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Summar Y

Due to the many misconceptions surrounding the common
significance tests, a catalogue of demands to be satisfied by
statistical induction is developed. The result of such criteria
is a four step hybrid theory of statistical inference (FOSTIS),
which is organized hierarchically: Starting with a planning
phase (Neyman-Pearson), going on with a loglikelihood-test
(Bayes, Fisher, Wald), coming to a maximum likelihood-test
(Edwards), and ending with an effect qualification.

Strengths and weaknesses of this approach are discussed.
Generally, there is something to be learned: the more meaningful
statistical induction should be the more precise theoretical
deduction must be.



A statistical inference strategy (FOSTIS):
A non-confounded hybrid theory.
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Do we need these endless discussions over which is the
correct statistical inference strategy? As we learned from
Gigerenzer and Murray (1987), they are theoretical models of
cognition and decision. According to this perspective, however,
the discussion should be limited to this particular area of
research and should be further discussed and criticized without
having a fundamental influence on other areas of psychological
research. In connection with this research, different
statistical inference theories are rediscovered as alternatives,
sometimes with very different conclusions or probabilities of
corroboration. If we take the entire body of psychological
research as a kind of decision process guided by the wrong or
only defective theory of inference, or that single specific
hybrid theory of statistical inference that is dominant
(Cohen,1990; Gigerenzer & Murray,1987), then all of our
psychological knowledge evaluated by the use of this judgmental
criterion might be defective. At best, we cannot decide whether
or not our theories are corroborated by the empirical data,
because the acceptance of a true alternative hypothesis , the
power of a test, is much more interesting for theoretical
development than %*he probability of rejection of a true null
hypothesis, assuming that the alternative hypothesis is the
theoretically relevant expression. Since it is known that the
power of our statistical tests is on the average near 1-f = 0.50
(Cohen, 1962,1990, Sedlmeier & Gigerenzer,1989, Witte,1980) the
acceptance of the true alternative hypothesis turned out no
better than had we flipped a coin. In general and without
change, our experiments have been unacceptably underpowered
since the publication of Cohen’s handbook on power analysis
(1969). If this could happen for 25 years without change, this

criterion of evaluation is a massive hint that something must be
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wrong with our theory testing procedure. What of our knowledge
in the behavioral sciences is true, if almost all of what has
been corroborated is evaluated by underpowered inference
strategies?

What remains astounding is the inference revolution in the
behavioral sciences in the observed way. How could this have
happened? There is a combination of reasons. Most of them have
been discussed before, so there is no need to discuss them here
intensively again (Gigerenzer & Murray, 1987 ; Witte,1989):

a) the procedure is easy to teach, b) you always get a decision,
C) you only need small samples; and d) the procedure is
mechanical.

All these reasons are true, I think, but they cannot explain why
the massive critique has had no influence at all.

In my opinion, the main reason is that this kind of infe-
rence strategy is just the other side of the coin of theory
construction. They correspond to one another exactly. The kind
of hypotheses and their tests filtered through an inferential
test strategy rely on each other. If we are satisfied with the
hypotheses usually formulated, then there is no better inference
strategy than the hybrid test theory described in our books on
statistics. Our discussion of the significance test , the
significance test controversy (Morrison & Henkel,1970), is a
surface-level discussion: the fundamental problems are deeply
rooted in the kind of theories and hypotheses accepted as
scientific by the scientific community. Thus, if the inference
strategy is felt to be highly problematic, then the quality of
the theory construction is insufficient, because the inferential
strategy of the classical significance test is the ideal
instrument for the scientific feeling:

a) the significance test controls the influence of a random

factor, our scientific demand:

b) it ignores other data from earlier experiments, the simpli-

city of data analysis;:

c) it leads to a high rate of reinforcement for the theore-
tician, because he/she needs only to assume that something
happened; and if the sample size is not too small, a signi-
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ficant difference will be observed, usually, a corroboration
of a theoretical hypothesis;
d) to formulate a theory one needs only a prediction of a very

rough qualitative difference without any idea of its amount
found in earlier studies, theoretical economy.

On the one hand, this strategy is doubtless an improvement
over strategies that preceded the inference revolution. However,
it can also act as a stagnation if we continue to ignore the
fundamental problems of the general strategy employed to prove
our hypotheses. Since psychology and other behavioral sciences
have developed, in a pre-paradigmatic state a unifying discipli-
nary submatrix through the use of an accepted inference
strategy, it is nearly impossible to formulate more precise
hypotheses, as they cannot be tested by our significance tests
in the usual way. Thus, the state of the art in behavioral
sciences requires vague hypotheses, because they have to be
tested by significance tests. All theoretical progress depends
upon our significance tests as a result of their dominance as
the fundamental approach to evaluating theories (in our
empirical research).

Under such a condition it is necessary to accept that a
critique of the significance test is also a critique of those
theoretical constructions formulated in such a way that they
only can be tested by a significance test. A change of the
inference strategy requires a change of the theoretical con-
struction. Change mq;t occur simultaneously in both. This is a
long process, though, because it looks to some extent like a
scientific revolution. If it is generally accepted at this point
that our hypotheses cannot become more precise, then
significance tests must be accepted as the ideal methods.
However, if it is generally accepted that significance tests are
insufficient, then a standard must be set for what is needed in
terms of a more sufficient inference strategy. However, one
consequence of such a standard would be, that formulation of our
hypotheses must become more precise. It is logically impossible

to have one part without the other.



Some historical remarks on statistical inference

This paper is not the place to discuss the historical
development of statistics in detail. But it is necessary to give
some indication of where the methods come from and why they have
been used historically (see Kriger, Daston & Heidelberger,1987;
Kriger, Gigerenzer g Morgan, 1987; Stigler, 1986; Witte,1980).

It is possible to distinguish four origins of the
probability concept:
a) practical statistics as the distribution of a population in
different Classes, e.g. men - women in old Egypt.
b) gambling in the Middle Ages;
C) decision making and the proof of the existence of God
(Pascal);
d) logic and truth ( Leibniz, Bayes).
Obviously, there aré divergent origins of the concept of proba-
bility, and a mixture of these categorical differences into one
concept must lead to certain inconsistencies in the
interpretation of the results of significance tests, although
the different angles each have specific conditions under which
they are justified

This leads to the conditions which were decisive for the
construction of current test theories. As everybody knows,
Fisher was interested in applied research of agricultural field
experiments. This had, at first, nothing to do with scientific
inference: However, this procedure of manipulating conditions
resembles the variation of independent variables coming from
theoretical models predicting an effect. (The no effect null
hypothesis can be used as the prediction by a random influence
and should be falsified, which is the probabilistic version of
falsification in the Popperian sense.) Since philosophy of
science in this regard teaches that there is no verification,
there is no need to formulate an alternative hypothesis. This
represents a convenient misunderstanding of falsification as
theory test, because the theoretically relevant hypothesis
should be tested, and the failure of disproving this hypothesis
increases the credibility of the theory. But there is no theory
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adequate to a precise prediction in these field experiments;
therefore, the null hypothesis is taken as the only precise
prediction from a trivial random effect. This theoretical
distribution of expected data is determined before any empirical
research. After an empirical result has been observed, the
decision depends on the probability of this datum under the
hypothetical distribution. The conclusion leading from the
empirical result to the falsification of the random hypothesis
is only indirect. There is no experimental planning and no idea
of a theoretically precise prediction. This program of
statistical inference only controls a random effect as an
explanation of the results and takes the falsification of the
explanation to be an increase in the credibility of the theory.

The next step was to accept that there has to be something
like a theoretical alternative hypothesis to the random effect.
Furthermore, the chosen inference test should have some charac-
teristics comparable to those of other possible tests, so that
the decision based on these tests is optimal in a mathematically
defined sense. The test to be used should be uniformly the most
powerful, unbiased, and consistent according to the set of
standards in the inference theory developed by Neyman and
Pearson. Thus, the Neyman-Pearson theory is an improvement of
Fisher’s original theory into a more consistent and
mathematically defined strategy. (However, the alternative
theory is only existent in an abstract sense not precised. It is
therefore known by using significance tests that the power is
maximal, but the re?l level of power can only be identified if
the alternative hypothesis is also a precise parameter.) Thus,
our significance tests deal with the expectation of certain
empirical results under hypothetical assumptions. Under specific
conditions, the distributions of the expected data are unique
(t, F, normal). Thus, it is very well known before the
occurrance of any empirical result what data, with what
probability, are expected. With the determination of two
hypothetical parameters, the experimental condition can be
planned exactly, and with the errors to be accepted. After the
precision of the alternative hypothesis the Neyman-Pearson
theory is a theory of planning experiments without any empirical
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data. This was the direction in which ‘Cohen (1969,1977)
developed the Neyman-Pearson approach. What is needed is the
definition of an effect size. This is the minimal value of the
alternative hypothesis, which now has been defined
quantitatively as the lowest point of the interval defining the
hypothetically acceptable parameters. With this quantification
of the alternative hypothesis, the whole inference strategy
becomes more informational, although Cohen’s approach is based
completely on Neyman-Pearson’s theory, which is a planning and
not a test theory.

There is another approach in the modern history of the
inference revolution, namely the decision theory developed by
Wald (1947) in his sequential tests. His concrete problem was to
decide whether a set of manufactured products was defective or
not. This decision should be made with as few observations as
possible under tolerable error rates. Thus the number of obser-
vations is a variable rather than a constant. Although Wald is
discussing the Neyman-Pearson theory, he uses a different
decision criterion either for or against the null hypothesis,
his sequential probability ratio test. This means there is no a
priori determination of the sample size, but the decision to
reject or accept the lot has to be determined beforehand, by
fixing a- and B-error and the minimal deviation. The conseguence
is that after each outcome is known, there is a new decision
about the two hypotheses. With this sequential sampling there
can be a very high reduction of sample size needed for a
decision. This can be possible because the real error of the lot
can be much greater than the minimal error, and hence detected
earlier than the minimal error. However, this inferential
strategy 1is not constructed for the purpose of testing
scientific hypotheses. It is optimal under the particular
conditions for which it is developed, namely accepting or
rejecting a set of manufactured products. Under these
circumstances whether the lot is error free or not is the only
interesting detail. It is by no means relevant to know the real
amount of the difference if this deviation is above a chosen
threshold. To transform this condition into scientific inference
means that the null hypothesis is the theoretically interesting
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derivation and that the other hypotheses are irrelevant. They
are taken as variables. Thus the theoretically relevant
parameter - in using this test strategy for scientific purposes-—
is not deduced from assumptions; it varies randomly.

There is only one inference strategy directly concerned
with testing a hypothetical parameter: the idea developed by
Bayes (see e.q. Stigler,1986). Such a model is the only one that
tries to solve the problem of "induction" or "inverse
probability". This concept should be at the center of our
inference tests, but it is almost totally ignored in comparison
to the sequential tests and the power analytic planning con-
cepts. These require only a partially specified alternative
hypothesis, at least at the point of the lowest acceptable
deviation. There is a consensus in the scientific community that
specification of hypothetical parameters is nearly impossible
(but see Tukey, 1969). The consequence of this consensus is
state-of-the~art of significance testing. (For further
discussion see the very informational article by Cohen, 1990 and
Meehl, 1978.)

A possible set of criteria to be fulfilled by an inferential
test strateqy

The first and main step of a statistical inference strategy
is the clarification of what is wanted. All statistical test
theories have their £wn central kind of application, which can
then be extended to scientific inference. If these demands are
known, then a statistical procedure which is able to fulfil
these standards should be developed. These standards should be
based on three foundations: a) philosophy of science (e.qg.
Earman, 1983; Stegmiller,1973; Maher,1992), b) mathematical
statistics (e.g. Kendall & Stuart,1963; Silvey,1970), and c)
empirical research conditions in the behavioral sciences (e.qg.
Cohen, 1977,1990).

It is impossible to discuss any of these three foundations
in detail. Therefore, the demands are given without a lenghty



explanation:

1)

2)

3)

4)

5)

6)

The central point is that a measure of the relative
confirmation of one hypothesis against another under
empirical evidence is needed (principle of relative
confirmation). After the discussion of induction in

Philosophy of science it seems that empirical evidence can
only result in a measure of relative confirmation between two
hypotheses, and not in an absolute measure of a single
hypothesis.

The information of the data should be exhausted in the de-
scription of the empirical evidence, so that the measure of
the evidence contains all the information needed for the
relative confirmation of the two hypothetical parameters
(principle of sufficiency).

Allowed transformations of the empirical data must not have
an influence on the confirmation of the hypotheses (principle
of the independence between data transformation and

hypotheses confirmation).

The kind of sampling (one step or sequential) should be
independent of the confirmation (principle of the
independence between sampling and confirmation). In the

tradition of the Neyman-Pearson theory, the result of the
sample as well as the more extreme results are taken into
consideration: This means that the one-step sampling is
fundamental for this theory.

As a technical demand, it is favorable that the global
measure of confirmation from independent samples is the sum
of each sample’s measure (principle of additivity of the
confirmation measures).

In general, the a priori probabilities of the two hypotheses
should be equal, because the search for truth and the more
pragmatic criteria for the consequences of a false decision
should be seperated (principle of independence between truth
Supporting and consequence evaluation). The result of this
demand is that the two hypotheses should be equivalent in

kind (e.g. null and alternative hypotheses should be both
simple point parameters or both should be intervall
parameters) and the error rates( a, B) should be equal, too.



7) The error rates themselves should be known before one
hypothesis is judged as more confirmed as the other
(principle of error estimation).

8) The relative confirmation of one hypothesis against another
also depends on the rejected hypothesis: Nothing is known
about the direct relation between data and the chosen
hypothesis. During the process of theory development it is
necessary to evaluate the correspondence between empirical
results and the chosen hypothesis, because a high corre-
spondence means that the theoretical modification can be
laid aside for the moment (principle of hypothesis
qualification). This correspondence, however, must be

evaluated in a probability model of confirmation and using
the data themselves.

9) Until now, all of the evaluations of the hypothesis are based
On an abstract model of confirmation. Using a theoretical
eXplanation as a prediction in a theoretical or applied
context it is Necessary to know more about the amount of
explained variance of the data by the theory. If this amount
of variance is rather small, then the theoretical explanation
works for the summarized statistic used in the test (e.g. the
mean) ; however, the other uncontrolled factors (e.q.
expressed by the variance) are too strong for a sufficient
influence of the theory in the data measured, although it has
been confirmed by the inference strategy (principle of effect
qualification).

10) As a last and most important point, a general measure of
confirmation, wqgch evaluates the relative support of one
hypothesis against another using the empirical evidence,
is needed. This has been called inverse probability or
likelihood (principle of likelihood).

These ten principles could be a catalogue of demands for an
inference strategy. Of course, this catalogue 1is only a
proposal, and can naturally be modified. However, it is a
positive formulation of those standards that should be satisfied
if the behavioral sciences are to show theoretical progress.
Such depends on the deep connection between inference strateqgy

and theoretical construction and development.
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Of course, such criteria cannot be fulfilled at the be-
ginning of a research tradition. At that time, methods for the
exploration of data (Tukey,1977) should be used, and not the
test of precise theories and their hypotheses. But our usual
strategy looks 1like pseudo-testing at the very beginning of
research, concentrating on promising results without speci-
fication of the parameters to be tested. Contrary to our
quantitative data analysis, the formulation of the hypotheses
are still simply qualitative, even after forty years of research
(e.g. dissonance theory). The 1level of measurement (e.gq.

interval data) is almost never used for a specification of
hypotheses.

A non-confounded inference test strateqgy: FOSTIS

With this catalogue in mind, the question becomes how we
might satisfy the demands. The solution is a number of different
approaches combined into one strateqgy, because the different
approaches each have strengths and weaknesses (Witte, 1977,
1980,1989). This combination is hierarchically organized into
four steps of decision (called FOSTIS). At each step, there is
a three-valued logic that entails either the acceptance of one
of the two hypotheses, or a continuation with the sampling of
data as it is well known from Wald’s sequential tests.

The first step is the planning of the empirical condition

under which two hypotheses should be tested. The best planning
theory is that of Neyman and Pearson. However, two parameters
have to be specified: 6(0) and ©6(1) as point hypotheses, which
is the easiest case. Furthermore, the error rates have to be
specified as a = B. The consequence of this specification is
that minimal sample size can be determined. This represents the
condition under which the test of the hypotheses is allowed and
the first step of the inferential strategy is satisfied. If the
minimal number of the sample size 1is not reached, then the
results are to be reported without a test. Science is, after
all, a cumulative process. Why do we need to test hypotheses? It
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is interesting that Cohen (still 1992) proposes to increase B to
0.20, because a smaller value "would result in a demand for N
that is likely to exceed the investigator’s resources" (p.156).
This might be true, but then one ought to wait until other
investigators include their resources, making the empirical
condition. B should never be increased as a general strategy to
compensate for them. If there is something to be tested, then
there is a need for minimal resources, else it looks like a
pseudo-test with all the consequences of ignoring non-
‘significant results and multiple tests. To some extent,
inadequate resources can be fortunate, because different labs
must combine their results, which is much more informative than
confirmation from one lab. It might also be the case that the
resources are greater than the ﬂinimum. Under these
Circumstances, a reduction of the Type I and Type II error is
possible.

If the empirical condition passes the first step, then the
two hypotheses can be tested. The test is a likelihood ratio
test which in fact is similar to the Wald probability ratio
test, but in a non-sequential form :

L{®(1)/x]1/L[6(0)/x] 2 € = (1-B)/a (1)

If the likelihood ratio exceeds a critical value determined by
the ratio of the power and the Type I error, then the alter-
native hypothesis is sufficiently better confirmed than the null
hypothesis. This test is based on the ideas developed by Bayes,
conceptualized as a likelihood by Fisher, and used as a test by
Wald. Thus the results of these theories can be used for the
evaluation of the general test strategy.

If the alternative hypothesis has passed both steps, then
there is still the question of whether the confirmation depends
solely upon the improbability of the null hypothesis, or whether
the empirical data corroborates this hypothesis to some extent.
For this kind of evaluation a maximum likelihood test proposed
by Edwards (1972) is used:

Lie(1)/x]/ max L[6(i)/x] 2 Q = 1 - V(1-B)*a (2)
This test and its criterion are strange, so some experience is
needed to make it more plausible. The idea is that the confirmed
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hypothesis should not deviate from that hypothesis best
supported by the data more than one standard deviation of a
binomial distribution with the parameters p = (1-8) and q = «a.
The acceptance of the alternative hypothesis is based on the
probability that it itself is true (1-8) and that the null
hypothesis is true (a). Thus, this decision of acceptance by the
data varies with the truth of both in light of this data as
empirical evidence. Only under this condition «can the
correspondence between hypothetical assumption and empirical
evidence postulated be acceptable.

The fourth criterion comes from the discussion about the
Observed effect size by Cohen (1977). There are many measures of
effect size (e.g. McGraw & Wong,1992), and it is not easy to
choose one. My preference is the coefficient of determination.
If the theoretical assumption can explain at least 10 % of the
variance, then the empirical evidence for the explanation is
precise enough to be an instance for the test of the theory.
This criterion has nothing to do with the probability model of
statistical inference. It takes into consideration the error of
measurement rather than the error of wrong decision between two
hypotheses.This criterion has been used indirectly if the
difference, e.g. between the theoretically predicted means, was
related to the empirically estimated error variance in a t-test
planning strategy at the beginning of the inference procedure.
At the end of the test strategy, we can ask whether this
assumption is satisfied. One consequence of this criterion is
such that the hypotheses should be formulated in such a way at
the beginning that they are strong enough to be differentiated
from a random effect under the testing condition, and that the
measurement of the variables are precise enough for such a test.
One consequence of a failure to pass this criterion might be the
reduction of the error variaﬁce and not the alteration of the

hypothesis.

At best, the meaning of each inference theory’s step can be
explained by its fgilure to pass the critical value. After the
fixation of the Type I and Type II error, these errors are to
serve as a base for all critical values. Also, the likelihood
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test of the second step does not need a subjective probability
estimation of a hypothesis, because it is a relative
confirmation test which eliminates the subjective probability of
the hypotheses by testing like hypotheses which further means
equal a priori probabilities. This is one reason why the kind of
hypotheses should be similar and not dissimilar, as in the usual
significance test, in which a simple point hypothesis is tested

against a complex alternative hypothesis.

If the critical value of the first step is not passed, then
the empirical basis is not sufficient for a test of the
hypotheses. Under such conditions a description of the data is
given such that a later researcher can use this data as one kind
of empirical evidence, to be combined with his own results so as
to make possible a test of hypotheses. This means taking
seriously science as a process in which data from different re-
searchers can be integrated. How can this be done with the pro-
posed inference strategy ? (I do not want to discuss the current
meta-analytic methods, which are fundamentally based on the
Cclassical significance tests; see below.) At first, the number
of the needed sample size which satisfies chosen Type I and Type
II errors could be given. The value of the logarithm of the
likelihood ratio is then calculated and published. The next
researcher can merely add this to his own logarithm of the new
likelihood ratio, because the combination of these independent
loglikelihood ratios is simply the sum of the two. Such a data
description without test Cclearly demonstrates the insufficient
base of the empirical evidence. Such a procedure cannot lead to
Type II errors around B=0.50.

If the emprirical evidence is sufficient, but the test of
the hypotheses does not reach the critical value, then the
resulting assumption is that either the hypothesis is incorrect
or the experimental setting was defective. In the first case a
reformulation of the hypothesis would be required, and in the

second a new experimental setting.

If during the third step the critical value has not been
passed then it would appear to be a revision of the concrete
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theoretical parameter consistent with the idea that basic
theoretical assumptions are true. This is the case if the
empirical results are more different from the null hypothesis
than assumed. Under theoretical conditions, an empirical result
can also have an effect which is too large. Usually, it is
implicitly assumed that the greater the deviation from null
hypothesis the more the theory is confirmed. But this is only
true if all deviations are seen as a corroboration of the
theory. This assumption only holds if the alternative hypothesis
is unspecified and only qualitative.

If all three steps of the testing procedure have been
passed but the fourth has been failed, then the question is
generally whether the theory is useful to explain data in the
given empirical context. One consequence is to increase the pre-
cision of the measurement or to restrict the theory to more
specific conditions. The critical value used is an amount
classified by Cohen (1977) between medium and large. This is a
rather strong criterion, but we often forget that our theories
are used to explain or predict complex daily events, or results
in an experimental setting with complex influences. Under a
principle of parsimony, it is easier to assume that a theory has
no influence, than to advance a more complicated explanation
with very little empirical evidence. This critical value has the
technical function of being limited to empirical results that
are not too near to the null effect. If the theoretical effect
size is only mediocre, and the empirical results are still
smaller, then there comes a point at which the strength of the
theory is so modest that it is more parsimonious to ignore the
theoretical influence postulated. In general, the main strategy
should be to predict no influence, and accept a theoretically
postulated influence only if it can no longer be ignored under
the empirical conditions. our significance tests, however, im-
plicitly follow the strategy of accepting each hypothesis should
something not be able to be subsumed under a random effect.
There is no limit to the smallness of such influence expressed
in a measure of effect size. Cohen’s guidelines are very lenient
towards the theoretician: a small but acceptable effect explains
1% of the total variance, and what is called a large effect
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explains only 14% of the variance. This might be one reason why
there are so many so-called theories which pass this lenient
criterion. It is only necessary either to await a significant
result with an extremely high Type II error, or to increase the
sample size. The theoretician will almost always win. This
cannot be an acceptable inference strategy, although it is
better than not controlling a random effect at all. This more or
less simple control, however, stands at the beginning of
research, and must be refined with the development of more
precise hypotheses and a more complex inference strategy in the
course of its process. One example of what could have been

followed is provided by the four step inference strategy
(FOSTIS).

An example of the test theory FOSTIS

Many of our hypotheses are formulated as mean differences
and tested by the t-test. First, one must estimate the standard
deviation of the measurement. Second, the alternative hypothesis
must be precised. From past research it is predicted that the
difference should be one half of the standard deviation
d = 0.50. From this theoretical assumption, it is known
beforehand that if the alternative hypothesis is true, only
about 6% of the variance is determined. Thus, the last step will
not be passed, and the measurement error will have to be reduced
in the future. Until now there has been no alternative to this
prediction. Furthermore, the Type I and Type II error should be
equal to o = B = 0.05 . With the specification of these
parameters, the sample size can be predicted as N = 88. For this
planning of the experimental condition, Table 2.3.2 in Cohen
(1977, pages 28 - 39) is very useful. A rough approximation for
the determination of the sample size is given by the formula

N = 2[z(1-a) + z(1-B)]2?/42 (3)
N : sample size of each group
z(1l-a): standard z-value at (1-a)
z(1-B): standard z-value at (1-B)
d : hypothetical difference of the means standardized by
the common standard deviation.
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For the example, there is d =0.50, and z(1l-a)=2z(1-B)=1.65. If
the formula above is used after rounding to the next higher
natural number, we get N = 88 as demanded sample size. This
corresponds to Cohen’s table 2.3.2. His table 2.4.1 ( page 54-
55) in which the sample sizes are estimated, gives a size of
N=87. This means that the rounding procedure is not always
necessary. It is very simple to use this approximation formula,
which is correct enough in most cases.

After the planning of the experiment the next step is the
obtaining of a result. It is d(emp) = 0.53 observed. The like-
lihood ratio of the two hypotheses must be determined with
d=0.00 (null hypothesis) and d=0.50 (alternative hypothesis).
There are many ways to do this. One simple way would be to
resolve all problems with the help of the normal distribution
and standardized z-values. For this reason, the noncentral
t-distribution is transformed into a normal distribution with a
theoretical expected mean as a z-value (see Cohen,1977,p.456).
All these z-values are on the same scale and can be added or
subtracted. At first the z-value of the theoretical expectation
is calculated as the mean of the noncentral t-distribution:

z(hyp) = [d(hyp)*(N—l)*fiﬁj/[2(N—1)+1.21*(z(1-a)—1.06)] (4)
z(hyp) = [0.50*87*¢2*88]/[2*87+1.21*(1.65-1.06)] = 3.30

z(emp) = 3.50 with d(emp) = 0.53 .
What must be determined at this point is the ordinate of the
probability density at the points of the empirical results for
the expectation of the null hypothesis!:

z(null) = o0 - z(emp) = -3.50 with y(null) = 0.0009, and the
alternative hypothesis: z(alt) = 3.30 - 3.50 = -0.20 with
y(alt) = 0.3910. The loglikelihood ratio test then is the
following: log [y(alt) / y(null)] = log [434.44] = 2.64.

The critical value of this second step is:
€ = log [(1-B)/a] = log [19] = 1.28.
The data significantly confirms the alternative hypothesis.

The third step of FOSTIS is the qualification of the con-
firmed hypothesis in light of the hypothesis best confirmed by
the data. Thus, the likelihood ratio of the confirmed hypo-
thesis and that hypothesis best empirically supported must be
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determined, which is y(alt) = 0.3910 divided by y(max) = 0.3989,
or the maximal ordinate of the normal density function. The
result is: Q=0.98. The critical value to be passed 1is
Q=1-/a(1-B)=0.78. In this way is the third step of the inference
strategy passed.

The fourth step goes back to the empirical result itself
and evaluates its effect not in a probability model, but in the
measurement itself. An effect size of 4 = 0.53 has been ob-
served. If the sample size of both experimental groups are
equal, the coefficient of determination is r?=0.06 (see Cohen,
1977, p.22-24). Thus, the criterion of the fourth step has not
been passed. In the context of FOSTIS, this means that the error
of measurement has to be reduced, and not the Type I or Type II
error. Because of the hypothetically assumed d= 0.50, such a
result was expected. At this point the empirical conditions have
to be modified so that a more profound effect can be observed.
This leads to restricted conditions of the theory’s validity. In
general, the observed effects of our theories are not very
promising if mean effect sizes from many studies are given in
the meta-analyses. The other way to broaden a theory’s
application to its still existing but minimal influence is
another strategy of theory development (Prentice & Miller, 1992)
but it is necessary to use both procedures in finding conditions
in which theoretically assumed effects are optimized and
minimized without triviality. But the amount of the
theoretically determined variance must be known. One possible
consequence of this is the prediction of the null hypothesis
under specific conditions, because the influence of the theory
should be eliminated under the experimentally manipulated
conditions. However, without the demand of the fourth step,

there will be no discussion of these errors of measurement.

Extreme conditions for the relative confirmation of a hypothesis

This is the technical demonstration of extreme conditions
only when the alternative hypothesis is corroborated by FOSTIS.
If the intention is to pass the fourth step, one must choose an
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experimental condition that allows for 10% of the variance to be
determined. Of course, this will be the prediction of the theory
which will vary with the empirical test condition as a result of
the error of measurement. An r?=0.10 with a d=0.67 will be
predicted. With this theoretical prediction, the t-distribution
tells us the sample size of N = 49 of each group if

a =B = 0.05.

The next question concerns the empirical value that
minimally confirms the alternative hypothesis. Such is the case
if the ordinates’ relation of the two hypotheses at the point of
the empirical result d(emp) equals (1-8B)/a = 19. To pass the
critical value it is necessary to get an empirical result which
is no less than d(emp,min) = 0.50 (see Appendix).

The third step of FOSTIS is the qualification of the
alternative hypothesis through the maximum likelihood of the
data. The alternative hypothesis is accepted only if d(emp,max)
is not greater than 0.81 (see Appendix).:?

The fourth step, the effect qualification, is determined by
d(emp,mineff) = 0.67, which was the alternative hypothesis. In
such a case the percentage of the determined variance is 10% .
If an empirical value was observed which is less than d=0.50,
the alternative hypothesis cannot be accepted, for the empirical
evidence gives no basis for a decision between both hypotheses
if a=B=0.05. If, however, an empirical value greater than d=0.81
is observed, the alternative hypothesis should be corrected in
the direction of a greater expected difference. The fourth step,
the effect qualification, has to do with the measurement error
rather than the decision error. Until now, there has been no
such criterion in which this point of measurement error has been
integrated in our test theories. In the last few years, a more
intensified discussion about effect sizes has started, yet still
without the prospect integration into the test theory:s.
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Critical comments on FOSTIS

FOSTIS has been published in German journals (Witte, 1977,
1989) and in a more comprehensive book (Witte,1980). of course,
it has been criticized intensively (Bredenkamp,1983;
Diepgen, 1991 ; Hager,1991; Kleiter,1991; Wendel +1991) and very
seldom praised (Brocke, 1Iseler, Holling & Liepmann,1983).
Because of the intensive discussion surrounding it, it now seems
appropriate to enter into a discussion of particular points.

One of the general problems handled is the usability of our
science to build precise point hypotheses. Only the hypothetical
prediction of qualitative differences is possible; no precise
theoretical construction is possible. Thus an inference strategy
which demands such precise theoretical modelling is un-
realistic. Such a rebuke is correct only if new research is
started and we are more or less exploring our data. Under such
conditions, after the first phase of playing with data, the
question is whether something which cannot be explained by a
random effect occured. In the tradition of the commonly used
hybrid theory, the researcher begins with a nondirectional test,
continues with a directional test, and then tries to become more
precise in the theory. The last step never happens, however, not
because it is impossible to measure reactions on an interval
scale, but because the theories do not contain a mathematical
kernel. That can predict new or initially old results precisely
in the same way as they are measured. This process of theore-
tical development in combination with data as its basis does not
represent a common strategy in behavioral sciences (see also
Meehl,1978). Each collection of experimental data is seperated
from all the others (other than those in meta-analyses, which
are mainly used to combine effects in the 1light of a null
hypothesis, and not as a construction of a precised theory). If
there is an alternative to the classical hybrid theory of
statistical inference, which is the optimal transformation of
the theoretical construction, then it might be possible that the
theoretical construction itself can also be influenced in such
a way as to continue with specification of theoretical
predictions in the first few years after the beginning of
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research (Tukey, 1969).

Another solution of the problem might be the
formulation of interval hypotheses, rather than point
hypotheses. Then, however, it is necessary to accept an interval
null hypothesis, because on logical grounds the hypotheses to be
tested should be of the same kind. The consequence of this
demand is that the theoretician has to formulate four points,
the end points of each interval, and this does not seem to be
any easier than the specification of two point hypotheses. The
test, however, is comparable to the formulation of point
hypotheses.

A second critical point is the introduction of the third
step: validation of an accepted hypothesis on the hypothesis
most supported by the data. From the usual test against the null
hypothesis this is a critical point, because a confirmed hypo-
thesis can be rejected even if it is much more evident than the
null hypothesis. However, this argumentation derives from the
classical view of rejecting a random effect and not accepting
a point hypothesis. If theory-building has progressed, then it
is also a question of the alternative hypothesis’ confirmation
by the data itself and not exclusively as it relates to the null
hypothesis. The chosen criterion is based on the likelihood
principle, using the same base-line as the test itself. The
critical value might be too easy a convention to be accepted. In

my opinion, it is consistent.

After making decisions under the perspective of a
probability model, the fourth step of FOSTIS suggests that
there is a need to go back to the measurement and to the
explained variance, which is sometimes small though stati-
stically significant. The idea is that two thirds of the stan-
dard deviation is necessary to ensure that the two theoretically
relevant parameters are different in the experimental condition
under which the theory is tested. Lacking a clear separation,
there are so many possible explanations of the observed effect
that no clear-cut interpretation is possible. This is, of
course, not a demand to be made at the beginning of a research



21

tradition; it should rather be satisfied at a fully developed
phase.

At this point the main critical point from the view of the
Neyman-Pearson theory should be discussed: How does the
combination of step one (planning of the empirical test
condition) and step two (using the 1likelihood test for the
decision between two hypotheses) work? Is it true that the
decision made at the second step is based on the Type I and Type
ITI errors on the first step? At first glance, the combination of
both test theories seems to be inconsistent, for the critical
value of rejecting the null hypothesis with a=0.05 (one-tailed
test) and N=49 is d(crit) = 0.34 (see Cohen,1977, p.30-31). This
value is much less than the d(min)=0.50. If such an effect size
of d=0.34 is the most frequently reported empirical difference
in the publications, then the power of this effect is around 1-
$=0.50, as the mean power of the usual significance tests
observed in the publications. Compared with the likelihood test
criterion, which led to a difference of at least d=0.50, there
is a leniency effect for the acceptance of the alternative
hypothesis in the significance-testing strategy of rejecting the
null hypothesis.

If we now take the minimal critical difference of d=0.50,
then the focus of our attention should be its Type II error,
under the assumption that the alternative hypothesis is true
with d=0.67. Using the approximation of the non-central t-
distribution to the normal distribution, we get a z-value of
2=0.83. This means that the Type II error is about B=0.20. It
seems that the decision rule, using likelihood ratios, and the
planning rule, using probabilities, do not lead to the same
result. Since our inference strategy is symmetrical concerning
the Neyman-Pearson theory, the whole difference between the two
hypothetical parameters d(null)=0.00 and d(alt)=0.67 should be
averaged to get the critical value d(crit)=0.335. This is the
value in which a=B=0.05, as planned with the help of the Neyman-
Pearson theory. The FOSTIS’ decision rule of the second step
leads to d=0.50, which is nearer to the alternative hypothesis’
parameter than the one predicted with B=0.05 by the Neyman-
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Pearson theory. (This was the critical point of the arguments
against FOSTIS). Fortunately, FOSTIS’ step two is a non-
sequential Wald test, and the whole argumentation is based on
his findings without any new ideas. It is necessary that these
two testing Strategies are not confounded on the level of the
empirical evidence. Under step one, the Neyman-Pearson theory is
used to predict the empirical data from the view of two
hypothetical parameters. Under step two, a decision has to be
made between two hypothetical values in the event that a
specific datum has been observed. These decisions should be
wrong to the same extent that the predicted data gives wrong
information about their hypothetical distribution. For any
single sample value, the likelihood of the confirmed hypothesis
should be at 1least A times as large under the confirmed
hypothesis as under the rejected, in which A depends on the
ratio of the power and the Type I error. Since there is only one
empirical observation to decide between the hypotheses, this
decision should be at most as far off the mark as is predicted
by the planning of the testing condition. This is the principle
used by Wald to construct his tests. FOSTIS’s combination of the
two different situations before and after the knowledge of the
experimental data has been labelled its chief inconsistency.
Before knowledge we must plan the sample size, assuming theo-
retical parameters and predicting empirical values. After know-
ledge of the data, we must decide between the hypotheses. What
is not allowed from a theoretical point of view is the
regression from step two to step one in a comparison of the
empirical data. Both conditions are only comparable in a more
abstract, general description of a test. This description is
given by four parameters with three degrees of freedom: d,N,a,B.
Using these four parameters of a statistical test, the planning
and the decision conditions are equivalent, for the accepted
hypothesis is more probable than the ratio of the power to the
Type I error. However, they do not lead to the same empirical
value. This might be irritating at first glance, but the
knowledge conditions before and after the empirical results are
very different. The test strategy proposed by FOSTIS is thus
hierarchically ordered, and the decision of the second step must
not be evaluated from the perspective of Neyman-Pearson theory
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as the first step. However, the possible errors of the
experimental condition as predicted by the Neyman-Pearson theory
are used to determine the decision after the knowledge of the
result, so that each single decision reflects the ratio of the
Type I to the Type II error insofar as the 1likelihood ratio
passes the critical value used in the Wald test (see Appendix).

The failure to pass each step has a different and specific
meaning for the development of a theory. Thus, it is necessary
to plan the future steps of a theory depending on that
theoretical development (tested by FOSTIS) that has reached up
to this point.

Combining results from different studies

Our common inference strategy leads to an isolated test of
each study against a random effect. This, however, was felt to
be unsatisfactory, so that the methods called meta-analyses have
been used. These methods enable the researcher to combine
several empirical studies into one test against a random effect.
Because all effects are evaluated solely from the view of the
null hypothesis these meta-analyses are a natural extension of
the common hybrid theory of significance testing.

This combination rule is not comparable with those
principles formulated as the foundation for FOSTIS. The FOSTIS
strategy requires a combination of loglikelihood ratios deriving
from both hypotheses into a new measure of hypothesis, one that
tests from different samples. Then, however, the critical value
must also be changed, for an increasing of the sample size might
lead to a reduction of the Type I and Type II error over the
first fixed critical size. The critical value is determined by
the Neyman-Pearson theory, and due to the change of a and B8, it
changes with increasing N. The combination rule of the
loglikelihoods is simply the sum of each sample’s loglikelihood
ratio into the total measure, as is well Kknown from sequential
testing (Wald, 1967). This kind of integration needs two
hypotheses, and represents the way to become more precise in
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theory construction. In my view, this is the alternative to the

meta-analytic methods, but what is needed is theoretical
preciseness.

For the third step, the integration is different, as a
result of the need for an estimation of the empirical value for
all samples. This problem has to do with estimating a parameter
from different samples. What should be found is the maximum
likelihood estimation of the empirical differences between the
two means from different samples. This is the weighted average
difference from the sample differences, as weighted by the
sample size. This parameter is maximally supported by the data,
and should be used as the critical value against which the
confirmed hypothesis can be qualified.

For the fourth step this maximum likelihood estimation from
different samples is used for the estimation of the empirical
effect, which is transformed into a percentage of determined
variance and compared with a critical value.

This kind of integration from different samples is a conse-
quence of science as a process. Necessary, however, is the view
provided by two hypotheses, not only one, as is preferred in the
hybrid theory of significance testing.

Concluding Remarks

The discussion about the common inference strategy was
oriented at the insufficient combination of Fisher’s and Neyman-
Pearson’s ideas. Due to the many misconceptions surrounding this
inference strategy, many researchers contemplated alternatives
to this null hypothesis testing (e.q. Cohen, 1990). What is
initially needed is a catalogue of demands to be satisfied by
what might be called statistical induction. These demands need
to be based on a combination of philosophy of science,
mathematical statistics, and the assumptions of the active
investigators. One result of the discussions was that the common
hybrid theory is the statistical pendent of the formulated
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hypotheses. It is not possible to improve the inference strategy
without precisation of the theories. Thus the whole significance
test controversy revolves around a fundamental discussion of the
theoretical status of the disciplines using this inference
strategy. Statistical consequences of this inference strateqgy
include the power of the observed effects (around 1-B=0.50), the
observed effect sizes, which are less than medium, and that each
empirical study is tested in an isolated fashion. A more serious
consequence is that the theoretical models remain vague even
after a 1long tradition of research with only qualitative
hypotheses. The significance test is a perfect strategy to
employ at the beginning of a research tradition, at which point
nearly any experience of the data might be expected. After a
time, however, the point arrives at which the theory has to be
precised with a clear quantitative prediction, in the same
manner in which the data were measured for the usual tests
(Tukey, 1969). Such a theory, which is more precise, is not
testable under the usual significance test strategy, because the
testing procedure depends only on one point null hypothesis. The
alternative hypotheses remain un-specified. If there was a
concrete alternative hypothesis, then it would be possible to
inspect both confidence intervals. Both, however, depend only on
one hypothesis each. There is no relative confirmation of one
hypothesis against the other.

This significanée test controversy, which is as old as the
significance tests themselves, should be taken into
consideration by a catalogue of demands that addresses those
things that a more satisfactory inference strategy should
accomplish. Such a set of demands has been given, and a specfic
new hybrid theory of statistical inference (FOSTIS) derived.
Such hybridity is always necessary, for there are different
phases of an empirical investigation that must be integrated
into such an inference strategy. For each phase, however, a
different statistical approach must be regarded as optimal. Four
such phases have been identified, with a different meaning for
the construction of a theory should the respective critical
value not have been passed.
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Generally, there is something to be learned:

meaningful statistical induction should be,
theoretical deduction must be.

the more
the more precise
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Footnotes
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The way to determine the loglikelihood ratios takes into
consideration that ratios of probability densities and
of likelihoods are egquivalent. This is the reason why the

tabulated ordinates of the normal distribution are used to

calculate the likelihood ratios.

These two values determine something like the confidence
interval used in parameter estimation. However, the end-
points of the interval are not symmetrical around the
hypothetical parameter because they depend on different

criteria.

To pass the critical values of all four steps of FOSTIS
leads to the range of empirical observed values from
0.67 till 0.81. This range can be compared with a
classical t-test (one-sided a=0.05), under which all
values greater than 0.33 would lead to a corroboration
of theoretical assumptions.

Is this a principle of least effort in our empirical
research that the empirical effect sizes just pass the
critical value on the average?



Appendix

The first question is about the minimal empirical value

- d (emp, min) - so that the second step of FOSTIS will be
passed?

At first, the d-value must be transformed into a z-value:

[0.50-48+/2-49]/[2(48)+1.21+(1.65-1.06)]=2.46
3.10 with d(hyp)=0.63.

2
2

The ordinates for the z-values z=2.46-3.10=0.64
and z=2.46 are y=0.325 and y=0.019.
The ratio of these two values is 17.11. This is
just less than the critical value of

1-B = 0.95

Qa 0.05

For d=0.51, however, the relation of the ordinates
is 20, just slightly more than the critical value.
Thus, the empirical value should be greater than d=0.50.

The second question is about the maximal empirical value

- d (emp, max) - so that the third step of FOSTIS will be
passed?

The critical value is Q=1-Va(1-8)=0.78. Furthermore, the
maximal value of the ordinate is known: y(max)=0.3989.

Thus, the value of the ordinate and therefore the z-value
can be found: 0.78.0.3989=y(emp,max)=0.31. The corresponding
z-value is 0.72. Now it is possible to retransform this
z-value into a d-value by the use of formula (4):

d=0.72.88.71/475.2=0.1344

The hypothetical d-value of the alternative hypothesis
was d=0.67 so that the empirical value should not be
greater than d=0.8044%0.81.

For the determination of the two extreme values, or what might
be called a corroboration intervall, an indirect method is used
because the direct method is very complicated.

A third question concerns the relationship between the size (a)
and power (1-B) of the Neyman-Pearson theory and FOSTIS. To
explain these relationships we go back to Wald’s probability
ratio test, which is equivalent to the likelihood ratio, as

is known from the Bayes-theorem:

L[e(1)/X]/L[9(0)/X]=p[9(1)]/P[G(O)]'p[X,G(l)]/p[XIG(O)]-

In FOSTIS the left hand side is used and Wald introduced the
right hand side without the probabilities of the hypotheses.
This ratio, however, is 1 because of the equivalence of the
hypotheses. Thus the decision criterion is the same. The main
difference is the sequential decision process used by Wald’s
test and the non-sequential decision in FOSTIS. In my opinion,



the sequential testing is a confusing of planning and

testing. The economy in the number of observations by the use
of the sequential probability ratio test instead of the
Neyman-Pearson test is not acceptable for a scientific (not
applied) strategy because both theories are not comparable.
Thus it is as senseless to criticize the decision under step
two (Wald-test) from step one (Neyman-Pearson test) as the
critique of the planning under step one from the decision
under step two. Both steps have their own condition with an
optimally adapted theory. Under step two the minimal value

of the corroboration interval has been fixed by the possible
error decisions a and B. This is a definition, and nothing else.
It is not, however, comparable with the Neyman-Pearson theory,
which is only optimal under the condition of step one. These
are the main reasons for the hierarchical order of FOSTIS, which
in itself is a modelling of the research process.



