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A. Toy examples comparing the Tucker’s and modified congruence
coefficients and the Pearson correlation coefficient

Toy examples presenting different settings where each and every one of the coefficients can be mis-
leading if not used with caution:

Set A: For matching two factors where the factor structure is not clear, the mTCC is misleading as is
the non-negligible PCC.
a1 = {−0.39, −0.83, −0.79, 0.66, −0.39, −0.75, −0.22, 0.80}
a2 = { 0.77, 0.77, −0.46, −0.04, −0.10, −0.52, 0.57, 0.81}
TCC=0.118 mTCC=0.854 PCC=0.307

Set B: If there are no negative loadings at all, TCC and mTCC are identically high (and misleading
in matching two non-simple factors. PCC is low.
b1 = {0.39, 0.83, 0.79, 0.66, 0.39, 0.75, 0.22, 0.80}
b2 = {0.77, 0.77, 0.46, 0.04, 0.10, 0.52, 0.57, 0.81}
TCC=0.854 mTCC=0.854 PCC=0.189

Set C: While PCC show a very high negative linear association, both TCC and mTCC show the two
factors to be incongruent.
c1 = { 0.80, 0.70, 0.66, 0.49, 0.12, 0.08, 0.01, 0.05}
c2 = { 0.07, 0.07, 0.26, 0.14, 0.70, 0.82, 0.64, 0.81}
TCC=0.263 mTCC=0.263 PCC=-0.945

Set D: All coefficients indicate incongruence.
d1 = {−0.80, 0.70, −0.66, 0.49, −0.12, 0.08, −0.01, 0.05}
d2 = { 0.07, 0.07, 0.26, 0.14, 0.70, 0.82, 0.64, 0.81}
TCC=-0.046 mTCC=0.263 PCC=0.020

Set E: When all loadings are identical, all coefficients indicate perfect similarity.
e1 = {−0.39,−0.83,−0.79, 0.66,−0.39,−0.75,−0.22, 0.80}
e2 = {−0.39,−0.83,−0.79, 0.66,−0.39,−0.75,−0.22, 0.80}
TCC=1 mTCC=1 PCC=1

Sets F and G: When the magnitude of the loadings is the same, but the signs are occasionnaly different,
the mTCC indicates congruence while TCC and PCC indicate incongruence even though these factors
should likely be matched.
f1 = {−0.39, −0.83, −0.79, 0.66, −0.39, −0.75, −0.02, 0.80}
f2 = { 0.39, 0.83, 0.79, 0.66, 0.39, 0.75, 0.02, 0.80}
TCC=-0.3399 mTCC=1 PCC=-0.089
g1 = {−0.39, 0.83, 0.79, 0.66, 0.39, 0.75, −0.02, 0.80}
g2 = { 0.39, 0.83, 0.79, 0.66, 0.39, 0.75, 0.02, 0.80}
TCC=0.906 mTCC=1 PCC=0.906

Set H: All three coefficients are misleading for factor matching when F1 = k ∗ F2, k ∈ N.
h1 = { −0.39, , −0.83, −0.79, 0.66, −0.39, −0.75, −0.22, 0.80}
h2 = {−0.039, −0.083, −0.079, 0.066, −0.039, −0.075, −0.022, 0.080}
TCC=1 mTCC=1 PCC=1
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B. Details on the simulations and R code

Below the code for the simulations is provided. This is the code for a 2 factor, 2 item setting for mean
0.10 and standard deviation 0.025 for the cross-loadings. Primary loadings are 0.80 and 0.70 for the
first factor and 0.70 and 0.60 for the second factor.

#Generate 100∗100 f a c t o r l oad ing matr ices where primary l oad in g s are
prede f ined and cross−l o ad in g s are normal ly d i s t r i b u t e d wi th mean and
sd de f ined below

set . seed (2604)
factor=2
item=2
mean=0.10
sd=0.025
f lT<−matrix (NA, 4 , factor∗0000)
for ( i in 1 :10000) {

f l <− matrix (round(rnorm( factor∗ item∗factor , mean, sd ) , 3) , factor∗ item ,
factor )

f l [ f l < −0.999] <− −0.999
f l [ f l > 0 . 9 9 9 ] <− 0 .999
f l [ 1 , 1 ]=0 . 8
f l [ 2 , 1 ]=0 . 7
f l [ 3 , 2 ]=0 . 7
f l [ 4 , 2 ]=0 . 6
f lT [ , (1+( i −1)∗2) :(2+( i −1)∗2) ]<− f l

}

#I d e n t i f i e s ” da t a s e t s ” wi th f a c t o r l o ad ing s
data = f lT
data . l i s t=NULL
l i s t . idx=seq (1 ,20000 ,2 )
for ( i in 1 :10000) {

data . l i s t [ [ i ] ]=data [ , l i s t . idx [ i ] : ( l i s t . idx [ i ]+1) ]
}

data1=data . l i s t [ [ 1 ] ]
data2=data . l i s t [ [ 2 ] ]
k=1

#de f i n e CC func t i on s
TCC <− function (x , y ) {

out=sum( x∗y )/ ( sqrt (sum( xˆ2)∗sum( y ˆ2) ) )
return ( out )

}

mTCC <− function (x , y ) {
out=sum(abs ( x∗y ) )/ ( sqrt (sum( x ˆ2)∗sum( y ˆ2) ) )
return ( out )

}
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#Function to c a l c u l a t e CCs f o r two da t a s e t s and f i nd l o c a t i o n o f maxima (
per row ! )

temp=matrix (0 , dim( data2 ) [ 2 ] , 4 ∗dim( data1 ) [ 2 ] )
ccc <− function ( data1 , data2 ) {

t c c . coef=matrix (0 ,dim( data2 ) [ 2 ] ,dim( data1 ) [ 2 ] )
for ( i in 1 : (dim( data1 ) [ 2 ] ) ) {

for ( j in 1 : (dim( data2 ) [ 2 ] ) ) {
t c c . coef [ i , j ]=TCC( data1 [ , i ] , data2 [ , j ] )

}
}
mtcc . coef=matrix (0 ,dim( data2 ) [ 2 ] ,dim( data1 ) [ 2 ] )
for ( k in 1 : (dim( data1 ) [ 2 ] ) ) {

for ( l in 1 : (dim( data2 ) [ 2 ] ) ) {
mtcc . coef [ k , l ]=mTCC( data1 [ , k ] , data2 [ , l ] )

}
}
max. va lue=apply ( t c c . coef , 2 ,max)
max. l o c a t i o n = matrix (0 ,dim( t c c . coef ) [ 1 ] ,dim( t c c . coef ) [ 2 ] )
for ( i in 1 :dim( t c c . coef ) [ 1 ] ) {

max. l o c=which( t c c . coef [ , i ]==max. va lue [ i ] )
max. l o c a t i o n [max. loc , i ]=1

}
max. va lue . mtcc=apply ( mtcc . coef , 2 ,max)
max. l o c a t i o n . mtcc = matrix (0 ,dim( mtcc . coef ) [ 1 ] ,dim( mtcc . coef ) [ 2 ] )
for ( i in 1 :dim( mtcc . coef ) [ 1 ] ) {

max. l o c=which( mtcc . coef [ , i ]==max. va lue . mtcc [ i ] )
max. l o c a t i o n . mtcc [max. loc , i ]=1

}
temp=cbind ( t c c . coef , max. l o ca t i on , mtcc . coef , max. l o c a t i o n . mtcc )
return ( temp )

}

#Ca l cu l a t e s CC func t i on s f o r each pa i r o f f a c t o r ana l y s e s
myres=temp
myres . f i n a l=NULL
a l l r e s <− function (data . l i s t ) {

myres=NULL
i=1
j=i
temp <− ccc (data . l i s t [ [ i ] ] , data . l i s t [ [ j ] ] )
myres <−cbind ( rep ( i ,dim( temp ) [ 1 ] ) , rep ( j ,dim( temp ) [ 1 ] ) , temp )
for ( i in 1 :100 ) {

for ( j in i : 1 0 0 ) {
i f ( i < j ) {

temp <− ccc (data . l i s t [ [ i ] ] , data . l i s t [ [ j ] ] )
myres . f i n a l <−rbind ( myres . f i n a l , cbind ( rep ( i ,dim( temp ) [ 1 ] ) , rep ( j ,

dim( temp ) [ 1 ] ) , temp ) ) }
}

}
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return ( myres . f i n a l )
}

out . a l l r e s=a l l r e s (data . l i s t )

#Ca l cu l a t e s the number o f not wel−matched f a c t o r s
count . mismatch <− function ( out . a l l r e s ) {

zero . ind1=rep (0 ,dim( out . a l l r e s ) [ 1 ] )
ze ro . ind2=rep (0 ,dim( out . a l l r e s ) [ 1 ] )

for ( i in 1 :dim( out . a l l r e s ) [ 1 ] ) {
zero . ind1 [ i ]=sum( out . a l l r e s [ i , 5 : 6 ] )
ze ro . ind2 [ i ]=sum( out . a l l r e s [ i , 9 : 1 0 ] )

}
t c c . mismatch=sum( ze ro . ind1==0)
mtcc . mismatch=sum( ze ro . ind2==0)
common=length ( intersect (which( ze ro . ind2==0) ,which( ze ro . ind1==0)) )
return (cbind ( t c c . mismatch , mtcc . mismatch , common) )

}

count . mismatch ( out . a l l r e s )

#Ca lcu l a t e r e s u l t f o r a l l s imu la t i on s
sim=NULL
datase t=NULL
k i=NULL
idx=matrix (1 :10000 ,100 ,100)
output . a l l r e s=NULL
output . count=matrix (0 , 100 ,4 )
k i=matrix (0 , 100 ,8 )
colnames ( k i )=c ( ’ Rep l i c a t i on id ’ , ’ t c c . mismatch ’ , ’ mtcc . mismatch ’ , ’common ’

, ’ f a c t o r ’ , ’ item ’ , ’mean ’ , ’ sd ’ )
for ( i in 1 : 100 ) {

datase t [ [ i ] ]=data . l i s t [ idx [ , i ] ]
output . a l l r e s [ [ i ] ]= a l l r e s ( datase t [ [ i ] ] )
output . count [ i , ]= c ( i , count . mismatch ( output . a l l r e s [ [ i ] ] ) )
k i=c ( output . count [ i , ] , factor , item ,mean, sd )
sim=rbind ( sim , k i )

}

B.2 The exact primary loadings for the main simulation

The primary loadings and random seeds used for the simulation in the main body of the paper:

2 factors, 2 items – F1: 0.8, 0.7; F2: 0.7, 0.6 – seed: 2604
2 factors, 10 items – F1: 0.8 (2), 0.7 (4), 0.6 (2); F2: 0.7 (2), 0.6 (4), 0,5 (4) – seed: 2605
5 factors, 2 items – F1: 0.9, 0.8; F2: 0.8, 0.7; F3: 0.7 (2); F4: 0.7, 0.6; F5: 0.6 (2) – seed: 2606
5 factors, 10 items – F1: 0.8 (2), 0.7 (4), 0.6 (4); F2: 0.8, 0.7, 0.6 (4), 0.5 (4); F3: 0.7, 0.6 (4), 0.5 (5),
0.4; F4: 0.6 (4), 0.5 (3), 0.4 (3); F5: 0.6 (4), 0.5 (3), 0.4 (3) – seed: 2607
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B.3 Random seeds for the simulations in the ESM

For the different settings, different seeds were used. To ensure reproducibility these are given in
Table 1. Each setting wsa given a different random seed as simulations were run in parallel.

Table 1: Seeds used for the simulations
Factor Item Mean (CL) SD (CL) PL Seed Results presented in

2 2 0.10 all Various (see above) 2604 Main paper
2 10 0.10 all Various (see above) 2605 Main paper
5 2 0.10 all Various (see above) 2606 Main paper
5 10 0.10 all Various (see above) 2607 Main paper
2 2 0.10 all 0.80 1324 ESM D
2 2 0.10 all 0.80 6132 ESM D
2 2 0.10 all 0.80 8124 ESM D
2 2 0.10 all 0.80 9385 ESM D
2 2 0.10 all 0.80 2608 ESM E.1
2 10 0.10 all 0.80 2614 ESM E.1
5 2 0.10 all 0.80 2620 ESM E.1
2 2 0.10 all 0.60 2609 ESM E.2
2 10 0.10 all 0.60 2615 ESM E.2
5 2 0.10 all 0.60 2621 ESM E.2
2 2 0.10 all 0.40 2610 ESM E.3
2 10 0.20 all 0.40 2616 ESM E.3
5 2 0.10 all 0.40 2622 ESM E.3
2 4 0.10 all 0.80 2632 ESM F.1
2 4 0.10 all 0.60 2633 ESM F.1
2 4 0.10 all 0.40 2634 ESM F.1
2 16 0.10 all 0.80 2638 ESM F.2
2 16 0.10 all 0.60 2639 ESM F.2
2 16 0.10 all 0.40 2640 ESM F.2
2 2 0 all 0.80 2611 ESM G.1
2 2 0 all 0.60 2612 ESM G.1
2 2 0 all 0.40 2613 ESM G.1
2 10 0 all 0.80 2617 ESM G.1
2 10 0 all 0.60 2618 ESM G.1
2 10 0 all 0.40 2619 ESM G.1
2 2 0.20 all 0.80 2644 ESM G.2
2 2 0.20 all 0.60 2645 ESM G.2
2 2 0.20 all 0.40 2646 ESM G.2
2 10 0.20 all 0.80 2650 ESM G.2
2 10 0.20 all 0.60 2651 ESM G.2
2 10 0.20 all 0.40 2652 ESM G.2

C. Alternative figure of the simulation in the main body of the paper

Original Figure (Figure 1) with extended x axis (SD ranging from 0 to 0.40). Since, values below 0.15
are all nil, Figures 4a-4c have an abscissa starting at 0.15. However, this figure may offer a better
understanding of how the coefficients change depending on the cross-loadings in general.
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Figure 1: Alternative figure 4

7



D. Simulations with different random seeds

The setting is identical to what is presented in Figure 4a in the main body of the paper: various
primary loadings (as listed in ESM B.2), 2 factors, 2 items. As it can be seen, the choice of the
random seeds does not influence the results to an extent that could affect the interpretation of the
results.



Figure 2: Simulation with different random seeds



E. Simulations with different primary loadings

The simulation in this section focus on the differences due to primary loadings. Three settings are
explored: high (0.80), moderate (0.60) and low (0.40) primary loadings. Obviously, this is quite arti-
ficial as primary loadings are unlikely to be are equal across factor and items. Also, the low primary
loading setting would only make sense - from the perspective of simple factor structure analyses - if
the cross-loadings were nil or close to nil. Otherwise, mismatches will occur in a great many cases.
We expect to have a high proportion of mismatches and that mismatches start to occur with lower
SD for the cross-loadings compared to other primary loadings.

E.1 Simulations with high (0.8) primary loadings

Figure 3 shows the simulation results of a limited simulation where all primary loadings are set to
0.80. The four results are for 2, 4, 10 and 16 items and, as it can be seen, there is no crossing between
the TCC and mTCC lines anymore. TCC always produces more mismatches, but the amount of
mismatches is very low.

Figure 4 has 0 as average for the cross-loadings on the left hand side and 0.10 as average for the
cross-loadings on the right hand side. As explained in the main body of the text, mean=0.10 shows
the difference between the two coefficients better. However, both there are also more mismatches
in these settings. It is also quite clear, that with very high primary loadings mTCC produces less
mismatches (with the exception of Items=10, mean=0.00, but the number of mismatches is extremely
low so even one or two mismatches jump out). Remarkably, the shared mismatches is quite low, so
when mismatches occur for either coefficient, is is likely not present for the other coefficient, which un-
derlies the argument for using the two coefficients together as suggested in the Discussion of our paper.

E.2 Simulations with moderate (0.6) primary loadings

Figure 5 shows the simulation results of a limited simulation where all primary loadings are set to
0.60. The four results are for 2, 4, 10 and 16 items and, as it can be seen, there is a crossing on each
figure around SD=0.35 on all four figures. TCC produces more mismatches in mid range SDs, but
this disadvantage disappears when the number of items increases. The proportion of mismatches is
much higher when the number of items is low and compared to the high primary loadings settings.

E.3 Simulations with low (0.4) primary loadings

Figure 6 shows the simulation results of a limited simulation where all primary loadings are set to
0.40. The four results are for 2, 4, 10 and 16 items and, apparently there is an important difference
depending on the number of items; for 2 and 4 items there is still a mid-range advantage for the
mTCC, albeit rather small, but for 10 and 16 items the TCC outperforms the mTCC from the mo-
ment mismatches start to occur. As mentioned previously, this is a rather unlikely setting implying
very weak correlations between the items, where the usefulness of EFA is quite dubious. One could
argue that when the primary loadings are set to 0.40 and 16% of the cross-loadings exceeds this value
(at SD=0.20), it is not possible to assume a simple factor structure, which is a requirement for the
mTCC (and TCC) to be used for factor matching.



Figure 3: Simulations with high (0.8) primary loadings



Figure 4: Simulations with high (0.8) primary loadings - also comparing mean CL



Figure 5: Simulations with moderate (0.6) primary loadings



Figure 6: Simulations with low (0.4) primary loadings



F. Simulations with 2, 4, 10 and 16 items for 2 factors

Previous figures such as 3, 5and 6 can be used to compare 2, 4, 10 and 16 items per factor settings.
In the Figures in this section, 4 and 16 items are presented for different primary loadings.

F.1 Simulations with 4 items per factor

Figure 7 presents first all results with 4 items categorised by primary loadings (0.8 (green), 0.6 (red)
and 0.4 (blue)), then plots mismatches for each setting of primary loadings separately. As expected,
the most mismatches occur with the low (0.4) primary loadings and the advantage of mTCC over
TCC disappears nearly immediately after mismatches start to occur (top right), while with very high
primary loadings the mTCC is clearly resulting in much less mismatches.

F.2 Simulations with 16 items per factor

Figure 8 presents first all results with 4 items categorised by primary loadings (0.8 (green), 0.6 (red)
and 0.4 (blue)), then plots mismatches for each setting of primary loadings separately. As expected,
many mismatches occur with the low (0.4) primary loadings. Surprisingly, these occur more often
with the mTCC. However, there are nearly no mismatches (less than 0.5% 0.0% for primary loadings
0.6 and 0.8, respectively).



Figure 7: Simulations with 4 items per factor



Figure 8: Simulations with 16 items per factor



G. Simulations with mean cross-loading of 0 and 0.20

Due to the choices made during EFA, to be precise, due to the chosen rotations, factor loadings tend
to be positive, especially in the first factors. For this reason, we chose for most of our analyses a
mean cross-loading of 0.10. However, with different mean CLs, similar patterns for TCC and mTCC
mismatches can be observed.
To show the changes due to different mean cross-loadings, 0, 0.1 and 0.2 mean CL figures are presented
next to each other for 2 (top row) and 10 factors. This is done for the high (Figure 9), moderate
(Figure 10) and low (Figure 11) primary loadings settings separately. The tendency for an advantage
of mTCC over TCC is more visible where the proportion of negative loadings is smaller (corresponding
to the settings with higher mean CL).



Figure 9: Simulations with different mean cross-loadings for 2 and 10 factors with high (0.80) primary loadings



Figure 10: Simulations with different mean cross-loadings for 2 and 10 factors with moderate (0.60) primary loadings



Figure 11: Simulations with different mean cross-loadings for 2 and 10 factors with low (0.40) primary loadings



H. Simulation results comparing the TCC-mTCC-PCC triad

A reviewer pointed out to us, that it woould be important to also look at the Pearson correlation
coefficient (PCC) as a potential reference point for the mTCC. Below we show the results for our
case study and also the same simulation as in the body of the paper but with the Pearson correlation
added as a baseline criterion as requested by a reviewer of the paper.

In our motivating case study, the DiF study, the number of mismatches are 99, 97 and 1, for the
TCC, PCC and mTCC, respectively. Note, that this is a five factor setting with 8-10 items per factor,
main primary loadings are decreasing steadily and are quite low (range: 0.24 − −0.68). There is at
least one item per factor with a cross-loading on another factor above 0.30, but the factors are still
distinguishable. Based on the results above, one can argue that despite the PCC correcting for the
mean value of the factor and the TCC being uncentered, they are similar in matching factors.

The simulations are presented in Figure 12, which provides the same setting as can be seen in the
main body of the paper but with the PCC added as a reference point. As it can be seen in these
simulations, the PCCs and TCCs can produce very different results (this is also pointed out in ESM A
with the toy examples). In the original simulation, included in the body of our manuscript, we chose
a specific setting, where a) primary loadings were fixed across all factor analyses, b) primary loadings
were often the same for several items and c) the number of items was equal for all factors. (The exact
loadings are presented in ESM B).

In the above described situations, the simulations show that the PCC matches the factors better than
the other two coefficients in some cases and not in others. In the two factor settings (F2I2 and F2I10,
top row), especially where the number of items is only two (left hand side). This effect disappears
completely in the 5 factor, 2 item setting (bottom left) and is less apparent in the F5I10 setting
(bottom right), where the mTCC has the fewest mismatches in the range of 0.225 − 0.325, but the
PCC outperforms the mTCC in the range of SD > 0.325. As we have pointed out previously, this is
a range where simple factor structure is debatable with our chosen primary loadings.

There are two important conclusions that can be drawn from the case study and the simulations.
First, all three coefficients are good at factor matching. Taking into account the number of matches,
the percentage of mismatches is low (even in the most extreme situations it never exceeds 30%, and if
two coefficients are used together, it never exceeds 10% - see Figure 4a-4d in the manuscript). Second,
there are settings where any of the three coefficients outperforms the other two.

However, which coefficient works best depends on several different components including but not
limited to the number of factors, the number of items, the magnitude of the primary loadings, the
magnitude and variability of the cross-loadings, whether the number of items is equal for all factors,
how different the factor analyses are, etc. Studying each of these aspects, even if possible, is out of
scope of our paper, which is to show that the mTCC, alone or together with the other coefficients,
can be useful for factor matching.



Figure 12: TCC-PCC-mTCC mismatches for the main simulation study



Figure 13: TCC-PCC-mTCC mismatches for the F5I10 setting with varying primary loadings

I. Histograms and scatterplots of concordance of TCCs and mTCCs
in the simulations

Similar figures presenting the scatterplots of TCCs and mTCCs categorised by congruency (Figures
1 and 2 in the Main body of the paper) and the histogram of the mTCC categorised by congruency
(Fig. 3 in the main body of the paper) is showi in Figures 14, 15, 16 and 17.

It is visible on the figures that fixing the primary loadings and assuming a normal distribution for
the cross-loadings influences and, perhaps limits, the values of TCC and mTCC that can be observed.
The figures also summarise all TCCs and mTCCs for the given setting, independently from the cross-
loadings, which is not realistic in real-life data. This may be the reason why the line between congruent
and incongruent pairs is slightly blurred for the 5 factor settings (where the later factors had lower
primary loadings), but are quite well separated for 2 factors.



Figure 14: Figure 1-3 for the 2 factor, 2 item simulation setting



Figure 15: Figure 1-3 for the 2 factor, 10 item simulation setting



Figure 16: Figure 1-3 for the 5 factor, 2 item simulation setting



Figure 17: Figure 1-3 for the 5 factor, 10 item simulation setting


