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STEM?

Halpern et al., 2007; Park et al., 2007
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STEM?

Ceci et al., 2014; Eccles & Wigfield, 2020

achievement achievement motivation
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Simplified Situated Expectancy–Value Theory



InternationalNational

e.g., Hyde et al. 
(2008)

e.g., Lubinski & 
Benbow (2006)

Unidimensional
only one domain

Multidimensional
multiple domains ?

e.g., Baye & Monseur
(2016)
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Previous meta-analyses



1. How large are gender differences in achievement, achievement profiles, and 
achievement motivation in mathematics, reading, and science in the group of top-
performing math students across countries?

2. To what extent do sociocultural factors (i.e., the level of gender equality in a 
country) moderate gender differences in the group of top-performing math 
students?

a. Gender differences decrease with increasing levels of gender equality.
b. The share of female students in the top 5% in mathematics increases with increasing levels of 

gender equality.
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Research questions

Eccles & Wigfield, 2020; Wood & Eagly, 2012



Method
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International large-scale assessment data
ü Representative
ü Unselective samples of top-performing 

math students
ü Well-defined populations 
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Individual Participant Data (IPD) meta-analysis

Hedges & Nowell, 1995; Reilly et al., 2019; Shrout, 2009

= “Gold standard” when studying gender differences

Meta-analytic techniques+
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Search criteria for international large-
scale assessments:

- Secondary student population
- Achievement domains: math, 

reading, science
- Assessment of domain-specific 

motivation
- Fully documented (July 2019)

Identified international LSAs: 53
Included LSAs: 1 (PISA)



- 6 PISA cycles (2000–2015)
- Up to 343 representative student samples
- Top 5% in mathematics in their respective countries
- N = 113,864, 15-year-olds 
- 82 countries
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Sample



Standardized achievement tests in mathematics, reading, and science
26 motivation self-report scales related to mathematics, reading, and science

Students’ gender: self-categorization (boy/girl)

Achievement profiles: Difference between an individual student‘s achievement 
score in two domains

-Math–Reading
-Science–Reading
-Math–Science
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Measures



(1) Country-specific, weighted effect sizes: Cohen‘s d (Cohen, 1988)

𝑑 = !!"!"

#$#$%&

(2) Multilevel random effects models to account for the dependencies 
between the effect sizes

- R package “metaSEM” (Cheung, 2015)

(3) Moderator analyses: Multivariate meta-regression models
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Meta-analytic procedure
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Moderators

Gender equality indicators (2000–2015, imputed)
- Female-to-male enrollment ratio in primary, secondary, and tertiary education
- Women’s share of research positions
- Women’s share of higher positions (employment in senior and middle management, i.e., 

legislators, senior officials, managers)

Else-Quest & Grabe, 2012



Results
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Percentage of female students in the top 5% in mathematics
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= effect size of 
one country
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s moderate
0.35 < |d | ≤ 0.65

small
0.10 < |d | ≤ 0.35

negligible
0.00 ≤ |d | ≤ 0.10

Verbal self-concept
Interest in reading

Enjoyment of reading
Interest in human biology

Interest in motion and forces
Interest in physics
Interest in energy transformation

Instrumental motivation in 
science

Interest in astronomy
Math achievement

Science achievement
Subjective norms in mathematics
Interest in mathematics

Science self-efficacy
Future-oriented science 
motivation
Enjoyment of science
Personal value of science

Interest in chemistry
Interest in geology

Reading achievement
Math anxiety

Attributions to failure in 
mathematics

Work ethic in mathematics
Interest in the biosphere
Interest in plant biology

Interest in diseases
Math self-efficacy

Math intentions
Instrumental motivation in 
mathematics

Math self-concept
Science self-concept

General value of science
Interest in the history of the 
universe

Female advantage

Male advantage

d = 0
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Hyde, 2005
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Reading stronger

Reading stronger

Math stronger

Math stronger

Science stronger

Science stronger

Math–reading 
profile

Science–reading 
profile

Math–science 
profile

PISA test score difference
Male Female



Table 1
Moderating Effects of Gender Equality Indicators

Women‘s share of… Female-to-male enrollment ratio in…
higher 

positions
research 
positions

primary 
education

secondary 
education

tertiary 
education

% female students in the top 5% in math ✓
Math–reading profile score (females) ✓
Math–reading profile score (males) ✓
Science–reading profile score (females) ✓
Math–science profile score (females) ✓
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Discussion
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Female and male students in the top 5% in mathematics were similar in their 
achievement in mathematics, reading, and science and in 23 out of 30 motivational 
characteristics 

à Supports gender similarities hypothesis (Hyde, 2005) 
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Male students

- und

-more interested in physics- and engineering-
related topics und und und und und

- und

-math-oriented achievement profile

Female students

- only two out of five students were female

- more interested in biology and health-related 
topics und und und

- more motivated in the verbal domain

- more balanced achievement profile
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Associations with gender equality

- positive relation with share of female students in the top 5% in mathematics

- achievement profiles were more balanced with increasing levels of gender equality

à (Partly) supports Social Role Theory and Situated Expectancy–Value Theory
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Eccles & Wigfield, 2020; Wood & Eagly, 2012



Data were not available for all countries around the world

- A more diverse sample of countries would be desirable to draw even more generalizable 
conclusions

Definition of “top-performing math students” as the top 5% in mathematics

- At least some of the students in the lowest-achieving countries are not top-performing 
math students in an absolute sense (in terms of the PISA Proficiency Level)

+ Better balance in how country-specific results are weighted (more balanced sample 
sizes in high- and low-achieving countries, use of PISA 2000 cycle)
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Limitations
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Differences might contribute to women’s underrepresentation in STEM

Conclusion



In press at the Journal of Educational Psychology!

Keller, L., Preckel, F., Eccles, J. S., & Brunner, M. (in press). Top-performing math 
students in 82 countries: An integrative data analysis of gender differences in 
achievement, achievement profiles, and achievement motivation. Journal of 
Educational Psychology.
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Thank you!

Dr. Lena Keller, University of Potsdam
lena.keller@uni-potsdam.de
www.lenakristinakeller.com
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