This is the codebook of “Study 1” from the manuscript http://dx.doi.org/10.23668/psycharchives.3364 .
Data is embeded in this file. To download the data as CSV click here.
Structure of the codebook:
meas_rep
rbt_ugr <- rio::import(here("9_data+codebooks/rbt_study1_undergrad.csv"))
# we need to invert items back to original format
inv7fct <- function(x) (8-as.numeric(x))
rbt_ugr <- rbt_ugr %>%
mutate_at(vars(exp_1:exp_6, int_1:int_4, ben_1:ben_4),
list(~inv7fct(.)))
metadata(rbt_ugr)$name <- "Journals’ Open Science Badges Foster Trust in Scientists. Study 1: Undergraduates Sample."
metadata(rbt_ugr)$description <- "Code book to manuscript"
metadata(rbt_ugr)$identifier <- ""
metadata(rbt_ugr)$datePublished <- "2021-07-12"
metadata(rbt_ugr)$creator <- list(
"@type" = "Person",
givenName = "Schneider", familyName = "Jürgen",
email = "juergen.schneider@uni-tuebingen.de",
affiliation = list("@type" = "Organization",
name = "University of Tübingen"))
metadata(rbt_ugr)$citation <- "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 1: Undergraduates sample"
# add variable labels #########################################################################
var_label(rbt_ugr) <- list(
treat = "Treatment condition, the participant was assigned to.",
exp_1 = "competent - incompetent",
exp_2 = "intelligent - unintelligent",
exp_3 = "well educated - poorly educated",
exp_4 = "professional - unprofessional",
exp_5 = "experienced - inexperienced",
exp_6 = "qualified - unqualified",
int_1 = "sincere - insincere",
int_2 = "honest - dishonest",
int_3 = "just - unjust",
int_4 = "fair - unfair",
ben_1 = "moral - immoral",
ben_2 = "ethical - unethical",
ben_3 = "responsible - irresponsible",
ben_4 = "considerate - inconsiderate",
meas_rep = "Measurement repetition, first and second measurement",
tsm_1 = "The insights from the text are arbitrary.",
tsm_2 = "The knowledge contained in the text cannot be generalized to other situations at all.",
tsm_3 = "The opposite of the knowledge formulated in the text would be equally right/wrong.",
tsm_4 = "The knowledge formulated in the text cannot claim validity for other situations.",
tch_1 = "It is transparent which data form the basis of the study.",
tch_2 = "Interested parties can have a close look at the questionnaire of the described study.",
tch_3 = "The data collected in the study are publicly available.",
tch_4 = "The authors make it easy for other researchers to understand their statistical analyses.",
tch_5 = "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
semester = "How many semesters of teaching/education-related coursework are you in (counting bachelor's degrees)?",
sex = "Sex",
age = "Age"
)
# add value labels ###########################################################################
# Treatment
val_labels(rbt_ugr$treat) <- c("Greyed out badges (no adherence to Open Science standards)" = "GB",
"Control Condition (no badges)" = "CC",
"Colored out badges (adherence to Open Science standards)" = "CB")
# add value labels (without "don't know" option)
add_likert_labels4 <- function(x) {
val_labels(x) <- c("fully disagree" = 1,
"[empty 1]" = 2,
"[empty 2]" = 3,
"fully agree" = 4)
x
}
rbt_ugr <- rbt_ugr %>%
mutate_at(vars(tsm_1:tsm_4), add_likert_labels4)
# add value labels (with "don't know" option)
add_likert_labels4dk <- function(x) {
val_labels(x) <- c("fully disagree" = 1,
"[empty 1]" = 2,
"[empty 2]" = 3,
"fully agree" = 4,
"don't know" = -999)
x
}
rbt_ugr <- rbt_ugr %>%
mutate_at(vars(tch_1:tch_5), add_likert_labels4dk)
# semantic differentials
add_semantic_diff <- function(x) {
val_labels(x) <- c("1" = 1,
"2" = 2,
"3" = 3,
"4" = 4,
"5" = 5,
"6" = 6,
"7" = 7)
x
}
rbt_ugr <- rbt_ugr %>%
mutate_at(vars(exp_1:exp_6, int_1:int_4, ben_1:ben_4), add_semantic_diff)
# sex
val_labels(rbt_ugr$sex) <- c("female" = 1,
"male" = 2,
"other" = 3)
# measurement time
val_labels(rbt_ugr$meas_rep) <- c("first measurement" = 1,
"second measurement" = 2)
# Define scales ##########################################################################
rbt_ugr$exp <- rbt_ugr %>%
select(exp_1:exp_6) %>%
aggregate_and_document_scale()
rbt_ugr$int <- rbt_ugr %>%
select(int_1:int_4) %>%
aggregate_and_document_scale()
rbt_ugr$ben <- rbt_ugr %>%
select(ben_1:ben_4) %>%
aggregate_and_document_scale()
rbt_ugr$tsm <- rbt_ugr %>%
select(tsm_1:tsm_4) %>%
aggregate_and_document_scale()
rbt_ugr$tch <- rbt_ugr %>%
select(tch_1:tch_5) %>%
aggregate_and_document_scale()
# detect scales #########################################################################
rbt_ugr <- detect_scales(rbt_ugr, quiet = FALSE)
Dataset name: Journals’ Open Science Badges Foster Trust in Scientists. Study 1: Undergraduates Sample.
Code book to manuscript
Metadata for search engines
Citation: Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 1: Undergraduates sample
Identifier:
Date published: 2021-07-12
Creator:
name | value |
---|---|
@type | Person |
givenName | Schneider |
familyName | Jürgen |
juergen.schneider@uni-tuebingen.de | |
affiliation | Organization , University of Tübingen |
|
#Variables
Treatment condition, the participant was assigned to.
Distribution of values for treat
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
treat | Treatment condition, the participant was assigned to. | haven_labelled | 0 | 1 | 3 | 0 | 2 | NA | 2 | 0 | 3 |
name | value |
---|---|
1 | GB |
2 | CC |
3 | CB |
Measurement repetition, first and second measurement
Distribution of values for meas_rep
0 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
meas_rep | Measurement repetition, first and second measurement | haven_labelled | 0 | 1 | 1 | 1 | 2 | 1.487666 | 0.5003228 | 2 | ▇▁▁▁▁▁▁▇ |
name | value |
---|---|
first measurement | 1 |
second measurement | 2 |
Age
Distribution of values for age
21 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|
age | Age | character | 21 | 0.9601518 | 4 | 0 | 3 | 5 | 0 |
How many semesters of teaching/education-related coursework are you in (counting bachelor’s degrees)?
Distribution of values for semester
21 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
---|---|---|---|---|---|---|---|---|---|---|
semester | How many semesters of teaching/education-related coursework are you in (counting bachelor’s degrees)? | numeric | 21 | 0.9601518 | 1 | 5 | 19 | 5.857708 | 3.679689 | ▇▅▅▁▁ |
Sex
Distribution of values for sex
21 missing values.
name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
sex | Sex | haven_labelled | 21 | 0.9601518 | 1 | 2 | 3 | 1.711463 | 0.4706716 | 3 | ▃▁▁▇▁▁▁▁ |
name | value |
---|---|
female | 1 |
male | 2 |
other | 3 |
Reliability: ωtotal [95% CI] = 0.94 [not computed].
Missing: 0.
Likert plot of scale exp items
Distribution of scale exp
Dataframe: | res$dat |
Items: | exp_1, exp_2, exp_3, exp_4, exp_5 & exp_6 |
Observations: | 527 |
Positive correlations: | 15 |
Number of correlations: | 15 |
Percentage positive correlations: | 100 |
Omega (total): | 0.94 |
Omega (hierarchical): | 0.93 |
Revelle’s Omega (total): | 0.96 |
Greatest Lower Bound (GLB): | 0.94 |
Coefficient H: | 0.94 |
Coefficient Alpha: | 0.94 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
4.585, 0.376, 0.32, 0.274, 0.229 & 0.216
PC1 | |
---|---|
exp_1 | 0.900 |
exp_2 | 0.833 |
exp_3 | 0.885 |
exp_4 | 0.870 |
exp_5 | 0.860 |
exp_6 | 0.895 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
exp_1 | 2.575 | 2 | 1.6745 | 1.294 | 1 | 0.0564 | 1 | 1 | 3 | 7 | 0.8751 | 0.4237 | 0.111 | 527 | 0 | 527 |
exp_2 | 2.5636 | 2 | 1.3301 | 1.1533 | 1 | 0.0502 | 1 | 1 | 3 | 6 | 0.5347 | -0.1871 | 0.1376 | 527 | 0 | 527 |
exp_3 | 2.6186 | 2 | 1.5786 | 1.2564 | 1 | 0.0547 | 1 | 1 | 4 | 6 | 0.6334 | -0.1285 | 0.1157 | 527 | 0 | 527 |
exp_4 | 2.6907 | 2 | 1.754 | 1.3244 | 2 | 0.0577 | 1 | 1 | 4 | 7 | 0.7399 | 0.0837 | 0.1053 | 527 | 0 | 527 |
exp_5 | 2.8956 | 3 | 1.9187 | 1.3852 | 2 | 0.0603 | 1 | 2 | 4 | 7 | 0.6057 | -0.1 | 0.1262 | 527 | 0 | 527 |
exp_6 | 2.5712 | 2 | 1.5382 | 1.2402 | 1 | 0.054 | 1 | 1 | 4 | 7 | 0.6827 | 0.0469 | 0.111 | 527 | 0 | 527 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
exp_1 | competent - incompetent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.574953 | 1.294026 | 7 | ▅▇▅▂▁▂▁▁ |
exp_2 | intelligent - unintelligent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.563567 | 1.153290 | 7 | ▅▇▁▆▃▁▁▁ |
exp_3 | well educated - poorly educated | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 6 | 2.618596 | 1.256419 | 7 | ▅▇▁▆▃▁▁▁ |
exp_4 | professional - unprofessional | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.690702 | 1.324373 | 7 | ▅▇▅▃▁▂▁▁ |
exp_5 | experienced - inexperienced | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.895636 | 1.385188 | 7 | ▅▇▇▅▁▂▁▁ |
exp_6 | qualified - unqualified | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.571157 | 1.240233 | 7 | ▅▇▅▃▁▁▁▁ |
Reliability: ωordinal [95% CI] = 0.92 [0.9;0.93].
Missing: 0.
Likert plot of scale int items
Distribution of scale int
Dataframe: | res$dat |
Items: | int_1, int_2, int_3 & int_4 |
Observations: | 527 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.90 |
Omega (hierarchical): | 0.85 |
Revelle’s Omega (total): | 0.93 |
Greatest Lower Bound (GLB): | 0.93 |
Coefficient H: | 0.90 |
Coefficient Alpha: | 0.90 |
3.0.8.2.1.1 Confidence intervals
Omega (total): | [0.88; 0.91] |
Coefficient Alpha: | [0.88; 0.91] |
Ordinal Omega (total): | 0.92 |
Ordinal Omega (hierarch.): | 0.91 |
Ordinal Coefficient Alpha: | 0.92 |
3.0.8.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.9; 0.93] |
Ordinal Coefficient Alpha: | [0.91; 0.93] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.046, 0.482, 0.276 & 0.196
PC1 | |
---|---|
int_1 | 0.881 |
int_2 | 0.888 |
int_3 | 0.847 |
int_4 | 0.874 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
int_1 | 2.6755 | 2 | 1.5466 | 1.2436 | 2 | 0.0542 | 1 | 1 | 4 | 7 | 0.491 | -0.3292 | 0.1148 | 527 | 0 | 527 |
int_2 | 2.666 | 2 | 1.721 | 1.3119 | 2 | 0.0571 | 1 | 1 | 4 | 7 | 0.4772 | -0.4838 | 0.1101 | 527 | 0 | 527 |
int_3 | 2.7723 | 3 | 1.3777 | 1.1738 | 2 | 0.0511 | 1 | 2 | 4 | 7 | 0.103 | -0.7634 | 0.1376 | 527 | 0 | 527 |
int_4 | 2.6831 | 2 | 1.4983 | 1.224 | 2 | 0.0533 | 1 | 1 | 4 | 7 | 0.4485 | -0.3486 | 0.111 | 527 | 0 | 527 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
int_1 | sincere - insincere | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.675522 | 1.243626 | 7 | ▅▇▆▅▁▂▁▁ |
int_2 | honest - dishonest | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.666034 | 1.311851 | 7 | ▆▇▆▆▁▂▁▁ |
int_3 | just - unjust | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.772296 | 1.173759 | 7 | ▅▇▇▇▁▁▁▁ |
int_4 | fair - unfair | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 2 | 7 | 2.683112 | 1.224030 | 7 | ▅▇▅▆▁▁▁▁ |
Reliability: ωordinal [95% CI] = 0.9 [0.89;0.91].
Missing: 0.
Likert plot of scale ben items
Distribution of scale ben
Dataframe: | res$dat |
Items: | ben_1, ben_2, ben_3 & ben_4 |
Observations: | 527 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.88 |
Omega (hierarchical): | 0.85 |
Revelle’s Omega (total): | 0.90 |
Greatest Lower Bound (GLB): | 0.90 |
Coefficient H: | 0.89 |
Coefficient Alpha: | 0.88 |
3.0.9.2.1.1 Confidence intervals
Omega (total): | [0.86; 0.9] |
Coefficient Alpha: | [0.86; 0.9] |
Ordinal Omega (total): | 0.9 |
Ordinal Omega (hierarch.): | 0.9 |
Ordinal Coefficient Alpha: | 0.9 |
3.0.9.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.89; 0.91] |
Ordinal Coefficient Alpha: | [0.89; 0.91] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.931, 0.462, 0.363 & 0.244
PC1 | |
---|---|
ben_1 | 0.876 |
ben_2 | 0.877 |
ben_3 | 0.844 |
ben_4 | 0.826 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ben_1 | 2.7723 | 3 | 1.4538 | 1.2057 | 2 | 0.0525 | 1 | 2 | 4 | 7 | 0.2293 | -0.429 | 0.1319 | 527 | 0 | 527 |
ben_2 | 2.8311 | 3 | 1.5893 | 1.2607 | 2 | 0.0549 | 1 | 2 | 4 | 7 | 0.2239 | -0.3204 | 0.1186 | 527 | 0 | 527 |
ben_3 | 2.7324 | 3 | 1.5994 | 1.2647 | 2 | 0.0551 | 1 | 2 | 4 | 7 | 0.6325 | 0.2817 | 0.111 | 527 | 0 | 527 |
ben_4 | 2.9962 | 3 | 1.5095 | 1.2286 | 2 | 0.0535 | 1 | 2 | 4 | 7 | 0.0937 | -0.5434 | 0.1224 | 527 | 0 | 527 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ben_1 | moral - immoral | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.772296 | 1.205718 | 7 | ▅▇▇▇▁▁▁▁ |
ben_2 | ethical - unethical | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.831119 | 1.260673 | 7 | ▅▆▆▇▁▁▁▁ |
ben_3 | responsible - irresponsible | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.732448 | 1.264667 | 7 | ▃▇▆▅▁▁▁▁ |
ben_4 | considerate - inconsiderate | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.996205 | 1.228614 | 7 | ▃▆▆▇▁▂▁▁ |
Reliability: ωordinal [95% CI] = 0.74 [0.7;0.77].
Missing: 0.
Likert plot of scale tsm items
Distribution of scale tsm
Dataframe: | res$dat |
Items: | tsm_1, tsm_2, tsm_3 & tsm_4 |
Observations: | 527 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.68 |
Omega (hierarchical): | 0.60 |
Revelle’s Omega (total): | 0.74 |
Greatest Lower Bound (GLB): | 0.73 |
Coefficient H: | 0.72 |
Coefficient Alpha: | 0.67 |
3.0.10.2.1.1 Confidence intervals
Omega (total): | [0.63; 0.72] |
Coefficient Alpha: | [0.62; 0.72] |
Ordinal Omega (total): | 0.74 |
Ordinal Omega (hierarch.): | 0.72 |
Ordinal Coefficient Alpha: | 0.73 |
3.0.10.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.7; 0.77] |
Ordinal Coefficient Alpha: | [0.7; 0.77] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.025, 0.902, 0.606 & 0.467
PC1 | |
---|---|
tsm_1 | 0.715 |
tsm_2 | 0.754 |
tsm_3 | 0.595 |
tsm_4 | 0.769 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | 1.8691 | 2 | 0.749 | 0.8654 | 1 | 0.0377 | 1 | 1 | 3 | 4 | 0.6975 | -0.3215 | 0.1888 | 527 | 0 | 527 |
tsm_2 | 2.0455 | 2 | 0.8991 | 0.9482 | 2 | 0.0413 | 1 | 1 | 3 | 4 | 0.5134 | -0.7183 | 0.1708 | 527 | 0 | 527 |
tsm_3 | 2.0455 | 2 | 0.9447 | 0.972 | 2 | 0.0423 | 1 | 1 | 3 | 4 | 0.6195 | -0.6006 | 0.1708 | 527 | 0 | 527 |
tsm_4 | 2.2903 | 2 | 1.0201 | 1.01 | 2 | 0.044 | 1 | 1 | 3 | 4 | 0.2274 | -1.0523 | 0.1347 | 527 | 0 | 527 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | The insights from the text are arbitrary. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree |
0 | 1 | 1 | 2 | 4 | 1.869070 | 0.8654389 | 4 | ▇▁▇▁▁▃▁▁ |
tsm_2 | The knowledge contained in the text cannot be generalized to other situations at all. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree |
0 | 1 | 1 | 2 | 4 | 2.045541 | 0.9481892 | 4 | ▇▁▇▁▁▅▁▂ |
tsm_3 | The opposite of the knowledge formulated in the text would be equally right/wrong. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree |
0 | 1 | 1 | 2 | 4 | 2.045541 | 0.9719517 | 4 | ▇▁▇▁▁▃▁▂ |
tsm_4 | The knowledge formulated in the text cannot claim validity for other situations. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree |
0 | 1 | 1 | 2 | 4 | 2.290323 | 1.0100076 | 4 | ▆▁▇▁▁▆▁▃ |
Reliability: ωtotal [95% CI] = 0.84 [0.82;0.86].
Missing: 0.
Likert plot of scale tch items
Distribution of scale tch
Dataframe: | res$dat |
Items: | tch_1, tch_2, tch_3, tch_4 & tch_5 |
Observations: | 527 |
Positive correlations: | 10 |
Number of correlations: | 10 |
Percentage positive correlations: | 100 |
Omega (total): | 0.84 |
Omega (hierarchical): | 0.52 |
Revelle’s Omega (total): | 0.86 |
Greatest Lower Bound (GLB): | 0.85 |
Coefficient H: | 0.88 |
Coefficient Alpha: | 0.80 |
3.0.11.2.1.1 Confidence intervals
Omega (total): | [0.82; 0.86] |
Coefficient Alpha: | [0; 0.14] |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.801, 1.014, 0.575, 0.326 & 0.284
TC1 | TC2 | |
---|---|---|
tch_1 | 0.011 | 0.837 |
tch_2 | 0.871 | 0.043 |
tch_3 | 0.908 | -0.018 |
tch_4 | -0.009 | 0.852 |
tch_5 | 0.894 | -0.019 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tch_1 | -107.7837 | 2 | 98412.8885 | 313.7083 | 3 | 13.6653 | -999 | 1 | 4 | 4 | -2.499 | 4.2614 | 0.1262 | 527 | 0 | 527 |
tch_2 | -265.5503 | 1 | 196879.3848 | 443.7109 | 1003 | 19.3284 | -999 | -999 | 4 | 4 | -1.0532 | -0.8942 | 0.1338 | 527 | 0 | 527 |
tch_3 | -278.8501 | 1 | 202906.5193 | 450.4515 | 1003 | 19.622 | -999 | -999 | 4 | 4 | -0.9781 | -1.0472 | 0.1404 | 527 | 0 | 527 |
tch_4 | -111.5123 | 2 | 101388.68 | 318.4159 | 3 | 13.8704 | -999 | 1 | 4 | 4 | -2.4383 | 3.9605 | 0.1319 | 527 | 0 | 527 |
tch_5 | -276.9488 | 1 | 202067.9194 | 449.5197 | 1002 | 19.5814 | -999 | -999 | 4 | 4 | -0.9886 | -1.0265 | 0.1395 | 527 | 0 | 527 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tch_1 | It is transparent which data form the basis of the study. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree, -999. don’t know |
0 | 1 | -999 | 2 | 4 | -107.7837 | 313.7083 | 5 | ▁▁▁▁▁▁▁▇ |
tch_2 | Interested parties can have a close look at the questionnaire of the described study. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree, -999. don’t know |
0 | 1 | -999 | 1 | 4 | -265.5503 | 443.7109 | 5 | ▃▁▁▁▁▁▁▇ |
tch_3 | The data collected in the study are publicly available. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree, -999. don’t know |
0 | 1 | -999 | 1 | 4 | -278.8501 | 450.4515 | 5 | ▃▁▁▁▁▁▁▇ |
tch_4 | The authors make it easy for other researchers to understand their statistical analyses. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree, -999. don’t know |
0 | 1 | -999 | 2 | 4 | -111.5123 | 318.4159 | 5 | ▁▁▁▁▁▁▁▇ |
tch_5 | If other researchers want to repeat the study, they have easy access to the questionnaires used. | haven_labelled | 1. fully disagree, 2. [empty 1], 3. [empty 2], 4. fully agree, -999. don’t know |
0 | 1 | -999 | 1 | 4 | -276.9488 | 449.5197 | 5 | ▃▁▁▁▁▁▁▇ |
JSON-LD metadata
The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.
{
"name": "Journals’ Open Science Badges Foster Trust in Scientists. Study 1: Undergraduates Sample.",
"description": "Code book to manuscript\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
"identifier": "",
"datePublished": "2021-07-12",
"creator": {
"@type": "Person",
"givenName": "Schneider",
"familyName": "Jürgen",
"email": "juergen.schneider@uni-tuebingen.de",
"affiliation": {
"@type": "Organization",
"name": "University of Tübingen"
}
},
"citation": "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 1: Undergraduates sample",
"keywords": ["session", "treat", "exp_1", "exp_2", "exp_3", "exp_4", "exp_5", "exp_6", "int_1", "int_2", "int_3", "int_4", "ben_1", "ben_2", "ben_3", "ben_4", "meas_rep", "tsm_1", "tsm_2", "tsm_3", "tsm_4", "age", "semester", "sex", "tch_1", "tch_2", "tch_3", "tch_4", "tch_5", "exp", "int", "ben", "tsm", "tch"],
"@context": "http://schema.org/",
"@type": "Dataset",
"variableMeasured": [
{
"name": "session",
"@type": "propertyValue"
},
{
"name": "treat",
"description": "Treatment condition, the participant was assigned to.",
"value": "GB. Greyed out badges (no adherence to Open Science standards),\nCC. Control Condition (no badges),\nCB. Colored out badges (adherence to Open Science standards)",
"maxValue": "GB",
"minValue": "CB",
"@type": "propertyValue"
},
{
"name": "exp_1",
"description": "competent - incompetent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "exp_2",
"description": "intelligent - unintelligent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "exp_3",
"description": "well educated -\tpoorly educated",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "exp_4",
"description": "professional - unprofessional",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "exp_5",
"description": "experienced - inexperienced",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "exp_6",
"description": "qualified - unqualified",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "int_1",
"description": "sincere - insincere",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "int_2",
"description": "honest - dishonest",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "int_3",
"description": "just - unjust",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "int_4",
"description": "fair - unfair",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "ben_1",
"description": "moral - immoral",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "ben_2",
"description": "ethical - unethical",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "ben_3",
"description": "responsible - irresponsible",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "ben_4",
"description": "considerate - inconsiderate",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "meas_rep",
"description": "Measurement repetition, first and second measurement",
"value": "1. first measurement,\n2. second measurement",
"maxValue": 2,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "tsm_1",
"description": "The insights from the text are arbitrary.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree",
"maxValue": 4,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "tsm_2",
"description": "The knowledge contained in the text cannot be generalized to other situations at all.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree",
"maxValue": 4,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "tsm_3",
"description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree",
"maxValue": 4,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "tsm_4",
"description": "The knowledge formulated in the text cannot claim validity for other situations.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree",
"maxValue": 4,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "age",
"description": "Age",
"@type": "propertyValue"
},
{
"name": "semester",
"description": "How many semesters of teaching/education-related coursework are you in (counting bachelor's degrees)?",
"@type": "propertyValue"
},
{
"name": "sex",
"description": "Sex",
"value": "1. female,\n2. male,\n3. other",
"maxValue": 3,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "tch_1",
"description": "It is transparent which data form the basis of the study.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree,\n-999. don't know",
"maxValue": 4,
"minValue": -999,
"@type": "propertyValue"
},
{
"name": "tch_2",
"description": "Interested parties can have a close look at the questionnaire of the described study.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree,\n-999. don't know",
"maxValue": 4,
"minValue": -999,
"@type": "propertyValue"
},
{
"name": "tch_3",
"description": "The data collected in the study are publicly available.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree,\n-999. don't know",
"maxValue": 4,
"minValue": -999,
"@type": "propertyValue"
},
{
"name": "tch_4",
"description": "The authors make it easy for other researchers to understand their statistical analyses.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree,\n-999. don't know",
"maxValue": 4,
"minValue": -999,
"@type": "propertyValue"
},
{
"name": "tch_5",
"description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
"value": "1. fully disagree,\n2. [empty 1],\n3. [empty 2],\n4. fully agree,\n-999. don't know",
"maxValue": 4,
"minValue": -999,
"@type": "propertyValue"
},
{
"name": "exp",
"description": "aggregate of 6 exp items",
"@type": "propertyValue"
},
{
"name": "int",
"description": "aggregate of 4 int items",
"@type": "propertyValue"
},
{
"name": "ben",
"description": "aggregate of 4 ben items",
"@type": "propertyValue"
},
{
"name": "tsm",
"description": "aggregate of 4 tsm items",
"@type": "propertyValue"
},
{
"name": "tch",
"description": "aggregate of 5 tch items",
"@type": "propertyValue"
}
]
}`