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Abstract
Several methods to account for response bias in the process dissociation

procedure have recently been proposed. A. P. Yonelinas and L. L. Jacoby (1995b)

favor a dual-process signal-detection model (DPSDM) and claim that threshold-based

models such as the extended measurement model (EMM) suggested by A. Buchner,

E. Erdfelder, and B. Vaterrodt-Plünnecke (1995 should be rejected because threshold

models are inconsistent with nonlinear receiver operating characteristics (ROCs) as

obtained from confidence ratings. Their claim is shown to be incorrect. An EMM

variant for confidence ratings is developed which accounts perfectly for nonlinear

ROCs. It is demonstrated that, in contrast, the DPSDM cannot fit the ROC data of at

least two of the three experiments reported by A. P. Yonelinas (1994). Further, it is

argued that experimental manipulations of response biases result in much more

thorough tests of process dissociation measurement models than confidence ratings.

We close by suggesting a new two-high threshold extended measurement model

which fits the Buchner et al. data better than both the EMM and the DPSDM.
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Zusammenfassung
In der neueren Literatur zur Prozeß-Dissoziations-Prozedur werden unter-

schiedliche Vorschläge zur Berücksichtigung von Antworttendenzen gemacht. A. P.

Yonelinas und L. L. Jacoby (1995b)  favorisieren ein Dual-Process-Signal-Detection-

Modell (DPSDM) und kritisieren High-Threshold-Modelle wie z.B. das Extended-

Measurement-Modell (EMM) von A. Buchner, E. Erdfelder und B. Vaterrodt-

Plünnecke (1995), weil derartige Modelle mit nichtlinearen Receiver Operating

Characteristic Curves (ROCs) - wie sie für Konfidenzratings beobachtet wurden -

unvereinbar seien. Es wird gezeigt, daß diese Behauptung falsch ist. Eine Variante

des EMM für Konfidenzratings, die nichtlineare ROCs fehlerfrei erklären kann, wird

vorgestellt. Es wird gleichzeitig nachgewiesen, daß das DPSDM mit den Daten von

mindesten zweien der drei Experimente von A. P. Yonelinas (1994) nicht vereinbar

ist. Weiterhin wird die These vertreten, daß experimentelle Manipulationen von

Antworttendenzen strengere Tests von Prozeß-Dissoziations-Meßmodellen erlauben

als Konfidenzratings. Im abschließenden Teil der vorliegenden Arbeit wird ein Two-

High-Threshold EMM vorgestellt, das mit den Buchner et al.-Daten besser als das

EMM und das DPSDM vereinbar ist.
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Process Dissociation Measurement Models: Good
versus Better

The process dissociation measurement model originally proposed by Jacoby

(1991)  aims at measuring the contributions of controlled (“conscious”) and auto-

matic (“unconscious”) cognitive processes to task performance without accounting

for possible effects of response biases. As a consequence, measures of controlled and

automatic processes may be contaminated by response biases. Although this

problem is not new and several correction methods have been proposed by various

authors (cf. Jacoby, Toth & Yonelinas, 1993; Komatsu, Graf & Uttl, 1995; Roediger &

McDermott, 1994) , it was not until recently that the problem was addressed by new

measurement models that can account for simultaneous effects of controlled

processes, automatic processes, and response biases on task performance. Buchner,

Erdfelder, and Vaterrodt-Plünnecke (1995)  have developed an extended

measurement model (EMM) which is based on threshold theory (cf. Krantz, 1969;

Luce, 1963a)  whereas Yonelinas, Regehr, and Jacoby (in press)  suggested a dual-

process signal-detection model (DPSDM) using the framework of signal-detection

theory (cf. Green & Swets, 1966) .

In their interesting and stimulating comment on Buchner et al. (1995),

Yonelinas and Jacoby (1995b)  argued that their DPSDM was superior to the EMM

because the former, but not the latter, could account for nonlinear receiver-operating

characteristics (ROCs) as obtained from confidence ratings (cf. Yonelinas, 1994) .

They also argued that the experimental data used to validate the EMM by Buchner et

al. (1995) were inappropriate, because the experimental manipulations might have

affected response bias and memory processes simultaneously.

This article aims at refuting both claims. We begin by describing the EMM as

applied to the process dissociation procedure using yes-no recognition judgments,

and we discuss its relation to the measurement model variant suggested by Jacoby

(1991). Next, we describe the DPSDM and show that it has some methodological

disadvantages compared to the EMM. Nevertheless, both the EMM and the DPSDM

seem to be superior to alternative methods of response bias correction that have

been suggested in the literature.
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We will then present an appropriate extension of the EMM to confidence

rating scales in order to show that nonlinear ROCs do not falsify the threshold

concept underlying the EMM. Moreover, we maintain that the experimental data

provided by Buchner et al. (1995) are appropriate validation hurdles that must be

cleared by an adequate process dissociation measurement model. We agree with

Yonelinas and Jacoby (1995b)  that both the EMM and DPSDM fit these data quite

well but not perfectly. We differ from Yonelinas and Jacoby (1995b)  in that we at-

tribute the less-than-perfect fit to limitations of both models.

We close by discussing generalizations of the EMM and the DPSDM that might

help to overcome these limitations. A generalization of the DPSDM that does not

require the normal distribution assumption is developed, and we show that this

generalized version and, hence, the DPSDM as a submodel of it does not fit the data

of Yonelinas’ (1994) Experiments 1 and 2 at least. Also, a correlated processes signal

detection model is developed that does not require the assumption of stochastic

independence of controlled and automatic processes presumed by the DPSDM.

Finally, we suggest two variants of a new two-high threshold extended

measurement model and show that each of them fits the Buchner et al. (1995) data

even better than both the EMM and the DPSDM.

Process Dissociation Measurement Models

In order to avoid terminological confusions it is useful to distinguish between

the process dissociation procedure and process dissociation measurement models. The

process dissociation procedure is a class of experimental paradigms which is

characterized by two test conditions—the inclusion test condition and the exclusion

test condition—and three types of items to which both test conditions are applied. A

process dissociation measurement model, in contrast, is a stochastic model which

‘explains’ the probabilities of participants’ responses in the process dissociation

procedure in terms of parameters that represent different types of cognitive

processes.

Depending on the specific instructions defining the inclusion and exclusion test

conditions and on the three types of items to which participants have to respond,

many different process dissociation paradigms can be distinguished (see e.g., Begg,
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Anas & Farinacci, 1992; Debner & Jacoby, 1994; Jennings & Jacoby, 1993; Lindsay &

Jacoby, 1994; Toth, Reingold & Jacoby, 1994; Wippich, 1994; Yonelinas & Jacoby,

1995a) . However, to keep the presentation simple in this article, we will follow

Yonelinas and Jacoby (1995b) and refer to recognition paradigms only. Nevertheless,

almost all of our arguments apply also to other implementations of the process

dissociation procedure.

In the recognition variant of the process dissociation procedure as introduced

by Jacoby (1991), participants process a list of critical items in Phase 1 and another list

of items (possibly differing in sensory modality) in Phase 2. In the test phase,

participants are confronted with items from Phase 1 and Phase 2, and with

distractors which were not presented before. Participants in the inclusion test

condition are instructed to respond old to all items presented in Phase 1 or Phase 2,

and they are to respond new to all items that were presented neither in Phase 1 nor

in Phase 2. Participants in the exclusion test condition receive the same instructions for

the Phase 2 items and for the new items, but they are told to ‘exclude’ Phase 1 items,

that is, they must respond new to items which were presented in Phase 1.

The Extended Measurement Model

The EMM suggested by Buchner et al. (1995) explains the probabilities of old

responses for different types of items and test conditions in terms of the memory

parameters c, uc+, and uc- and the response bias parameters gi  and ge. Parameter c

represents the unconditional probability of recollecting a Phase 1 item. Parameter uc+

denotes the conditional probability of uncontrolled processes given that a Phase 1

item has already been recollected. This parameter can be ignored for the present

purposes because it does not influence participants’ responses.1 Further, a Phase 1
item cannot be recollected with probability 1!–!c, and parameter uc- represents the

conditional probability of automatic processes leading to a cognitive state in which a

                                                
1 Technically uc+ is an unidentifiable parameter which means that an assumption must be

made about this parameter in order to render the model identifiable (e.g., uc+ = uc-, uc+ = 1, or uc+ =
0 which yield, respectively, model variants in which controlled and automatic processes are
independent, redundant, or mutually exclusive; see Jones, 1987) . Which assumption is used,
however, is relevant only if one is interested in the unconditional probability u of automatic
processes contributing to the recognition judgments. We suggest to use uc- instead which is the
conditional probability of uncontrolled memory processes contributing to recognition given a Phase 1
item has not been recollected. For details, see Buchner et al. (1995)
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Phase 1 item is accepted as old, given that it cannot be recollected. In the context of

recognition tasks, this cognitive state has been described phenomenologically as a

state of “familiarity-based responding” (e.g., Jacoby, 1991) which is why we adopt
this terminology here. Finally, gi  and ge denote the conditional probabilities of

guessing old in the inclusion and the exclusion test conditions, respectively, given that

the item neither can be recollected nor seems sufficiently familiar.

Four model equations expressing the probabilities of old responses as func-
tions of the model parameters c, uc-, gi , and ge for different types of items and test

conditions can be derived quite easily by summing up the probabilities of mutually

exclusive cognitive processes that may lead to an old response. For instance, the
probability of an old response to Phase 1 items in the inclusion test condition, p1i,

equals

p1i = c + (1!–!c) · uc- + (1!–!c) · (1!–!uc-) · gi , (1)

because old responses can result (a) if the item is recollected which occurs with

probability c, (b) if the item is not recollected but appears familiar which occurs with

probability (1!–!c) · uc-, or (c) if the item is neither recollected nor seems familiar but it

is guessed that the item is from Phase 1; this occurs with probability (1!–!c) · (1!–!uc-) ·

gi . According to the EMM, distractor items cannot be recollected and cannot seem

familiar which is why answers to distractors are conceived of as guesses. This implies

the assumption that distractors can never be detected as new with certainty. Thus,

the probability pdi of an old response to distractor items (i.e., a “false alarm”) in the

inclusion test condition equals

pdi = gi . (2)

In the exclusion test condition, by contrast, the probability p1e of an old re-

sponse to Phase 1 items equals

p1e = (1!–!c) · uc- + (1!–!c) · (1!–!uc-) · ge, (3)

because these responses are assumed to occur only (a) if the item is not recollected

but appears familiar which happens with probability (1!–!c) · uc-, or because of

guessing when an item is neither recollected nor seems familiar; this occurs with

probability (1!–!c) · (1!–!uc-) · ge. According to the exclusion instruction, participants
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are to respond new if they can recollect a Phase 1 item. Again, distractor items are

assumed to be responded to on the basis of a guessing process which implies that the

probability pde of a false alarm in the exclusion test condition equals

pde = ge. (4)

Note that the guessing probabilities gi  and ge and, hence, the false-alarm

probabilities may differ between the inclusion and exclusion test conditions.

Buchner et al. (1995) showed that all four model parameters c, uc-, gi , and ge

are identifiable and demonstrated how to arrive at parameter estimates, confidence

intervals for the estimates, and goodness-of-fit tests for models with parameter

restrictions. In fact, because the EMM is formally a multinomial processing-tree

(GPT) model (cf. Hu & Batchelder, 1994; Riefer & Batchelder, 1988), no new statistical

work is needed, and easy-to-use software for statistical data analyses is also available

(Hu, 1993; see Hu & Batchelder, 1994).

Quite a few other process dissociation measurement models can be derived

from the EMM in a rather straightforward way (cf. Buchner et al., 1995). For ex-

ample, the original independence measurement model (IMM) suggested by Jacoby (1991)

is obtained

(a) by restricting the model equations to Phase 1 items (i.e., by omitting

Equations 2 and 4 for the distractor items),

(b) by assuming that gi  = ge = 0 (i.e., by positing that old responses never occur as

a consequence of guessing), and

(c) by imposing the restriction that uc+ = uc-, that is, by assuming that controlled

recollections and automatic, familiarity-based judgments are stochastically

independent.

As a consequence of assumption (c), the unconditional probability of a feeling
of familiarity, uI, must be equal to both uc+ and uc-.

Yonelinas et al. (in press)  and Yonelinas and Jacoby (1995b)  acknowledge that

the IMM leads to invalid parameter estimates when response biases differ between

inclusion and exclusion test conditions, but they hold on to the IMM for data sets

with equal false-alarm rates in the inclusion and exclusion test conditions and—for
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certain purposes—also for data sets in which these false-alarm rates differ. We do not

agree to this proposal for three reasons.

The first reason is that conclusions concerning familiarity effects based on the

IMM are problematic even if the false-alarm rates in the inclusion and exclusion test
conditions do not differ (i.e., if gi  = ge = k). The parameter c as determined by the

IMM (henceforth referred to as cIMM) is indeed not contaminated by response biases

if gi  = ge = k, that is, it is equal to the parameter c as determined by the EMM for all

values of k. The uc- parameter of the IMM (henceforth uc-, IMM), in contrast, is

contaminated by response biases for all values of k > 0, that is, it reduces to the uc-

parameter of the EMM only if k = 0. To see this, one has to compare the equations
representing c and uc- as functions of the response probabilities for the IMM (see

Buchner et al., 1995, Equations 3 and 8) and for the EMM (see Buchner et al., 1995,

Equations 13 and 14). While Equation 13 reduces to Equation 3 for all values of k,

Equation 14 reduces to Equation 8 for k = 0 only. This is obvious after inserting

Equation 8 of Buchner et al. (1995)  into their Equation 14 and observing that

uc-, IMM = uc- + k · (1!–!uc-). (5)

Thus, the IMM parameter uc-, IMM (and, hence, uI as obtained within the IMM)

is not a meaningful measure of familiarity effects because it is artificially raised by
guessing relative to the EMM parameter uc-, and this artifact becomes more serious

the smaller the effects of familiarity and the larger the influence of guessing

processes. Moreover, whenever k differs between two groups or experimental

manipulations to which the process dissociation procedure is applied, any difference
between these groups or manipulations in uc-, IMM or the nonexistence of such a

difference can be an artifact of differences in response biases between the conditions.

For instance, Roediger and McDermott (1994)  have criticized Verfaellie and

Treadwell (1993)  for comparing the recognition performance of amnesics and

normals using the process dissociation procedure and Jacoby’s (1991) original

measurement model despite the amnesics exhibiting a much higher false-alarm rate

than the controls (i.e., k differed between groups). In Phase 1 of this study,

participants read words and solved anagrams. They heard words in Phase 2 and then

performed a recognition test under both inclusion and exclusion test conditions.
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Among other things, Verfaellie and Treadwell (1993)  reported that for the measure

representing familiarity-based processes there was no difference between the groups

and no interaction between presentation (read vs. anagram) and the group factor.

For the purpose of the present illustration, we will focus on the recognition

performance for the anagram words. In order to compare the IMM and the EMM we

had to recover the response frequencies from the response probabilities reported by
Verfaellie and Treadwell (1993). Table 1 presents the estimates for cIMM and uc-, IMM

which we obtained from these recovered response frequencies using the IMM, and it
presents the estimates for c and uc- as well as gi and ge of the EMM. Most

interestingly, the estimates of uc-, IMM are very similar for the amnesics and the

controls. In fact, the IMM with the restriction that uc-, IMM(amnesics) =

uc-, IMM(controls) fits the data well, G2(1) = 0.87, given a critical

c2!!!!!!!!!!!!!!!!!!!!,(df = 1,!a = .05)  = 3.84.2 However, because the false-alarm rate was much

larger for the amnesics than for the controls (see ĝ i  and ĝ e), we may suspect that

uc-, IMM for the amnesics may be artificially inflated to a larger degree than uc-, IMM

for the controls. Thus, the equality of uc-, IMM for both groups may be an artifact.

Indeed, an analysis using the EMM shows that when differences in response biases

are taken into account, the estimates of the parameter representing automatic,
familiarity-based memory effects, uc-, are no longer similar for the amnesics and the

controls. Indeed, the EMM with the restriction that uc-(amnesics) = uc-(controls) does

                                                
2 The log-likelihood goodness-of-fit statistic G2 is asymptotically chi-square distributed

when the null hypothesis holds true with degrees of freedom indicated in parentheses (see Hu &
Batchelder, 1994, for details). All model-based statistical analyses reported in this article were
conducted using the MBT program by Hu (1993; see Hu & Batchelder, 1994).
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not fit the data, G2(1) = 4.15, and has to be rejected, supporting the conclusion that

there are differences between the participant groups in the automatic, familiarity-

based memory effects.

An example of the reverse effect can be found in recognition data presented

by Komatsu et al. (1995) . In their Experiment 1, for instance, participants counted the

syllables of low and high frequency words in Phase 1. The estimates of cIMM and

uc-, IMM as well as the estimates of c, uc-, gi, and ge are also presented in Table 1.

Komatsu et al. (1995)  did not perform statistical tests on these data. However, û

c-, IMM is evidently much larger for high than for low frequency words, and an

analysis using the IMM shows that the model with the restriction that uc-, IMM(low

frequency words) = uc-, IMM(high frequency words) does indeed not fit the data,

G2(1) = 13.94, which would support the conclusion that automatic, familiarity-based

effects of memory are larger for high than for low frequency words. The problem

with this result is that participants were more than twice as likely to accept high (.34)
than low frequency distractors (.16), raising the suspicion that uc-, IMM for the high

frequency words may have been artificially inflated to a larger degree than uc-, IMM

for the low frequency words. Sure enough, when analyzing the data using the EMM,

the difference in the estimates of the parameters representing automatic, familiarity-

based memory effects largely disappeared, and the EMM with the equality
restrictions on uc- fitted the data very well, G2(1) = 0.74.

These two examples show that even if the false-alarm rates do not differ be-
tween inclusion and exclusion test conditions (i.e., gi  = ge = k), using the IMM is

dangerous because it may lead to erroneous conclusions if k differs between con-

ditions. However, the IMM should also be avoided if the false-alarm rates are constant

across all test conditions and across all groups or experimental manipulations, and

even if the absolute size of the familiarity effect is irrelevant (i.e., one is interested only in

possible differences of the familiarity effects between two conditions). Equation 5
implies that, given constant k, treatment effects on uc- are mirrored in uc-, IMM only

qualitatively, and not quantitatively. If uc-(A)!–!uc-(B) denotes the difference in uc-

between treatments or groups A and B, and uc-, IMM(A)!–!uc-, IMM(B) denotes the

corresponding difference in uc-, IMM, then the exact relation as derived from Equation

5 is
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uc-, IMM(A)!–!uc-, IMM(B) = (1!–!k) · (uc-(A)!–!uc-(B)). (6)

In other words, the familiarity treatment effect is diluted when it is analyzed in
terms of uc-, IMM to the degree to which the (constant) false-alarm rate k increases,

which reduces the power of statistical tests of the familiarity effect. Therefore,

treatment effects which would turn out to be statistically significant when analyzed
with respect to uc- may be statistically insignificant when analyzed with respect to

uc-, IMM. Note that the finding of ‘invariances’ in the effects of automatic memory

processes across different groups or experimental manipulations has been

Table 1.
Maximum-likelihood parameter estimates for data reported by Verfaellie and Treadwell
(1993)  and by Komatsu, Graf, and Uttl (1995, Experiment 1) according to the IMM
(Jacoby, 1991) and the EMM (Buchner et al., 1995).
Verfaellie and Treadwell (1993) Amnesics Normal Controls

IMM cIMM .00 .32

uc-, IMM .44 .51

EMM c .00 .33

uc- .21 .40

gi .22 .17

ge .28 .19

Komatsu, Graf, and Uttl (1995) Low Frequency High Frequency

IMM cIMM .48 .30

uc-, IMM .48 .63

EMM c .48 .26

uc- .38 .43

gi .15 .38

ge .16 .29
Note . There are slight differences between the estimates reported by Verfaellie and Treadwell
(1993)  and those based on the recovered response frequencies using the IMM (the largest such dif-
ference being.016). Verfaellie and Treadwell (1993, p. 8)  excluded 7% of the responses to anagrams
because these anagrams had not been solved in Phase 1. We reduced the recovered response
frequencies uniformly by 7%, but our estimates must differ slightly from the ‘correct’ estimates to
the degree to which the number of anagrams solved correctly differed between groups and test con-
ditions.
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considered important evidence in support of the “independence assumption” (i.e.,

the assumption that controlled and automatic processes make independent

contributions to performance) favored by some researchers (e.g., Jacoby & Begg,

1995; Jacoby, Toth, Yonelinas & Debner, 1994; Jacoby, Yonelinas & Jennings, in press;

Toth et al., 1994) . One might thus argue that finding such invariances is easier when
using uc-, IMM rather than uc-. Notwithstanding that, we believe that such invariances

in the measure of automatic processes given differences in the measure of controlled

processes cannot be counted as evidence in favor of the independence assumption,

and we will give reasons for this further on.

Our second reason to reject the IMM is that the situation becomes even more
tricky when gi  is larger than ge. This case occurs quite often in practice and it has the

unfortunate consequence that not only uc-, IMM but also cIMM—the IMM’s

recollection parameter—is artificially inflated by effects of response biases. Although

Yonelinas et al. (in press)  agree with this statement, they nevertheless recommend

using Jacoby’s (1991) IMM whenever “... the goal of the study is to examine the

qualitative effects of a variable on recollection and familiarity” (Yonelinas et al., in

press, p. 22 of the preprint) . Yonelinas and colleagues seem to assume that the
disturbing effects of gi !–!ge differences are additive so that they are canceled out when

(a) mean differences between groups or experimental manipulations are analyzed
and (b) the gi !–!ge differences are nonzero but constant across groups or

experimental manipulations. This is not quite correct. To see this, one has to write

Jacoby’s (1991) recollection measure cIMM (i.e., the difference between inclusion and

exclusion hit rates, p1i!–!p1e) as a function of the EMM parameters. By subtracting the

EMM model equations for p1i and p1e (i.e., Equations 1 and 3) we obtain

cIMM = c + (1!–!c) · (1!–!uc-) · (gi!–!ge). (7)

Obviously, cIMM is not only contaminated by the effects of response biases but

also by the effects of familiarity whenever gi  and ge differ. Thus, contrary to what

has been claimed by Yonelinas et al. (in press) , across-groups comparisons of cIMM

may cause misleading conclusions even when both inclusion and exclusion false-

alarm rates are constant across treatments. Assume, for instance, that two groups do
not differ in their recollection probabilities c and in their (nonzero) gi !–!ge differences,
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but in their familiarity parameters uc-. When recollection is measured in terms of

cIMM then, according to Equation 7, this must lead to the erroneous conclusion that

there is a group effect in the contributions of recollection to performance.

In summary, it is quite dangerous to use the IMM whenever the false-alarm

rates differ between groups or experimental manipulations, between test conditions,

or between both, and it is also rather dangerous to do so whenever false-alarm rates

are actually constant across all conditions.

Our third objection to the IMM is one which is at the same time an objection to

the DPSDM to be discussed below. The objection concerns the independence
assumption formally expressed as uc+ = uc-. This assumption can be added to the

EMM without sharing the other problematic assumptions of the IMM (cf. Buchner et

al., 1995). We will therefore discuss it as a possible supplement to the EMM.

Jacoby and colleagues have presented arguments in defense of the inde-

pendence assumption (e.g., Jacoby & Begg, 1995; Jacoby et al., 1994; Jacoby et al., in

press; Toth et al., 1994) . However, the assumption has also been criticized on various

grounds and remains problematic the more so because alternative assumptions can

be defended with good reasons, too (e.g., Curran & Hintzman, 1995; Joordens &

Merikle, 1993; Richardson-Klavehn, Gardiner & Java, 1995; Russo & Andrade, 1995) .

Unfortunately, empirical tests of different assumptions about the relation between
uc+ and uc- are impossible within the traditional process dissociation framework

because uc+ is not an identifiable parameter, that is, it is not uniquely determined by

process dissociation data (cf. Buchner et al., 1995). We therefore cannot establish that
uc- = uc+ (see Assumption (c) in the discussion of the extended measurement model

above). This also implies that the finding of invariances in the effects of automatic

memory processes across different experimental manipulations does not help us in

deciding whether the independence assumption holds true or not. In terms of the
EMM, showing that uc- is insensitive to certain experimental manipulations that

affect other model parameters reveals no information about uI as long as we have

no information about uc+. As Russo and Andrade (1995, p. 421)  have pointed out, it

would be inappropriate to use invariances in uc- across conditions A and B to

demonstrate independence (i.e., uI(A) = uc-(A) = uc+(A) = uI(B) = uc-(B) = uc+(B)) by

assuming independence (i.e., uc-(A) = uc+(A) and uc-(B) = uc+(B)).
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We can see two ways to solve this dilemma: (a) One could extend the tradi-

tional process dissociation procedure such that new measurement models can be
formulated in which both uc+ and uc- are identifiable or (b), one could rely upon the

traditional process dissociation framework and abstain from any assumptions about
uc+. We prefer the second option because the parameter uc+ does not appear to be

necessary in order to assess automatic, familiarity-based memory processes. The
identifiable parameter uc- provides a much safer ground for meaningful statements,

and it will necessarily mirror the numerical results as would be obtained with uI: It is

important to keep in mind that uc- and uI differ only in interpretation, not in

numerical value. Parameter uc- is a conditional probability that is uniquely

determined by response probabilities whereas uI is an unconditional probability

which rests on a questionable assumption about uc+.

To put it in a nutshell, there are a number of serious arguments against the

assumptions underlying the IMM, and we see none in favor of it. Pragmatic reasons

such as computational simplicity cannot challenge this conclusion because statistical

analyses in the EMM framework are conducted as easily as in the IMM framework

(cf. Buchner et al., 1995).

The Dual-Process Signal-Detection Model

While quite a few process dissociation measurement models that have been

suggested in the literature can be derived as special cases of the EMM (cf. Buchner et

al., 1995), alternatives to the EMM framework are of course conceivable. Elaborating

on prior work of Jacoby et al. (1993)  and Yonelinas (1994) , Yonelinas et al. (in press)

have recently suggested a particularly attractive alternative which also accounts for

simultaneous effects of controlled processes, automatic processes, and response

biases on task performance. Their DPSDM is similar to the EMM insofar as

recollection is conceived of as a discrete cognitive state which is either present (with

probability c) or absent (with probability 1!–!c) in both the inclusion and the exclusion

test conditions. It differs from the EMM, however, in conceptualizing familiarity as a

continuous latent random variable rather than a discrete cognitive state. In analogy

to standard signal-detection theory, Yonelinas et al. (in press)  assume that the

familiarity Ud of distractor items is normally distributed with a mean and a standard
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deviation which for convenience are taken to be -d'/2 and 1, respectively (cf.

Macmillan & Creelman, 1991, p. 35) . The familiarity U1 of Phase 1 items, in contrast,

is increased by some (additive) amount d' relative to distractor items due to prior

processing, so that U1 is also normally distributed but with mean +d'/2 and standard

deviation 1. The parameter d', therefore, may serve as a measure of the familiarity

increase caused by studying the Phase 1 items. Building upon Jacoby’s (1991)  IMM,

recollection and familiarity are assumed to be stochastically independent, so that the

conditional familiarity distribution of Phase 1 items, given a failure of recollection,

must mirror their unconditional familiarity distribution. As we will discuss below, this

last assumption is absolutely crucial in the DPSDM context, because the DPSDM

equations cannot be derived without it.

The assumptions of the DPSDM about consciously recollected Phase 1 items

are the same as those of the EMM. The DPSDM differs from the EMM in that it

implies that items which cannot be consciously recollected are judged old whenever

their familiarity value exceeds some response criterion ki  in the inclusion test

condition or ke in the exclusion test condition. Let F(u) := p(U ≤ u) denote the

distribution function of a standard normal random variable U with mean 0 and

standard deviation 1. Then the probability that the familiarity value of a Phase 1 item

exceeds the response criterion ki  can be written as p(U1 > ki ) = 1!–!p(U1 ≤ ki ) =

1!–!F(ki !–!d'/2) = F(d'/2!–!ki ). Because the conditional familiarity distribution, given a

failure of recollection, is assumed to match the unconditional distribution, Phase 1

items in the inclusion test condition are judged old with probability

p1i = c + (1!–!c) · F(d'/2!–!ki ), (8)

where the first term of the sum corresponds to a state of recollection and the second

term to a familiarity value exceeding the response criterion not accompanied by a

conscious recollection. In a completely analogous manner, the remaining three

model equations can be derived:

pdi = F(-d'/2!–!ki ), (9)

p1e = (1!–!c) · F(d'/2!–!ke), (10)
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and

pde = F(-d'/2!–!ke). (11)

As we show in the Appendix, the four response probabilities p1i, pdi, p1e, and

pde uniquely determine the two memory parameters c and d' as well as the two

response bias parameters ki  and ke. Thus, the model is identifiable. Unfortunately,

however, satisfactory solutions to the statistical problems of parameter estimation,

computation of confidence intervals, and goodness-of-fit testing do not seem to exist

at present. We acknowledge that Yonelinas et al. (in press, Footnote 1)  took a first

step by offering an algorithm which computes estimates of the four model

parameters that exactly predict observed hit rates (p̂ 1 i and p̂ 1e) and false-alarm rates

(p̂ di and p̂ de) when inserted into the Equations 8 to 11.3 However, this algorithm

does not apply to restricted versions of the model which will often be needed in

practice. For instance, one might be interested in estimating the parameters of a

DPSDM for two experimental manipulations A and B assuming that d'(A) in Group A

equals d'(B) in Group B. In this case, parameter estimates which predict the observed

data perfectly will most likely not exist. Yonelinas et al. (in press)  seem to suggest

least-squares solutions for problems like this one, but this procedure will lead to

estimates with unsatisfactory statistical properties.

To our knowledge, methods to compute confidence intervals or goodness-of-

fit tests for restricted and unrestricted versions of the DPSDM have not been

proposed so far. In practice, therefore, statistical data analyses within the framework

of the DPSDM must proceed as follows:

(1) The inclusion versus exclusion test conditions are manipulated within-subject,

such that each participant generates hit rates and false-alarm rates for both the

inclusion and exclusion test conditions.

                                                
3 Alternatively, these estimates can be derived by inserting relative frequencies as

estimates of the response probabilities into Equations A1 to A5 in the Appendix. In a first step, the
interval [0, 1] is iteratively searched for a value c,  ̂ which satisfies Equation A5. Next, Equation A3
or A4 is used to compute d̂ '. Finally, k̂ i  and k̂ e can be calculated by referring to Equations A1 and A2.
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(2) For each participant, the hit and false-alarm rates are then transformed into

estimates of the model parameters using the algorithm suggested by

Yonelinas et al. (in press) .

(3) These estimates are treated as dependent variables in ANOVAs or

MANOVAs, and the usual F-tests are performed in order to assess treatment

effects with respect to recollection, familiarity, or response bias.

Buchner et al. (1995, p. 141) have already criticized an analogous procedure which

has often been used to analyze data in the framework of Jacoby’s (1991)  IMM. The

same arguments apply here and there: Within-subject manipulations of the test

conditions and single-participant estimates are problematic because (a) participants

performing perfectly on Phase 1 items (i.e., their individual p̂ 1 i = 1 and p̂ 1e = 0) have

to be dropped from the data analyses as a consequence of undefined parameter

estimates, (b) quite a few participants may have difficulties to follow the instructions

to both types of test in succession (Graf & Komatsu, 1994; Richardson-Klavehn et al.,

1995)  and thus might also have to be dropped from the analyses, (c) systematic

biases may result as a consequence of selective loss of participants in different

experimental groups, (d) test order problems (e.g., carry-over effects across test

conditions) may arise, and (e) parameter estimates for single participants will be

relatively unreliable which adds error variance to the ANOVAs and MANOVAs and

thus reduces the power of the F-tests.

For these reasons, a more elaborated statistical theory of the DPSDM and

corresponding software for data analyses is highly desirable. This will take more

effort than in case of the EMM, however, because formally the DPSDM neither is a

multinomial GPT model (as defined and analyzed statistically by Hu & Batchelder,

1994)  nor can it be reparameterized so as to make it a GPT model. (Interestingly,

however, the DPSDM can be generalized to a distribution-free DPSDM which formally

is a GPT model. We will return to this issue later.)

Besides the statistical problems involved, the DPSDM has the disadvantage of

relying heavily upon the independence assumption with respect to recollection and

the automatic, familiarity-based processes. Whereas this problematic assumption is

dispensable within the EMM framework, it is absolutely necessary in the DPSDM
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framework in order to derive the conditional familiarity distribution, given a failure

of recollection: If (a) Phase 1 items are recollected with a probability c which is larger

than 0 and less than 1, (b) the familiarity distribution of distractors is a normal

distribution, (c) prior processing increases the familiarity of Phase 1 items by amount

d' relative to the distractors, and (d) recollection and familiarity are not stochastically

independent, then the conditional familiarity distribution of nonrecollected Phase 1

items cannot be a normal distribution. As long as the exact nature of the dependency

between recollection and familiarity is not specified further, this is all we know about

the conditional familiarity distribution. As a consequence, the probability of a

nonrecollected Phase 1 item exceeding the familiarity response criterion is an

unknown function of d' and the response criterion. Thus, the model equations can no

longer be written as functions of only four model parameters c, d, ki , and ke. As a

result, the model becomes nonidentifiable.

In this sense, then, the DPSDM forms a community of fate with the inde-

pendence assumption whereas the EMM does not, that is, the validity of the EMM is

independent on whether the independence assumption holds true or not. In view of

the serious criticisms raised against the independence assumption, this must be

regarded as an advantage of the EMM. However, the DPSDM is not invalidated at

this point because the independence assumption may hold true. In our opinion,

therefore, the choice of the model framework (EMM versus DPSDM) should

primarily depend on results of empirical model evaluations, not on a priori

arguments raised against specific assumptions of the models. We will return to this

issue below after discussing some alternative methods of correcting for response

bias in the process dissociation procedure.

Alternative Methods to Correct for Response Bias

As stated in the introduction, alternative methods of correcting for response

bias have been proposed by Jacoby et al. (1993) , Komatsu et al. (1995) , and

Roediger and McDermott (1994). In contrast to the EMM and DPSDM, these methods

were not derived from process dissociation measurement models. Rather they were

based on assumptions about the nature of response biases taken from other sources.
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The additive uI adjustment as suggested by Jacoby et al. (1993) has already

been discussed by Buchner et al. (1995, p. 142) and has been found to be inappro-

priate because it does not eliminate the response-bias contamination of uI. Yonelinas

et al. (in press)  provide a good discussion of the correction methods suggested by

Komatsu et al. (1995)  and by Roediger and McDermott (1994) . These methods are

sequential in nature: In a first step, one tries to decontaminate the probabilities of old

responses in the inclusion and exclusion test conditions from the effects of response

bias. In a second step, these corrected probabilities are entered into the model

equations for the IMM as suggested by Jacoby (1991). The idea behind these

sequential correction methods is that response biases can be eliminated from the

data in a way that is model-independent. However, any generation or

transformation of measurement values necessarily implies a model, at least an

implicit one (cf. Gigerenzer, 1981) . This raises the question as to whether or not the

models underlying the two steps are compatible. They are not, and this is so because

the implicit models underlying the corrections in the first step are high-threshold

models for simple yes-no recognition tasks (cf. Macmillan & Creelman, 1991, chap. 4)

which do not take into account that the response probabilities are affected

simultaneously by controlled processes, automatic processes, and response biases.

As a consequence, some new problems emerge (cf. Yonelinas et al., in press) . For

instance, the correction methods cannot account for false-alarm rates that are larger

than the hit rates in the exclusion test condition, which are often observed in practice.

Moreover, negative familiarity estimates result quite often as a consequence of the

correction procedures. These problems do not occur when the EMM or the DPSDM

are used. Therefore, we will be concerned with these two model frameworks in the

remainder of this article.

Evaluation of Process Dissociation Measurement Models
The EMM and the DPSDM currently seem to be the most valuable mea-

surement tools for the process dissociation procedure. Which of these two tools

should be used in practice? As outlined above, there are some pragmatic arguments

in favor of the EMM, because the statistical analysis of the DPSDM needs some

elaboration. However, this appears to be a technical problem of minor importance if
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compared to the overriding validity problem: Do the models’ parameters measure

what they are supposed to measure?

We agree with Yonelinas and Jacoby (1995b)  that this question should be

answered empirically and not on a priori grounds. Because both the EMM and the

DPSDM aim at measures of recollection and familiarity which are uncontaminated by

effects of response bias, it seems natural to begin evaluating the models by testing

whether the memory parameters remain unaffected when response bias varies. Both

within and outside the process dissociation framework, two different techniques

have been used in such tests: (a) experimental manipulations of response bias and (b)

use of confidence ratings. How do the process dissociation measurement models

come off when evaluated in these ways? We will first study evaluations based upon

confidence ratings, and turn to response bias manipulations subsequently.

Confidence Ratings

Rather than responding simply old or new to every item, participants in a

typical confidence rating experiment also state how sure they are of their recognition

judgment on a n-point rating scale, n > 2. The problem is that both the EMM and the

DPSDM have been introduced as measurement models for dichotomous old-new (or

yes-no) judgments. Before these models can be applied to confidence rating data,

they need to be extended to incorporate judgments on n-point rating scales. We will

demonstrate that there is no unique way to do this. The results of the evaluations

will therefore depend on exactly how the models are extended.

Evaluation of the DPSDM.

One way to extend the DPSDM to confidence rating data is to assume that

recollected Phase 1 items are always responded to with the most extreme confidence

ratings, that is, with X = n in the inclusion test condition (sure old) and with X = 1 in

the exclusion test condition (sure new). Familiarity-based responses to distractors and

Phase 1 items that were not recollected, in contrast, are assumed to be based on

response criteria associated with each of the n rating categories: Participants will

report the particular confidence level for which the familiarity value of the item just
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exceeds the response criterion. This is the DPSDM version for confidence ratings

preferred by Yonelinas (1994)  and by Yonelinas et al. (in press) .

If ki(j) and ke(j) denote the response criteria associated with rating category X =

j in the inclusion and exclusion test conditions, respectively, and given all other

assumptions of the DPSDM are preserved, then the probability p1i(X ≥ j), j = 2, … , n,

that the confidence rating X is not less than j for Phase 1 items in the inclusion test

condition can be written in complete analogy to Equation 8 as

p1i(X ≥ j) = c + (1!–!c) · F(d'/2!–!ki(j)). (12)

The same holds true for both types of distractor items and Phase 1 items in the

exclusion test condition:

pdi(X ≥ j) = F(-d'/2!–!ki(j)), (13)

p1e(X ≥ j) = (1!–!c) · F(d'/2!–!ke(j)), (14)

pde(X ≥ j) = F(-d'/2!–!ke(j)). (15)

These model equations define a pair of parallel ROCs, both of which depend

on parameters c and d'. The first ROC curve expresses the hit rate as a function of the

false-alarm rate for the inclusion test condition,

p1i(X ≥ j) = c + (1!–!c) · F(F-1(pdi(X ≥ j)) + d'), (16)

and the second curve does that for the exclusion test condition,

p1e(X ≥ j) = (1!–!c) · F(F-1(pde(X ≥ j)) + d'). (17)

Yonelinas (1994) evaluated these ROC curves using a list discrimination

version of the process dissociation procedure. This paradigm differs from the

recognition paradigm described above because in each of the two test conditions one

type of items must be excluded: Under list1? instructions, participants must respond

old to Phase 1 items and new to Phase 2 items whereas under list2? instructions

judgments must be reversed. Under both instructions distractors must be called new.

Instead of just responding old or new, participants were asked to express the

confidence in their judgments on a 6-point rating scale ranging from sure new (1) to
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sure old (6). For purposes of data analyses, the data were collapsed across instructions

as follows: Responses to Phase 1 items under list1? instructions and to Phase 2 items

under list2? instructions served as inclusion data, responses to Phase 1 items under

list2? instructions and to Phase 2 items under list1? instructions as exclusion data.

Responses to distractors were also collapsed across instructions so that there was

only one class of distractors instead of two. Note that in analyzing these data the

assumption is made that memory parameters do not differ between Phase 1 and

Phase 2 items. Because the retention interval is shorter for Phase 2 items as

compared to Phase 1 items it might well be expected that recollection and perhaps

even familiarity effects are more pronounced for Phase 2 items. In fact, there is some

support for this hypothesis in Yonelinas’ (1994) data.4 However, we will follow

Yonelinas (1994) and refer to the aggregated data only.

Qualitatively, the shape of the ROC curves (16) and (17) can account rather

well for the data patterns obtained by Yonelinas (1994, Experiments 1 to 3), but

formal goodness-of-fit tests have not been conducted which is why a definite answer

about this model’s fit to Yonelinas’ data awaits to be given. To anticipate, however,

we can infer that quantitatively the misfit of the DPSDM must be considerable, at

least with respect to Yonelinas’ (1994) Experiments 1 and 2. More precisely, we can

infer the misfit of the DPSDM from the misfit of its generalized version (i.e., a

distribution-free DPSDM) which will be described in the next section. The DPSDM is a

submodel of the distribution-free DPSDM, and the misfit of the latter therefore

implies the misfit of the former.

Note also that it is very important to fit both inclusion and exclusion ROCs

simultaneously using the same parameters d' and c. It is not sufficient—as has been

done by Yonelinas and Jacoby (1995b, Figure 1) —to fit only an inclusion ROC

without also fitting the corresponding exclusion ROC. When both inclusion and

exclusion ROCs are considered in one figure, the fit of the DPSDM is less impressive

than suggested by Figure 1 of Yonelinas and Jacoby (1995b) .

                                                
4 The authors would like to thank Andy Yonelinas for providing the raw frequencies of

Experiments 1 to 3 in Yonelinas (1994).
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There are, of course, alternative ways to extend the DPSDM to rating scales.

For example, tendencies to avoid extreme response categories could prevent some

participants from choosing confidence levels 1 or 6 for recollected items in the

inclusion or exclusion test conditions. If the possibility of intermediate confidence

ratings for recollected items is implemented into the model, a more complicated pair

of (not necessarily parallel) ROC curves results. In fact—as already discussed by

Yonelinas (1994)—pronounced deviations of the empirical data from the ROC curves

(16) and (17) at the extreme confidence levels suggest that such a model variant

might provide a significantly better fit to the data. However, this has not been

explored thus far.

Evaluation of the EMM.

Yonelinas and Jacoby (1995b)  extended the EMM to confidence ratings by

conceptualizing familiarity as a continuous random variable for this model, too.

Although this deviates from the EMM assumptions as stated by Buchner et al. (1995),

it is indeed possible to derive the EMM model equations within a modified DPSDM

framework by assuming (a) that familiarity is a continuous random variable with

density functions fd(u) for distractor items and f1(u) for Phase 1 items, (b) that there is

some familiarity value s such that fd(u) = 0 for all values u > s, (c) that the likelihood

ratio f1(u)/fd(u) is constant for all values u ≤ s, (d) that the response criteria ki  and ke

are always smaller than s, and (e) that all other DPSDM assumptions (except the

normal distribution assumptions) hold true. The EMM model equations follow from

these alternative assumptions because the EMM reduces to a simple one-high

threshold (1HT) model for yes-no recognition tests when only nonrecollected items

are considered as target items. As is well known, the model equations corresponding

to the 1HT model can be derived by either conceptualizing recognition (or

familiarity) as a discrete state or by conceptualizing it as a continuous random

variable, coupled with the distribution assumptions mentioned above (see Macmillan

& Creelman, 1991, chap. 4, for a very instructive discussion of these issues).

When the EMM is rephrased in terms of continuous underlying familiarity

distributions, a straightforward extension to rating scales can be arrived at in the

same way as has been demonstrated already for the DPSDM. This is what Yonelinas
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and Jacoby (1995b)  did: They adopted the modified DPSDM framework for the

EMM model equations, assumed each rating category to be associated with a unique

response criterion, and posited that recollected Phase 1 items are always responded

to with the most extreme confidence ratings. This way they arrived at a pair of

parallel, linear ROC curves for confidence ratings, both with slope (1!–!c) · (1!–!uc-)

and with intercepts c + (1!–!c) · uc- for the inclusion ROC and (1!–!c) · uc- for the

exclusion ROC.

As illustrated by Figure 1 of Yonelinas and Jacoby (1995b) , this EMM exten-

sion obviously cannot account for the data obtained by Yonelinas (1994) and

therefore must be rejected. Note, however, that this only shows the EMM extension

preferred by Yonelinas and Jacoby (1995b)  to be inadequate and is not damaging to

the EMM itself. To demonstrate this, we suggest an alternative extension of the EMM

to rating scales which is illustrated in Figure 1. Following Buchner et al. (1995), this

extension is based on the notion of familiarity as a cognitive state rather than

familiarity as a continuous random variable. Note that in its structural part, this EMM

version for confidence ratings is completely isomorphic to the EMM as presented by

Buchner et al. (1995, Figure 2). As in Buchner et al. (1995), we included the

nonidentifiable parameter uc+ in order to illustrate that it is possible to derive

independence, redundancy, and exclusivity variants of this model by assuming uc+ =

uc-, uc+ = 1, and uc+ = 0, respectively. However, we prefer to make no assumptions

about uc+ and, therefore, simply to drop that parameter from the model.



Page 26 Process Dissociation Measurement Models

The model illustrated in Figure 1 differs from the EMM in that assumptions

about conditional old versus new response probabilities were replaced by as-

sumptions about conditional probabilities of confidence ratings given a certain

cognitive state. The model parameters denoted by the letter j represent these

conditional probabilities. For instance, the model assumes that consciously recol-

lected Phase 1 items are given the confidence ratings 4, 5, or 6 in the inclusion test

condition and 1, 2, or 3 in exclusion test condition.

Thus, in order to account for possible biases against extreme ratings, the

model provides for some small proportion of intermediate ratings, given a conscious

recollection. Furthermore, the model assumes that nonrecollected but familiar items

Figure 1a. The extended measurement model for a modified process dissociation
procedure based on confidence ratings (inclusion test condition). Parameter c
denotes the unconditional probability of conscious recollections. Parameters uc+
and uc- denote the conditional probabilities of automatic, familiarity-based memory
effects if an item is and is not recollected, respectively. The j-parameters denote the
conditional probabilities given a conscious recollection (j1c to j6c), given an
unconscious memory effect if an item is not recollected (j1u to j6u), and given that
guessing occurs (j1g to j6g).
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are responded to with any of the response categories 2 to 6; only sure new

judgments are excluded by the model. Finally, guessing may result in any of the six

confidence rating categories and, therefore, the guessing parameters jlgi, l = 1,..., 6,

and jlge, l = 1,..., 6, for the inclusion and exclusion test conditions, respectively, are not

restricted at all.

Despite the large number of free parameters, this EMM extension to rating

scales can be shown to be identifiable. Model equations expressing the probabilities

of each of the six confidence ratings for each of the item types and test conditions as

functions of the model parameters are easily derived from the processing tree

illustrated in Figure 1. One simply sums up the probabilities of all branches that lead

Figure 1b. The extended measurement model for a modified process dissociation
procedure based on confidence ratings (exclusion test condition). Parameter c
denotes the unconditional probability of conscious recollections. Parameters uc+
and uc- denote the conditional probabilities of automatic, familiarity-based memory
effects if an item is and is not recollected, respectively. The j-parameters denote the
conditional probabilities given a conscious recollection (j1c to j6c), given an
unconscious memory effect if an item is not recollected (j1u to j6u), and given that
guessing occurs (j1g to j6g).
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into a particular response category for a specific tree. Also, a pair of ROC curves is

easily obtained by successively computing p1i(X ≥ 6) = p1i(X = 6), p1i(X ≥ 5) = p1i(X =

6) + p1i(X = 5), p1i(X ≥ 4) = p1i(X ≥ 5) + p1i(X = 4), and so forth, for both test

conditions and item types. Due to space limitations, we will omit the extensive but

easy-to-derive formulas here.

The pair of ROC curves implied by the EMM extension illustrated in Figure 1

consists of two functions which are noncontinuous and not necessarily parallel. They

fit exactly the empirical ROC data reported by Yonelinas (1994, Experiments 1 to 3).

Thus, the model’s fit is perfect for all data sets.5 This should not be too surprising

because the goodness-of-fit test has df = 0, that is, there are as many free parameters

as there are independent category probabilities to fit.

Much more important than the perfect fit is whether the parameter estimates

obtained for this model make sense when it is applied to the raw frequencies of

Yonelinas’ Experiments 1 to 3. To examine this, we will first focus on the parameters

representing states of varying confidence before we inspect the parameters

representing controlled recollections and automatic, familiarity-based processes.

As one would expect, the preferred response categories for recollected items

are indeed 6 and 1 in the inclusion and exclusion test condition, respectively (see

Table 2). However, up to about 30 % of the recollected items receive intermediate

confidence ratings, probably as a consequence of biases against extreme ratings.

It should also be expected that response probabilities for recollected items (a)

are symmetric in the inclusion and exclusion test conditions such that j6c = j1c, j5c = j2c,

and j4c = j3c and (b) are independent from the experimental treatment under which

they were obtained. The first of these expectations is obvious, and the second follows

from the reasoning that when participants consciously recollect items, their high

level of confidence in old judgments (in the inclusion test condition) or new

judgments (in the exclusion test condition) should not depend on whether the items

stem from short or long lists (Yonelinas, 1994, Experiments 1 and 2) or were

                                                
5 To be precise, the fit to the data from Experiment 3 of Yonelinas (1994) was not completely

perfect; the log-likelihood goodness-of-fit statistic was G2 = 0.21. This was due to the fact that a l l
parameter estimates were restricted to be elements of [0, 1], and one estimate ( ĵ  6c for weak items)
converged against the boundary value 1.
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presented for one second (weak items) or for three seconds (strong items)

(Yonelinas, 1994, Experiment 3).

The appropriate restrictions on the jlc parameters of the model (l = 1, … , 6)

yield 6 degrees of freedom for a test of this compound hypothesis. The log-

likelihood goodness-of-fit statistics are G2(6) = 6.24 (Experiment 1), G2(6) = 10.58

Table 2.
Maximum-likelihood parameter estimates for the extended measurement model depicted in
Figure 1 when applied to the data reported by Yonelinas (1994).

Maximum-likelihood estimate for

Experiment 1 Experiment 2 Experiment 3

Parameter short lists long lists short lists long lists weak strong
c .565 .394 .615 .391 .111 .218

uc- .785 .776 .739 .754 .479 .505

j1c a .753 .722 .714 .642 .860 .739

j2c a .221 .234 .217 .287 .101 .153

j3c a .026 .044 .069 .071 .039 .108

j4c b .025 .028 .038 .024 .000 .064

j5c b .172 .180 .196 .280 .009 .193

j6c b .803 .792 .766 .696 .999 .743

j1u c — — — — — —

j2u .154 .169 .187 .188 .159 .073
j3u .231 .229 .239 .191 .147 .119
j4u .306 .299 .229 .314 .175 .158
j5u .200 .232 .224 .227 .289 ..278
j6u .109 .071 .127 .080 .230 .372

j1g .415 .256 .442 .266 .379 .379
j2g .328 .361 .430 .460 .225 .225
j3g .167 .233 .085 .167 .157 .157
j4g .066 .101 .026 .069 .110 .110
j5g .019 .045 .014 .034 .084 .084
j6g .004 .004 .003 .004 .045 .045

a Exclusion test condition. b Inclusion test condition. c Sure new judgments given no conscious recollec-
tion are excluded by the model.
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(Experiment 2), and G2(6) = 4.42 (Experiment 3). Given a critical value of

c2!!!!!!!!!!!!!!!!!!!!,(df = 6,!a = .001)  = 22.46, there is obviously no reason to reject the

hypothesis.6

One might also expect that confidence judgments for nonrecollected but

familiar items do not depend on the experimental treatments. Our hypothesis is thus

that the jlu parameters (l = 2, … , 6) are equal across the experimental conditions. The

goodness-of-fit test for this hypothesis has df = 4, and a reasonable critical value is

c2!!!!!!!!!!!!!!!!!!!!!,(df = 4,!a = .001)  = 18.47. Although the fit is slightly worse compared to the

above results, this hypothesis is also tenable for Experiment 1, G2(4) = 5.99,

Experiment 2, G2(4) = 11.51, and Experiment 3, G2(4) = 13.67.

In contrast to confidence judgments for recollected or familiar items, confi-

dence judgments based on guessing should largely depend on the experimental

context. For example, given that participants cannot recollect items and do not find

them familiar, then they should show more confidence in their new judgments if the

items were presented on short lists rather than on long lists in the acquisition phase.

In case of short lists, participants might reason that it must be easy to remember

items from the list. Hence, if they cannot recollect an item and the item also does not

seem familiar, participants might guess that the item must very likely be new (Strack

& Bless, 1994) . In case of long lists, in contrast, participants might expect to forget a

significant proportion of items from the list. As a result, when they cannot recollect

an item and it also does not seem familiar, they might more often guess that the item

is nevertheless old. There is strong evidence favoring this hypothesis in the data of

Yonelinas’ Experiments 1 and 2. The G2 statistics testing the equality of the jlg

parameters (l = 1, … , 6) across the experimental conditions are G2(5) = 98.73 and

G2(5) = 115.62 for Experiments 1 and 2, respectively. Both G2-statistics are

considerably larger than the critical value c2!!!!!!!!!!!!!!!!!!!!!,(df = 5,!a = .001)  = 20.52. Table 1

shows that these significant effects are indeed due to higher confidence in guessed

new judgments in case of short lists. The present hypothesis cannot be evaluated for

                                                
6 Given sample sizes (i.e., participants · sessions · items) ranging from N = 6912 to N = 8640

per experiment and df < 10 for the set of hypothesis tests to be reported in this section, the power to
detect “small” deviations from the null hypothesis (i.e., w =.1, cf. Cohen, 1988)  is almost 1 for a
=.001. Thus, a levels larger than a =.001 should be avoided. The power calculations were conducted
using the G•Power program (Buchner, Faul & Erdfelder, 1992) .



Process Dissociation Measurement Models Page 31

Experiment 3 because the same set of distractors was used for both weak (1 s

presentation duration) and strong (3 s presentation duration) items.

An interesting feature of our results is that they confirm Yonelinas’ (1994)

conclusions for Experiments 1 and 2, but not for Experiment 3. Like Yonelinas (1994),

we found conscious recollections (as measured by c) to be more frequent for short

lists than for long lists in Experiment 1, G2(1) = 56.98, and in Experiment 2, G2(1) =

78.79. Also, c was found to be larger for strong than for weak items (3 s vs. 1 s

presentation duration) in Experiment 3, G2(1) = 14.98. For all three experiments, the

G2-statistics for the tests that c is identical in the two encoding conditions exceed the

critical value c2!!!!!!!!!!!!!!!!!!!!!,(df = 1,!a = .001)  = 10.83. Familiarity effects as reflected in uc-

were found neither for the list length manipulation in Experiment 1, G2(1) = 0.04, and

in Experiment 2, G2(1) = 0.08, nor for the long versus short presentation duration

manipulation in Experiment 3, G2(1) = 0.49. This latter conclusion contradicts the one

reached by Yonelinas (1994). According to our results, there is either no effect or a

very tiny effect of the presentation duration manipulation on uc- (see Table 2).

Currently, we are unable to decide whether uc- really is unaffected (or almost

unaffected) by item presentation duration or whether the difference between 1 and 3

seconds was too small to reveal the presentation time effect in this study.

To summarize, it is quite easy for an extended EMM to account for the data of

Yonelinas (1994) in a psychologically meaningful and reasonable way. The least we

can say is that the fit of this model is not worse than that of the DPSDM. What this

demonstrates is that the structural part of the EMM is not limited to yes-no

recognition tasks. The model can be extended successfully to experimental situations

in which confidence ratings are required following the recognition judgments in the

process dissociation procedure. In fact, the basic underlying conceptual ideas can also

be (and have already been) successfully transferred to other paradigms such as, for

instance, lexical decision (cf. Vaterrodt-Plünnecke, 1994, who presented a two-high

threshold model separating effects of conscious perceptions, implicit memory, and

response bias)  and Baars’ (1992)  slip technique to induce errors in speech (cf. Bröder

& Bredenkamp, 1995, who extended the EMM to the slip paradigm) .
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Experimental Manipulations of Response Bias

Confidence ratings provide a simple and economical way to arrive at em-

pirical ROC curves. However, as shown in the last section, it is quite difficult to

decide empirically between process dissociation measurement models on the

grounds of rating-based ROC curves only. In fact, various types of models based on

completely different theoretical rationales can account quite well for the ROC data of

Yonelinas (1994), not only those based on two-factor theories of memory but also

global memory models based on single process theories such as Gillund and

Shiffrin’s (1984)  SAM model. This has recently been demonstrated by Ratcliff, Van

Zandt, and McKoon (in press) .

Past research on measurement models for simple detection and recognition

tasks has shown that it is almost impossible to test models based on threshold theory

against signal-detection models if one uses ROC curves only. Some threshold

models, for instance those suggested by Luce (1963b) or Krantz (1969) , are so

flexible that they can mimic almost perfectly the ROC curves predicted by various

versions of signal-detection theory. Other threshold models such as the plain one-

high or the two-high threshold model (cf. Macmillan & Creelman, 1991, chap. 4;

Snodgrass & Corwin, 1988) do indeed predict simple linear ROCs for yes-no detection

or recognition tasks, but they can of course account for nonlinear ROCs based on

confidence ratings when extended in a way analogous to that illustrated in Figure 1

for the EMM.

Our view converges with that of other authors. Lockhart and Murdock (1970)

, for instance, concluded about attempts to differentiate between finite state and

signal-detection models of memory that a “routine examination of operating

characteristics is, in general, inconclusive, especially if generated by the use of confidence

ratings” (p. 105, emphasis added; see Banks, 1970, for a similar conclusion)  .

For these reasons, we cannot go along with Yonelinas and Jacoby (1995b)  and

Yonelinas et al. (in press)  when they claim that ROC curves derived from confidence

ratings are powerful tools for assessing model validity. A more thorough test of

process dissociation measurement models can be arrived at by using yes-no

recognition tasks in combination with experimental treatments that are known to
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affect response bias. The list of examples includes (a) manipulations of the proportion

of targets relative to distractors (e.g., Dusoir, 1983; Kintsch, 1967; Marken &

Sandusky, 1974; Parducci & Sandusky, 1965; Parks, 1966; Ratcliff, Sheu & Gronlund,

1992; Tanner, Haller & Atkinson, 1967) , (b) manipulations of payoffs for hits and

false alarms (e.g., Banks, 1969; Galanter & Holman, 1967; Hume, 1974; Levine, 1966;

Smith, 1969, 1970; Snodgrass & Corwin, 1988; Swets, Tanner & Birdsall, 1961;

Wender, 1975), or (c) instructional manipulations (e.g., Colquhoun, 1967; Egan,

Greenberg & Schulman, 1961). These experimental tests are more powerful than

tests based on confidence ratings because the former refer to the original versions of

measurement models while the latter refer to extended versions which are based on

additional assumptions. Obviously, fits or misfits of these extended versions may

heavily depend on the nature of the additional assumptions. Fit or misfit of the original

models, however, only depends on the validity of the core assumptions of the models.

To our knowledge, experimental manipulations of response biases in the

process dissociation procedure have only been investigated by Buchner et al. (1995)

which is why we refer to these data only. Buchner et al. (1995) influenced response

biases by manipulating (a) the proportion of targets relative to distractors in the

recognition test (Experiment 1), (b) payoffs for hits and false alarms (Experiment 2),

and (c) instructions that did versus did not point to the base-rates of required old

versus new responses (Experiment 3). All three methods can be considered standard

methods in response bias research, the first two being used more often than the

third.

Evaluation of the DPSDM.

When the DPSDM is applied to yes-no recognition paradigms, the predicted

pair of ROC curves can be inferred directly from the Model Equations 8 to 11. In fact,

this pair of curves is identical to that specified in Equations 16 and 17, except that the

cumulative rating probabilities have to be replaced by probabilities of old responses.

Note, however, that deviations from these curves can no longer be attributed to

intermediate confidence ratings for recollected items. This is why DPSDM

evaluations based on yes-no recognition tasks are more thorough than tests based on

confidence ratings.
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Unfortunately, due to the lack of techniques to compute confidence intervals

and goodness-of-fit tests, no formal statistical evaluation of the DPSDM’s fit to the

Buchner et al. (1995) data can be performed at this point. Even ANOVA analyses

based on single-participant estimates of the model parameters are impossible

because inclusion versus exclusion test conditions were manipulated between

subjects for the reasons specified before. The only thing that can be done is to

compute parameter estimates for the aggregated data of single experimental

conditions. However, nothing is known about the standard errors of these estimates.

This is also true for the estimates averaged across experiments and item classes

which are reported in Table 1 of Yonelinas and Jacoby (1995b) . Therefore, it is

impossible to assess, for example, whether a difference of.07 in average recollection

estimates between bias conditions is or is not a reason to reject the model. It is

important to note that the same difference of.07 may be significant when referring to

one model and nonsignificant when referring to another model. Whether or not

significance is reached depends on the model-specific standard errors of the

estimates which are unknown in the present case. Thus, the data presented in Table 1

of Yonelinas and Jacoby (1995b)  are of no help in evaluating the model.

However, the most serious problem in Table 1 of Yonelinas and Jacoby

(1995b) is that they do not refer to estimates of d' as measures of familiarity. Instead,

they report the average estimate of the probability of accepting a nonrecollected

Phase 1 item on the basis of familiarity, given an average false-alarm rate (.18 in case of

the Buchner et al. data). Obviously, this is not a meaningful indicator of familiarity

effects. According to the DPSDM, the probability to accept nonrecollected Phase 1

items on the basis of familiarity must increase with the false-alarm rate in a way

predicted by ROC curves corresponding to standard (i.e., equal variance) signal-

detection theory. Hence, a difference between bias conditions with respect to

familiarity (d') corresponds to a difference between two of these ROC curves. Almost

irrespective of the size of d', all these ROC curves are close to each other near the

points (0, 0) and (1, 1) in the ROC diagram. They differ noticeably only in the

midrange of the diagram. Thus, differences between the DPSDM familiarity

indicators used in Table 1 of Yonelinas and Jacoby (1995b)  can only be small when the
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average false-alarm rate happens to be either small—as is the case in the Buchner et

al. (1995) data—or large. Therefore, even if there were large response bias effects in

d' it would be difficult to see them in the familiarity indicator used by Yonelinas and

Jacoby (1995b) .

For these reasons, little can be inferred from Yonelinas and Jacoby’s (1995b)

Table 1 except that the hypothesis of no differences between DPSDM memory pa-

rameters across bias conditions does not fit the Buchner et al. (1995) data perfectly.

Yonelinas and Jacoby’s (1995b)  try to explain this less-than-perfect fit by speculating

that the experimental manipulations used by Buchner et al. (1995) might have

affected response bias and memory processes simultaneously. However, they give

no reason for this supposition with respect to Experiments 2 and 3, but only for the

target-distractor ratio manipulation used in Experiment 1. Yonelinas and Jacoby

(1995b)  suspect that participants’ motivation to engage in recollection might increase

with the proportion of required old responses in the inclusion and exclusion

recognition tests. However, even if this hypothesis should turn out to be

correct—which is rather doubtful from our point of view—it remains to be shown

that recollection motivation actually influences recollection performance in memory

experiments. For the time being, the empirical evidence tends to favor the opposite

hypothesis (e.g., Nilsson, 1987; O’Dekirk, Wyatt, & Ellis, 1993)  .

Evaluation of the EMM.

As in case of the DPSDM, the ROC curves implied by the EMM when applied

to yes-no recognition tasks can be inferred directly from the Model Equations 1 to 4.

These happen to be parallel, linear ROCs with slope (1!–!c) · (1!–!uc-). Their intercepts

are c + (1!–!c) · uc- for the inclusion ROC and (1!–!c) · uc- for the exclusion ROC. Note

that although these simple linear functions have already been shown to be unable to

account for the rating-based ROC curves observed by Yonelinas (1994) , they may

nevertheless provide acceptable approximations to ROC curves based on yes-no

recognition tasks. This is so because the failure of the EMM’s ROCs when applied to

rating scales may be due to the failure of the additional (in fact, unreasonable)

distribution assumptions which are necessary to derive them within a modified

DPSDM framework.
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A series of experimental evaluations of the EMM has already been reported

by Buchner et al. (1995). These evaluations were performed by testing whether the

memory parameters c and uc- really remain stable when response bias varies.

Although no reference to ROC curves was made by Buchner et al. (1995), these tests

can be shown to evaluate the hypothesis that hit and false-alarm rates observed

under different test and response bias conditions lie on a pair of parallel, linear ROC

curves as described above.

We do not want to reiterate the Buchner et al. (1995) results here. However,

because Yonelinas and Jacoby (1995b)  seem to argue that the Buchner et al. (1995)

reasons to favor the EMM over the IMM are largely an artifact of the significance

levels used, some clarifying comments are in order. To account for the different

sample sizes involved, Buchner et al. (1995) in fact preferred different significance

levels when testing hypotheses concerning the IMM and EMM parameters.

However, it should be clear from their Table 3 (Buchner et al., 1995, p. 153) that

irrespective of the significance levels used, the hypothesis of no differences in

memory parameters across bias conditions fitted better for the EMM parameters

than for the IMM parameters in six out of six tests. The average difference in G2

goodness-of-fit statistics is as large as 9.7. If the IMM significance level had also been

used for the EMM, only one of the six statistical decisions would have changed.

However, the conclusions would remain exactly the same: Obviously, the EMM is a

significant improvement over the IMM. Nevertheless, the EMM is less than perfect,

which is why the Buchner et al. (1995) paper was entitled “Toward unbiased

measurement of conscious and unconscious memory processes.”

Table 1 of Yonelinas and Jacoby (1995b)  cannot reveal the EMM advantage

over the IMM because the figures displayed were based on average estimates across

experiments and across item types. As outlined in detail by Buchner et al. (1995), we

did not expect both of the IMM parameters to be equally affected by the response

bias manipulations in each of the three experiments. This holds true particularly for

cIMM. As shown in Equation 7, the bias in cIMM does not depend on the absolute

magnitude of the false-alarm rates in the inclusion and exclusion test conditions but

rather on their difference gi !–!ge. Thus, strong effects of the response bias
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manipulation on cIMM can only be expected when the difference gi !–!ge varies across

the bias conditions. Experiment 3 of Buchner et al. (1995) was designed to produce

this pattern of false-alarm rates by a simple instructional manipulation. Half of the

participants were informed of the differences in base-rates of required old : new

responses, and half were not. The results indeed showed a strong response bias

effect on cIMM. The difference in ĉ IMM between the standard and the base-rate

instruction groups was.23 and.11 for words read and for those solved as anagrams,

respectively, in Phase 1. With the EMM there was a sizable reduction in these group

differences. The ĉ IMM differences were.15 and.07 for read and the anagram words,

respectively.

To summarize, the EMM can be shown to be a significant improvement over

the IMM. However, the ROCs corresponding to the EMM provide only an

approximation to the experimental data which is not completely satisfactory.

Improvement of Process Dissociation Measurement Models
According to the results reported in the last section, both the DPSDM and the

EMM seem to be improvements over the IMM. However, when evaluated on the

basis of experimental data which provide more thorough tests than confidence

ratings, none of these models appears to be completely convincing. This points to

limitations of both models. Thus, we find ourselves encouraged to re-examine the

critical assumptions underlying the models and to look for alternative assumptions

that might help to overcome the limitations. In the sequel, we will first consider

possible generalizations of the DPSDM that avoid some of the difficulties associated

with the version presented by Yonelinas (1994) . Next, we turn to generalizations of

the EMM.

Generalizations of the Dual-Process Signal-Detection Model

In our opinion, two of the assumptions referred to when deriving the DPSDM

model equations are particularly critical: the normal distribution assumption and the

independence assumption. We know of no a priori reasons which would justify the

normal distribution assumption with respect to familiarity. For instance, it does not
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seem too difficult to construct distractor material—intentionally or incidentally—such

that this assumption is violated.

Also, as already mentioned, we are not aware of any a priori reasons justify-

ing the independence assumption, and the arguments put forward so far in favor of

and against assuming independence between recollection and familiarity seem to

have about equal weight (cf. Cowan & Stadler, in press; Curran & Hintzman, 1995;

Jacoby & Begg, 1995; Jacoby et al., 1994; Jacoby et al., in press; Joordens & Merikle,

1993; Richardson-Klavehn et al., 1995; Russo & Andrade, 1995; Toth et al., 1994) . The

least one can say at the moment is that the issue is not yet settled. It appears thus

desirable not to have to rely on a debatable assumption. We will first consider how

to dispense with the normal distribution assumption and then turn to the

independence assumption.

The distribution-free DPSDM.

When the normal familiarity distributions assumed by the DPSDM are re-

placed by arbitrary but identically shaped familiarity distributions, a distribution-free

DPSDM results. The parameters of this model are illustrated in Figure 2. To avoid

unnecessary complexity, Figure 2 refers to the inclusion test condition only. The

picture for the exclusion test condition would be identical, except that the exclusion

response criterion ke may differ from the inclusion response criterion ki .

According to the distribution-free DPSDM, the proportion of nonrecollected

Phase 1 items with familiarity values exceeding the response criterion ki  can be

written as the sum of fi  · (1!–!gi ) + gi . The parameter gi  again denotes the false-alarm

rate in the inclusion test condition, that is, the proportion of distractor items for

which familiarity exceeds the response criterion ki . As can be seen in Figure 2, the

product fi  · (1!–!gi ) is the proportion of nonrecollected Phase 1 items exceeding the

familiarity response criterion ki  in addition to those that would exceed it, given that

the familiarity increase due to prior processing was d' = 0. Thus, fi  = 0 if and only if d'

= 0. For a fixed response criterion ki  and given a fixed shape of the density functions,

fi  increases monotonically with d', so that fi  can be regarded as an ordinal measure of

familiarity increase due to prior processing of Phase 1 items.
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Unfortunately, fi  does not only depend on d' but also on the response criterion

and on the nature of the density functions. For instance, if both d' and the

distribution shapes remain constant but the response criterion ki  varies, then, in

general, fi  will also vary. Similarly, if the exclusion test condition is characterized by a

familiarity response criterion ke which differs from ki , then, in general, the exclusion

familiarity parameter fe will also differ from fi . Thus, there is no unique familiarity

measure in the distribution-free DPSDM. The model must provide for as many

familiarity parameters as there are different response criteria. This is the price to pay

for dropping the distribution assumption: If a specific distribution assumption is

made (normal or other), then all these different familiarity parameters can be

Figure 2. Illustration of the distribution-free dual-process signal-detection
model. The familiarity distributions of the Phase 1 items (upper panel) and the
distractors (lower panel) have identical but arbitrary shapes.
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rewritten as functions of a single parameter d'. If distribution assumptions are

omitted, however, the familiarity parameters cannot be reduced to a single d'.

Although this fact renders the model somehow less attractive, important

results can be inferred by applying it to the data of Yonelinas (1994). Two features of

the distribution-free DPSDM are responsible for this:

(1) The DPSDM favored by Yonelinas and Jacoby is a proper submodel of the

distribution-free DPSDM, so that the goodness-of-fit of the former can only be

as good or worse than the goodness-of-fit of the latter.

(2) The distribution-free DPSDM is formally a GPT model, so that it is easy to

analyze it statistically using the methods described by Hu and Batchelder

(1994) .

By replacing the normal integrals F(·) in Equations 8 to 11 with the corresponding

integrals of the distribution-free DPSDM, and by reparameterizing these integrals in

terms of gi , ge, fi , and fe (as illustrated in Figure 2), we arrive at the following set of

model equations:

p1i = c + (1!–!c) · (gi  + (1–gi ) · fi ), (18)

pdi = gi , (19)

p1e = (1!–!c) · (ge + (1-ge) · fe), (20)

pde = ge. (21)

Obviously, this is a nonidentifiable GPT model because four response prob-

abilities cannot uniquely determine five model parameters. When inclusion and

exclusion false-alarm rates do not differ, however, the model becomes identifiable,

because gi  = ge = g implies fi  = fe = f. For this reason, the model can be applied to the

data of Yonelinas (1994) who used only one distractor category.

The distribution-free DPSDM must of course be extended before it can be

applied to rating scale data. The extension is derived easily because we can proceed

along the lines already discussed for the DPSDM. By doing so, one arrives at the

Model Equations 22, 23, and 24 for the cumulated rating probabilities in the inclusion
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test condition, the exclusion test condition, and the distractor item condition,

respectively:

p1i(X ≥ j) = c + (1!–!c) · (g(j) + (1!–!g(j)) · f(j)). (22)

p1e(X ≥ j) = (1!–!c) · (g(j) + (1-g(j)) · f(j)). (23)

pd(X ≥ j) = g(j). (24)

Interestingly, these model equations turn out to be equivalent to a union of n-

1 restricted EMMs (i.e., one for each rating category j Œ {2, … , n}), if one assumes

that the recollection probability c(j) is a constant parameter c for all j while the false-

alarm rates g(j) and the familiarity parameters f(j) may differ between rating

categories.

We fitted this model to the cumulated raw frequencies of each of Yonelinas’

(1994) experimental conditions. The likelihood-ratio goodness-of-fit test has df = 4

and the sample sizes vary between N = 3456 and N = 4840. Therefore, a reasonable

significance level is again a =.001. Using the corresponding critical value

c2!!!!!!!!!!!!!!!!!!!!!!,(df = 4,!a = .001)  = 18.47 for the model test we have a power of about.97

for effects of size w =.10.

Somewhat to our surprise, the distribution-free DPSDM clearly did not fit the

data of Yonelinas’ Experiment 1 (short lists: G2(4) = 77.77; long lists: G2(4) = 43.12)

and Experiment 2 (short lists: G2(4) = 92.15; long lists: G2(4) = 61.40). For Experiment

3, in contrast, the fit was quite good (weak items: G2(4) = 0.80; strong items: G2(4) =

7.35). Taken together, these results are rather disappointing for both the DPSDM and

it’s distribution-free generalization, because the misfit of the latter implies the misfit

of the former.

In fact, Yonelinas (1994) detected the source of the misfit when he noticed that

his recollection estimates (which, as a consequence of gi(j) = ge(j) = g(j), happen to be

c,^  estimates) turned out not to be constant as predicted but rather decreased at the

extremes of the false-alarm dimension. Yonelinas (1994) attributed these decreases to

“bottom effects” and to “ceiling effects.” However, there are no statistical reasons to

expect such effects, because the relative frequencies that were used to calculate
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estimates of the recollection parameters are unbiased estimates of the underlying

response probabilities in the entire [0, 1] interval. Moreover, a marked curvilinearity

in the recollection estimates can be observed across the full range of false-alarm

rates, not only at the extremes (cf. Yonelinas, 1994, Figures 5 and 7). Therefore,

attributing this curvilinearity to bottom and ceiling effects is not completely

convincing.

We argue that the only explanation of the misfit which leaves the core as-

sumptions untouched is that recollected items did not always receive the most

extreme confidence ratings. This explanation is reasonable because biases against

extreme ratings are a frequent phenomenon, and that would explain the observed

curvilinearity in the c,^(j)  estimates across the false-alarm dimension. Note also that

the curvilinearity is reduced, but not completely eliminated, in the recollection

estimates for Experiment 3 (cf. Yonelinas, 1994, Figure 9). A reduced curvilinearity

must be expected when (a) intermediate confidence ratings for recollected items do

indeed occur, but (b) the recollection probability c is rather small. If there are few

recollected items—as seems to be the case in Yonelinas’ (1994) Experiment 3—, then

obviously the ratings preferred for recollected items cannot affect the data structure

significantly.

Of course, it is also conceivable that the misfit is not due to intermediate

confidence ratings for recollected items. Alternatively, it might be due to violations

of one of the core assumptions underlying the distribution-free DPSDM. How are we

to decide between these two possibilities? Again, using yes-no recognition tasks in

combination with experimental manipulations of response bias may be helpful. If the

misfit of the rating scale model really is a consequence of intermediate confidence

ratings for recollected items, then there should be no such misfit when the original

distribution-free DPSDM is applied to yes-no recognition tasks. In contrast, if the

misfit is caused by violations of one of the core assumptions, then the original

distribution-free DPSDM should not fit yes-no recognition data either.

Unfortunately, however, the distribution-free model cannot be evaluated

statistically by referring to the data of Buchner et al. (1995). This is implied by the fact

that gi  = ge does not hold true for these data so that the model becomes non-



Process Dissociation Measurement Models Page 43

identifiable. Also, identifiability cannot be achieved by adding the restrictions that (a)

the familiarity parameters of anagram and read items do not differ and (b) the

recollection parameters do not differ between the bias conditions.

For the time being, therefore, nothing can be said about the performance of

the distribution-free DPSDM when applied to yes-no recognition tasks. What is

needed is a set of experimental data comparable to those published by Buchner et al.

(1995), but satisfying the restriction that gi  = ge for each of the bias conditions.

The correlated-processes signal-detection model.

Another possibility of generalizing the DPSDM is to drop the independence

assumption while leaving the normal distribution assumption unchanged. The model

equations corresponding to this correlated-processes signal-detection model

(CPSDM) can most easily be derived by first considering the unconditional familiarity

distribution of Phase 1 items, that is, the familiarity distribution of recollected and

nonrecollected Phase 1 items combined. This must be a normal distribution with

mean d'/2 and standard deviation 1 when (a) the distractor familiarity distribution is

a normal distribution with mean -d'/2 and standard deviation 1, and (b) processing

of Phase 1 items increases their familiarity additively by amount d' relative to

distractor items.

According to the CPSDM, the proportion c of recollected Phase 1 items can be

decomposed into two additive components with respect to any response criterion k,

namely a proportion q(k) of recollected items with familiarity values exceeding k and

another proportion 1!–!q(k) of recollected items with familiarity values not exceeding

k. Therefore, there is a proportion q(k) · c of recollected items among Phase 1 items

with familiarity values exceeding k and another proportion (1!–!q(k)) · c of recollected

items among Phase 1 items with familiarity values not exceeding k.

In the inclusion test condition, a proportion F(d'/2!–!ki ) of Phase 1 items has

familiarity values larger than the response criterion ki . All of these items will be

judged old, irrespective of whether they were recollected or not. In addition to these

items, there is a proportion (1!–!q(ki )) · c of recollected items with familiarity values

not exceeding ki  which will also be judged old. Therefore,

p1i = F(d'/2!–!ki ) + (1!–!q(ki )) · c. (25)
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In the exclusion test condition, in contrast, only those Phase 1 items will be

judged old that (a) exceed the familiarity response criterion ke and (b) are not con-

sciously recollected. Hence,

p1e = F(d'/2!–!ke)!–!q(ke) · c. (26)

The inclusion and exclusion distractor equations are identical to those already

derived for the DPSDM (cf. Equations 9 and 11).

The DPSDM as a proper submodel of the CPSDM is obtained by setting q(ki ) =

F(d'/2!–!ki ) and q(ke) = F(d'/2!–!ke). If these two restrictions hold true, then

recollection and familiarity are said to be uncorrelated with respect to ki  and ke. If, in

contrast, the relations q(ki ) > F(d'/2!–!ki ) and q(ke) > F(d'/2!–!ke) turn out to be

correct, then recollection and familiarity are said to be positively correlated relative to

ki  and ke, respectively. Finally, negatively correlated recollection and familiarity

processes correspond to the relations q(ki ) < F(d'/2!–!ki ) and q(ke) < F(d'/2!–!ke). If

desired, an index of correlation,

Rk := ln(q(k) / F(d'/2!–!k)), (27)

may be defined with respect to any response criterion k. Positive, zero, and negative

values of Rk correspond to positive, zero, and negative correlations between

recollection and familiarity, respectively.

As a consequence of the additional parameters q(ki ) and q(ke), the CPSDM is of

course nonidentifiable in its most general form. However, identifiable submodels

exist, especially when applied to several groups or experimental manipulations

simultaneously. For example, submodels that correspond to the redundancy and

exclusivity model variants as discussed by Buchner et al. (1995) can be defined. The

redundancy variant, for instance, posits a perfect positive correlation between

recollection and familiarity so that the recollected items are those with the largest

familiarity values. Thus,

q(ki ) = { 1,!if!F(d'/2!–!ki )!≥!c,!,F(d'/2!–!ki )!/!c,!if!F(d'/2!–!ki )!<!c  (28)

and

q(ke) = { 1,!if!F(d'/2!–!ke)!≥!c,!,F(d'/2!–!ke)!/!c,!if!F(d'/2!–!ke)!<!c.  (29)
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Inserting these restrictions into Equations 25 and 26 shows that the inclusion

and exclusion ROC curves implied are flat across some part of the false-alarm

dimension. For hit rates p1i ≥ c, the inclusion ROC curve corresponds to standard

(equal-variance) signal-detection theory. However, because p1i cannot drop below c,

a constant value p1i = c is implied for the remainder of the inclusion ROC curve. The

corresponding exclusion ROC curve must be parallel to the inclusion ROC. It is

obtained by subtracting c from each point on the inclusion curve.

An exclusivity variant, in contrast, is based on assuming a perfect negative

correlation between recollection and familiarity so that the recollected items are

those with the lowest familiarity values. Therefore,

q(ki ) ={ 0,!if!F(d'/2!–!ki )!≤!1!–!c,!,(F(d'/2!–!ki )!–!(1!–!c))!/!c,!!if!F(d'/2!–!ki )!>!1!–!c
(30)

and also

q(ke) ={ 0,!if!F(d'/2!–!ke)!≤!1!–!c,!,(F(d'/2!–!ke)!–!(1!–!c))!/!c,!if!F(d'/2!–!ke)!>!1!–!c.
(31)

By inserting these terms into Equations 25 and 26 we obtain partially flat in-

clusion and exclusion ROC curves, too. In this case, however, the exclusion ROC

curve follows standard signal-detection theory for hit rates of p1e ≤ 1!–!c. Again,

because the exclusion ROC cannot increase beyond pi e = 1!–!c, the remainder of this

curve corresponds to the constant value p1e = 1!–!c. The parallel inclusion ROC is

obtained by adding c to each point on the exclusion ROC.

However, these redundancy and exclusivity variants of the CPSDM seem to

perform quite badly compared to the standard DPSDM. According to the results of

Yonelinas (1994), no part of the inclusion or exclusion ROCs corresponds to flat lines.

Instead, the ROCs appear to increase strictly monotonically across the entire false-

alarm dimension. These qualitative results seem to be typical of recognition ROC

curves in general. Therefore, no statistical evaluation is necessary in order to reject

both the redundancy variant and the exclusivity variant of the CPSDM.

Note, however, that the rejection of these models does not imply anything

about the empirical adequacy of the DPSDM. In particular, independence of recol-

lection and familiarity has not been proven by these results. The CPSDM covers
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many other submodels in addition to the DPSDM, the redundancy variant, and the

exclusivity variant. Currently, we cannot decide whether any of these submodels is

an improvement over the standard DPSDM favored by Yonelinas et al. (in press)

and Yonelinas and Jacoby (1995b) . Methods to analyze statistically any submodels of

the CPSDM model are much to seek.

Generalizations of the Extended Measurement Model

As in case of the DPSDM, there are several possible and plausible ways of

generalizing the EMM. One could think of more than one familiarity state, for

example, each corresponding to a different degree of familiarity. Even more

dramatic modifications of the basic assumptions are conceivable. In this section,

however, we will try to retain all of the basic assumptions underlying the EMM and

nevertheless improve its goodness-of-fit by generalizing the model, with a focus on

the processes involved in responding to distractor items.

One seemingly minor, but in fact relatively important assumption implied by

the EMM model equations is that distractor items are never detected as new.

Following this assumption, the false-alarm rates can be equated with the probabil-

ities of guessing old in the state of recognition uncertainty. From a statistical

viewpoint, this renders the EMM quite simple. However, as has already been stated

by Buchner et al. (1995, p. 143), conducting appropriate validation experiments can

be tricky because the distractor material must be selected and presented such that

the probability of participants detecting distractors becomes a negligible quantity.

Salient distractors, for instance, must be excluded from the distractor list because

participants might reason that they would have recognized a particularly salient item

as old had it been presented earlier, and infer that the item must certainly be new (cf.

Strack & Bless, 1994).

Although Buchner et al. (1995) have tried to avoid salient items, some of their

distractor items could nevertheless have been salient enough to encourage judgment

strategies similar to the one just described. The EMM would have been misspecified

for the validation experiments reported by Buchner et al. (1995) to the degree to

which distractor detection had actually occurred.
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It should be noted that prior research on threshold models for standard yes-no

recognition tasks and source monitoring tasks has pointed to similar problems for

other models which were also based on the presupposition that distractor items are

always responded to by guessing. The one-high threshold model (1HTM), for

example, was clearly found to be inappropriate for simple yes-no recognition tasks

(see e.g., Kintsch, 1977; Macmillan & Creelman, 1991; Murdock, 1974; Snodgrass &

Corwin, 1988) . However, these problems can be solved or at least reduced by

adding an additional parameter to the 1HTM that represents the probability of

detecting distractors as new. This model, which is known as the two-high (Snodgrass

& Corwin, 1988) or double-high (Macmillan & Creelman, 1990, 1991) threshold

model (2HTM), provides a reasonably good linear approximation to ROC curves

based on yes-no recognition tasks. Moreover, Snodgrass and Corwin (1988) and

Macmillan and Creelman (1990)  showed that sensitivity and bias measures based on

the 2HTM compare favorably with many alternative measures based on various

other model frameworks.

Batchelder and Riefer (1990)  developed a rather complex GPT model for

source monitoring tasks (see Johnson, Hashtroudi & Lindsay, 1993, for a recent

review) . This one-high threshold source monitoring model (1HTSM) reduces to the

1HTM if there exists only one source of items. For this reason, Kinchla (1994)  has

criticized Batchelder and Riefer’s model. Although the inadequacy of the 1HTM for

simple yes-no recognition tasks does not necessarily imply the inadequacy of the

1HTSM for source monitoring tasks, Kinchla’s critique stimulated Batchelder, Hu,

and Riefer (1994) , Batchelder, Riefer and Hu (1994) , and Bayen, Murnane and

Erdfelder (in press)  do develop alternative GPT source monitoring models that were

intended to cope with possible problems of the 1HTSM when evaluated against

empirical data. In fact, Bayen et al. (in press)

have recently shown empirically that a two-high threshold extension of the 1HTSM

which reduces to the 2HTM if there exists only one item source outperforms both

the 1HTSM and a low-threshold source monitoring model variant when evaluated

by using experimental manipulations of item detection and source identification.

Whereas both the 1HTSM and the low-threshold variant failed to reflect the item
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detection manipulation in their item memory parameters, the same effect was

captured properly by the appropriate parameter of the two-high threshold source

monitoring model (2HTSM).

The EMM suggested by Buchner et al. (1995) is related to Batchelder and

Riefer’s 1HTSM because it also reduces to the 1HTM when only nonrecollected Phase

1 items are considered as target items. According to the results of Bayen et al. (in

press) , the 2HTSM appears to be an improvement over the 1HTSM. Therefore, one

might suspect that a two-high threshold generalization of the EMM is also an

improvement over the EMM.

The two-high threshold extended measurement model (2HT-EMM) we

suggest is illustrated in Figure 3. There is only one important difference between this

model and the EMM shown in Figure 2 of Buchner et al. (1995). The 2HT-EMM, but

not the EMM, provides for the possibility of consciously rejecting distractor items with

probability d in both the inclusion and exclusion test conditions. Participants are

assumed to guess only if distractors are not detected (which occurs with probability

1!–!d). Note that the EMM as a proper submodel of the 2HT-EMM is obtained by

setting d = 0.

Another minor difference between the present Figure 3 and Figure 2 in

Buchner et al. (1995) is that Figure 3 has already been tailored to the validation

experiments conducted by Buchner et al. (1995). Therefore, two types of Phase 1

items—read items and anagram items—are distinguished. The recollection pa-

rameters corresponding to read and anagram items are labeled cr and ca, the cor-

responding familiarity parameters ucr- (ucr+) and uca- (uca+), respectively. Following

Buchner et al. (1995), the nonidentifiable parameters ucr+ and uca+ were included into

the model so that independence, redundancy, and exclusivity variants of the 2HT-

EMM—among others—can be defined. However, in the analyses reported below

these nonidentifiable parameters were dropped.

Despite the elimination of ucr+ and uca+, the 2HT-EMM is not identifiable

without imposing further restrictions. This is a consequence of the additional pa-

rameter d. We will consider two possible ways of achieving identifiability, and we

will show that both of them provide almost identical goodness-of-fits to the
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validation data of Buchner et al. (1995). Although it is easy to extend the 2HT-EMM

to rating scale data, too, we will not consider this possibility here for the reasons

already outlined above.

Figure 3 (See the ollowing 2 pages.) The two-high threshold extended mea-
surement model (inclusion condition). Parameters cr and ca denote the uncon-
ditional probabilities of controlled recollections of read and anagram words, re-
spectively. Parameters uc+ and uc- denote the conditional probabilities of automatic,
familiarity-based memory effects if a read or anagram word is and is not
recollected, respectively. Parameter d represents the unconditional probability of
controlled rejections of distractors. Parameters gi  and ge represent the probabilities
(a) of guessing that a distractor is old if it was not consciously rejected, and (b) of
guessing that a read or anagram word is old given that it has been neither
recollected nor accepted on the basis of familiarity.
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The multiple-groups two-high threshold EMM.

The most simple way to arrive at an identifiable 2HT-EMM version is to apply

the model to at least two experimental groups simultaneously and to assume that

only the response bias parameters gi  and ge  but not the core parameters cr, ca, ucr-,

uca-, and d differ between groups. This assumption is reasonable for Experiments 1

to 3 of Buchner et al. (1995) because different groups correspond to different levels of

response bias in these experiments.

As depicted in Figure 3, we applied this multiple-groups 2HT-EMM to read

and anagram items simultaneously. Therefore, the sample size was N = 4800 in each

of the three experiments (cf. Buchner et al., 1995). Given this large sample size, df = 3 ,

and a =.001, the power of the G2 goodness-of-fit test is about.99 even for “small”

deviations from the model (i.e., Cohen’s w =.1). Therefore, we decided again to use

c2!!!!!!!!!!!!!!!!!!!!!!,(df = 3,!a = .001)  = 16.27 as a critical value for our statistical decisions.

Fitting the multiple-groups 2HT-EMM with the restrictions that parameters cr,

ca, ucr-, uca-, and d do not differ between groups resulted in the goodness-of-fit

statistics G2(3) = 2.25, G2(3) = 8.47 and G2(3) = 2.99 for Experiments 1, 2, and 3, re-

spectively. Obviously, the fit is quite good in each of the three tests, and there is no

reason to reject the model. In addition, the multiple-groups 2HT-EMM performs

better than the EMM for which the corresponding goodness-of-fit statistics are G2(4)

= 9.57, G2(4) = 20.74, and G2(4) = 10.01 for Experiments 1, 2, and 3, respectively.7

These G2 statistics can be compared directly to the parallel 2HT-EMM statistics,

because both the degrees of freedom and the sample sizes underlying the tests are

identical. Although the fit of the EMM is acceptable for Experiments 1 and 3 at least, it

is clearly worse than the fit of the 2HT-EMM in each of the three tests.

The single-group two-high threshold EMM.

Unfortunately, the multiple-groups 2HT-EMM cannot be applied whenever

there is only a single experimental group of participants or whenever there are

several groups not satisfying the restriction that group membership does not affect

                                                
7 These goodness-of-fit statistics deviate from those published by Buchner et al. (1995)

because in that article, read and anagram items were analyzed separately while we analyzed both
item types simultaneously here. The more detailed results of Buchner et al. (1995) clearly show that
the misfit of the EMM in Experiment 2 is due to the anagram items only.
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the memory parameters of the model. In order to render the model identifiable,

some a priori assumptions concerning the d parameter are unavoidable in these

cases.

The problem can be solved by imposing equality restrictions on d. For in-

stance, one may assume that the probability of detecting a distractor item as new is

equal to the probability of detecting a target item as old. In fact, both the 2HTM

evaluated by Snodgrass and Corwin (1988) and the 2HTSM evaluated by Bayen et al.

(in press)  were based on this presupposition. However, if an analogous procedure is

to be applied to the 2HT-EMM, and if there is more than one type of old target items,

then one may run into conceptual problems. Whenever the memory parameters

corresponding to different types of old target items differ, which of these parameters

should be equated with the probability of detecting a distractor? This is exactly the

problem we face in the Buchner et al. (1995) data. Throughout all three experiments,

the probability of consciously recollecting a target was higher for anagram than for

read words. That pattern of results is also mirrored in the parameter estimates

obtained for the multiple-groups 2HT-EMM: The maximum-likelihood estimates for

cr and ca were.11 and.62 (Experiment 1),.28 and.67 (Experiment 2) and.26 and.57

(Experiment 3), respectively.

A possible solution to this dilemma is to assume that d is a weighted average of

the different recollection parameters. If we have only two types of target

items—read and anagram items—this means that d = l · cr + (1!–!l) · ca, where l is a

(fixed) weighting factor that depends on the proportions of different item types in

the recognition test (l =.5 in case of the Buchner et al. experiments). This approach is

relatively pragmatic. However, it has the advantages (a) to be applicable to any

number of target item types without necessarily assuming homogeneity of the

memory parameters and (b) to reduce to what others have suggested if there is only

one class of target items or if several items types are available but do not differ in

their memory parameters.

The maximum-likelihood parameter estimates obtained by applying this

single-group 2HT-EMM to the data of Buchner et al. (1995) are illustrated in Figure 4

together with their 95% confidence intervals. To facilitate comparisons with the EMM
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and the IMM, the corresponding parameter estimates and confidence intervals

obtained for these models are displayed, too.

Clearly, the parameter estimates corresponding to different response bias

conditions differ less in the 2HT-EMM than in case of the other two models. If

recollection estimates are averaged across item types and experiments we obtain

means of.438 for the liberal response bias conditions and.424 for the conservative

conditions. Thus, if measurement bias would be assessed as in Yonelinas and

Jacoby’s (1995b)  Table 1, the bias with respect to c,^  would be found to be only.014.

The same computations for û c- would result in average estimates of.193 for the

liberal response bias conditions and.207 for the conservative conditions across all

three experiments. Again, the residual bias is as small as.014. Thus, even if we were

to rely solely on these statistics, it would seem that the 2HT-EMM outperforms not

only the IMM quite clearly but also the EMM and the DPSDM (see Table 1 in

Yonelinas & Jacoby, 1995b) .

However, for the reasons already outlined above, these descriptive indices are

less important than the results of more thorough statistical evaluations. The fact that

the 95 % confidence intervals in Figure 4 overlap in each case suggests that the

response bias manipulation did not affect the 2HT-EMM parameters cr, ca, ucr-, uca-,

and d significantly. The goodness-of-fit test for this hypothesis has df = 4 instead of df

= 3 because parameter d in the single-group 2HT-EMM is no longer a free parameter

as in the multiple-groups 2HT-EMM. Thus, a reasonable critical value is

c2!!!!!!!!!!!!!!!!!!!!!,(df = 4,!a = .001)  = 18.47. Testing the above hypothesis statistically results in

goodness-of-fit indices G2 of 2.91, 8.63, and 3.02 for Experiments 1, 2, and 3,

respectively. Thus, the fit of the single-group 2HT-EMM is about as good as the fit of

the multiple-groups 2HT-EMM for the Buchner et al. (1995) data at least. In the light

of these results, both variants of the 2HT-EMM seem to be the best available process

dissociation measurement models at the moment.
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Discussion
Buchner et al. (1995) presented the EMM as a measurement model that takes

guessing into account for the process dissociation procedure. They used ex-

perimental manipulations of response biases to evaluate this model and demon-

Figure 4. Estimates for the parameters c and uc- according to the IMM, the EMM,
and the single-group 2HT-EMM for the data of Experiments 1 to 3 of Buchner et al.
(1995). The error bars represent the 95 % confidence intervals.
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strated that it is superior to the IMM presented by Jacoby (1991). Yonelinas, Regehr,

and Jacoby (in press)  and Yonelinas and Jacoby (1995b)  proposed, as an alternative,

the DPSDM which differs from the EMM in that familiarity is conceived of as a

continuous latent random variable rather than a discrete cognitive state. Yonelinas

and Jacoby (1995b)  went on to argue that this DPSDM provided a better fit than the

EMM to the ROC data obtained from a confidence rating procedure by Yonelinas

(1994) , and a slightly better fit than the EMM to the experimental data reported by

Buchner et al. (1995). As we have shown, this analysis has two weaknesses. For one

thing, Yonelinas and Jacoby (1995b)  argue only on a descriptive basis and compare

simple parameter estimates without considering confidence intervals for these

estimates. Thus, the EMM may well “look” as if it could fit the Buchner et al. (1995)

data less well than the DPSDM, but without a formal goodness-of-fit test for the

models we remain in some sort of limbo and cannot reach a definite conclusion.

Aside from this, it is important to note that the EMM must be extended before

it can be applied to confidence rating ROCs, and that this can be done in several

possible ways. Thus, when an extended EMM fails to fit confidence rating data, we

do not know whether the core of the model assumptions was inadequate or whether

only the particular extension was inappropriate.

This latter ambiguity was resolved by our developing an extension of the

EMM to confidence rating data which fits exactly the empirical ROC data reported by

Yonelinas (1994, Experiments 1 to 3). Much more importantly, we demonstrated in a

series of detailed goodness-of-fit tests for this extended EMM that the parameter

estimates obtained were psychologically meaningful and reasonable when we

applied it to the data from Yonelinas’ (1994) Experiments 1 to 3. In other words,

when extended appropriately, the EMM can account very well for ROCs generated

from confidence rating data, which means that the model’s core assumptions do not

need to be rejected. This result refutes claims to the contrary by Yonelinas and

Jacoby (1995b) , and it also confirms anew the conclusion reached by Banks (1970)

and by Lockhart and Murdock (1970)  that ROC curves are in general uninformative

for distinguishing between threshold and signal-detection models, especially if the

ROCs are generated from confidence rating data.



Process Dissociation Measurement Models Page 57

A few other points need to be considered when evaluating the EMM against

the DPSDM. First, we know of no satisfactory solutions to the statistical problems of

parameter estimation, computation of confidence intervals, and goodness-of-fit

testing for restricted models within the DPSDM framework. We have given reasons

for why within-subject manipulations of the test conditions and single-participant

estimates are problematic. These problems do not exist for the EMM because it is

formally a GPT model for which an elaborated statistical framework exists (cf. Hu &

Batchelder, 1994; Riefer & Batchelder, 1988) .

Second, as we have shown, the validity of the DPSDM is tied to the independence as-

sumption. Considering the serious criticisms of the independence assumption, it

seems wise to stand away from it. The EMM does that. It does not need any as-

sumption about the relation between recollection and automatic, familiarity-based

processes to be identifiable. Finally, when a formal model test is used, it turns out

that the DPSDM does not fit the ROC data of Yonelinas (1994) which it was designed

to fit. This can be inferred by generalizing the DPSDM to a model that does no

longer need the normal distribution assumption and by performing goodness-of-fit

tests for the generalized version. These tests can be conducted because the

generalized version is formally a GPT model. The generalized, distribution-free

DPSDM does not fit the data of Yonelinas (1994). Hence, the DPSDM as its proper

submodel cannot fit them either.

Returning to the EMM, there seems to be little disagreement about the su-

periority of that measurement model for the process dissociation procedure over the

IMM originally suggested by Jacoby (1991) when it comes to correcting for response

biases. In the series of experiments reported by Buchner et al. (1995) it was possible

to show that the hypothesis of no differences in the memory parameters across bias

conditions fitted consistently better for the EMM than for the IMM parameters.

However, we felt compelled to analyze in this article the fact that Yonelinas et al. (in

press)  and Yonelinas and Jacoby (1995b)  nevertheless endorsed using the IMM for

data sets with equal false-alarm rates in the inclusion and exclusion test conditions

and—for certain purposes—also for data sets in which these false-alarm rates differ.

It is possible to show that the IMM delivers contaminated parameter estimates not
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only when false-alarm rates differ between inclusion and exclusion test conditions,

but also when false alarms are the same in the inclusion and exclusion test conditions

and differ between groups or experimental manipulations. In fact, as we have

shown, examples exist in the literature of exactly these sorts of contaminations in the

parameters when the IMM is used (Komatsu et al., 1995; Verfaellie & Treadwell,

1993) . On top of that, further analyses showed that even if the false-alarm rates are

constant across all test conditions and across all groups or experimental

manipulations, and even if the absolute size of the familiarity effect is not of interest

to the researcher, the IMM still leads to contaminated estimates of the contributions

of automatic, familiarity-based processes when compared to the EMM.

To summarize so far, we conclude that (a) the EMM is clearly superior to the

IMM in that the former, but not the latter, was able to account for data in which

response biases were manipulated experimentally (see Buchner et al., 1995); (b) it can

be rather dangerous to use the IMM even in situations for which it was

recommended as being acceptable by Yonelinas et al. (in press)  and by Yonelinas

and Jacoby (1995b) ; (c) the EMM has the advantage of being embedded into the

statistical theory of GPT models (cf. Hu & Batchelder, 1994; Riefer & Batchelder, 1988)

which allows for satisfactory methods of parameter estimation, computation of

confidence intervals, and goodness-of-fit testing for restricted models; (d) the EMM

can be generalized to confidence rating data, and it fits perfectly such data provided

by Yonelinas (1994) whereas the DPSDM as favored by Yonelinas et al. (in press)

and by Yonelinas and Jacoby (1995b)  can be shown to not be able to fit these very

same data; and (e) the EMM is superior to the version of the DPSDM favored by

Yonelinas et al. (in press)  and by Yonelinas and Jacoby (1995b)  in that it does not

depend on the questionable assumption of independence between recollection and

familiarity-based processes.

Although the EMM shows up to advantage in this model comparison, it is

clear that its fit to the data presented by Buchner et al. (1995) was good but still less

than perfect. Instead of following Yonelinas and Jacoby (1995b)  in attributing this

imperfect fit to influences of participants’ willingness to engage in recollection

processes (for which there does not seem to exist much evidence, see e.g., Nilsson,



Process Dissociation Measurement Models Page 59

1987; O’Dekirk et al., 1993) we looked for generalizations of both the DPSDM and the

EMM that might provide a better fit to the available data. From all options

considered, the 2HT generalization of the EMM appears to be the most promising.

The motivation for this generalization was that the EMM’s assumption of distractors

never being detected as new may be too restrictive for many experimental settings.

We introduced two variants of a new 2HT-EMM. The multiple-groups variant of the

2HT-EMM is applicable whenever there is more than one experimental manipulation

or group and the assumption is reasonable that the parameters representing the

memory processes do not vary across groups or experimental manipulations. The

single-group variant of the 2HT-EMM assumes that the probability of a conscious

rejection is equal to the probability of recollecting a target or, more pragmatically,

the “average” target if there is more than one class of targets and the recollection

parameters for these differ. Both model variants can be evaluated using the data

provided by Buchner et al. (1995). In fact, the fit of both model variants to these data

was not only clearly better than the IMM’s fit but also better than the fit of the EMM,

indicating that at least on a certain proportion of trials participants indeed

consciously identified distractors as new in those experiments. This does not mean

that the 2HT-EMM will be superior to the EMM (i.e., 2HT-EMM assuming d = 0) in all

applications. Whether the 2HT-EMM or the EMM is more adequate in practice will

largely depend on the peculiarities of the experimental situation. Finally, an informal

analysis based only on a comparison of parameter estimates as suggested by

Yonelinas and Jacoby (1995b, Table 1)  demonstrated that the 2HT-EMM was also

superior to the DPSDM.

In sum then, the 2HT-EMM does seem to provide the best available

framework for constructing measurement models for the process dissociation

procedure at this stage.
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Appendix

Proof of the Identifiability of the DPSDM

The first two model equations of the DPSDM can be solved for d'/2!–!ki  and -
d'/2!–!ki  by making use of the inverse F-1 of the standard normal distribution
function F. Equation 8 implies

d'/2!–!ki  = F-1((p1i!–!c)/(1!–!c)) (A1)

and Equation 9 implies

-d'/2 –!ki  = F-1(pdi). (A2)

By subtracting (A2) from (A1) we obtain

d' = F-1((p1i!–!c)/(1!–!c))!–!F-1(pdi). (A3)

Applying an analogous procedure to the remaining two Model Equations 10
and 11 yields

d' = F-1(p1e/(1!–!c))!–!F-1(pde). (A4)

All model parameters but c are eliminated by subtracting Equation A4 from
Equation A3:

F-1((p1i!–!c)/(1!–!c))!–!F-1(p1e/(1!–!c)) = F-1(pde)!–!F-1(pdi). (A5)

This equation uniquely determines c as a function of p1i, pdi, p1e, and pde,
because (a) the term F-1((p1i!–!c)/(1!–!c)) is strictly monotonically decreasing in c, (b)
F-1(p1e/(1!–!c)) is strictly monotonically increasing in c, and, thus, the complete left
side of Equation A5 is a strictly monotonically decreasing function

f(c) := F-1((p1i!–!c)/(1!–!c))!–!F-1(p1e/(1!–!c)). (A6)

Therefore, an inverse function f-1 exists. When f-1 is applied to both sides of
Equation A5 we obtain

c = f-1(F-1(pde)!–!F-1(pdi)). (A6)

Since the right side of Equation A6 only depends on the four response
probabilities, c must be identifiable.

Looking back at Equation A3 or A4 it is obvious that d' must be identifiable
when c is identifiable and c ≠ 1. Finally, when d' is identifiable, then the identifiability
of both ki  and ke follows immediately from Equations 9 and 10. This completes the
proof.
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