1 Description

This is the codebook of “Study 3” from the manuscript http://dx.doi.org/10.23668/psycharchives.3364 .
Data is embeded in this file. To download the data as CSV click here.

Structure of the codebook:

  • Participants consecuatively received two abstracts (stimulus)
  • They answered the scales in response to one abstract (stimulus) at a time
  • The codebook reports each item and scale for the abstracts separately
  • “abs1_” or “abs2_” in the scale name indicates if the item/scale refers to the first or second abstract

2 Metadata

load(here("9_data+codebooks/rbt_study3_public.RData"))


# define several variables as character so they get plotted better
# rbt_public$position <- as.character(rbt_public$position)
rbt_public$country <- as.character(rbt_public$country)

rbt_public <- rbt_public %>%
  rename_at(vars(abs1_tsc_2, abs2_tsc_2),  add_R)

rbt_public <- rbt_public %>% 
    mutate_at(vars(matches("\\dR$")), reverse_labelled_values)

rbt_public <- rbt_public %>%
  dplyr::select(treat1:education)


rbt_public <- detect_scales(rbt_public, quiet = FALSE)
metadata(rbt_public)$name <- "Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample."
metadata(rbt_public)$description <- "Code book to manuscript"
metadata(rbt_public)$identifier <- ""
metadata(rbt_public)$datePublished <- "2021-07-12"
metadata(rbt_public)$creator <- list(
      "@type" = "Person",
      givenName = "Schneider", familyName = "Jürgen",
      email = "juergen.schneider@uni-tuebingen.de", 
      affiliation = list("@type" = "Organization",
        name = "University of Tübingen"))
metadata(rbt_public)$citation <- "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample"
# add variable labels
var_label(rbt_public) <- list(
        treat1 = "First treatment condition, the participant was assigned to.",
        treat2 = "Second treatment condition, the participant was assigned to.",
        first_topic = "Topic the participant received first.",
        education = "Which is the highest qualifiaction you have?",
        abs1_tru_exp_1 = "competent - incompetent",
        abs1_tru_exp_2 = "intelligent - unintelligent",
        abs1_tru_exp_3 = "well educated -   poorly educated",
        abs1_tru_exp_4 = "professional - unprofessional",
        abs1_tru_exp_5 = "experienced - inexperienced",
        abs1_tru_exp_6 = "qualified - unqualified",
        abs1_tru_int_1 = "sincere - insincere",
        abs1_tru_int_2 = "honest - dishonest",
        abs1_tru_int_3 = "just - unjust",
        abs1_tru_int_4 = "fair - unfair",
        abs1_tru_ben_1 = "moral - immoral",
        abs1_tru_ben_2 = "ethical - unethical",
        abs1_tru_ben_3 = "responsible - irresponsible",
        abs1_tru_ben_4 = "considerate - inconsiderate",
        abs2_tru_exp_1 = "competent - incompetent",
        abs2_tru_exp_2 = "intelligent - unintelligent",
        abs2_tru_exp_3 = "well educated -   poorly educated",
        abs2_tru_exp_4 = "professional - unprofessional",
        abs2_tru_exp_5 = "experienced - inexperienced",
        abs2_tru_exp_6 = "qualified - unqualified",
        abs2_tru_int_1 = "sincere - insincere",
        abs2_tru_int_2 = "honest - dishonest",
        abs2_tru_int_3 = "just - unjust",
        abs2_tru_int_4 = "fair - unfair",
        abs2_tru_ben_1 = "moral - immoral",
        abs2_tru_ben_2 = "ethical - unethical",
        abs2_tru_ben_3 = "responsible - irresponsible",
        abs2_tru_ben_4 = "considerate - inconsiderate",
        country = "Country of residence",
        country_oth = "please specify other country"
)


# add value labels ##################################
val_labels(rbt_public$treat1) <- c("Greyed out badges (no adherence to Open Science standards)" = "gb",
                                "Control Condition (no badges)" = "cc",
                                "Colored out badges (adherence to Open Science standards)" = "cb")

val_labels(rbt_public$treat2) <- c("Greyed out badges (no adherence to Open Science standards)" = "gb",
                                "Control Condition (no badges)" = "cc",
                                "Colored out badges (adherence to Open Science standards)" = "cb")


# semantic differentials
add_semantic_diff <- function(x) {
  val_labels(x) <- c("1" = 1,
                     "2" = 2,
                     "3" = 3,
                     "4" = 4,
                     "5" = 5,
                     "6" = 6,
                     "7" = 7)
  x
}

rbt_public <- rbt_public %>%
  mutate_at(vars(abs1_tru_exp_1:abs1_tru_ben_4, abs2_tru_exp_1:abs2_tru_ben_4),  add_semantic_diff)

# education
val_labels(rbt_public$education) <- c("1 - 4 O levels / CSEs / GCSEs (any grades), ..." = "L12", # ...Entry Level, Foundation Diploma / NVQ Level 1, Foundation GNVQ, Basic Skills / 5+ O levels (passes) / CSEs (grade 1) / GCSEs (grades A*- C), School Certificate, 1 A level / 2 - 3 AS levels / VCEs, Higher Diploma / NVQ Level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First / General Diploma, RSA Diploma, Baccalaureate Intermediate Diploma
                                      "2+ A levels / VCEs, 4+ AS levels, Higher School Certificate, ..." = "L34", # Progression / Advanced Diploma, Baccalaureate Advanced Diploma / NVQ Level 3, Advanced GNVQ, City and Guilds Advanced Craft, ONC, OND, BTEC National, RSA Advanced Diploma / Degree (for example BA, BSc), Higher degree (for example MA, PhD, PGCE) / NVQ Level 4 - 5, HNC, HND, RSA Higher Diploma, BTEC Higher Level, Foundation degree (NI) / Professional qualifications (for example teaching, nursing, accountancy)
                                      "Apprenticeship / Other vocational / work-related qualifications..." = "app") #  / Foreign qualifications / No academic or professional qualifications





# country
val_labels(rbt_public$country) <- c("United Kingdom" = "1",
                                 "Republic of Ireland" = "2",
                                 "USA" = "3",
                                 "Canada" = "4",
                                 "other" = "-999")

3 Codebook

3.0.1 Metadata

3.0.1.1 Description

Dataset name: Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample.

Code book to manuscript

Metadata for search engines

  • Citation: Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample

  • Identifier:

  • Date published: 2021-07-12

  • Creator:

name value
@type Person
givenName Schneider
familyName Jürgen
email
affiliation Organization , University of Tübingen
x
treat1
treat2
first_topic
abs1_tsm_1
abs1_tsm_2
abs1_tsm_3
abs1_tsm_4
abs1_tsc_1
abs1_tsc_2R
abs1_tsc_3
abs1_tru_exp_1
abs1_tru_exp_2
abs1_tru_exp_3
abs1_tru_exp_4
abs1_tru_exp_5
abs1_tru_exp_6
abs1_tru_int_1
abs1_tru_int_2
abs1_tru_int_3
abs1_tru_int_4
abs1_tru_ben_1
abs1_tru_ben_2
abs1_tru_ben_3
abs1_tru_ben_4
abs1_tch_1
abs1_tch_2
abs1_tch_3
abs1_tch_4
abs1_tch_5
abs2_tsm_1
abs2_tsm_2
abs2_tsm_3
abs2_tsm_4
abs2_tsc_1
abs2_tsc_2R
abs2_tsc_3
abs2_tru_exp_1
abs2_tru_exp_2
abs2_tru_exp_3
abs2_tru_exp_4
abs2_tru_exp_5
abs2_tru_exp_6
abs2_tru_int_1
abs2_tru_int_2
abs2_tru_int_3
abs2_tru_int_4
abs2_tru_ben_1
abs2_tru_ben_2
abs2_tru_ben_3
abs2_tru_ben_4
abs2_tch_1
abs2_tch_2
abs2_tch_3
abs2_tch_4
abs2_tch_5
tsm_1
tsm_2
tsm_3
country
country_oth
abs1_tsm
abs1_tsc
abs1_tru_exp
abs1_tru_int
abs1_tru_ben
abs1_tch
abs2_tsm
abs2_tsc
abs2_tru_exp
abs2_tru_int
abs2_tru_ben
abs2_tch
tsm
sex
age
education

#Variables

3.0.2 treat1

First treatment condition, the participant was assigned to.

3.0.2.1 Distribution

Distribution of values for treat1

Distribution of values for treat1

0 missing values.

3.0.2.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
treat1 First treatment condition, the participant was assigned to. haven_labelled 0 1 3 0 2 NA 2 0 3

3.0.2.3 Value labels

Response choices
name value
1 gb
2 cc
3 cb

3.0.3 treat2

Second treatment condition, the participant was assigned to.

3.0.3.1 Distribution

Distribution of values for treat2

Distribution of values for treat2

0 missing values.

3.0.3.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
treat2 Second treatment condition, the participant was assigned to. haven_labelled 0 1 3 0 2 NA 2 0 3

3.0.3.3 Value labels

Response choices
name value
1 gb
2 cc
3 cb

3.0.4 first_topic

Topic the participant received first.

3.0.4.1 Distribution

Distribution of values for first_topic

Distribution of values for first_topic

0 missing values.

3.0.4.2 Summary statistics

name label type data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min max whitespace
first_topic Topic the participant received first. calculate character 0 sample(c(“moral”, “robot”), 1, replace = F) 4 0 1 2 0 5 5 0

3.0.4.3 Item

Item options
type name label optional class showif value block_order item_order
calculate first_topic 0 sample(c(“moral”, “robot”), 1, replace = F) 4

3.0.4.4 Value labels

Response choices
name value

3.0.5 country

Country of residence

3.0.5.1 Distribution

Distribution of values for country

Distribution of values for country

0 missing values.

3.0.5.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
country Country of residence haven_labelled 0 1 5 0 1 NA 4 0 5

3.0.5.3 Value labels

Response choices
name value
1 1
2 2
3 3
4 4
5 -999

3.0.6 country_oth

please specify other country

3.0.6.1 Distribution

Distribution of values for country_oth

Distribution of values for country_oth

256 missing values.

3.0.6.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min max whitespace
country_oth please specify other country text 100 character 1 country == -999 69 256 0.0038911 1 0 2 2 0

3.0.6.3 Item

Item options
type type_options name label optional class showif value block_order item_order
text 100 country_oth please specify other country 1 country == -999 69

3.0.6.4 Value labels

Response choices
name value

3.0.7 Scale: abs1_tsm

3.0.7.1 Overview

Reliability: ωordinal [95% CI] = 0.75 [0.7;0.8].

Missing: 0.

Likert plot of scale abs1_tsm items

Likert plot of scale abs1_tsm items

Distribution of scale abs1_tsm

Distribution of scale abs1_tsm

3.0.7.2 Reliability details


3.0.7.2.1 Scale diagnosis
3.0.7.2.1.1 Reliability (internal consistency) estimates
3.0.7.2.1.1 Scale structure
3.0.7.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tsm_1, abs1_tsm_2, abs1_tsm_3 & abs1_tsm_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.7.2.1.1 Estimates assuming interval level
Omega (total): 0.70
Omega (hierarchical): 0.63
Revelle’s Omega (total): 0.72
Greatest Lower Bound (GLB): 0.72
Coefficient H: 0.75
Coefficient Alpha: 0.68

3.0.7.2.1.1 Confidence intervals

Omega (total): [0.64; 0.76]
Coefficient Alpha: [0.62; 0.75]
3.0.7.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.75
Ordinal Omega (hierarch.): 0.74
Ordinal Coefficient Alpha: 0.74

3.0.7.2.1.1 Confidence intervals

Ordinal Omega (total): [0.7; 0.8]
Ordinal Coefficient Alpha: [0.68; 0.79]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.7.2.1.2 Eigen values

2.065, 0.749, 0.731 & 0.455

3.0.7.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tsm_1 0.477
abs1_tsm_2 0.680
abs1_tsm_3 0.443
abs1_tsm_4 0.778
3.0.7.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tsm_1 0.652
abs1_tsm_2 0.770
abs1_tsm_3 0.628
abs1_tsm_4 0.808
3.0.7.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tsm_1 2.572 3 0.6598 0.8123 1 0.0507 1 2 4 4 -0.1245 -0.4575 0.177 257 0 257
abs1_tsm_2 2.7588 3 0.6994 0.8363 1 0.0522 1 2 4 4 -0.0055 -0.7969 0.179 257 0 257
abs1_tsm_3 2.6381 3 0.6771 0.8229 1 0.0513 1 2 4 4 -0.0469 -0.5517 0.1809 257 0 257
abs1_tsm_4 2.8521 3 0.7281 0.8533 1 0.0532 1 2 4 4 -0.358 -0.4854 0.1245 257 0 257
3.0.7.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.7.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tsm_1 The insights from the text are arbitrary. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 23 left500 hide_label mc_width70 0 1 1 3 4 2.571984 0.8123036 5 ▂▁▆▁▁▇▁▂
abs1_tsm_2 The knowledge contained in the text cannot be generalized to other situations at all. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 23 left500 hide_label mc_width70 0 1 1 3 4 2.758755 0.8362930 5 ▁▁▇▁▁▇▁▅
abs1_tsm_3 The opposite of the knowledge formulated in the text would be equally right/wrong. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 23 left500 hide_label mc_width70 0 1 1 3 4 2.638132 0.8228815 5 ▂▁▇▁▁▇▁▃
abs1_tsm_4 The knowledge formulated in the text cannot claim validity for other situations. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 23 left500 hide_label mc_width70 0 1 1 3 4 2.852140 0.8532597 5 ▁▁▅▁▁▇▁▅

3.0.8 Scale: abs1_tsc

3.0.8.1 Overview

Reliability: ωordinal [95% CI] = 0.72 [0.66;0.77].

Missing: 0.

Likert plot of scale abs1_tsc items

Likert plot of scale abs1_tsc items

Distribution of scale abs1_tsc

Distribution of scale abs1_tsc

3.0.8.2 Reliability details


3.0.8.2.1 Scale diagnosis
3.0.8.2.1.1 Reliability (internal consistency) estimates
3.0.8.2.1.1 Scale structure
3.0.8.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tsc_1, abs1_tsc_2R & abs1_tsc_3
Observations: 257
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.8.2.1.1 Estimates assuming interval level
Omega (total): 0.65
Omega (hierarchical): 0.05
Revelle’s Omega (total): 0.67
Greatest Lower Bound (GLB): 0.70
Coefficient H: 0.80
Coefficient Alpha: 0.61

3.0.8.2.1.1 Confidence intervals

Omega (total): [0.58; 0.72]
Coefficient Alpha: [0.53; 0.69]
3.0.8.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.72
Ordinal Omega (hierarch.): 0.71
Ordinal Coefficient Alpha: 0.67

3.0.8.2.1.1 Confidence intervals

Ordinal Omega (total): [0.66; 0.77]
Ordinal Coefficient Alpha: [0.6; 0.74]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.8.2.1.2 Eigen values

1.728, 0.865 & 0.408

3.0.8.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tsc_1 0.679
abs1_tsc_2R 0.290
abs1_tsc_3 0.868
3.0.8.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tsc_1 0.841
abs1_tsc_2R 0.526
abs1_tsc_3 0.863
3.0.8.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tsc_1 2.6615 3 0.6779 0.8234 1 0.0514 1 2 4 4 -0.1889 -0.4596 0.1595 257 0 257
abs1_tsc_2R 2.6693 3 0.7222 0.8498 1 0.053 1 2 4 4 -0.1171 -0.6095 0.1673 257 0 257
abs1_tsc_3 2.6537 3 0.6335 0.7959 1 0.0496 1 2 4 4 -0.1861 -0.3693 0.1634 257 0 257
3.0.8.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.8.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tsc_1 The statements of the just-read text are consistent with my personal opinion on the subject. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 24 left500 hide_label mc_width70 0 1 1 3 4 2.661479 0.8233616 5 ▂▁▆▁▁▇▁▂
abs1_tsc_2R The statements of the text excerpt I just read contradict what I myself think about the topic. mc haven_labelled 4. fully <br />disagree,
3. &nbsp;,
2. &nbsp;&nbsp;,
1. fully <br />agree,
NA. Item was never rendered for this user.
0 24 left500 hide_label mc_width70 0 1 1 3 4 2.669261 0.8498326 5 ▂▁▆▁▁▇▁▃
abs1_tsc_3 I agree with the statements I just read in the text excerpt. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 24 left500 hide_label mc_width70 0 1 1 3 4 2.653697 0.7959345 5 ▁▁▆▁▁▇▁▂

3.0.9 Scale: abs1_tru_exp

3.0.9.1 Overview

Reliability: ωordinal [95% CI] = 0.96 [0.95;0.97].

Missing: 0.

Likert plot of scale abs1_tru_exp items

Likert plot of scale abs1_tru_exp items

Distribution of scale abs1_tru_exp

Distribution of scale abs1_tru_exp

3.0.9.2 Reliability details


3.0.9.2.1 Scale diagnosis
3.0.9.2.1.1 Reliability (internal consistency) estimates
3.0.9.2.1.1 Scale structure
3.0.9.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_exp_1, abs1_tru_exp_2, abs1_tru_exp_3, abs1_tru_exp_4, abs1_tru_exp_5 & abs1_tru_exp_6
Observations: 257
Positive correlations: 15
Number of correlations: 15
Percentage positive correlations: 100
3.0.9.2.1.1 Estimates assuming interval level
Omega (total): 0.95
Omega (hierarchical): 0.81
Revelle’s Omega (total): 0.96
Greatest Lower Bound (GLB): 0.96
Coefficient H: 0.95
Coefficient Alpha: 0.95

3.0.9.2.1.1 Confidence intervals

Omega (total): [0.94; 0.96]
Coefficient Alpha: [0.94; 0.96]
3.0.9.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.96
Ordinal Omega (hierarch.): 0.96
Ordinal Coefficient Alpha: 0.96

3.0.9.2.1.1 Confidence intervals

Ordinal Omega (total): [0.95; 0.97]
Ordinal Coefficient Alpha: [0.95; 0.97]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.9.2.1.2 Eigen values

4.79, 0.309, 0.252, 0.241, 0.216 & 0.192

3.0.9.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_exp_1 0.834
abs1_tru_exp_2 0.880
abs1_tru_exp_3 0.878
abs1_tru_exp_4 0.872
abs1_tru_exp_5 0.881
abs1_tru_exp_6 0.879
3.0.9.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_exp_1 0.868
abs1_tru_exp_2 0.898
abs1_tru_exp_3 0.898
abs1_tru_exp_4 0.895
abs1_tru_exp_5 0.901
abs1_tru_exp_6 0.899
3.0.9.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_exp_1 2.9494 3 2.2592 1.503 2 0.0938 1 2 4 7 0.6224 -0.0685 0.1148 257 0 257
abs1_tru_exp_2 2.8405 3 2.0018 1.4148 2 0.0883 1 2 4 7 0.4438 -0.3687 0.1206 257 0 257
abs1_tru_exp_3 2.9416 3 2.0864 1.4444 2 0.0901 1 2 4 7 0.5102 -0.1333 0.1226 257 0 257
abs1_tru_exp_4 2.965 3 2.3464 1.5318 2 0.0956 1 2 4 7 0.4996 -0.4378 0.1031 257 0 257
abs1_tru_exp_5 3.1051 3 2.0631 1.4364 2 0.0896 1 2 4 7 0.3643 -0.299 0.1148 257 0 257
abs1_tru_exp_6 3.0584 3 2.063 1.4363 2 0.0896 1 2 4 7 0.4072 -0.248 0.1187 257 0 257
3.0.9.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.9.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_exp_1 competent - incompetent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.949416 1.503047 7 ▆▇▇▆▁▂▂▁
abs1_tru_exp_2 intelligent - unintelligent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.840467 1.414848 7 ▇▇▆▇▁▂▁▁
abs1_tru_exp_3 well educated - poorly educated haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.941634 1.444446 7 ▆▇▆▇▁▂▁▁
abs1_tru_exp_4 professional - unprofessional haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.964980 1.531805 7 ▇▇▆▇▁▃▂▁
abs1_tru_exp_5 experienced - inexperienced haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.105058 1.436363 7 ▅▆▇▇▁▂▂▁
abs1_tru_exp_6 qualified - unqualified haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.058366 1.436310 7 ▅▇▆▇▁▂▁▁

3.0.10 Scale: abs1_tru_int

3.0.10.1 Overview

Reliability: ωordinal [95% CI] = 0.9 [0.88;0.92].

Missing: 0.

Likert plot of scale abs1_tru_int items

Likert plot of scale abs1_tru_int items

Distribution of scale abs1_tru_int

Distribution of scale abs1_tru_int

3.0.10.2 Reliability details


3.0.10.2.1 Scale diagnosis
3.0.10.2.1.1 Reliability (internal consistency) estimates
3.0.10.2.1.1 Scale structure
3.0.10.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_int_1, abs1_tru_int_2, abs1_tru_int_3 & abs1_tru_int_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.10.2.1.1 Estimates assuming interval level
Omega (total): 0.88
Omega (hierarchical): 0.08
Revelle’s Omega (total): 0.16
Greatest Lower Bound (GLB): 0.89
Coefficient H: 0.88
Coefficient Alpha: 0.88

3.0.10.2.1.1 Confidence intervals

Omega (total): [0.86; 0.9]
Coefficient Alpha: [0.86; 0.9]
3.0.10.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.90
Ordinal Omega (hierarch.): 0.89
Ordinal Coefficient Alpha: 0.90

3.0.10.2.1.1 Confidence intervals

Ordinal Omega (total): [0.88; 0.92]
Ordinal Coefficient Alpha: [0.88; 0.92]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.10.2.1.2 Eigen values

2.941, 0.399, 0.357 & 0.303

3.0.10.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_int_1 0.796
abs1_tru_int_2 0.822
abs1_tru_int_3 0.831
abs1_tru_int_4 0.769
3.0.10.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_int_1 0.855
abs1_tru_int_2 0.865
abs1_tru_int_3 0.870
abs1_tru_int_4 0.839
3.0.10.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_int_1 3.1401 3 2.0975 1.4483 2 0.0903 1 2 4 7 0.3443 -0.3142 0.1089 257 0 257
abs1_tru_int_2 3.1479 3 1.939 1.3925 2 0.0869 1 2 4 7 0.3455 -0.2949 0.1167 257 0 257
abs1_tru_int_3 3.3696 3 1.7574 1.3257 2 0.0827 1 2 4 7 0.279 0.2265 0.1167 257 0 257
abs1_tru_int_4 3.2296 3 1.9276 1.3884 2 0.0866 1 2 4 7 0.359 -0.0067 0.1206 257 0 257
3.0.10.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.10.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_int_1 sincere - insincere haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.140078 1.448271 7 ▅▆▆▇▁▃▁▁
abs1_tru_int_2 honest - dishonest haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.147860 1.392476 7 ▃▇▇▇▁▂▂▁
abs1_tru_int_3 just - unjust haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.369650 1.325653 7 ▂▅▅▇▁▂▁▁
abs1_tru_int_4 fair - unfair haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.229572 1.388366 7 ▃▆▆▇▁▂▁▁

3.0.11 Scale: abs1_tru_ben

3.0.11.1 Overview

Reliability: ωordinal [95% CI] = 0.9 [0.88;0.92].

Missing: 0.

Likert plot of scale abs1_tru_ben items

Likert plot of scale abs1_tru_ben items

Distribution of scale abs1_tru_ben

Distribution of scale abs1_tru_ben

3.0.11.2 Reliability details


3.0.11.2.1 Scale diagnosis
3.0.11.2.1.1 Reliability (internal consistency) estimates
3.0.11.2.1.1 Scale structure
3.0.11.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tru_ben_1, abs1_tru_ben_2, abs1_tru_ben_3 & abs1_tru_ben_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.11.2.1.1 Estimates assuming interval level
Omega (total): 0.88
Omega (hierarchical): 0.84
Revelle’s Omega (total): 0.91
Greatest Lower Bound (GLB): 0.91
Coefficient H: 0.89
Coefficient Alpha: 0.88

3.0.11.2.1.1 Confidence intervals

Omega (total): [0.86; 0.91]
Coefficient Alpha: [0.86; 0.91]
3.0.11.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.9
Ordinal Omega (hierarch.): 0.9
Ordinal Coefficient Alpha: 0.9

3.0.11.2.1.1 Confidence intervals

Ordinal Omega (total): [0.88; 0.92]
Ordinal Coefficient Alpha: [0.88; 0.92]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.11.2.1.2 Eigen values

2.954, 0.461, 0.329 & 0.256

3.0.11.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tru_ben_1 0.860
abs1_tru_ben_2 0.793
abs1_tru_ben_3 0.784
abs1_tru_ben_4 0.791
3.0.11.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tru_ben_1 0.886
abs1_tru_ben_2 0.845
abs1_tru_ben_3 0.849
abs1_tru_ben_4 0.857
3.0.11.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tru_ben_1 3.2918 3 1.8481 1.3594 2 0.0848 1 2 4 7 0.2294 -0.1594 0.1089 257 0 257
abs1_tru_ben_2 3.1946 3 1.9698 1.4035 2 0.0875 1 2 4 7 0.3585 -0.0435 0.1128 257 0 257
abs1_tru_ben_3 3.1556 3 1.9757 1.4056 2 0.0877 1 2 4 7 0.401 -0.2589 0.1245 257 0 257
abs1_tru_ben_4 3.1829 3 1.775 1.3323 2 0.0831 1 2 4 7 0.3798 0.0571 0.1187 257 0 257
3.0.11.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.11.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tru_ben_1 moral - immoral haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.291829 1.359447 7 ▂▅▅▇▁▂▁▁
abs1_tru_ben_2 ethical - unethical haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.194552 1.403501 7 ▃▆▆▇▁▂▁▁
abs1_tru_ben_3 responsible - irresponsible haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.155642 1.405589 7 ▃▇▇▇▁▂▂▁
abs1_tru_ben_4 considerate - inconsiderate haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.182879 1.332298 7 ▃▅▇▆▁▂▁▁

3.0.12 Scale: abs1_tch

3.0.12.1 Overview

Reliability: ωtotal [95% CI] = 0.84 [0.8;0.87].

Missing: 0.

Likert plot of scale abs1_tch items

Likert plot of scale abs1_tch items

Distribution of scale abs1_tch

Distribution of scale abs1_tch

3.0.12.2 Reliability details


3.0.12.2.1 Scale diagnosis
3.0.12.2.1.1 Reliability (internal consistency) estimates
3.0.12.2.1.1 Scale structure
3.0.12.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs1_tch_1, abs1_tch_2, abs1_tch_3, abs1_tch_4 & abs1_tch_5
Observations: 257
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
3.0.12.2.1.1 Estimates assuming interval level
Omega (total): 0.84
Omega (hierarchical): 0.72
Revelle’s Omega (total): 0.88
Greatest Lower Bound (GLB): 0.88
Coefficient H: 0.84
Coefficient Alpha: 0.83

3.0.12.2.1.1 Confidence intervals

Omega (total): [0.8; 0.87]
Coefficient Alpha: [0; 0.19]

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.12.2.1.2 Eigen values

2.98, 0.836, 0.464, 0.377 & 0.343

3.0.12.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs1_tch_1 0.655
abs1_tch_2 0.741
abs1_tch_3 0.747
abs1_tch_4 0.591
abs1_tch_5 0.770
3.0.12.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs1_tch_1 0.768
abs1_tch_2 0.789
abs1_tch_3 0.787
abs1_tch_4 0.715
abs1_tch_5 0.798
3.0.12.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs1_tch_1 -161.0623 3 137698.8399 371.0779 2 23.1472 -999 1 4 4 -1.8312 1.364 0.0856 257 0 257
abs1_tch_2 -199.9144 3 162604.227 403.2421 2 25.1536 -999 1 4 4 -1.4906 0.2235 0.1187 257 0 257
abs1_tch_3 -281.8599 2 204836.8553 452.5891 1002 28.2317 -999 -999 3 4 -0.9634 -1.0804 0.142 257 0 257
abs1_tch_4 -133.7704 3 118488.0213 344.2209 2 21.4719 -999 1 4 4 -2.1339 2.5735 0.0992 257 0 257
abs1_tch_5 -258.4125 2 194164.2042 440.6407 1002 27.4864 -999 -999 3 4 -1.0966 -0.8039 0.1304 257 0 257
3.0.12.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.12.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs1_tch_1 It is transparent which data form the basis of the study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 29 left500 hide_label mc_width70 0 1 -999 3 4 -161.0623 371.0779 6 ▂▁▁▁▁▁▁▇
abs1_tch_2 Interested parties can have a close look at the questionnaire of the described study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 29 left500 hide_label mc_width70 0 1 -999 3 4 -199.9144 403.2421 6 ▂▁▁▁▁▁▁▇
abs1_tch_3 The data collected in the study are publicly available. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 29 left500 hide_label mc_width70 0 1 -999 2 4 -281.8599 452.5891 6 ▃▁▁▁▁▁▁▇
abs1_tch_4 The authors make it easy for other researchers to understand their statistical analyses. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 29 left500 hide_label mc_width70 0 1 -999 3 4 -133.7704 344.2209 6 ▁▁▁▁▁▁▁▇
abs1_tch_5 If other researchers want to repeat the study, they have easy access to the questionnaires used. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 29 left500 hide_label mc_width70 0 1 -999 2 4 -258.4125 440.6407 6 ▃▁▁▁▁▁▁▇

3.0.13 Scale: abs2_tsm

3.0.13.1 Overview

Reliability: ωordinal [95% CI] = 0.66 [0.6;0.73].

Missing: 0.

Likert plot of scale abs2_tsm items

Likert plot of scale abs2_tsm items

Distribution of scale abs2_tsm

Distribution of scale abs2_tsm

3.0.13.2 Reliability details


3.0.13.2.1 Scale diagnosis
3.0.13.2.1.1 Reliability (internal consistency) estimates
3.0.13.2.1.1 Scale structure
3.0.13.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tsm_1, abs2_tsm_2, abs2_tsm_3 & abs2_tsm_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.13.2.1.1 Estimates assuming interval level
Omega (total): 0.60
Omega (hierarchical): 0.54
Revelle’s Omega (total): 0.68
Greatest Lower Bound (GLB): 0.67
Coefficient H: 0.69
Coefficient Alpha: 0.60

3.0.13.2.1.1 Confidence intervals

Omega (total): [0.53; 0.68]
Coefficient Alpha: [0.51; 0.68]
3.0.13.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.66
Ordinal Omega (hierarch.): 0.64
Ordinal Coefficient Alpha: 0.65

3.0.13.2.1.1 Confidence intervals

Ordinal Omega (total): [0.6; 0.73]
Ordinal Coefficient Alpha: [0.58; 0.72]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.13.2.1.2 Eigen values

1.843, 0.981, 0.682 & 0.495

3.0.13.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tsm_1 0.432
abs2_tsm_2 0.665
abs2_tsm_3 0.245
abs2_tsm_4 0.736
3.0.13.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tsm_1 0.675
abs2_tsm_2 0.749
abs2_tsm_3 0.476
abs2_tsm_4 0.775
3.0.13.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tsm_1 2.4591 2 0.5774 0.7599 1 0.0474 1 1 3 4 -0.13 -0.3704 0.2004 257 0 257
abs2_tsm_2 2.6887 3 0.6293 0.7933 1 0.0495 1 2 4 4 0.0962 -0.6411 0.1946 257 0 257
abs2_tsm_3 2.4825 2 0.6882 0.8296 1 0.0517 1 1 3 4 0.0974 -0.5299 0.1809 257 0 257
abs2_tsm_4 2.7821 3 0.6086 0.7801 1 0.0487 1 2 4 4 -0.0456 -0.5927 0.1654 257 0 257
3.0.13.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.13.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tsm_1 The insights from the text are arbitrary. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 39 left500 hide_label mc_width70 0 1 1 2 4 2.459144 0.7598854 5 ▂▁▇▁▁▇▁▁
abs2_tsm_2 The knowledge contained in the text cannot be generalized to other situations at all. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 39 left500 hide_label mc_width70 0 1 1 3 4 2.688716 0.7932756 5 ▁▁▇▁▁▇▁▃
abs2_tsm_3 The opposite of the knowledge formulated in the text would be equally right/wrong. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 39 left500 hide_label mc_width70 0 1 1 2 4 2.482490 0.8295594 5 ▂▁▇▁▁▇▁▂
abs2_tsm_4 The knowledge formulated in the text cannot claim validity for other situations. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 39 left500 hide_label mc_width70 0 1 1 3 4 2.782101 0.7801183 5 ▁▁▆▁▁▇▁▃

3.0.14 Scale: abs2_tsc

3.0.14.1 Overview

Reliability: ωordinal [95% CI] = 0.78 [0.45;1].

Missing: 0.

Likert plot of scale abs2_tsc items

Likert plot of scale abs2_tsc items

Distribution of scale abs2_tsc

Distribution of scale abs2_tsc

3.0.14.2 Reliability details


3.0.14.2.1 Scale diagnosis
3.0.14.2.1.1 Reliability (internal consistency) estimates
3.0.14.2.1.1 Scale structure
3.0.14.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tsc_1, abs2_tsc_2R & abs2_tsc_3
Observations: 257
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.14.2.1.1 Estimates assuming interval level
Omega (total): 0.72
Omega (hierarchical): 0.17
Revelle’s Omega (total): 0.64
Greatest Lower Bound (GLB): 0.67
Coefficient H: 1.00
Coefficient Alpha: 0.52

3.0.14.2.1.1 Confidence intervals

Omega (total): [0.3; 1]
Coefficient Alpha: [0.42; 0.62]
3.0.14.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.78
Ordinal Omega (hierarch.): 0.78
Ordinal Coefficient Alpha: 0.57

3.0.14.2.1.1 Confidence intervals

Ordinal Omega (total): [0.45; 1]
Ordinal Coefficient Alpha: [0.48; 0.67]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.14.2.1.2 Eigen values

1.598, 0.962 & 0.44

3.0.14.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tsc_1 0.997
abs2_tsc_2R 0.181
abs2_tsc_3 0.549
3.0.14.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tsc_1 0.876
abs2_tsc_2R 0.356
abs2_tsc_3 0.840
3.0.14.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tsc_1 2.642 3 0.5823 0.7631 1 0.0476 1 2 4 4 -0.1429 -0.2984 0.1732 257 0 257
abs2_tsc_2R 2.7393 3 0.5841 0.7643 1 0.0477 1 2 4 4 -0.2601 -0.1982 0.1459 257 0 257
abs2_tsc_3 2.6887 3 0.6371 0.7982 1 0.0498 1 2 4 4 -0.2163 -0.356 0.1556 257 0 257
3.0.14.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.14.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tsc_1 The statements of the just-read text are consistent with my personal opinion on the subject. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 40 left500 hide_label mc_width70 0 1 1 3 4 2.642023 0.7630791 5 ▁▁▆▁▁▇▁▂
abs2_tsc_2R The statements of the text excerpt I just read contradict what I myself think about the topic. mc haven_labelled 4. fully <br />disagree,
3. &nbsp;,
2. &nbsp;&nbsp;,
1. fully <br />agree,
NA. Item was never rendered for this user.
0 40 left500 hide_label mc_width70 0 1 1 3 4 2.739300 0.7642732 5 ▁▁▅▁▁▇▁▂
abs2_tsc_3 I agree with the statements I just read in the text excerpt. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 40 left500 hide_label mc_width70 0 1 1 3 4 2.688716 0.7981846 5 ▁▁▅▁▁▇▁▂

3.0.15 Scale: abs2_tru_exp

3.0.15.1 Overview

Reliability: ωordinal [95% CI] = 0.96 [0.95;0.97].

Missing: 0.

Likert plot of scale abs2_tru_exp items

Likert plot of scale abs2_tru_exp items

Distribution of scale abs2_tru_exp

Distribution of scale abs2_tru_exp

3.0.15.2 Reliability details


3.0.15.2.1 Scale diagnosis
3.0.15.2.1.1 Reliability (internal consistency) estimates
3.0.15.2.1.1 Scale structure
3.0.15.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_exp_1, abs2_tru_exp_2, abs2_tru_exp_3, abs2_tru_exp_4, abs2_tru_exp_5 & abs2_tru_exp_6
Observations: 257
Positive correlations: 15
Number of correlations: 15
Percentage positive correlations: 100
3.0.15.2.1.1 Estimates assuming interval level
Omega (total): 0.95
Omega (hierarchical): 0.92
Revelle’s Omega (total): 0.96
Greatest Lower Bound (GLB): 0.96
Coefficient H: 0.95
Coefficient Alpha: 0.95

3.0.15.2.1.1 Confidence intervals

Omega (total): [0.94; 0.96]
Coefficient Alpha: [0.94; 0.96]
3.0.15.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.96
Ordinal Omega (hierarch.): 0.96
Ordinal Coefficient Alpha: 0.96

3.0.15.2.1.1 Confidence intervals

Ordinal Omega (total): [0.95; 0.97]
Ordinal Coefficient Alpha: [0.95; 0.97]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.15.2.1.2 Eigen values

4.814, 0.335, 0.278, 0.245, 0.186 & 0.141

3.0.15.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_exp_1 0.851
abs2_tru_exp_2 0.878
abs2_tru_exp_3 0.889
abs2_tru_exp_4 0.903
abs2_tru_exp_5 0.878
abs2_tru_exp_6 0.841
3.0.15.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_exp_1 0.880
abs2_tru_exp_2 0.902
abs2_tru_exp_3 0.904
abs2_tru_exp_4 0.914
abs2_tru_exp_5 0.899
abs2_tru_exp_6 0.875
3.0.15.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_exp_1 2.8949 3 1.7897 1.3378 2 0.0834 1 2 4 7 0.4106 -0.3593 0.1304 257 0 257
abs2_tru_exp_2 2.8366 3 1.9888 1.4103 2 0.088 1 2 4 7 0.4614 -0.4624 0.1187 257 0 257
abs2_tru_exp_3 2.7432 3 1.9494 1.3962 2 0.0871 1 2 4 7 0.5624 -0.1977 0.1128 257 0 257
abs2_tru_exp_4 2.7315 3 1.9237 1.387 2 0.0865 1 2 4 7 0.5351 -0.2842 0.1128 257 0 257
abs2_tru_exp_5 2.821 3 1.71 1.3077 2 0.0816 1 2 4 7 0.3988 -0.2843 0.1284 257 0 257
abs2_tru_exp_6 2.9183 3 2.1925 1.4807 2 0.0924 1 2 4 7 0.4544 -0.6173 0.1051 257 0 257
3.0.15.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.15.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_exp_1 competent - incompetent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.894942 1.337797 7 ▅▇▆▇▁▂▁▁
abs2_tru_exp_2 intelligent - unintelligent haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.836576 1.410253 7 ▆▇▆▇▁▂▂▁
abs2_tru_exp_3 well educated - poorly educated haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.743191 1.396215 7 ▇▇▇▆▁▂▁▁
abs2_tru_exp_4 professional - unprofessional haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.731517 1.386986 7 ▇▇▆▆▁▂▁▁
abs2_tru_exp_5 experienced - inexperienced haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.821012 1.307679 7 ▆▇▇▇▁▁▁▁
abs2_tru_exp_6 qualified - unqualified haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.918288 1.480715 7 ▆▇▆▆▁▂▂▁

3.0.16 Scale: abs2_tru_int

3.0.16.1 Overview

Reliability: ωordinal [95% CI] = 0.92 [0.9;0.94].

Missing: 0.

Likert plot of scale abs2_tru_int items

Likert plot of scale abs2_tru_int items

Distribution of scale abs2_tru_int

Distribution of scale abs2_tru_int

3.0.16.2 Reliability details


3.0.16.2.1 Scale diagnosis
3.0.16.2.1.1 Reliability (internal consistency) estimates
3.0.16.2.1.1 Scale structure
3.0.16.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_int_1, abs2_tru_int_2, abs2_tru_int_3 & abs2_tru_int_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.16.2.1.1 Estimates assuming interval level
Omega (total): 0.90
Omega (hierarchical): 0.17
Revelle’s Omega (total): 0.25
Greatest Lower Bound (GLB): 0.91
Coefficient H: 0.90
Coefficient Alpha: 0.90

3.0.16.2.1.1 Confidence intervals

Omega (total): [0.88; 0.92]
Coefficient Alpha: [0.88; 0.92]
3.0.16.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.92
Ordinal Omega (hierarch.): 0.92
Ordinal Coefficient Alpha: 0.92

3.0.16.2.1.1 Confidence intervals

Ordinal Omega (total): [0.9; 0.94]
Ordinal Coefficient Alpha: [0.9; 0.94]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.16.2.1.2 Eigen values

3.084, 0.372, 0.276 & 0.269

3.0.16.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_int_1 0.851
abs2_tru_int_2 0.822
abs2_tru_int_3 0.817
abs2_tru_int_4 0.845
3.0.16.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_int_1 0.888
abs2_tru_int_2 0.871
abs2_tru_int_3 0.868
abs2_tru_int_4 0.885
3.0.16.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_int_1 2.9883 3 1.9569 1.3989 2 0.0873 1 2 4 7 0.4092 -0.3059 0.1245 257 0 257
abs2_tru_int_2 2.8794 3 1.8877 1.3739 2 0.0857 1 2 4 7 0.2282 -0.7448 0.1167 257 0 257
abs2_tru_int_3 3.179 3 1.7725 1.3314 2 0.083 1 2 4 7 0.2183 -0.0663 0.1128 257 0 257
abs2_tru_int_4 3 3 1.6484 1.2839 2 0.0801 1 2 4 7 0.1786 -0.4366 0.1284 257 0 257
3.0.16.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.16.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_int_1 sincere - insincere haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.988327 1.398890 7 ▅▇▇▇▁▂▁▁
abs2_tru_int_2 honest - dishonest haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 2.879377 1.373949 7 ▆▆▅▇▁▂▁▁
abs2_tru_int_3 just - unjust haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.178988 1.331362 7 ▃▅▅▇▁▂▁▁
abs2_tru_int_4 fair - unfair haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.000000 1.283915 7 ▅▆▇▇▁▂▁▁

3.0.17 Scale: abs2_tru_ben

3.0.17.1 Overview

Reliability: ωtotal [95% CI] = 0.91 [not computed].

Missing: 0.

Likert plot of scale abs2_tru_ben items

Likert plot of scale abs2_tru_ben items

Distribution of scale abs2_tru_ben

Distribution of scale abs2_tru_ben

3.0.17.2 Reliability details


3.0.17.2.1 Scale diagnosis
3.0.17.2.1.1 Reliability (internal consistency) estimates
3.0.17.2.1.1 Scale structure
3.0.17.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tru_ben_1, abs2_tru_ben_2, abs2_tru_ben_3 & abs2_tru_ben_4
Observations: 257
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
3.0.17.2.1.1 Estimates assuming interval level
Omega (total): 0.91
Omega (hierarchical): 0.01
Revelle’s Omega (total): 0.92
Greatest Lower Bound (GLB): 0.92
Coefficient H: 0.92
Coefficient Alpha: 0.91

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.17.2.1.2 Eigen values

3.175, 0.335, 0.279 & 0.212

3.0.17.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tru_ben_1 0.906
abs2_tru_ben_2 0.810
abs2_tru_ben_3 0.853
abs2_tru_ben_4 0.837
3.0.17.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tru_ben_1 0.919
abs2_tru_ben_2 0.868
abs2_tru_ben_3 0.893
abs2_tru_ben_4 0.883
3.0.17.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tru_ben_1 3.1089 3 1.8318 1.3535 2 0.0844 1 2 4 7 0.2007 -0.2904 0.1089 257 0 257
abs2_tru_ben_2 3.0623 3 1.8633 1.365 2 0.0851 1 2 4 7 0.184 -0.4586 0.1148 257 0 257
abs2_tru_ben_3 3.07 3 2.0654 1.4371 2 0.0896 1 2 4 7 0.3141 -0.4669 0.1109 257 0 257
abs2_tru_ben_4 3.1128 3 1.7021 1.3046 2 0.0814 1 2 4 6 0.0871 -0.6178 0.1323 257 0 257
3.0.17.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.17.3 Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tru_ben_1 moral - immoral haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.108949 1.353452 7 ▃▅▅▇▁▂▁▁
abs2_tru_ben_2 ethical - unethical haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.062257 1.365026 7 ▅▆▆▇▁▂▁▁
abs2_tru_ben_3 responsible - irresponsible haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 7 3.070039 1.437146 7 ▅▆▅▇▁▂▂▁
abs2_tru_ben_4 considerate - inconsiderate haven_labelled 1. 1,
2. 2,
3. 3,
4. 4,
5. 5,
6. 6,
7. 7
0 1 1 3 6 3.112840 1.304631 7 ▃▆▁▇▇▁▃▁

3.0.18 Scale: abs2_tch

3.0.18.1 Overview

Reliability: ωtotal [95% CI] = 0.94 [0.92;0.95].

Missing: 0.

Likert plot of scale abs2_tch items

Likert plot of scale abs2_tch items

Distribution of scale abs2_tch

Distribution of scale abs2_tch

3.0.18.2 Reliability details


3.0.18.2.1 Scale diagnosis
3.0.18.2.1.1 Reliability (internal consistency) estimates
3.0.18.2.1.1 Scale structure
3.0.18.2.1.1 Information about this scale
Dataframe: res$dat
Items: abs2_tch_1, abs2_tch_2, abs2_tch_3, abs2_tch_4 & abs2_tch_5
Observations: 257
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
3.0.18.2.1.1 Estimates assuming interval level
Omega (total): 0.94
Omega (hierarchical): 0.88
Revelle’s Omega (total): 0.96
Greatest Lower Bound (GLB): 0.96
Coefficient H: 0.94
Coefficient Alpha: 0.94

3.0.18.2.1.1 Confidence intervals

Omega (total): [0.92; 0.95]
Coefficient Alpha: [0; 0.19]

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 5 and the highest range is 1004. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.18.2.1.2 Eigen values

3.984, 0.366, 0.32, 0.213 & 0.117

3.0.18.2.1.3 Factor analysis (reproducing only shared variance)
ML1
abs2_tch_1 0.806
abs2_tch_2 0.900
abs2_tch_3 0.814
abs2_tch_4 0.865
abs2_tch_5 0.926
3.0.18.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
abs2_tch_1 0.868
abs2_tch_2 0.911
abs2_tch_3 0.863
abs2_tch_4 0.897
abs2_tch_5 0.923
3.0.18.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
abs2_tch_1 -192.1245 3 157873.1329 397.3325 2 24.7849 -999 1 4 4 -1.5523 0.4128 0.1148 257 0 257
abs2_tch_2 -196.0389 2 160246.2329 400.3077 3 24.9705 -999 -999 4 4 -1.5211 0.3161 0.1109 257 0 257
abs2_tch_3 -246.7938 2 188361.4846 434.0063 2 27.0726 -999 -999 4 4 -1.1675 -0.6419 0.1245 257 0 257
abs2_tch_4 -184.3268 3 153023.2365 391.1818 2 24.4013 -999 1 4 4 -1.6169 0.619 0.1187 257 0 257
abs2_tch_5 -223.3307 2 176044.98 419.5771 2 26.1725 -999 -999 4 4 -1.3201 -0.2593 0.1206 257 0 257
3.0.18.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.18.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
abs2_tch_1 It is transparent which data form the basis of the study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 50 left500 hide_label mc_width70 0 1 -999 3 4 -192.1245 397.3325 6 ▂▁▁▁▁▁▁▇
abs2_tch_2 Interested parties can have a close look at the questionnaire of the described study. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 50 left500 hide_label mc_width70 0 1 -999 2 4 -196.0389 400.3077 6 ▂▁▁▁▁▁▁▇
abs2_tch_3 The data collected in the study are publicly available. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 50 left500 hide_label mc_width70 0 1 -999 2 4 -246.7938 434.0063 6 ▂▁▁▁▁▁▁▇
abs2_tch_4 The authors make it easy for other researchers to understand their statistical analyses. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 50 left500 hide_label mc_width70 0 1 -999 3 4 -184.3268 391.1818 6 ▂▁▁▁▁▁▁▇
abs2_tch_5 If other researchers want to repeat the study, they have easy access to the questionnaires used. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
-999. (don’t know),
NA. Item was never rendered for this user.
0 50 left500 hide_label mc_width70 0 1 -999 2 4 -223.3307 419.5771 6 ▂▁▁▁▁▁▁▇

3.0.19 Scale: tsm

3.0.19.1 Overview

Reliability: ωordinal [95% CI] = 0.74 [0.69;0.8].

Missing: 0.

Likert plot of scale tsm items

Likert plot of scale tsm items

Distribution of scale tsm

Distribution of scale tsm

3.0.19.2 Reliability details


3.0.19.2.1 Scale diagnosis
3.0.19.2.1.1 Reliability (internal consistency) estimates
3.0.19.2.1.1 Scale structure
3.0.19.2.1.1 Information about this scale
Dataframe: res$dat
Items: tsm_1, tsm_2 & tsm_3
Observations: 257
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
3.0.19.2.1.1 Estimates assuming interval level
Omega (total): 0.66
Omega (hierarchical): 0.05
Revelle’s Omega (total): 0.68
Greatest Lower Bound (GLB): 0.70
Coefficient H: 0.71
Coefficient Alpha: 0.65

3.0.19.2.1.1 Confidence intervals

Omega (total): [0.59; 0.73]
Coefficient Alpha: [0.58; 0.73]
3.0.19.2.1.1 Estimates assuming ordinal level
Ordinal Omega (total): 0.74
Ordinal Omega (hierarch.): 0.74
Ordinal Coefficient Alpha: 0.73

3.0.19.2.1.1 Confidence intervals

Ordinal Omega (total): [0.69; 0.8]
Ordinal Coefficient Alpha: [0.67; 0.79]

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.

3.0.19.2.1.2 Eigen values

1.788, 0.721 & 0.491

3.0.19.2.1.3 Factor analysis (reproducing only shared variance)
ML1
tsm_1 0.772
tsm_2 0.651
tsm_3 0.470
3.0.19.2.1.4 Component analysis (reproducing full covariance matrix)
PC1
tsm_1 0.825
tsm_2 0.795
tsm_3 0.689
3.0.19.2.1.5 Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tsm_1 3.2023 3 0.662 0.8136 1 0.0508 1 2 4 4 -0.7821 -0.0013 0.2023 257 0 257
tsm_2 3.2335 3 0.6875 0.8291 1 0.0517 1 2 4 4 -0.9154 0.2428 0.1946 257 0 257
tsm_3 2.7237 3 0.8413 0.9173 1 0.0572 1 2 4 4 -0.3115 -0.6889 0.1284 257 0 257
3.0.19.2.1.6 Scattermatrix
Scatterplot

Scatterplot


3.0.19.3 Summary statistics

name label type type_options data_type value_labels optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
tsm_1 The explanations (grey text boxes) were helpful for understanding the badges (“Open Materials”, “Open Data”, “Open Code”). mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 57 left500 hide_label mc_width70 0 1 1 3 4 3.202335 0.8136497 5 ▁▁▃▁▁▇▁▇
tsm_2 I read all additional explanations (grey text boxes) on the front pages. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 57 left500 hide_label mc_width70 0 1 1 3 4 3.233463 0.8291379 5 ▁▁▂▁▁▇▁▇
tsm_3 The badges (“Open Materials”, “Open Data”, “Open Code”) influenced my assessment of the authors. mc haven_labelled 1. fully <br />disagree,
2. &nbsp;,
3. &nbsp;&nbsp;,
4. fully <br />agree,
NA. Item was never rendered for this user.
0 57 left500 hide_label mc_width70 0 1 1 3 4 2.723735 0.9172505 5 ▂▁▅▁▁▇▁▃

3.0.20 sex

Sex

3.0.20.1 Distribution

Distribution of values for sex

Distribution of values for sex

0 missing values.

3.0.20.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate n_unique empty min median max whitespace n_value_labels
sex Sex mc_button haven_labelled 0 11 0 1 2 0 1 NA 1 0 2

3.0.20.3 Item

Item options
type type_options name label optional class showif value block_order item_order
mc_button sex Sex 0 11

3.0.20.4 Value labels

Response choices
name value
1 f
2 m

3.0.21 age

Age

3.0.21.1 Distribution

Distribution of values for age

Distribution of values for age

0 missing values.

3.0.21.2 Summary statistics

name label type type_options data_type optional showif value item_order block_order class n_missing complete_rate min median max mean sd n_value_labels hist
age Age mc_button haven_labelled 0 12 0 1 16 35 50 35.53697 14.30471 3 ▆▁▁▁▅▁▁▇

3.0.21.3 Item

Item options
type type_options name label optional class showif value block_order item_order
mc_button age Age 0 12

3.0.21.4 Value labels

Response choices
name value
16-34 16
35-49 35
50 and above 50

3.0.22 education

Which is the highest qualifiaction you have?

3.0.22.1 Distribution

Distribution of values for education

Distribution of values for education

0 missing values.

3.0.22.2 Summary statistics

name label data_type n_missing complete_rate n_unique empty min median max whitespace n_value_labels
education Which is the highest qualifiaction you have? haven_labelled 0 1 3 0 3 NA 3 0 3

3.0.22.3 Value labels

Response choices
name value
1 L12
2 L34
3 app

3.1 Missingness report

3.2 Codebook table

JSON-LD metadata The following JSON-LD can be found by search engines, if you share this codebook publicly on the web.

{
  "name": "Journals’ Open Science Badges Foster Trust in Scientists. Study 3: Public Sample.",
  "description": "Code book to manuscript\n\n\n## Table of variables\nThis table contains variable names, labels, and number of missing values.\nSee the complete codebook for more.\n\n[truncated]\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/) (version 0.9.2).",
  "identifier": "",
  "datePublished": "2021-07-12",
  "creator": {
    "@type": "Person",
    "givenName": "Schneider",
    "familyName": "Jürgen",
    "email": "juergen.schneider@uni-tuebingen.de",
    "affiliation": {
      "@type": "Organization",
      "name": "University of Tübingen"
    }
  },
  "citation": "Schneider, J. (2021). Journals’ Open Science Badges Foster Trust in Scientists. Codebook of Study 3: Public sample",
  "keywords": ["treat1", "treat2", "first_topic", "abs1_tsm_1", "abs1_tsm_2", "abs1_tsm_3", "abs1_tsm_4", "abs1_tsc_1", "abs1_tsc_2R", "abs1_tsc_3", "abs1_tru_exp_1", "abs1_tru_exp_2", "abs1_tru_exp_3", "abs1_tru_exp_4", "abs1_tru_exp_5", "abs1_tru_exp_6", "abs1_tru_int_1", "abs1_tru_int_2", "abs1_tru_int_3", "abs1_tru_int_4", "abs1_tru_ben_1", "abs1_tru_ben_2", "abs1_tru_ben_3", "abs1_tru_ben_4", "abs1_tch_1", "abs1_tch_2", "abs1_tch_3", "abs1_tch_4", "abs1_tch_5", "abs2_tsm_1", "abs2_tsm_2", "abs2_tsm_3", "abs2_tsm_4", "abs2_tsc_1", "abs2_tsc_2R", "abs2_tsc_3", "abs2_tru_exp_1", "abs2_tru_exp_2", "abs2_tru_exp_3", "abs2_tru_exp_4", "abs2_tru_exp_5", "abs2_tru_exp_6", "abs2_tru_int_1", "abs2_tru_int_2", "abs2_tru_int_3", "abs2_tru_int_4", "abs2_tru_ben_1", "abs2_tru_ben_2", "abs2_tru_ben_3", "abs2_tru_ben_4", "abs2_tch_1", "abs2_tch_2", "abs2_tch_3", "abs2_tch_4", "abs2_tch_5", "tsm_1", "tsm_2", "tsm_3", "country", "country_oth", "abs1_tsm", "abs1_tsc", "abs1_tru_exp", "abs1_tru_int", "abs1_tru_ben", "abs1_tch", "abs2_tsm", "abs2_tsc", "abs2_tru_exp", "abs2_tru_int", "abs2_tru_ben", "abs2_tch", "tsm", "sex", "age", "education"],
  "@context": "http://schema.org/",
  "@type": "Dataset",
  "variableMeasured": [
    {
      "name": "treat1",
      "description": "First treatment condition, the participant was assigned to.",
      "value": "gb. Greyed out badges (no adherence to Open Science standards),\ncc. Control Condition (no badges),\ncb. Colored out badges (adherence to Open Science standards)",
      "maxValue": "gb",
      "minValue": "cb",
      "@type": "propertyValue"
    },
    {
      "name": "treat2",
      "description": "Second treatment condition, the participant was assigned to.",
      "value": "gb. Greyed out badges (no adherence to Open Science standards),\ncc. Control Condition (no badges),\ncb. Colored out badges (adherence to Open Science standards)",
      "maxValue": "gb",
      "minValue": "cb",
      "@type": "propertyValue"
    },
    {
      "name": "first_topic",
      "description": "Topic the participant received first.",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_1",
      "description": "The insights from the text are arbitrary.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_2",
      "description": "The knowledge contained in the text cannot be generalized to other situations at all.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_3",
      "description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm_4",
      "description": "The knowledge formulated in the text cannot claim validity for other situations.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_1",
      "description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_2R",
      "description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
      "value": "4. __fully <br />disagree__,\n3. &nbsp;,\n2. &nbsp;&nbsp;,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc_3",
      "description": "I agree with the statements I just read in the text excerpt.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_1",
      "description": "competent - incompetent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_2",
      "description": "intelligent - unintelligent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_3",
      "description": "well educated -\tpoorly educated",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_4",
      "description": "professional - unprofessional",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_5",
      "description": "experienced - inexperienced",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp_6",
      "description": "qualified - unqualified",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_1",
      "description": "sincere - insincere",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_2",
      "description": "honest - dishonest",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_3",
      "description": "just - unjust",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int_4",
      "description": "fair - unfair",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_1",
      "description": "moral - immoral",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_2",
      "description": "ethical - unethical",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_3",
      "description": "responsible - irresponsible",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben_4",
      "description": "considerate - inconsiderate",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_1",
      "description": "It is transparent which data form the basis of the study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_2",
      "description": "Interested parties can have a close look at the questionnaire of the described study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_3",
      "description": "The data collected in the study are publicly available.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_4",
      "description": "The authors make it easy for other researchers to understand their statistical analyses.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch_5",
      "description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_1",
      "description": "The insights from the text are arbitrary.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_2",
      "description": "The knowledge contained in the text cannot be generalized to other situations at all.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_3",
      "description": "The opposite of the knowledge formulated in the text would be equally right/wrong.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm_4",
      "description": "The knowledge formulated in the text cannot claim validity for other situations.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_1",
      "description": "The statements of the just-read text are consistent with my personal opinion on the subject.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_2R",
      "description": "The statements of the text excerpt I just read contradict what I myself think about the topic.",
      "value": "4. __fully <br />disagree__,\n3. &nbsp;,\n2. &nbsp;&nbsp;,\n1. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc_3",
      "description": "I agree with the statements I just read in the text excerpt.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_1",
      "description": "competent - incompetent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_2",
      "description": "intelligent - unintelligent",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_3",
      "description": "well educated -\tpoorly educated",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_4",
      "description": "professional - unprofessional",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_5",
      "description": "experienced - inexperienced",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp_6",
      "description": "qualified - unqualified",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_1",
      "description": "sincere - insincere",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_2",
      "description": "honest - dishonest",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_3",
      "description": "just - unjust",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int_4",
      "description": "fair - unfair",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_1",
      "description": "moral - immoral",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_2",
      "description": "ethical - unethical",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_3",
      "description": "responsible - irresponsible",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben_4",
      "description": "considerate - inconsiderate",
      "value": "1. 1,\n2. 2,\n3. 3,\n4. 4,\n5. 5,\n6. 6,\n7. 7",
      "maxValue": 7,
      "minValue": 1,
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_1",
      "description": "It is transparent which data form the basis of the study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_2",
      "description": "Interested parties can have a close look at the questionnaire of the described study.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_3",
      "description": "The data collected in the study are publicly available.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_4",
      "description": "The authors make it easy for other researchers to understand their statistical analyses.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch_5",
      "description": "If other researchers want to repeat the study, they have easy access to the questionnaires used.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\n-999. (don't know),\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": -999,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_1",
      "description": "The explanations (grey text boxes) were helpful for understanding the badges (\"Open Materials\", \"Open Data\", \"Open Code\").",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_2",
      "description": "I read all additional explanations (grey text boxes) on the front pages.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "tsm_3",
      "description": "The badges (\"Open Materials\", \"Open Data\", \"Open Code\") influenced my assessment of the authors.",
      "value": "1. __fully <br />disagree__,\n2. &nbsp;,\n3. &nbsp;&nbsp;,\n4. __fully <br />agree__,\nNA. Item was never rendered for this user.",
      "maxValue": 4,
      "minValue": 1,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "country",
      "description": "Country of residence",
      "value": "1. United Kingdom,\n2. Republic of Ireland,\n3. USA,\n4. Canada,\n-999. other",
      "maxValue": "4",
      "minValue": "-999",
      "@type": "propertyValue"
    },
    {
      "name": "country_oth",
      "description": "please specify other country",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsm",
      "description": "aggregate of 4 abs1_tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tsc",
      "description": "aggregate of 3 abs1_tsc items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_exp",
      "description": "aggregate of 6 abs1_tru_exp items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_int",
      "description": "aggregate of 4 abs1_tru_int items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tru_ben",
      "description": "aggregate of 4 abs1_tru_ben items",
      "@type": "propertyValue"
    },
    {
      "name": "abs1_tch",
      "description": "aggregate of 5 abs1_tch items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsm",
      "description": "aggregate of 4 abs2_tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tsc",
      "description": "aggregate of 3 abs2_tsc items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_exp",
      "description": "aggregate of 6 abs2_tru_exp items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_int",
      "description": "aggregate of 4 abs2_tru_int items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tru_ben",
      "description": "aggregate of 4 abs2_tru_ben items",
      "@type": "propertyValue"
    },
    {
      "name": "abs2_tch",
      "description": "aggregate of 5 abs2_tch items",
      "@type": "propertyValue"
    },
    {
      "name": "tsm",
      "description": "aggregate of 3 tsm items",
      "@type": "propertyValue"
    },
    {
      "name": "sex",
      "description": "Sex",
      "value": "f. female,\nm. male",
      "maxValue": "m",
      "minValue": "f",
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "age",
      "description": "Age",
      "value": "16. 16-34,\n35. 35-49,\n50. 50 and above",
      "maxValue": 50,
      "minValue": 16,
      "measurementTechnique": "self-report",
      "@type": "propertyValue"
    },
    {
      "name": "education",
      "description": "Which is the highest qualifiaction you have?",
      "value": "L12. 1 - 4 O levels / CSEs / GCSEs (any grades), ...,\nL34. 2+ A levels / VCEs, 4+ AS levels, Higher School Certificate, ...,\napp. Apprenticeship / Other vocational / work-related qualifications...",
      "maxValue": "L34",
      "minValue": "app",
      "@type": "propertyValue"
    }
  ]
}`