Open Science standards),\nCC. Control Condition (no badges),\nCB. Colored out badges (adherence to Open Science standards)",
"maxValue": "GB",
"minValue": "CB",
"@type": "propertyValue"
},
{
"name": "first_topic",
"description": "Topic the participant received first.",
"measurementTechnique": "self-report",
"@type": "propertyValue"
}
]
}`