
 
1 

 
 

Qualitative approximations to causality: non-

randomizable factors in clinical psychology  

Running title: Qualitative approximations to causality 

 

Reviews on the new methodical toolbox for causal analysis of observational data usually 

focus on quantitative methods, although any decision on using such a formal method requires 

profound and context-dependent qualification. Such qualitative approaches may yet 

sometimes suffice, and the quantitative methods have hidden potential in qualitative use. 

 

Michael Höfler1, Sebastian Trautmann2, Philipp Kanske1,3 

1: Clinical Psychology and Behavioural Neuroscience, Institute of Clinical Psychology and 

Psychotherapy, Technische Universität Dresden, Dresden, Germany, 2: Department of Psychology, 

Medical School, Hamburg, Germany; 3: Max Planck Institute for Human Cognitive and Brain 

Sciences, Leipzig, Germany 

 

Corresponding author: Michael Höfler, Chemnitzer Straße 46, Clinical Psychology and Behavioural 

Neuroscience, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 

01187 Dresden, Germany. michael.hoefler@tu-dresden.de, +49 351 463 36921 

 

Submission to Clinical Psychology in Europe 

 

 



 
2 

 
 

Abstract  

Background: Causal quests in non-randomized studies are unavoidable just because research 

questions are beyond doubt causal (e.g. aetiology). Large progress during the last decades has 

enriched the methodical toolbox. 

Aims: Summary papers mainly focus on quantitative and highly formal methods. With 

examples from clinical psychology, we show how qualitative approaches can inform on the 

necessity and feasibility of quantitative analysis and may yet sometimes approximate causal 

answers.   

Results: Qualitative use is hidden in some quantitative methods. For instance, it may yet 

suffice to know the direction of bias for a tentative causal conclusion. Counterfactuals clarify 

what causal effects of changeable factors are, unravel what is required for a causal answer, but 

do not cover immutable causes like gender. Directed acyclic graphs (DAGs) address causal 

effects in a broader sense, may give rise to quantitative estimation or indicate that this is 

premature. 

Conclusion: 

No method is generally sufficient or necessary. Any causal analysis must ground on 

qualification and should balance the harms of a false positive and a false negative conclusion 

in a specific context. 
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Highlights 

 Causal inference outside randomized, controlled experiments and trials is rare in 

clinical psychology, regardless of the rich methodology that has evolved in the last 

decades. 

 The attractiveness of these new formal tools distracts from their limits and 

expenditure, but considerable benefit is hidden in their qualitative use.  

 Qualitative considerations may suffice to approximate causal answers. 

 

Causal questions drive most scientific reasoning. This should entail plenty of causal analyses, 

but clinical psychology often avoids causality because the established gold standard, a 

randomized controlled experiment or trial (RCT), is in many cases infeasible. Although we 

cannot or should not manipulate variables such as gender, traumatic events, personality traits 

and other constructs, their effects on clinical outcomes must be investigated to inform 

prevention, intervention, policies, theories and further research.    

 

The specific problem of causality in observational studies 

The methodological toolbox has been greatly expanded. It now offers approaches to causal 

answers in non-randomized studies (Greenland, 2017). These new tools mainly address the 

specific problem of causality: Without randomization, a binary factor X (group comparison, 

e.g. with and without a bipolar disorder diagnosis) and outcome Y (e.g. amount of substance 

use) often have shared causes, Z (e.g. parental mental health), that are out of experimental 

control and cause bias in an estimate of the average effect of X on Y. In linear models and for 

just a single Z, this bias is the product of the effect of Z on X and Y, meaning that it equals α1 
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* α2, where α1 denotes the effect of Z on X, and α2 the effect of Z on Y (e.g. Gelman & Hill, 

2007, chapter 9). This simple formula implies that 

a. bias occurs only if α1 ≠ 0 and α2 ≠ 0 

b. the direction of bias just depends on the signs of α1 and α2. If they are equal, bias is 

upward, otherwise downward. 

c. bias is small if either is small 

 

These properties generalize to non-linear relations and any distributions of Y and Z and to 

multiple Z that are independent or positively inter-related (Groenwold et al., 2018; Pearl’s 

“adjustment formula” is the most general expression; Pearl, 2009). We refer to the above as 

the basic confounding relation. 

Experimental control and randomization together disconnect all confounders Z from X and 

thus eliminate confounding bias. Otherwise, X is just observed, and in life-sciences like 

clinical psychology the number of natural causes of an X might be vast. The new methodical 

tools try to unravel the X-Y relation in an imaginary world in which X (or Y) was 

independent of Z and thus simulate what changing (rather than observing) X would do with Y 

(“do(X)”, Pearl, 2009). The new methods mimic what might be observed if X were changed, 

but unlike real-world change experiments where X is isolated, their use requires an explicit 

understanding of the relationships between variables Z and X. Likewise, during their 

elaboration it has been stressed that one must consider how an X is to be changed because this 

may make a large difference (Greenland, 2005a). For example, just stopping drug use might 

even worsen an outcome if intervention does not address factors like 

stress coping, a putative cause of drug use. In this sense, the new methods complement 

randomized experiments and RCTs through the more explicit need to go beyond a single X, 
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thus to move from “causal description” to “causal explanation” (Johnson et al., 2019). For 

other (non-specific) sources of bias like selection and measurement error that also effect the 

results of randomized studies, see the supplemental material [see below]. 

 

Instead of making use of the new methodological toolbox to approach causal answers in 

observational studies, clinical psychology was dominated by the “mantra“ that “correlation is 

not causation“ (Pearl & MacKenzie, 2018, back of the book). For a historical account on how 

this stance has emerged through the statistical pioneer Karl Pearson, who had considered 

causality to equal perfect (deterministic) correlation, see Pearl and MacKenzie (2018).  

 

Aim of this paper 

Some papers have already introduced tools from the new methodical box in (clinical) 

psychology and summarized the meanwhile vast literature on them (Dablander, 2020; 

Marinescu et al., 2018). However, these have mainly focussed on quantitative approaches in a 

discipline where methodical causal thinking is new and, thus, requires qualitative guidance 

beforehand. One such instance is that psychology needs not only to overcome “retreating into 

the associational haven” (Hernán, 2005), but also immunization against overconfidence 

(Greenland, 2012) in novel methods. Overconfidence mainly concerns the quantitative and 

highly formal methods, because the mathematical sophistication in these easily obstructs the 

sight for hidden assumptions and over-simplification through translation into mathematics 

(Greenland, 2012, 2017; VanderWeele, 2016). Costs of using these methods also include 

learning and conducting them (which is error-prone) and the further degrees of freedom in 

analysis through their use which promotes p-hacking. We argue that qualitative approaches as 

exemplified in this article are easier to access and invite more debate and refinement on them 
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and should at least inform the decision of using a particular quantitative method. We focus on 

a few causal conceptions that we believe are most illustrative for causal quests: the above 

basic confounding relation (1), counterfactuals (2), popular qualitative considerations (3) and 

directed acyclic graphs (4).  

The following figure illustrates the scheme by which we describe how qualitative approaches 

may guide a causal quest. 

------------------------ INSERT FIGURE 1 ABOUT HERE ------------------------------------------- 
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Qualitative approaches 

Gender effects and the basic bias relation 

The effects of gender (biological sex) may play an important role for the development and 

maintenance of mental disorders. If they exist to considerable extent, they contribute to 

explaining the different aetiology of disorders that are more prevalent in females (e.g. 

internalizing disorders such as depression) and males (e.g. externalizing disorders such as 

substance use disorders). This is because gender may also affect many putative aetiological 

factors (e.g. response styles such as rumination (Johnson & Whisman, 2013), which, in turn, 

may influence the onset of disorders (Emsley & Dunn, 2012)).  

 But is the causal wording “effect” warranted here? With the basic bias relation, we are 

equipped to ask: Are there shared causes of gender and a disorder Y? If it holds true that 

gender is largely random in the sense that it depends only on factors that do not also affect the 

disorder (Scarpa, 2016, and references therein), then no confounding bias is expected. If such 

factors exist (e.g. environmental pollution; Astolfi & Zonta, 1999) but affect Y only weakly, 

they may be neglected since the bias through them should be small. If bias from other sources 

is also negligible like selection and measurement, a causal conclusion seems informed.  

 

Upward bias through confounders that affect X and Y with the same sign 

In the presence of reliable associational results, the basic bias relation can be applied well 

beyond gender effects. If there is at most a weak association between an X and a Y, and 

assuming that the common causes of X and Y affect both positively or both negatively (and 
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are unrelated or positively inter-related), bias should be upward. Hence, the effect of X on Y 

should be smaller than the association and, thus, be absolutely small (and probably 

negligible). For example, the relatively weak and often inconsistently reported association 

between anxiety and alcohol use might be explained by genetic and personality factors 

increasing the risk for both (Schmidt et al., 2007). Such risk increasing may frequently apply: 

psychopathology in parents, genetic factors, stable personality traits, stressful life events and 

prior mental disorders are factors that might all affect disorders positively and be positively 

inter-related (Uher & Zwicker, 2017). However, with a larger number of shared factors, the 

probability rises that some have negative relations, but if these are few and unlikely to 

dominate bias (because their effects on X and Y are not very large as compared to those of the 

other factors), a researcher may still use the consideration.  

 

Counterfactuals and a defendable assumption on them 

The above gender example brings up an important limitation yet in the standard 

“counterfactual” definition of a causal effect. Biological sex cannot be entirely changed 

(beyond transsexual transformation) or imagined to be changed, but social aspects of gender 

can (Glymour & Glymour, 2014). 

Imagining a person under an alternative X condition is called counterfactual and defines an 

effect as the amount of change in Y if X is changed from one value to another (if this equals 

zero, there is no effect). Consider the putative effect of childhood trauma (CT) on depression 

(DE). Yet the idea of counterfactuals points out that “the effect” is imprecise since there are 

actually two counterfactuals and associated effects: a) trauma experience in individuals who 

actually do not experience trauma and b) trauma recovery in those who actually had 

experienced a trauma (but do not recover). Just referring to “the effect” denotes the total 
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effect, which means that we imagine both changes at once (Pearl, 2009). Such a summary 

appears pointless in clinical psychology, at least if one aims to keep aetiology and 

persistence/maintenance apart which seems important since in many cases, different factors 

seem to be involved in the onset versus the persistence of mental disorders (McLaughlin et al., 

2011).  

The effect of experiencing a CT is, in principle, subject to a prevention RCT, but such studies 

would be highly ineffective. This is because CT prevention will never succeed among all 

individuals and is unethical if the control group is deliberately exposed to CT although 

exposure (and associated harm) could have been prevented. The effect of recovery from a 

trauma on the other hand; i.e., of successful intervention, can in principle be investigated in an 

RCT, but only with regard to specific consequences of CT. This not only heavily depends on 

what is meant with “consequences” (e.g. distress, symptom onset, incidence of a diagnosis) 

and the mode of intervention, it is confounded with the aim of investigating the recovery 

effect (Greenland, 2005a). 

At least for onset, “target trials” (here prevention trials) may be an effective further tool to 

clarify what a counterfactual specifically means (VanderWeele, 2016). A target trial is an 

ideal trial (or experiment) the data of which would provide the desired causal answer. It 

clarifies qualitatively what we would require, what we cannot do, but what we can anyway 

imagine (Lewis, 1973; Pearl, 2013), including the target population to infer on. 

For a conclusion on the existence of either effect crude estimates of counterfactual depression 

rates (generally mean outcomes) among those with and without CT, respectively, are 

necessary. If we know empirically that, say, 5% of those without CT have depression later in 

life, and we assume that the experience of CT in all the observed individuals would have 

increased this rate (i.e. the counterfactual rate is > 5%; probably few clinical psychologists 
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would doubt this), the conclusion that CT experience increases the risk for depression is 

valid. Likewise if, say, 10% of those with CT have depression later on, we may conclude that 

an intervention decreases the rate provided that we are willing to assume that the intervention 

would achieve a rate below 10%. 

This line of qualitative argument determines the „target quantity“ (Petersen & Van der Laan, 

2014) one wishes to estimate. It may also trigger other considerations like substituting 

unknown counterfactual depression rates from other, „analogous“ (Hill, 1965) studies. For 

trauma experience, a sample of children traumatized by war may be used and for recovery, a 

sample of traumatized, untreated but resilient children.  

 

Granger causality 

Imagining counterfactual states of brains in Neuroscience and Neuroimaging research seems 

meaningful, but in associated longitudinal studies there is a shortcut to the specific causal 

problem of common causes hidden in the term „Granger causality“ (Friston et al., 2013). 

Originally, the term states that, given „all the information in the universe up to time t“ 

(Eichler & Didelez, 2010), and provided that the prediction of Y at time t+1 is worse if an X 

at any time up to t is disregarded, then this prior X is a cause of Y (Granger, 1969). Although 

equivalent with the counterfactual definition, Granger causality has been frequently mistaken 

as only referring to observed X variables (Eichler, 2012; Eichler & Didelez, 2010) or even 

just a time-series of a single X (Marinescu et al., 2018). This downgrades the conception into 

a heuristic for practical use with the easily wrong qualitative suggestion that adjustment for 

common causes has been sufficient. Researchers who use it must be aware of the basic bias 

relation indicating that they play into their own hands if they ignore unobserved common 

causes that effect X and Y with the same sign. These may include variables that have occurred 
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before study onset. Generally, collecting big data like thousands of voxels in a brain scan is 

no substitute for thoughtful reflections on the processes beyond the data that any defendable 

causal analysis relies on (Pearl & MacKenzie, 2018). 

  

In the supplement we briefly discuss other popular and, mostly long-used approaches: 

multimethod evidence, mixed methods research and ruling out alternatives [see below]. 

 

Directed acyclic graphs (DAGs) 

So far, we have only addressed direction of bias but not when and how bias can be removed. 

In the supplement, we revisit the example of the effect of CT on DE to outline the qualitative 

answers that the qualitative method of DAGs provides, including the subsequent study design 

and analysis that a particular DAG model may give rise to. The example uses a model with 

four common causes and causal relations among them. It reveals that adjustment for them is 

possible in subsequent quantitative analysis (whereby one shared cause does not require 

adjustment [see below]).    

Importantly, DAGs may include effects of unchangeable factors like “socio-economical 

family status” in the example where the counterfactual conception of an effect does not apply. 

The conception, however, may be extended to include other actors than humans who could 

change an X (Bollen & Pearl, 2013). Sometimes such an actor is difficult to name let alone to 

translate into a mathematical model, wherefore instances like “socio-economical family 

status” are more suited “to describe something as a cause“ than to “reasonably define a 

quantitative causal effect estimand“ (VanderWeele, 2016). 
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Qualitative assumptions may make quantitative approaches seem premature 

In contrary to the above instance, a DAG might reveal that bias can not be fully eliminated, or 

leave open whether an adjustment decreases or increases bias (Morgan & Winship, 2014, 

chapter 3). The practical utility of DAGs for quantitative analysis rises with fewer variables in 

them and the number of causal relations that can be assumed not to exist (Greenland, 2017). 

However, setting up a DAG model should reveal this. Per se, a DAG renders all associated 

assumptions transparent and invites for debate and refinement on them (the reader might ask 

herself if this happens with the figure in the supplement). 

Anyway, controversy on a model might be so large that grounding a study and quantitative 

analysis on it appears unwarranted (Petersen & Van der Laan, 2014). Also, if the number of 

potential common causes is large and there is no way to prioritize them for reducing bias, 

quantitative analysis seems premature. Instead, more research is required beforehand to set up 

a defendable DAG. An example is the effect of internalizing symptoms on substance use 

where common causes may include a variety of genetic, parental, childhood, personality and 

environmental factors, as well as all sorts of individual variables related to neurobiological, 

cognitive and emotional processes (Pasche, 2012). 

 

Conclusions 

No method can fully cover all aspects of causality across research fields and specific 

applications, especially in a life science as complex as clinical psychology (Greenland, 2017), 

and “there is no universal method of scientific inference” (Gigerenzer & Marewski, 2014). 

Likewise, a causal query can never be fully objective, because it always involves assumptions 

beyond the data (Greenland, 2005b). In sharp contrast, researchers tend to “mechanizing 
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scientists’ inferences” (Gigerenzer & Marewski, 2014) and downgrade methods from tools for 

thoughtful cooperation between methodologists and substantive experts (Höfler et al., 2018) 

into empty rituals (Gigerenzer, 2018). 

In this article, we have outlined some qualitative approaches through which one may 

approach a crude causal answer on an average effect, plan a quantitative analysis or unravel 

that any analysis is currently infeasible. In fact, any causal quest must start with qualification 

because otherwise it would be just a mechanical exercise. The qualitative conceptions 

outlined here are meant as provisory heuristics that must not be ritualized but should be taken 

as invitations for refinement and adjustment to any particular application. 

Above all, the two possible errors in causal conclusions should guide causal quests and the 

decision on whether the use of a highly formal method pays off (Greenland, 2012): false 

positive and false negative. Statistical decision theory provides the framework to formalize 

the balance between false positive and false negative causal conclusions. It states that the 

better decision is the one with the lower expected costs (Dawid, 2012). 

Thoughtful causal quests are essential for explaining why phenomena occur the way they do 

and in providing levers through which things could be changed, for instance, in preventing 

disorders and improving life. Assessing causality is complex, demanding and ambivalent, but 

so is science. However, it makes use of the natural capacity of causal modelling which is 

deeply grounded in us human beings and structures how we view the world (Pearl & 

MacKenzie, 2018). 

 

Legend to figure 1: Scheme of qualitative approaches guiding causal quests. These might be 

sufficient for overall causal answers, give rise to designing a new study and/or quantitative 
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analysis, or suggest that such analysis is premature. The basic bias relation, counterfactuals 

and DAGs belong to the new toolbox of causal methods.  
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Supplementary material to the article “Qualitative approximations to 

causality: non-randomizable factors in clinical psychology“ 

 

Michael Höfler, Sebastian Trautmann, Philipp Kanske 

 

This online supplement provides some additions to the paper, namely other sources of bias 

than confounding, and other popular approaches to causality besides those from the new 

roolbox and Granger causality. We also elaborate on the example of the effect of childhood 

trauma (factor X = CT) on depression (outcome Y = DE) using a DAG (directed acyclic 

graph) model on common causes of this effect and subsequent study design and data analysis 

the model gives rise to.  

 

1. Other sources of bias that also affect randomized studies 

Randomized experiments and RCTs are also prone to other data-generating mechanisms that 

might distort causal analysis (Hernán et al., 2008). Such mechanisms, however, are not 

specific for causal quests but also bias estimates of associations. They include selection, 

measurement error in Y and non-compliance with the compared X conditions. Observational 

studies may yield similar results especially if assignment to X is largely independent of Y 

(Rosenbaum, 2010; Shadish et al., 2002), or if common causes are adjusted for (Anglemyer et 

al., 2014). Total bias might be even larger in randomized studies; for instance, if selection bias 

(in randomized clinical studies) dominates confounding bias (in non-randomized general 

population studies, Greenland, 2005, 2012; Lash et al., 2009; Mansournia et al., 2017). 
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Consider selection bias in clinical studies. This occurs, for instance, if treatment seeking is 

related with the treatment effect of interest. It generally happens if whatever X and Y are both 

related with being selected into a study (through helpseeking). This mechanism became 

famous as “Berkson’s bias” for the potential to create fully spurious comorbidity and is 

nowadays (within the framework of the below described DAGs) referred to as “conditioning 

on a collider” (Elwert & Winship, 2014; Höfler & Trautmann, 2019). For example, an 

association between years of education and severity of depression is expected in a clinical 

sample just because both higher education and disorder severity are associated with seeking 

treatment (Magaard et al., 2017). 

 

2. Other qualitative methods 

Multi-method evidence 

A good advice is not to draw causal conclusions from just a single study, especially if studies 

with different methods (e.g. cell and animal studies, neuroimaging, self-reports) are available 

(Greenland, 2017) with differently biased estimates, because the study designs open the door 

for sources of bias to stream in differently (confounding, selection, measurement, non-

compliance, etc.; Greenland, 2012). Then convergent evidence for an effect can hardly be 

explained by common bias (bias that equally occurs in all kind of studies; Campbell & Fiske, 

1959). However, different biases could distort the estimates in the same direction. For 

instance, placebo treatment effects have been argued to be upward biased both due to 

selection into a clinical sample and reporting Y (Hróbjartsson et al., 2011). Thus, studies in 

both clinical (biased through both) and general populations (biased only through reporting) 

might be inflated, in which case the common bias argument fails.  
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On the other hand, the argument can be strengthened through adding some of the nine 

Bradford Hill considerations that Hill had once formulated inspired by the historical 

controversy on the effect of smoking on lung cancer (Hill, 1965). Such are: “strength of 

association” (as above) and “plausibility”: there is a (biological) model that explains an effect. 

The latter evaluates a (maybe quantitative) finding or putative conclusion through the ability 

to link it to substantive knowledge. However, which finding and which knowledge weighs 

how much is strongly context-dependent (Höfler, 2005), and different integrations of “ragged 

evidence” might appear plausible but yield different conclusions (Greenland, 2012). 

 

Mixed methods research 

Recently, similar proposals have been made under the term of “mixed methods research”. 

“Mixed methods“ call for study type “pluralism“ and urges researchers to reflect on different 

levels (persons, populations, time, situations, factors and outcomes) where causal effects may 

occur equally or differently (Johnson et al., 2019, and references therein). 

 

Ruling out alternatives 

Another popular instance of considering more background knowledge than addressed in an 

analysis is ruling out alternatives to X causing Y (Greenhouse, 2009). Statistically, an X-Y 

association may be explained, among others, by shared causes, shared measurement error, 

selection bias, and inverse causation (Y causing X) (Maclure & Schneeweiss, 2001; Pearl, 

2009). (See the appendix for an example on selection bias in clinical studies [insert link]). 
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3. DAGs and the effect of childhood trauma (CD) on depression (DE) 

A directed acyclic graph (also “causal diagram”) displays arrows that encode whether a 

variable is assumed to affect another (arrow) or not (no arrow) (Pearl, 1995, 2009). An entire 

graph expresses qualitative assumptions on common causes and causal dependencies among 

them. After setting up a DAG, it is evaluated with regard to study design and quantitative 

analysis it may suggest (see below). A DAG is non-parametric; that is, all mathematical 

theorems apply independent of how the variables are scaled and distributed. A diagram must 

be complete with regard to the shared causes of X and Y. The arrows in the graph code 

assumptions on direct effects; for instance, we besides assume that “socio-economical family 

status” affects depression both directly and indirectly via “risk environment”. Then DAGs are 

non-parametric; i.e., they do not make assumptions on how the variables are scaled and 

distributed and according to what mathematical function they affect one another. 

Different and very much recommended introductory accounts for the field are provided by 

Dablander (2020) and Rohrer (2018). Here, we illustrate how a DAG accounts for bias due to 

confounding. Note that also the the bias sources of measurement (Hernán & Cole, 2009), non-

compliance (Morgan & Winship, 2014; ch. 9), selection (Bareinboim & Pearl, 2016; Elwert & 

Winship, 2014) and missing data (Thoemmes & Mohan, 2015) can be addressed with DAGs, 

while revealing whether and how an effect can be estimated without bias.  

 

For the effect of CT on DE we suppose just four common causes to demonstrate the use of the 

method rather than to provide an exhaustive account of all variables that are theoretically 

plausible and in line with the evidence: parental psychopathology (PP; Hankin, 2015; Lizardi 

& Klein, 2000), socio-economical family status (SFS; Freeman et al., 2016; Freisthler et al., 

2006), risk environment (RE, e.g. living in a dangerous neighbourhood; Coulton et al., 2007) 
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and genetic factors (GF; Dunn et al, 2015; Peyrot et al., 2014). Figure 1 shows the model 

including the supposed effects of these factors on one another: 

 

The factor of interest, CT is supposed to be influenced by parental psychopathology (PP), 

socio-economical family status (SFS) and risk environment (RE). “Non-parametric” also 

means that CT if affected by these variables through whatever function, fCT, CT = fCT(PP, 

SFS, RE, ϵCT). ϵCT is a summary of all other variables that influence CT. These are not 

visualized in the graph for parsimony since they have no effect on DE and, thus, on how 

adjustment should be done. Note that genetic factors (GF) also influence CT, but only 

indirectly through the path GF → PP → CT. DAGs encode direct effects in terms of the other 

variables that the graph contains. PP, for instance, may actually affect CT through other 

variables, but if these do not have causal connections with DE, these can be omitted as well. 

Now, the “backdoor criterion” (Pearl, 1995) provides an algorithm to identify paths in the 

model that bring about non-causal associations between CT and DE and are to be eliminated. 



 
25 

 
 

These are called “backdoor paths“, a backward path must contain an arrow into CT and a 

backward connection into DE.  

In the given example, there are seven backdoor paths: 

(1) CT ← PP → DE 

(2) CT ← PP ← GF → DE 

(3) CT ← SFS → DE 

(4) CT ← RE → DE 

(5) CT ← SFS → RE → DE 

(6) CT ← PP → SFS → DE 

(7) CT ← PP → SFS → RE → DE 

 

Furthermore, a backdoor path must also be "collider-free" to bring about non-causal 

association. This is because a common consequence (“collider”) of two factors does not cause 

an association between these factors — unless the common consequence is wrongly adjusted 

for (Elwert & Winship, 2014). In the example, a variable outside the model, school grades 

(SG), could be a common consequence of CT and SFS: CT → SG ← DE. Adjusting for SG 

would yield an otherwise not present CT-SFS association and, in turn, new backdoor paths 

and additional bias. 

Now, the backdoor-criterion states that we have to identify a subset of confounders, that, if 

adjusted for, “blocks“ paths 1-7 such that, given the subset, the association between CT and 

DE is independent of the omitted confounders. This means that each backdoor path must lead 

through at least one variable of the subset. Here, only the sets (PP, SFS, RE) and (PP, SFS, 

RE, GF) fulfil this criterion. Thus, we don’t have to consider GF if we take PP, SFS and RE 

into account. 



 
26 

 
 

 

Importantly, the results of effect quantification may yet vary strongly across different 

specified DAGs. Different DAGs may appear similarly plausible, in which case researchers 

are well advised to collect all variables that are necessary for the different adjustments that 

the different DAGs call for. If one is lucky, however, sensitivity on this level is small because 

the different DAGs address the same key features of bias, although each model may just be a 

crude map of reality (VanderWeele, 2016).     

 

4. Study design  

The model tells us that we have to design a study that collects data not only on CT and DE 

(while establishing temporal sequence, the prerequisite for causation, ideally in a prospective 

study), but also on PP, SFS and RE. This is the essence of designing an observational study 

for causal inference (Rosenbaum, 2010; Shadish et al., 2002). In the example, PP, SFS and 

RE are summary variables. For adjustment to be sufficient, these constructs should be 

completely covered through a collection of variables that addresses all of a construct’s 

aspects, and these must share the same causal relations (Ramsahai, 2012). For example, RE 

should include information on local crime rates, regional conflicts, air pollution and lack of 

infrastructure. To address PP sufficiently, parents should be comprehensively diagnosed. 

Moreover, to succeed completely in adjustment, the confounders have to be measured without 

error. Otherwise “residual bias“ is expected (Morgan & Winship, 2018). For example, PPP 

assessment should use the best available instrument. Lastly, to keep bias due to selection 

small, a sample should be drawn from a source population that resembles the target 

population in the parameter of interest, here the magnitude of the effect of CT on DE (Elwert 
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& Winship, 2014). Again, this requires assumptions beyond the data, and these can be 

expressed with a DAG (Bareinboim & Pearl, 2016).  

 

5. Adjustment after data have been collected 

For the present purpose, we provide a brief summary with principal guidance on the 

adjustment methods because their details are vast and better explained with data. A 

comprehensive account with rich citations of original work is provided by Morgan and 

Winship (2014, chapters 5-7). 

The simplest adjustment method to estimate the average treatment effect, ATE, is jointly 

regressing Y on X and the chosen Z variables in order to remove the Z-Y relations when 

comparing the X-groups. The method is very crude and may be pretty ineffective in 

balancing, in the example, individuals with and without CT with regard to the distributions of 

PP, SFS and RE. It performs increasingly poorly the more the effect of CT on depression 

varies across individuals. Heterogeneity in effects appears at least plausible for many if not 

most mental disorders and their aetiological factors. Regression may also work not well if the 

model does not fit the data or makes wrong assumptions on the distribution of errors. 

However, better fitting models (like generalized linear models) can be used. Besides, adding 

interactions between CT and effect-modifyers (which may differ from PP, SFS and RE) could 

capture at least some important features of effect-heterogeneity. Such a model also serves 

estimating potential outcomes: Given whatever value of whatever Z, the regression equation 

predicts the average outcome Y under X = 1 and X = 0 and, thus, the group difference in Y 

given Z (i.e., in individuals with such a Z value). This works for every combination of Z 

values, and averaging over these yields an estimate of ATE like the average effect of CT on 

depression. Alternatively, the individuals may be differently weighted (using the propensity 
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score, see below), such that ATT or ATC, respectively, are estimated: the effect of CT 

removal or CT experience, respectively. 

Propensity-score methods instead focus on removing the X-Z relations. They firstly require a 

model on group assignment; that is, on the probability that X equals 1 given Z. This 

probability is called propensity score, ps. If ps is known and adequately adjusted for, ps is 

sufficient for unbiased effect estimates, the distinct Z variables do not need to be taken into 

account anymore (Rosenbaum & Rubin, 1983). 

In the example, ps is the probability that an individual is traumatized in childhood, given his 

or her values in PP, SFS and RE (irrespective of whether an individual has truly experienced 

CT or not). ps is estimated for each individual with a model, often through logistic regression 

of P(X = 1) on Z yielding model-predicted probabilities of X = 1 given Z. Importantly, the 

model must be true in describing the actual assignment process. For instance, if PP and SFS 

interact in affecting the CT risk on the logistic scale, this interaction must be included in the 

regression equation. Otherwise X is not fully disconnected from Z and, again, residual 

confounding occurs. Uncertainty in model selection can be addressed by averaging an 

individual’s ps across models that similarly fit the data. This is prevalent if the number of Z 

variables is large and in small samples and can be handled with “random forests” if the 

sample proportion of X = 1 ranges, say, between 30 and 70 percent. (A random forest is a 

collection of possible models, each of having the shape of a “tree” that predicts the average Y 

in each “terminal node” of the tree. Each such node results from a series of binary splits 

according to values of Z variables that bring about the largest difference in Y (Strobl et al., 

2009). 

After a model has been fitted, the range and distribution of ps values in both X = 0 and X = 1 

must be inspected. It may turn out that the groups have different ps ranges, which may 



 
29 

 
 

indicate that, for example, some X = 1 individuals have no “twin” in X = 0 with regard to ps 

(and, thus, one or more Z variables). Such a finding may suggest that, for these individuals, X 

= 0 is not a meaningful counterfactual. This should, however, rarely happen if the model in 

the underlying DAG is sound. Otherwise, individuals that lack twins in the other group should 

be omitted from analysis and the analysis be restricted to the “region of common support”. In 

consequence, the inferential population is limited to individuals with ps in this region. In the 

example, the data might contain individuals with low RE, low PP and high SFS only in the 

non-CT group. Omitting these would not allow including them in a causal conclusion. 

Another practical issue is ensuring whether ps sufficiently summarizes the Z variables; that is, 

whether X and each Z are independent given Z. 

 

Once ps is computed and the points discussed above are addressed, there are several 

approaches that use ps to balance X = 0 and X = 1. Unlike parametric regression methods 

statistical matching methods draw each individual from one group with its observed Y value, 

calculate the difference with each observation in the other group that is similar in ps, then 

average across these “twins” and finally average across individuals. These procedures are 

non-parametric because they do not rely on assumptions on the distributions of Y in X = 0 

and X = 1. 

Matching can be done in individuals with X = 0, e.g. adjusting individuals with CT to those 

without CT (ATC estimation), or within X = 1 individuals, adjusting individuals with CT to 

those without CT (ATT estimation). Averaging ATC and ATT (weighted by the number of 

individuals with CT and without CT, resp.) yields ATE. 

Specific matching algorithms differ in how they operationalize “similar” and weight the 

observations according to the magnitude of similarity (e.g. “kernel matching”, “genetic 
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matching” and “optimal matching”). Unfortunately, the literature is inconsistent in what 

method works best. Therefore, the recommendation is using a range of methods to ensure that 

a particular conclusion is not due to the specific method used. Of course, all results then have 

to be reported and the exact analytic plan should be registered beforehand to prevent p-

hacking. 

Finally, doubly robust estimation methods (“inverse-probability-weighted regression 

adjustment” and “augmented inverse-probability”) combine the approaches of eliminating the 

Y-Z and X-Z relations. They do this by jointly a) regressing Y on X*Z (and the main effects 

of X and Z) and b) weighting the individuals with functions of the propensity score. They are 

called doubly-robust because their bias in estimating the X-Y effect is the product of the 

biases in a) and b): If one bias is zero (small) the total bias is zero (small). Thus, one has two 

attempts to succeed (and each attempt is robust against wrong assumptions in the other).  

Today, various software packages including R, Python, Stata and SPSS include a range of 

these methods. However, care in their use must be taken since their implementation might 

differ what may cause unwarranted variation in results. 

 

Finally note that DAGs give rise to two other quantitative methods to address bias due to 

confounders: a) “Mechanism-based” unravels an X-Y effect into direct and indirect effects 

that may be less confounded than the total effect (Morgan & Winship, 2014, chapter 10).  

b) The “instrumental variables” approach is often used to model non-compliance in X in a 

treatment or experimental study. An intended randomized treatment may serve as an 

“instrument”, I, for estimating the effect of treatment according to the protocol (= X, what is 

confounded) as if there was perfect compliance. Under certain assumptions, the X-Y effect 

can be calculated from the I-X and I-Y associations (which may be less confounded), but 
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possibly only in a restricted population (Morgan & Winship, 2014, chapters 10 and 9., resp.). 

Also note how a DAG relates to observation and thus be empirically tested: It predicts a set of 

associations through pairs of variables that are causally or non-causally linked (e.g. due to 

common causes). Each of these predicted associations might be found in the subsequent study 

or not and, thus, invite model modification.  

 

Legend to Figure 1: 

DAG model of common causes of childhood trauma (CT) and depression (DE) and the causal 

relations between them. Assumed common causes are parental psychopathology (PP), socio-

economical family status (SFS), risk environment (RE) and genetic factors (GF). 
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