This is the codebook of “Study 3” from the manuscript http://dx.doi.org/10.23668/psycharchives.3364 .
Data is embeded in this file. To download the data as CSV click here.
Structure of the codebook:
load(here("9_data+codebooks/rbt_study3_public.RData"))
# define several variables as character so they get plotted better
# rbt_public$position <- as.character(rbt_public$position)
rbt_public$country <- as.character(rbt_public$country)
rbt_public <- rbt_public %>%
rename_at(vars(abs1_tsc_2, abs2_tsc_2), add_R)
rbt_public <- rbt_public %>%
mutate_at(vars(matches("\\dR$")), reverse_labelled_values)
rbt_public <- rbt_public %>%
dplyr::select(treat1:education)
rbt_public <- detect_scales(rbt_public, quiet = FALSE)
metadata(rbt_public)$name <- "Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample."
metadata(rbt_public)$description <- "Code book to manuscript"
metadata(rbt_public)$identifier <- ""
metadata(rbt_public)$datePublished <- "2021-07-12"
metadata(rbt_public)$creator <- list(
"@type" = "Person",
givenName = "Schneider", familyName = "Jürgen",
email = "juergen.schneider@uni-tuebingen.de",
affiliation = list("@type" = "Organization",
name = "University of Tübingen"))
metadata(rbt_public)$citation <- "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample"
# add variable labels
var_label(rbt_public) <- list(
treat1 = "First treatment condition, the participant was assigned to.",
treat2 = "Second treatment condition, the participant was assigned to.",
first_topic = "Topic the participant received first.",
education = "Which is the highest qualifiaction you have?",
abs1_tru_exp_1 = "competent - incompetent",
abs1_tru_exp_2 = "intelligent - unintelligent",
abs1_tru_exp_3 = "well educated - poorly educated",
abs1_tru_exp_4 = "professional - unprofessional",
abs1_tru_exp_5 = "experienced - inexperienced",
abs1_tru_exp_6 = "qualified - unqualified",
abs1_tru_int_1 = "sincere - insincere",
abs1_tru_int_2 = "honest - dishonest",
abs1_tru_int_3 = "just - unjust",
abs1_tru_int_4 = "fair - unfair",
abs1_tru_ben_1 = "moral - immoral",
abs1_tru_ben_2 = "ethical - unethical",
abs1_tru_ben_3 = "responsible - irresponsible",
abs1_tru_ben_4 = "considerate - inconsiderate",
abs2_tru_exp_1 = "competent - incompetent",
abs2_tru_exp_2 = "intelligent - unintelligent",
abs2_tru_exp_3 = "well educated - poorly educated",
abs2_tru_exp_4 = "professional - unprofessional",
abs2_tru_exp_5 = "experienced - inexperienced",
abs2_tru_exp_6 = "qualified - unqualified",
abs2_tru_int_1 = "sincere - insincere",
abs2_tru_int_2 = "honest - dishonest",
abs2_tru_int_3 = "just - unjust",
abs2_tru_int_4 = "fair - unfair",
abs2_tru_ben_1 = "moral - immoral",
abs2_tru_ben_2 = "ethical - unethical",
abs2_tru_ben_3 = "responsible - irresponsible",
abs2_tru_ben_4 = "considerate - inconsiderate",
country = "Country of residence",
country_oth = "please specify other country"
)
# add value labels ##################################
val_labels(rbt_public$treat1) <- c("Greyed out badges (no adherence to Open Science standards)" = "gb",
"Control Condition (no badges)" = "cc",
"Colored out badges (adherence to Open Science standards)" = "cb")
val_labels(rbt_public$treat2) <- c("Greyed out badges (no adherence to Open Science standards)" = "gb",
"Control Condition (no badges)" = "cc",
"Colored out badges (adherence to Open Science standards)" = "cb")
# semantic differentials
add_semantic_diff <- function(x) {
val_labels(x) <- c("1" = 1,
"2" = 2,
"3" = 3,
"4" = 4,
"5" = 5,
"6" = 6,
"7" = 7)
x
}
rbt_public <- rbt_public %>%
mutate_at(vars(abs1_tru_exp_1:abs1_tru_ben_4, abs2_tru_exp_1:abs2_tru_ben_4), add_semantic_diff)
# education
val_labels(rbt_public$education) <- c("1 - 4 O levels / CSEs / GCSEs (any grades), ..." = "L12", # ...Entry Level, Foundation Diploma / NVQ Level 1, Foundation GNVQ, Basic Skills / 5+ O levels (passes) / CSEs (grade 1) / GCSEs (grades A*- C), School Certificate, 1 A level / 2 - 3 AS levels / VCEs, Higher Diploma / NVQ Level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First / General Diploma, RSA Diploma, Baccalaureate Intermediate Diploma
"2+ A levels / VCEs, 4+ AS levels, Higher School Certificate, ..." = "L34", # Progression / Advanced Diploma, Baccalaureate Advanced Diploma / NVQ Level 3, Advanced GNVQ, City and Guilds Advanced Craft, ONC, OND, BTEC National, RSA Advanced Diploma / Degree (for example BA, BSc), Higher degree (for example MA, PhD, PGCE) / NVQ Level 4 - 5, HNC, HND, RSA Higher Diploma, BTEC Higher Level, Foundation degree (NI) / Professional qualifications (for example teaching, nursing, accountancy)
"Apprenticeship / Other vocational / work-related qualifications..." = "app") # / Foreign qualifications / No academic or professional qualifications
# country
val_labels(rbt_public$country) <- c("United Kingdom" = "1",
"Republic of Ireland" = "2",
"USA" = "3",
"Canada" = "4",
"other" = "-999")
Dataset name: Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample.
Code book to manuscript
Metadata for search engines
Citation: Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample
Identifier:
Date published: 2021-07-12
Creator:
name | value |
---|---|
@type | Person |
givenName | Schneider |
familyName | Jürgen |
juergen.schneider@uni-tuebingen.de | |
affiliation | Organization , University of Tübingen |
|
#Variables
First treatment condition, the participant was assigned to.
Distribution of values for treat1
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
treat1 | First treatment condition, the participant was assigned to. | haven_labelled | 0 | 1 | 3 | 0 | 2 | NA | 2 | 0 | 3 |
name | value |
---|---|
1 | gb |
2 | cc |
3 | cb |
Second treatment condition, the participant was assigned to.
Distribution of values for treat2
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
treat2 | Second treatment condition, the participant was assigned to. | haven_labelled | 0 | 1 | 3 | 0 | 2 | NA | 2 | 0 | 3 |
name | value |
---|---|
1 | gb |
2 | cc |
3 | cb |
Topic the participant received first.
Distribution of values for first_topic
0 missing values.
name | label | type | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
first_topic | Topic the participant received first. | calculate | character | 0 | sample(c(“moral”, “robot”), 1, replace = F) | 4 | 0 | 1 | 2 | 0 | 5 | 5 | 0 |
type | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|
calculate | first_topic | 0 | sample(c(“moral”, “robot”), 1, replace = F) | 4 |
name | value |
---|
Country of residence
Distribution of values for country
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
country | Country of residence | haven_labelled | 0 | 1 | 5 | 0 | 1 | NA | 4 | 0 | 5 |
name | value |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | -999 |
please specify other country
Distribution of values for country_oth
256 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
country_oth | please specify other country | text | 100 | character | 1 | country == -999 | 69 | 256 | 0.0038911 | 1 | 0 | 2 | 2 | 0 |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
text | 100 | country_oth | please specify other country | 1 | country == -999 | 69 |
name | value |
---|
Reliability: ωordinal [95% CI] = 0.75 [0.7;0.8].
Missing: 0.
Likert plot of scale abs1_tsm items
Distribution of scale abs1_tsm
Dataframe: | res$dat |
Items: | abs1_tsm_1, abs1_tsm_2, abs1_tsm_3 & abs1_tsm_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.70 |
Omega (hierarchical): | 0.63 |
Revelle’s Omega (total): | 0.72 |
Greatest Lower Bound (GLB): | 0.72 |
Coefficient H: | 0.75 |
Coefficient Alpha: | 0.68 |
3.0.7.2.1.1 Confidence intervals
Omega (total): | [0.64; 0.76] |
Coefficient Alpha: | [0.62; 0.75] |
Ordinal Omega (total): | 0.75 |
Ordinal Omega (hierarch.): | 0.74 |
Ordinal Coefficient Alpha: | 0.74 |
3.0.7.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.7; 0.8] |
Ordinal Coefficient Alpha: | [0.68; 0.79] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.065, 0.749, 0.731 & 0.455
PC1 | |
---|---|
abs1_tsm_1 | 0.652 |
abs1_tsm_2 | 0.770 |
abs1_tsm_3 | 0.628 |
abs1_tsm_4 | 0.808 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsm_1 | 2.572 | 3 | 0.6598 | 0.8123 | 1 | 0.0507 | 1 | 2 | 4 | 4 | -0.1245 | -0.4575 | 0.177 | 257 | 0 | 257 |
abs1_tsm_2 | 2.7588 | 3 | 0.6994 | 0.8363 | 1 | 0.0522 | 1 | 2 | 4 | 4 | -0.0055 | -0.7969 | 0.179 | 257 | 0 | 257 |
abs1_tsm_3 | 2.6381 | 3 | 0.6771 | 0.8229 | 1 | 0.0513 | 1 | 2 | 4 | 4 | -0.0469 | -0.5517 | 0.1809 | 257 | 0 | 257 |
abs1_tsm_4 | 2.8521 | 3 | 0.7281 | 0.8533 | 1 | 0.0532 | 1 | 2 | 4 | 4 | -0.358 | -0.4854 | 0.1245 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsm_1 | The insights from the text are arbitrary. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 23 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.571984 | 0.8123036 | 5 | ▂▁▆▁▁▇▁▂ | ||||
abs1_tsm_2 | The knowledge contained in the text cannot be generalized to other situations at all. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 23 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.758755 | 0.8362930 | 5 | ▁▁▇▁▁▇▁▅ | ||||
abs1_tsm_3 | The opposite of the knowledge formulated in the text would be equally right/wrong. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 23 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.638132 | 0.8228815 | 5 | ▂▁▇▁▁▇▁▃ | ||||
abs1_tsm_4 | The knowledge formulated in the text cannot claim validity for other situations. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 23 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.852140 | 0.8532597 | 5 | ▁▁▅▁▁▇▁▅ |
Reliability: ωordinal [95% CI] = 0.72 [0.66;0.77].
Missing: 0.
Likert plot of scale abs1_tsc items
Distribution of scale abs1_tsc
Dataframe: | res$dat |
Items: | abs1_tsc_1, abs1_tsc_2R & abs1_tsc_3 |
Observations: | 257 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.65 |
Omega (hierarchical): | 0.05 |
Revelle’s Omega (total): | 0.67 |
Greatest Lower Bound (GLB): | 0.70 |
Coefficient H: | 0.80 |
Coefficient Alpha: | 0.61 |
3.0.8.2.1.1 Confidence intervals
Omega (total): | [0.58; 0.72] |
Coefficient Alpha: | [0.53; 0.69] |
Ordinal Omega (total): | 0.72 |
Ordinal Omega (hierarch.): | 0.71 |
Ordinal Coefficient Alpha: | 0.67 |
3.0.8.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.66; 0.77] |
Ordinal Coefficient Alpha: | [0.6; 0.74] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.728, 0.865 & 0.408
PC1 | |
---|---|
abs1_tsc_1 | 0.841 |
abs1_tsc_2R | 0.526 |
abs1_tsc_3 | 0.863 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsc_1 | 2.6615 | 3 | 0.6779 | 0.8234 | 1 | 0.0514 | 1 | 2 | 4 | 4 | -0.1889 | -0.4596 | 0.1595 | 257 | 0 | 257 |
abs1_tsc_2R | 2.6693 | 3 | 0.7222 | 0.8498 | 1 | 0.053 | 1 | 2 | 4 | 4 | -0.1171 | -0.6095 | 0.1673 | 257 | 0 | 257 |
abs1_tsc_3 | 2.6537 | 3 | 0.6335 | 0.7959 | 1 | 0.0496 | 1 | 2 | 4 | 4 | -0.1861 | -0.3693 | 0.1634 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tsc_1 | The statements of the just-read text are consistent with my personal opinion on the subject. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 24 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.661479 | 0.8233616 | 5 | ▂▁▆▁▁▇▁▂ | ||||
abs1_tsc_2R | The statements of the text excerpt I just read contradict what I myself think about the topic. | mc | haven_labelled | 4. fully <br />disagree, 3. , 2. , 1. fully <br />agree, NA. Item was never rendered for this user. |
0 | 24 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.669261 | 0.8498326 | 5 | ▂▁▆▁▁▇▁▃ | ||||
abs1_tsc_3 | I agree with the statements I just read in the text excerpt. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 24 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.653697 | 0.7959345 | 5 | ▁▁▆▁▁▇▁▂ |
Reliability: ωordinal [95% CI] = 0.96 [0.95;0.97].
Missing: 0.
Likert plot of scale abs1_tru_exp items
Distribution of scale abs1_tru_exp
Dataframe: | res$dat |
Items: | abs1_tru_exp_1, abs1_tru_exp_2, abs1_tru_exp_3, abs1_tru_exp_4, abs1_tru_exp_5 & abs1_tru_exp_6 |
Observations: | 257 |
Positive correlations: | 15 |
Number of correlations: | 15 |
Percentage positive correlations: | 100 |
Omega (total): | 0.95 |
Omega (hierarchical): | 0.81 |
Revelle’s Omega (total): | 0.96 |
Greatest Lower Bound (GLB): | 0.96 |
Coefficient H: | 0.95 |
Coefficient Alpha: | 0.95 |
3.0.9.2.1.1 Confidence intervals
Omega (total): | [0.94; 0.96] |
Coefficient Alpha: | [0.94; 0.96] |
Ordinal Omega (total): | 0.96 |
Ordinal Omega (hierarch.): | 0.96 |
Ordinal Coefficient Alpha: | 0.96 |
3.0.9.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.95; 0.97] |
Ordinal Coefficient Alpha: | [0.95; 0.97] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
4.79, 0.309, 0.252, 0.241, 0.216 & 0.192
PC1 | |
---|---|
abs1_tru_exp_1 | 0.868 |
abs1_tru_exp_2 | 0.898 |
abs1_tru_exp_3 | 0.898 |
abs1_tru_exp_4 | 0.895 |
abs1_tru_exp_5 | 0.901 |
abs1_tru_exp_6 | 0.899 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_exp_1 | 2.9494 | 3 | 2.2592 | 1.503 | 2 | 0.0938 | 1 | 2 | 4 | 7 | 0.6224 | -0.0685 | 0.1148 | 257 | 0 | 257 |
abs1_tru_exp_2 | 2.8405 | 3 | 2.0018 | 1.4148 | 2 | 0.0883 | 1 | 2 | 4 | 7 | 0.4438 | -0.3687 | 0.1206 | 257 | 0 | 257 |
abs1_tru_exp_3 | 2.9416 | 3 | 2.0864 | 1.4444 | 2 | 0.0901 | 1 | 2 | 4 | 7 | 0.5102 | -0.1333 | 0.1226 | 257 | 0 | 257 |
abs1_tru_exp_4 | 2.965 | 3 | 2.3464 | 1.5318 | 2 | 0.0956 | 1 | 2 | 4 | 7 | 0.4996 | -0.4378 | 0.1031 | 257 | 0 | 257 |
abs1_tru_exp_5 | 3.1051 | 3 | 2.0631 | 1.4364 | 2 | 0.0896 | 1 | 2 | 4 | 7 | 0.3643 | -0.299 | 0.1148 | 257 | 0 | 257 |
abs1_tru_exp_6 | 3.0584 | 3 | 2.063 | 1.4363 | 2 | 0.0896 | 1 | 2 | 4 | 7 | 0.4072 | -0.248 | 0.1187 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_exp_1 | competent - incompetent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.949416 | 1.503047 | 7 | ▆▇▇▆▁▂▂▁ |
abs1_tru_exp_2 | intelligent - unintelligent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.840467 | 1.414848 | 7 | ▇▇▆▇▁▂▁▁ |
abs1_tru_exp_3 | well educated - poorly educated | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.941634 | 1.444446 | 7 | ▆▇▆▇▁▂▁▁ |
abs1_tru_exp_4 | professional - unprofessional | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.964980 | 1.531805 | 7 | ▇▇▆▇▁▃▂▁ |
abs1_tru_exp_5 | experienced - inexperienced | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.105058 | 1.436363 | 7 | ▅▆▇▇▁▂▂▁ |
abs1_tru_exp_6 | qualified - unqualified | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.058366 | 1.436310 | 7 | ▅▇▆▇▁▂▁▁ |
Reliability: ωordinal [95% CI] = 0.9 [0.88;0.92].
Missing: 0.
Likert plot of scale abs1_tru_int items
Distribution of scale abs1_tru_int
Dataframe: | res$dat |
Items: | abs1_tru_int_1, abs1_tru_int_2, abs1_tru_int_3 & abs1_tru_int_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.88 |
Omega (hierarchical): | 0.08 |
Revelle’s Omega (total): | 0.16 |
Greatest Lower Bound (GLB): | 0.89 |
Coefficient H: | 0.88 |
Coefficient Alpha: | 0.88 |
3.0.10.2.1.1 Confidence intervals
Omega (total): | [0.86; 0.9] |
Coefficient Alpha: | [0.86; 0.9] |
Ordinal Omega (total): | 0.90 |
Ordinal Omega (hierarch.): | 0.89 |
Ordinal Coefficient Alpha: | 0.90 |
3.0.10.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.88; 0.92] |
Ordinal Coefficient Alpha: | [0.88; 0.92] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.941, 0.399, 0.357 & 0.303
PC1 | |
---|---|
abs1_tru_int_1 | 0.855 |
abs1_tru_int_2 | 0.865 |
abs1_tru_int_3 | 0.870 |
abs1_tru_int_4 | 0.839 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_int_1 | 3.1401 | 3 | 2.0975 | 1.4483 | 2 | 0.0903 | 1 | 2 | 4 | 7 | 0.3443 | -0.3142 | 0.1089 | 257 | 0 | 257 |
abs1_tru_int_2 | 3.1479 | 3 | 1.939 | 1.3925 | 2 | 0.0869 | 1 | 2 | 4 | 7 | 0.3455 | -0.2949 | 0.1167 | 257 | 0 | 257 |
abs1_tru_int_3 | 3.3696 | 3 | 1.7574 | 1.3257 | 2 | 0.0827 | 1 | 2 | 4 | 7 | 0.279 | 0.2265 | 0.1167 | 257 | 0 | 257 |
abs1_tru_int_4 | 3.2296 | 3 | 1.9276 | 1.3884 | 2 | 0.0866 | 1 | 2 | 4 | 7 | 0.359 | -0.0067 | 0.1206 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_int_1 | sincere - insincere | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.140078 | 1.448271 | 7 | ▅▆▆▇▁▃▁▁ |
abs1_tru_int_2 | honest - dishonest | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.147860 | 1.392476 | 7 | ▃▇▇▇▁▂▂▁ |
abs1_tru_int_3 | just - unjust | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.369650 | 1.325653 | 7 | ▂▅▅▇▁▂▁▁ |
abs1_tru_int_4 | fair - unfair | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.229572 | 1.388366 | 7 | ▃▆▆▇▁▂▁▁ |
Reliability: ωordinal [95% CI] = 0.9 [0.88;0.92].
Missing: 0.
Likert plot of scale abs1_tru_ben items
Distribution of scale abs1_tru_ben
Dataframe: | res$dat |
Items: | abs1_tru_ben_1, abs1_tru_ben_2, abs1_tru_ben_3 & abs1_tru_ben_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.88 |
Omega (hierarchical): | 0.84 |
Revelle’s Omega (total): | 0.91 |
Greatest Lower Bound (GLB): | 0.91 |
Coefficient H: | 0.89 |
Coefficient Alpha: | 0.88 |
3.0.11.2.1.1 Confidence intervals
Omega (total): | [0.86; 0.91] |
Coefficient Alpha: | [0.86; 0.91] |
Ordinal Omega (total): | 0.9 |
Ordinal Omega (hierarch.): | 0.9 |
Ordinal Coefficient Alpha: | 0.9 |
3.0.11.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.88; 0.92] |
Ordinal Coefficient Alpha: | [0.88; 0.92] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.954, 0.461, 0.329 & 0.256
PC1 | |
---|---|
abs1_tru_ben_1 | 0.886 |
abs1_tru_ben_2 | 0.845 |
abs1_tru_ben_3 | 0.849 |
abs1_tru_ben_4 | 0.857 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_ben_1 | 3.2918 | 3 | 1.8481 | 1.3594 | 2 | 0.0848 | 1 | 2 | 4 | 7 | 0.2294 | -0.1594 | 0.1089 | 257 | 0 | 257 |
abs1_tru_ben_2 | 3.1946 | 3 | 1.9698 | 1.4035 | 2 | 0.0875 | 1 | 2 | 4 | 7 | 0.3585 | -0.0435 | 0.1128 | 257 | 0 | 257 |
abs1_tru_ben_3 | 3.1556 | 3 | 1.9757 | 1.4056 | 2 | 0.0877 | 1 | 2 | 4 | 7 | 0.401 | -0.2589 | 0.1245 | 257 | 0 | 257 |
abs1_tru_ben_4 | 3.1829 | 3 | 1.775 | 1.3323 | 2 | 0.0831 | 1 | 2 | 4 | 7 | 0.3798 | 0.0571 | 0.1187 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tru_ben_1 | moral - immoral | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.291829 | 1.359447 | 7 | ▂▅▅▇▁▂▁▁ |
abs1_tru_ben_2 | ethical - unethical | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.194552 | 1.403501 | 7 | ▃▆▆▇▁▂▁▁ |
abs1_tru_ben_3 | responsible - irresponsible | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.155642 | 1.405589 | 7 | ▃▇▇▇▁▂▂▁ |
abs1_tru_ben_4 | considerate - inconsiderate | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.182879 | 1.332298 | 7 | ▃▅▇▆▁▂▁▁ |
Reliability: ωtotal [95% CI] = 0.84 [0.8;0.87].
Missing: 0.
Likert plot of scale abs1_tch items
Distribution of scale abs1_tch
Dataframe: | res$dat |
Items: | abs1_tch_1, abs1_tch_2, abs1_tch_3, abs1_tch_4 & abs1_tch_5 |
Observations: | 257 |
Positive correlations: | 10 |
Number of correlations: | 10 |
Percentage positive correlations: | 100 |
Omega (total): | 0.84 |
Omega (hierarchical): | 0.72 |
Revelle’s Omega (total): | 0.88 |
Greatest Lower Bound (GLB): | 0.88 |
Coefficient H: | 0.84 |
Coefficient Alpha: | 0.83 |
3.0.12.2.1.1 Confidence intervals
Omega (total): | [0.8; 0.87] |
Coefficient Alpha: | [0; 0.19] |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.98, 0.836, 0.464, 0.377 & 0.343
PC1 | |
---|---|
abs1_tch_1 | 0.768 |
abs1_tch_2 | 0.789 |
abs1_tch_3 | 0.787 |
abs1_tch_4 | 0.715 |
abs1_tch_5 | 0.798 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tch_1 | -161.0623 | 3 | 137698.8399 | 371.0779 | 2 | 23.1472 | -999 | 1 | 4 | 4 | -1.8312 | 1.364 | 0.0856 | 257 | 0 | 257 |
abs1_tch_2 | -199.9144 | 3 | 162604.227 | 403.2421 | 2 | 25.1536 | -999 | 1 | 4 | 4 | -1.4906 | 0.2235 | 0.1187 | 257 | 0 | 257 |
abs1_tch_3 | -281.8599 | 2 | 204836.8553 | 452.5891 | 1002 | 28.2317 | -999 | -999 | 3 | 4 | -0.9634 | -1.0804 | 0.142 | 257 | 0 | 257 |
abs1_tch_4 | -133.7704 | 3 | 118488.0213 | 344.2209 | 2 | 21.4719 | -999 | 1 | 4 | 4 | -2.1339 | 2.5735 | 0.0992 | 257 | 0 | 257 |
abs1_tch_5 | -258.4125 | 2 | 194164.2042 | 440.6407 | 1002 | 27.4864 | -999 | -999 | 3 | 4 | -1.0966 | -0.8039 | 0.1304 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs1_tch_1 | It is transparent which data form the basis of the study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 29 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -161.0623 | 371.0779 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs1_tch_2 | Interested parties can have a close look at the questionnaire of the described study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 29 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -199.9144 | 403.2421 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs1_tch_3 | The data collected in the study are publicly available. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 29 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -281.8599 | 452.5891 | 6 | ▃▁▁▁▁▁▁▇ | ||||
abs1_tch_4 | The authors make it easy for other researchers to understand their statistical analyses. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 29 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -133.7704 | 344.2209 | 6 | ▁▁▁▁▁▁▁▇ | ||||
abs1_tch_5 | If other researchers want to repeat the study, they have easy access to the questionnaires used. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 29 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -258.4125 | 440.6407 | 6 | ▃▁▁▁▁▁▁▇ |
Reliability: ωordinal [95% CI] = 0.66 [0.6;0.73].
Missing: 0.
Likert plot of scale abs2_tsm items
Distribution of scale abs2_tsm
Dataframe: | res$dat |
Items: | abs2_tsm_1, abs2_tsm_2, abs2_tsm_3 & abs2_tsm_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.60 |
Omega (hierarchical): | 0.54 |
Revelle’s Omega (total): | 0.68 |
Greatest Lower Bound (GLB): | 0.67 |
Coefficient H: | 0.69 |
Coefficient Alpha: | 0.60 |
3.0.13.2.1.1 Confidence intervals
Omega (total): | [0.53; 0.68] |
Coefficient Alpha: | [0.51; 0.68] |
Ordinal Omega (total): | 0.66 |
Ordinal Omega (hierarch.): | 0.64 |
Ordinal Coefficient Alpha: | 0.65 |
3.0.13.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.6; 0.73] |
Ordinal Coefficient Alpha: | [0.58; 0.72] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.843, 0.981, 0.682 & 0.495
PC1 | |
---|---|
abs2_tsm_1 | 0.675 |
abs2_tsm_2 | 0.749 |
abs2_tsm_3 | 0.476 |
abs2_tsm_4 | 0.775 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsm_1 | 2.4591 | 2 | 0.5774 | 0.7599 | 1 | 0.0474 | 1 | 1 | 3 | 4 | -0.13 | -0.3704 | 0.2004 | 257 | 0 | 257 |
abs2_tsm_2 | 2.6887 | 3 | 0.6293 | 0.7933 | 1 | 0.0495 | 1 | 2 | 4 | 4 | 0.0962 | -0.6411 | 0.1946 | 257 | 0 | 257 |
abs2_tsm_3 | 2.4825 | 2 | 0.6882 | 0.8296 | 1 | 0.0517 | 1 | 1 | 3 | 4 | 0.0974 | -0.5299 | 0.1809 | 257 | 0 | 257 |
abs2_tsm_4 | 2.7821 | 3 | 0.6086 | 0.7801 | 1 | 0.0487 | 1 | 2 | 4 | 4 | -0.0456 | -0.5927 | 0.1654 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsm_1 | The insights from the text are arbitrary. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 39 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2 | 4 | 2.459144 | 0.7598854 | 5 | ▂▁▇▁▁▇▁▁ | ||||
abs2_tsm_2 | The knowledge contained in the text cannot be generalized to other situations at all. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 39 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.688716 | 0.7932756 | 5 | ▁▁▇▁▁▇▁▃ | ||||
abs2_tsm_3 | The opposite of the knowledge formulated in the text would be equally right/wrong. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 39 | left500 hide_label mc_width70 | 0 | 1 | 1 | 2 | 4 | 2.482490 | 0.8295594 | 5 | ▂▁▇▁▁▇▁▂ | ||||
abs2_tsm_4 | The knowledge formulated in the text cannot claim validity for other situations. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 39 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.782101 | 0.7801183 | 5 | ▁▁▆▁▁▇▁▃ |
Reliability: ωordinal [95% CI] = 0.78 [0.45;1].
Missing: 0.
Likert plot of scale abs2_tsc items
Distribution of scale abs2_tsc
Dataframe: | res$dat |
Items: | abs2_tsc_1, abs2_tsc_2R & abs2_tsc_3 |
Observations: | 257 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.72 |
Omega (hierarchical): | 0.17 |
Revelle’s Omega (total): | 0.64 |
Greatest Lower Bound (GLB): | 0.67 |
Coefficient H: | 1.00 |
Coefficient Alpha: | 0.52 |
3.0.14.2.1.1 Confidence intervals
Omega (total): | [0.3; 1] |
Coefficient Alpha: | [0.42; 0.62] |
Ordinal Omega (total): | 0.78 |
Ordinal Omega (hierarch.): | 0.78 |
Ordinal Coefficient Alpha: | 0.57 |
3.0.14.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.45; 1] |
Ordinal Coefficient Alpha: | [0.48; 0.67] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.598, 0.962 & 0.44
PC1 | |
---|---|
abs2_tsc_1 | 0.876 |
abs2_tsc_2R | 0.356 |
abs2_tsc_3 | 0.840 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsc_1 | 2.642 | 3 | 0.5823 | 0.7631 | 1 | 0.0476 | 1 | 2 | 4 | 4 | -0.1429 | -0.2984 | 0.1732 | 257 | 0 | 257 |
abs2_tsc_2R | 2.7393 | 3 | 0.5841 | 0.7643 | 1 | 0.0477 | 1 | 2 | 4 | 4 | -0.2601 | -0.1982 | 0.1459 | 257 | 0 | 257 |
abs2_tsc_3 | 2.6887 | 3 | 0.6371 | 0.7982 | 1 | 0.0498 | 1 | 2 | 4 | 4 | -0.2163 | -0.356 | 0.1556 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tsc_1 | The statements of the just-read text are consistent with my personal opinion on the subject. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 40 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.642023 | 0.7630791 | 5 | ▁▁▆▁▁▇▁▂ | ||||
abs2_tsc_2R | The statements of the text excerpt I just read contradict what I myself think about the topic. | mc | haven_labelled | 4. fully <br />disagree, 3. , 2. , 1. fully <br />agree, NA. Item was never rendered for this user. |
0 | 40 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.739300 | 0.7642732 | 5 | ▁▁▅▁▁▇▁▂ | ||||
abs2_tsc_3 | I agree with the statements I just read in the text excerpt. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 40 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.688716 | 0.7981846 | 5 | ▁▁▅▁▁▇▁▂ |
Reliability: ωordinal [95% CI] = 0.96 [0.95;0.97].
Missing: 0.
Likert plot of scale abs2_tru_exp items
Distribution of scale abs2_tru_exp
Dataframe: | res$dat |
Items: | abs2_tru_exp_1, abs2_tru_exp_2, abs2_tru_exp_3, abs2_tru_exp_4, abs2_tru_exp_5 & abs2_tru_exp_6 |
Observations: | 257 |
Positive correlations: | 15 |
Number of correlations: | 15 |
Percentage positive correlations: | 100 |
Omega (total): | 0.95 |
Omega (hierarchical): | 0.92 |
Revelle’s Omega (total): | 0.96 |
Greatest Lower Bound (GLB): | 0.96 |
Coefficient H: | 0.95 |
Coefficient Alpha: | 0.95 |
3.0.15.2.1.1 Confidence intervals
Omega (total): | [0.94; 0.96] |
Coefficient Alpha: | [0.94; 0.96] |
Ordinal Omega (total): | 0.96 |
Ordinal Omega (hierarch.): | 0.96 |
Ordinal Coefficient Alpha: | 0.96 |
3.0.15.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.95; 0.97] |
Ordinal Coefficient Alpha: | [0.95; 0.97] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
4.814, 0.335, 0.278, 0.245, 0.186 & 0.141
PC1 | |
---|---|
abs2_tru_exp_1 | 0.880 |
abs2_tru_exp_2 | 0.902 |
abs2_tru_exp_3 | 0.904 |
abs2_tru_exp_4 | 0.914 |
abs2_tru_exp_5 | 0.899 |
abs2_tru_exp_6 | 0.875 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_exp_1 | 2.8949 | 3 | 1.7897 | 1.3378 | 2 | 0.0834 | 1 | 2 | 4 | 7 | 0.4106 | -0.3593 | 0.1304 | 257 | 0 | 257 |
abs2_tru_exp_2 | 2.8366 | 3 | 1.9888 | 1.4103 | 2 | 0.088 | 1 | 2 | 4 | 7 | 0.4614 | -0.4624 | 0.1187 | 257 | 0 | 257 |
abs2_tru_exp_3 | 2.7432 | 3 | 1.9494 | 1.3962 | 2 | 0.0871 | 1 | 2 | 4 | 7 | 0.5624 | -0.1977 | 0.1128 | 257 | 0 | 257 |
abs2_tru_exp_4 | 2.7315 | 3 | 1.9237 | 1.387 | 2 | 0.0865 | 1 | 2 | 4 | 7 | 0.5351 | -0.2842 | 0.1128 | 257 | 0 | 257 |
abs2_tru_exp_5 | 2.821 | 3 | 1.71 | 1.3077 | 2 | 0.0816 | 1 | 2 | 4 | 7 | 0.3988 | -0.2843 | 0.1284 | 257 | 0 | 257 |
abs2_tru_exp_6 | 2.9183 | 3 | 2.1925 | 1.4807 | 2 | 0.0924 | 1 | 2 | 4 | 7 | 0.4544 | -0.6173 | 0.1051 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_exp_1 | competent - incompetent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.894942 | 1.337797 | 7 | ▅▇▆▇▁▂▁▁ |
abs2_tru_exp_2 | intelligent - unintelligent | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.836576 | 1.410253 | 7 | ▆▇▆▇▁▂▂▁ |
abs2_tru_exp_3 | well educated - poorly educated | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.743191 | 1.396215 | 7 | ▇▇▇▆▁▂▁▁ |
abs2_tru_exp_4 | professional - unprofessional | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.731517 | 1.386986 | 7 | ▇▇▆▆▁▂▁▁ |
abs2_tru_exp_5 | experienced - inexperienced | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.821012 | 1.307679 | 7 | ▆▇▇▇▁▁▁▁ |
abs2_tru_exp_6 | qualified - unqualified | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.918288 | 1.480715 | 7 | ▆▇▆▆▁▂▂▁ |
Reliability: ωordinal [95% CI] = 0.92 [0.9;0.94].
Missing: 0.
Likert plot of scale abs2_tru_int items
Distribution of scale abs2_tru_int
Dataframe: | res$dat |
Items: | abs2_tru_int_1, abs2_tru_int_2, abs2_tru_int_3 & abs2_tru_int_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.90 |
Omega (hierarchical): | 0.17 |
Revelle’s Omega (total): | 0.25 |
Greatest Lower Bound (GLB): | 0.91 |
Coefficient H: | 0.90 |
Coefficient Alpha: | 0.90 |
3.0.16.2.1.1 Confidence intervals
Omega (total): | [0.88; 0.92] |
Coefficient Alpha: | [0.88; 0.92] |
Ordinal Omega (total): | 0.92 |
Ordinal Omega (hierarch.): | 0.92 |
Ordinal Coefficient Alpha: | 0.92 |
3.0.16.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.9; 0.94] |
Ordinal Coefficient Alpha: | [0.9; 0.94] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.084, 0.372, 0.276 & 0.269
PC1 | |
---|---|
abs2_tru_int_1 | 0.888 |
abs2_tru_int_2 | 0.871 |
abs2_tru_int_3 | 0.868 |
abs2_tru_int_4 | 0.885 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_int_1 | 2.9883 | 3 | 1.9569 | 1.3989 | 2 | 0.0873 | 1 | 2 | 4 | 7 | 0.4092 | -0.3059 | 0.1245 | 257 | 0 | 257 |
abs2_tru_int_2 | 2.8794 | 3 | 1.8877 | 1.3739 | 2 | 0.0857 | 1 | 2 | 4 | 7 | 0.2282 | -0.7448 | 0.1167 | 257 | 0 | 257 |
abs2_tru_int_3 | 3.179 | 3 | 1.7725 | 1.3314 | 2 | 0.083 | 1 | 2 | 4 | 7 | 0.2183 | -0.0663 | 0.1128 | 257 | 0 | 257 |
abs2_tru_int_4 | 3 | 3 | 1.6484 | 1.2839 | 2 | 0.0801 | 1 | 2 | 4 | 7 | 0.1786 | -0.4366 | 0.1284 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_int_1 | sincere - insincere | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.988327 | 1.398890 | 7 | ▅▇▇▇▁▂▁▁ |
abs2_tru_int_2 | honest - dishonest | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 2.879377 | 1.373949 | 7 | ▆▆▅▇▁▂▁▁ |
abs2_tru_int_3 | just - unjust | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.178988 | 1.331362 | 7 | ▃▅▅▇▁▂▁▁ |
abs2_tru_int_4 | fair - unfair | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.000000 | 1.283915 | 7 | ▅▆▇▇▁▂▁▁ |
Reliability: ωtotal [95% CI] = 0.91 [not computed].
Missing: 0.
Likert plot of scale abs2_tru_ben items
Distribution of scale abs2_tru_ben
Dataframe: | res$dat |
Items: | abs2_tru_ben_1, abs2_tru_ben_2, abs2_tru_ben_3 & abs2_tru_ben_4 |
Observations: | 257 |
Positive correlations: | 6 |
Number of correlations: | 6 |
Percentage positive correlations: | 100 |
Omega (total): | 0.91 |
Omega (hierarchical): | 0.01 |
Revelle’s Omega (total): | 0.92 |
Greatest Lower Bound (GLB): | 0.92 |
Coefficient H: | 0.92 |
Coefficient Alpha: | 0.91 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.175, 0.335, 0.279 & 0.212
PC1 | |
---|---|
abs2_tru_ben_1 | 0.919 |
abs2_tru_ben_2 | 0.868 |
abs2_tru_ben_3 | 0.893 |
abs2_tru_ben_4 | 0.883 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_ben_1 | 3.1089 | 3 | 1.8318 | 1.3535 | 2 | 0.0844 | 1 | 2 | 4 | 7 | 0.2007 | -0.2904 | 0.1089 | 257 | 0 | 257 |
abs2_tru_ben_2 | 3.0623 | 3 | 1.8633 | 1.365 | 2 | 0.0851 | 1 | 2 | 4 | 7 | 0.184 | -0.4586 | 0.1148 | 257 | 0 | 257 |
abs2_tru_ben_3 | 3.07 | 3 | 2.0654 | 1.4371 | 2 | 0.0896 | 1 | 2 | 4 | 7 | 0.3141 | -0.4669 | 0.1109 | 257 | 0 | 257 |
abs2_tru_ben_4 | 3.1128 | 3 | 1.7021 | 1.3046 | 2 | 0.0814 | 1 | 2 | 4 | 6 | 0.0871 | -0.6178 | 0.1323 | 257 | 0 | 257 |
Scatterplot
name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tru_ben_1 | moral - immoral | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.108949 | 1.353452 | 7 | ▃▅▅▇▁▂▁▁ |
abs2_tru_ben_2 | ethical - unethical | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.062257 | 1.365026 | 7 | ▅▆▆▇▁▂▁▁ |
abs2_tru_ben_3 | responsible - irresponsible | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 7 | 3.070039 | 1.437146 | 7 | ▅▆▅▇▁▂▂▁ |
abs2_tru_ben_4 | considerate - inconsiderate | haven_labelled | 1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6, 7. 7 |
0 | 1 | 1 | 3 | 6 | 3.112840 | 1.304631 | 7 | ▃▆▁▇▇▁▃▁ |
Reliability: ωtotal [95% CI] = 0.94 [0.92;0.95].
Missing: 0.
Likert plot of scale abs2_tch items
Distribution of scale abs2_tch
Dataframe: | res$dat |
Items: | abs2_tch_1, abs2_tch_2, abs2_tch_3, abs2_tch_4 & abs2_tch_5 |
Observations: | 257 |
Positive correlations: | 10 |
Number of correlations: | 10 |
Percentage positive correlations: | 100 |
Omega (total): | 0.94 |
Omega (hierarchical): | 0.88 |
Revelle’s Omega (total): | 0.96 |
Greatest Lower Bound (GLB): | 0.96 |
Coefficient H: | 0.94 |
Coefficient Alpha: | 0.94 |
3.0.18.2.1.1 Confidence intervals
Omega (total): | [0.92; 0.95] |
Coefficient Alpha: | [0; 0.19] |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.984, 0.366, 0.32, 0.213 & 0.117
PC1 | |
---|---|
abs2_tch_1 | 0.868 |
abs2_tch_2 | 0.911 |
abs2_tch_3 | 0.863 |
abs2_tch_4 | 0.897 |
abs2_tch_5 | 0.923 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tch_1 | -192.1245 | 3 | 157873.1329 | 397.3325 | 2 | 24.7849 | -999 | 1 | 4 | 4 | -1.5523 | 0.4128 | 0.1148 | 257 | 0 | 257 |
abs2_tch_2 | -196.0389 | 2 | 160246.2329 | 400.3077 | 3 | 24.9705 | -999 | -999 | 4 | 4 | -1.5211 | 0.3161 | 0.1109 | 257 | 0 | 257 |
abs2_tch_3 | -246.7938 | 2 | 188361.4846 | 434.0063 | 2 | 27.0726 | -999 | -999 | 4 | 4 | -1.1675 | -0.6419 | 0.1245 | 257 | 0 | 257 |
abs2_tch_4 | -184.3268 | 3 | 153023.2365 | 391.1818 | 2 | 24.4013 | -999 | 1 | 4 | 4 | -1.6169 | 0.619 | 0.1187 | 257 | 0 | 257 |
abs2_tch_5 | -223.3307 | 2 | 176044.98 | 419.5771 | 2 | 26.1725 | -999 | -999 | 4 | 4 | -1.3201 | -0.2593 | 0.1206 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
abs2_tch_1 | It is transparent which data form the basis of the study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 50 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -192.1245 | 397.3325 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_2 | Interested parties can have a close look at the questionnaire of the described study. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 50 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -196.0389 | 400.3077 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_3 | The data collected in the study are publicly available. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 50 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -246.7938 | 434.0063 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_4 | The authors make it easy for other researchers to understand their statistical analyses. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 50 | left500 hide_label mc_width70 | 0 | 1 | -999 | 3 | 4 | -184.3268 | 391.1818 | 6 | ▂▁▁▁▁▁▁▇ | ||||
abs2_tch_5 | If other researchers want to repeat the study, they have easy access to the questionnaires used. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, -999. (don’t know), NA. Item was never rendered for this user. |
0 | 50 | left500 hide_label mc_width70 | 0 | 1 | -999 | 2 | 4 | -223.3307 | 419.5771 | 6 | ▂▁▁▁▁▁▁▇ |
Reliability: ωordinal [95% CI] = 0.74 [0.69;0.8].
Missing: 0.
Likert plot of scale tsm items
Distribution of scale tsm
Dataframe: | res$dat |
Items: | tsm_1, tsm_2 & tsm_3 |
Observations: | 257 |
Positive correlations: | 3 |
Number of correlations: | 3 |
Percentage positive correlations: | 100 |
Omega (total): | 0.66 |
Omega (hierarchical): | 0.05 |
Revelle’s Omega (total): | 0.68 |
Greatest Lower Bound (GLB): | 0.70 |
Coefficient H: | 0.71 |
Coefficient Alpha: | 0.65 |
3.0.19.2.1.1 Confidence intervals
Omega (total): | [0.59; 0.73] |
Coefficient Alpha: | [0.58; 0.73] |
Ordinal Omega (total): | 0.74 |
Ordinal Omega (hierarch.): | 0.74 |
Ordinal Coefficient Alpha: | 0.73 |
3.0.19.2.1.1 Confidence intervals
Ordinal Omega (total): | [0.69; 0.8] |
Ordinal Coefficient Alpha: | [0.67; 0.79] |
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.788, 0.721 & 0.491
PC1 | |
---|---|
tsm_1 | 0.825 |
tsm_2 | 0.795 |
tsm_3 | 0.689 |
mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | 3.2023 | 3 | 0.662 | 0.8136 | 1 | 0.0508 | 1 | 2 | 4 | 4 | -0.7821 | -0.0013 | 0.2023 | 257 | 0 | 257 |
tsm_2 | 3.2335 | 3 | 0.6875 | 0.8291 | 1 | 0.0517 | 1 | 2 | 4 | 4 | -0.9154 | 0.2428 | 0.1946 | 257 | 0 | 257 |
tsm_3 | 2.7237 | 3 | 0.8413 | 0.9173 | 1 | 0.0572 | 1 | 2 | 4 | 4 | -0.3115 | -0.6889 | 0.1284 | 257 | 0 | 257 |
Scatterplot
name | label | type | type_options | data_type | value_labels | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tsm_1 | The explanations (grey text boxes) were helpful for understanding the badges (“Open Materials”, “Open Data”, “Open Code”). | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 57 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 3.202335 | 0.8136497 | 5 | ▁▁▃▁▁▇▁▇ | ||||
tsm_2 | I read all additional explanations (grey text boxes) on the front pages. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 57 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 3.233463 | 0.8291379 | 5 | ▁▁▂▁▁▇▁▇ | ||||
tsm_3 | The badges (“Open Materials”, “Open Data”, “Open Code”) influenced my assessment of the authors. | mc | haven_labelled | 1. fully <br />disagree, 2. , 3. , 4. fully <br />agree, NA. Item was never rendered for this user. |
0 | 57 | left500 hide_label mc_width70 | 0 | 1 | 1 | 3 | 4 | 2.723735 | 0.9172505 | 5 | ▂▁▅▁▁▇▁▃ |
Sex
Distribution of values for sex
0 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sex | Sex | mc_button | haven_labelled | 0 | 11 | 0 | 1 | 2 | 0 | 1 | NA | 1 | 0 | 2 |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
mc_button | sex | Sex | 0 | 11 |
name | value |
---|---|
1 | f |
2 | m |
Age
Distribution of values for age
0 missing values.
name | label | type | type_options | data_type | optional | showif | value | item_order | block_order | class | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
age | Age | mc_button | haven_labelled | 0 | 12 | 0 | 1 | 16 | 35 | 50 | 35.53697 | 14.30471 | 3 | ▆▁▁▁▅▁▁▇ |
type | type_options | name | label | optional | class | showif | value | block_order | item_order |
---|---|---|---|---|---|---|---|---|---|
mc_button | age | Age | 0 | 12 |
name | value |
---|---|
16-34 | 16 |
35-49 | 35 |
50 and above | 50 |
Which is the highest qualifiaction you have?
Distribution of values for education
0 missing values.
name | label | data_type | n_missing | complete_rate | n_unique | empty | min | median | max | whitespace | n_value_labels |
---|---|---|---|---|---|---|---|---|---|---|---|
education | Which is the highest qualifiaction you have? | haven_labelled | 0 | 1 | 3 | 0 | 3 | NA | 3 | 0 | 3 |
name | value |
---|---|
1 | L12 |
2 | L34 |
3 | app |
JSON-LD metadata
The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.
{
"name": "Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample.",
"description": "Code book to manuscript\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
"identifier": "",
"datePublished": "2021-07-12",
"creator": {
"@type": "Person",
"givenName": "Schneider",
"familyName": "Jürgen",
"email": "juergen.schneider@uni-tuebingen.de",
"affiliation": {
"@type": "Organization",
"name": "University of Tübingen"
}
},
"citation": "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample",
"keywords": ["treat1", "treat2", "first_topic", "abs1_tsm_1", "abs1_tsm_2", "abs1_tsm_3", "abs1_tsm_4", "abs1_tsc_1", "abs1_tsc_2R", "abs1_tsc_3", "abs1_tru_exp_1", "abs1_tru_exp_2", "abs1_tru_exp_3", "abs1_tru_exp_4", "abs1_tru_exp_5", "abs1_tru_exp_6", "abs1_tru_int_1", "abs1_tru_int_2", "abs1_tru_int_3", "abs1_tru_int_4", "abs1_tru_ben_1", "abs1_tru_ben_2", "abs1_tru_ben_3", "abs1_tru_ben_4", "abs1_tch_1", "abs1_tch_2", "abs1_tch_3", "abs1_tch_4", "abs1_tch_5", "abs2_tsm_1", "abs2_tsm_2", "abs2_tsm_3", "abs2_tsm_4", "abs2_tsc_1", "abs2_tsc_2R", "abs2_tsc_3", "abs2_tru_exp_1", "abs2_tru_exp_2", "abs2_tru_exp_3", "abs2_tru_exp_4", "abs2_tru_exp_5", "abs2_tru_exp_6", "abs2_tru_int_1", "abs2_tru_int_2", "abs2_tru_int_3", "abs2_tru_int_4", "abs2_tru_ben_1", "abs2_tru_ben_2", "abs2_tru_ben_3", "abs2_tru_ben_4", "abs2_tch_1", "abs2_tch_2", "abs2_tch_3", "abs2_tch_4", "abs2_tch_5", "tsm_1", "tsm_2", "tsm_3", "country", "country_oth", "abs1_tsm", "abs1_tsc", "abs1_tru_exp", "abs1_tru_int", "abs1_tru_ben", "abs1_tch", "abs2_tsm", "abs2_tsc", "abs2_tru_exp", "abs2_tru_int", "abs2_tru_ben", "abs2_tch", "tsm", "sex", "age", "education"],
"@context": "http://schema.org/",
"@type": "Dataset",
"variableMeasured": [
{
"name": "treat1",
"description": "First treatment condition, the participant was assigned to.",
"value": "gb. Greyed out badges (no adherence to Open Science standards),\ncc. Control Condition (no badges),\ncb. Colored out badges (adherence to Open Science standards)",
"maxValue": "gb",
"minValue": "cb",
"@type": "propertyValue"
},
{
"name": "treat2",
"description": "Second treatment condition, the participant was assigned to.",
"value": "gb. Greyed out badges (no adherence to Open Science standards),\ncc. Control Condition (no badges),\ncb. Colored out badges (adherence to Open Science standards)",
"maxValue": "gb",
"minValue": "cb",
"@type": "propertyValue"
},
{
"name": "first_topic",
"description": "Topic the participant received first.",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_1",
"description": "The insights from the text are arbitrary.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_2",
"description": "The knowledge contained in the text cannot be generalized to other situations at all.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_3",
"description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm_4",
"description": "The knowledge formulated in the text cannot claim validity for other situations.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_1",
"description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_2R",
"description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
"value": "4. __fully <br />disagree__,\n3. ,\n2. ,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsc_3",
"description": "I agree with the statements I just read in the text excerpt.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_1",
"description": "competent - incompetent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_2",
"description": "intelligent - unintelligent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_3",
"description": "well educated -\tpoorly educated",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_4",
"description": "professional - unprofessional",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_5",
"description": "experienced - inexperienced",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp_6",
"description": "qualified - unqualified",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_1",
"description": "sincere - insincere",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_2",
"description": "honest - dishonest",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_3",
"description": "just - unjust",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_int_4",
"description": "fair - unfair",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_1",
"description": "moral - immoral",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_2",
"description": "ethical - unethical",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_3",
"description": "responsible - irresponsible",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben_4",
"description": "considerate - inconsiderate",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs1_tch_1",
"description": "It is transparent which data form the basis of the study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_2",
"description": "Interested parties can have a close look at the questionnaire of the described study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_3",
"description": "The data collected in the study are publicly available.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_4",
"description": "The authors make it easy for other researchers to understand their statistical analyses.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tch_5",
"description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_1",
"description": "The insights from the text are arbitrary.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_2",
"description": "The knowledge contained in the text cannot be generalized to other situations at all.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_3",
"description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsm_4",
"description": "The knowledge formulated in the text cannot claim validity for other situations.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_1",
"description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_2R",
"description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
"value": "4. __fully <br />disagree__,\n3. ,\n2. ,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tsc_3",
"description": "I agree with the statements I just read in the text excerpt.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_1",
"description": "competent - incompetent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_2",
"description": "intelligent - unintelligent",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_3",
"description": "well educated -\tpoorly educated",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_4",
"description": "professional - unprofessional",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_5",
"description": "experienced - inexperienced",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp_6",
"description": "qualified - unqualified",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_1",
"description": "sincere - insincere",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_2",
"description": "honest - dishonest",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_3",
"description": "just - unjust",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_int_4",
"description": "fair - unfair",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_1",
"description": "moral - immoral",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_2",
"description": "ethical - unethical",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_3",
"description": "responsible - irresponsible",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben_4",
"description": "considerate - inconsiderate",
"value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
"maxValue": 7,
"minValue": 1,
"@type": "propertyValue"
},
{
"name": "abs2_tch_1",
"description": "It is transparent which data form the basis of the study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_2",
"description": "Interested parties can have a close look at the questionnaire of the described study.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_3",
"description": "The data collected in the study are publicly available.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_4",
"description": "The authors make it easy for other researchers to understand their statistical analyses.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs2_tch_5",
"description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": -999,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_1",
"description": "The explanations (grey text boxes) were helpful for understanding the badges (\"Open Materials\", \"Open Data\", \"Open Code\").",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_2",
"description": "I read all additional explanations (grey text boxes) on the front pages.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "tsm_3",
"description": "The badges (\"Open Materials\", \"Open Data\", \"Open Code\") influenced my assessment of the authors.",
"value": "1. __fully <br />disagree__,\n2. ,\n3. ,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
"maxValue": 4,
"minValue": 1,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "country",
"description": "Country of residence",
"value": "1. United Kingdom,\n2. Republic of Ireland,\n3. USA,\n4. Canada,\n-999. other",
"maxValue": "4",
"minValue": "-999",
"@type": "propertyValue"
},
{
"name": "country_oth",
"description": "please specify other country",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "abs1_tsm",
"description": "aggregate of 4 abs1_tsm items",
"@type": "propertyValue"
},
{
"name": "abs1_tsc",
"description": "aggregate of 3 abs1_tsc items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_exp",
"description": "aggregate of 6 abs1_tru_exp items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_int",
"description": "aggregate of 4 abs1_tru_int items",
"@type": "propertyValue"
},
{
"name": "abs1_tru_ben",
"description": "aggregate of 4 abs1_tru_ben items",
"@type": "propertyValue"
},
{
"name": "abs1_tch",
"description": "aggregate of 5 abs1_tch items",
"@type": "propertyValue"
},
{
"name": "abs2_tsm",
"description": "aggregate of 4 abs2_tsm items",
"@type": "propertyValue"
},
{
"name": "abs2_tsc",
"description": "aggregate of 3 abs2_tsc items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_exp",
"description": "aggregate of 6 abs2_tru_exp items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_int",
"description": "aggregate of 4 abs2_tru_int items",
"@type": "propertyValue"
},
{
"name": "abs2_tru_ben",
"description": "aggregate of 4 abs2_tru_ben items",
"@type": "propertyValue"
},
{
"name": "abs2_tch",
"description": "aggregate of 5 abs2_tch items",
"@type": "propertyValue"
},
{
"name": "tsm",
"description": "aggregate of 3 tsm items",
"@type": "propertyValue"
},
{
"name": "sex",
"description": "Sex",
"value": "f. female,\nm. male",
"maxValue": "m",
"minValue": "f",
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "age",
"description": "Age",
"value": "16. 16-34,\n35. 35-49,\n50. 50 and above",
"maxValue": 50,
"minValue": 16,
"measurementTechnique": "self-report",
"@type": "propertyValue"
},
{
"name": "education",
"description": "Which is the highest qualifiaction you have?",
"value": "L12. 1 - 4 O levels / CSEs / GCSEs (any grades), ...,\nL34. 2+ A levels / VCEs, 4+ AS levels, Higher School Certificate, ...,\napp. Apprenticeship / Other vocational / work-related qualifications...",
"maxValue": "L34",
"minValue": "app",
"@type": "propertyValue"
}
]
}`