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Abstract 

Student struggles with fractions are well documented, and due to fractions’ 

importance to later mathematics achievement, identification of the errors students make 

when solving fraction problems is an area of interest for both researchers and teachers. 

Within this study, we examine data on student fraction problem errors in pre- and post-

quizzes in a digital mathematics environment. Students (N=1,431) were grouped by 

prevalence of error types using latent class analysis. Three different classes of error 

profiles were identified in the pre-quiz data. A latent transition analysis was then used to 

determine if class membership and class structure changed from pre- to post-quiz. In 

both pre- and post-quiz, there was a class of students who appeared to be guessing 

and a class of students who performed well. One class structure was consistent with the 

idea that early fraction learners rely heavily on whole number principles. Identification of 

co-occurrence of and changes to fraction errors has implications for curricular design 

and pedagogical decisions, especially in light of movements toward personalized 

learning systems.  

 

Keywords: fraction errors, elementary mathematics, latent class analysis, latent 

transition analysis   
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1 Introduction 

Educators have long been concerned with students’ struggles with fractions 

(Brown & Quinn, 2012). An analysis of the 1990 National Assessment of Educational 

Progress revealed that less than half of 12th graders were successful with fractions, 

percentages, decimals, and simple algebra (Mullis, Dossey, Owen, & Phillips, 1991). 

These rates have not improved in more recent years across a number of U.S. states 

(e.g., California Department of Education, 2008; Higgins, 2008; Kim, Schneider, Engec, 

& Siskind, 2006; Pennsylvania Department of Education, 2011). Struggle with fractions 

is especially concerning, because fraction knowledge is important for later success in 

mathematics (NMAP, 2008). In a study by Siegler and colleagues (2012), fraction and 

whole-number division knowledge were the strongest predictors of both algebra 

achievement and overall mathematics achievement five to six years later, even after 

controlling for a host of demographic and prior achievement factors. Similarly, Bailey, 

Hoard, Nugent, and Geary (2012) found that fraction achievement in sixth grade 

predicted general mathematics achievement in seventh grade, also after controlling for 

demographic and prior achievement. Additionally, fraction knowledge has been shown 

to be a stronger predictor of future mathematics achievement than whole number 

knowledge (e.g., Bailey et al., 2012; Booth & Newton, 2012; Siegler et al, 2012). This 

supports the hypothesis that fraction skills are among the early math skills more 

predictive of later mathematics achievement (e.g., Bailey et al., 2012).  

With fractions critical to later mathematics achievement, it is important to 

understand some of the reasons students struggle with fractions. One way to do this is 

through understanding the common errors students make when solving fraction and 
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other mathematics problems (Bottge, Ma, Gassaway, Butler, & Toland, 2014; Voza, 

2011). These error analyses can help researchers and educators address fraction 

misunderstandings by providing a target for mathematics interventions. With this paper, 

we extend the analysis of fraction errors to a digital mathematics environment—a type 

of instructional tool that is gaining increasing prevalence in the modern classroom 

(Buckingham, 2013). We identify which types of errors students make within the Spatial 

Temporal (ST) Math elementary mathematics learning software and whether students 

can be grouped according to these errors and their co-occurrence, and examine how 

these groupings change after students have been exposed to fraction instruction within 

the platform. 

1.1. Why Do Students Struggle with Fractions? 

 Prior research has offered a number of reasons why students struggle with 

fractions: fractions are multifaceted (e.g., Pantziara & Philippou, 2012), fraction 

algorithms are far more complex than natural numbers (e.g., Hiebert, 1992; Stafyliduo & 

Vosnidou, 2004), and students often experience a gap between conceptual and 

procedural knowledge (e.g., Bailey, Siegler, & Geary, 2014; Jordan, Hansen, Fuchs, 

Siegler, Gersten, & Micklos, 2013; Jordan, Resnick, Rodrigues, Hansen, & Dyson, 

2016). The following sections explain how these factors contribute to student difficulty 

with fraction understanding. 

  1.1.1 Fractions are multifaceted. Fractions are thought to have five 

subconstructs: part-whole, ratio, quotient, operator, and measure—also known as 

magnitude (Charalambous & Pitta-Pantazi, 2007; Pantziara & Philippou, 2012). Each of 
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these subconstructs represents a different aspect or way to use fractions. See Table 1 

for descriptions of each construct. 

Table 1 
Sub-Constructs of Fractions 

Sub-
construct 

Definition  
(Charalambous & Pitta-Pantazi, 2007) Example with 2/3 

Part-whole an object is partitioned and the 
fraction compares the number of parts 
to the total number of partitions 

two out of three slices of pizza 

Ratio comparison of two different quantities two slices of cheese pizza and 
three slices of pepperoni 

Operator function applied to number, object, or 
set 

two-thirds of a pizza, regardless 
of the number slices 

Quotient division splitting two pizzas between 
three people 

Measure/ 
magnitude 

does not fit easily into the pizza example because it represents where a 
fraction is placed on a number line (or how big the fraction is) 

 
Although many children may understand fractions as a part-whole, this concept 

alone is not enough for complete understanding of fractions (Lamon, 2012; Pantziara & 

Philippou, 2012). Charalambous and Pitta-Pantazi (2007) included knowledge of a 

fraction’s measure as necessary for developing proficiency in fractions and noted that 

performance on fraction measure tasks is poor compared to performance on tasks that 

represent the other constructs. One reason may be because having a two-dimensional 

number makes it harder for students to grasp the one-dimensional concept of measure 

(sometimes referred to as magnitude, e.g., Booth, Newton, & Twiss-Garrity, 2013). 

Needing to understand how two numbers (the numerator and denominator) can be 

condensed into a single number or one-dimensional point on the number line makes it 

harder for students to perform simple algorithms, such as ordering and comparing 

fractions (see the integrated theory of numerical development, Rinne, Ye, & Jordan, 

2017; Siegler, Thompson, & Schneider, 2011). As in Table 1, consider 2/3 and compare 
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it to 5/6. It is difficult to immediately know which fraction is larger. Seeing that both five 

and six are larger than two and three, students may believe that 5/6 is larger. However, 

students are taught that the bigger the denominator, the smaller the part. This may lead 

to students saying 5/6 is the smaller number because it has the bigger denominator. It is 

not until we look at the relationship between two and three (for 2/3) and five and six (for 

5/6), that we can be sure that 5/6 is larger.  

Table 2 
Comparison of Fractions and Natural Numbers 

 Natural Numbers Fractions Fraction Arithmetic 
Form Takes the form ab Takes the form a/b  

Ordering 

Ordering number 
depends on 
comparing similar 
place values 

Ordering depends on the 
relationship between 
numerator and 
denominator 

 

Quantities Discrete Discrete and continuous  

Addition/ 
Subtraction 

Combining digits of 
same place value 

Use equivalent fractions 
with common 
denominator then 
combine numerators 

a/b + c/d = da/db + 
bc/db = (da+bc)/db 

Multiplication Multiplication makes 
number bigger 

Multiplication/division 
makes number bigger or 
smaller depending on the 
fractions 

a/b × c/d = ac/bd 

Division Division makes 
number smaller 

a/b ÷ c/d = a/b × 
d/c = ad/bc 

Note. Differences as stated in prior research. 

1.1.2. Fraction arithmetic is more complex than natural numbers. The 

algorithms used for addition, subtraction, multiplication, and division are also more 

complex for fractions than for natural numbers. When adding or subtracting natural 

numbers, one can simply combine the digits of the same place value and regroup if 

necessary. However, when adding or subtracting fractions, one must first find the least 

common denominator, transform the fractions so they will have the same common 

denominator, then add/subtract the numerators. Table 2 further describes how 

arithmetic (and their algorithmic symbols) differ for fractions. 
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The typical order of mathematics instruction may compound student difficulties in 

understanding fraction complexity. In most curricula, students learn natural numbers 

and then fractions (e.g., Common Core State Standards Initiative, 2016). Although 

learning fractions after learning natural numbers is a logical sequence, students often 

have a hard time reconciling the schema of natural numbers with that of fractions 

(Hiebert, 1992; Mack, 1995; Stafyliduo & Vosnidou, 2004). This may be especially 

problematic because algorithmic symbols for fractions do not have the same meaning 

as the algorithmic symbols for whole numbers (see Table 2). The change in the 

procedures associated with these symbols can be confusing for children who need to 

modify their schema for the symbols (e.g., the procedure for adding natural numbers 

compared to the procedure for adding fractions; Hiebert, 1992, p. 294). Thus, it is not 

just the concepts of fractions that are complex, their procedures are complex as well 

and often do not correspond to the procedures used with whole numbers.  

1.1.3. Conceptual versus procedural knowledge. Each of the aforementioned 

challenges to understanding fractions highlight the difficulties students may have in 

gaining conceptual knowledge of fractions. Conceptual and procedural knowledge have 

a bidirectional relationship, but are separate entities that contribute to fraction success 

(Baroody & Ginsburg, 1986; Rittle-Johnson & Alibali, 1999; Siegler & Stern, 1998). 

Thus, researchers sometimes split fraction knowledge into concepts and procedures 

(e.g., Bailey, Siegler, & Geary, 2014; Jordan et al., 2013; Jordan et al., 2016). 

Conceptual knowledge is the “explicit or implicit understanding of the principles that 

govern a domain and of the interrelations between pieces of knowledge in a domain” 

(Rittle-Johnson & Alibali, 1999, p. 175). By comparison, procedural knowledge is “the 
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knowledge of how to perform mathematical tasks…meant to generate the right answer 

to a given type of problem” (Hallet et al., 2012, p. 470). Although both conceptual and 

procedural knowledge are important to fraction achievement, reliance on procedural 

knowledge alone is unlikely to result in true understanding and advanced 

achievement—students who rely primarily on procedural knowledge may apply it 

incorrectly because they lack the conceptual knowledge that tells them when and why to 

use specific procedures (Hallet, 2008). 

1.2. What Types of Errors Do Students Make? 

It is important to understand both why students struggle with fractions and how 

they struggle with fractions. To understand how students struggle with fractions, 

researchers have looked at the errors students make when solving fraction problems 

(e.g., Ashlock, 2001; Bottge et al., 2014; Brown & Quinn, 2006; Malone & Fuchs, 2016). 

To do this, researchers give participants a test/activity and observe errors made. Most 

tests given in this manner have been free response (e.g., 1/2 + 3/4 = ______), although 

some have included multiple choice (e.g., Brown & Quinn, 2006). Although this 

procedure is used among most fraction error researchers, there are differences in 

methods in terms of what skills are tested and how errors are addressed. For example, 

some researchers have focused on specific fraction knowledge, like ordering or 

adding/subtracting fractions (Bottge et al., 2014; Malone & Fuchs, 2016), whereas 

others have focused on a broad range of fraction knowledge (Ashlock, 2001; Brown & 

Quinn, 2006). Additionally, some researchers define categories of errors a priori and 

then examine tests to see how often students make these errors (Bottge et al., 2014; 

Malone & Fuchs, 2016), whereas other researchers first give tests and then code and 
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define errors from student answers (Ashlock, 2001; Brown & Quinn, 2006). Regardless 

of the method used, two broad categories of fraction errors have emerged, general 

misunderstanding of the concepts of fractions and improper application of whole 

number rules to fraction problems (e.g., Ashlock, 2001; Brown & Quinn, 2006; Bottge et 

al., 2014; Malone & Fuchs, 2016). These a priori errors and their origins will be further 

discussed in the context of the results of this study (section 3.1. Fraction Errors).  

1.3. Motivation for Current Study 

There is an extant body of work identifying student errors in fraction problems 

and examining why students might make these errors (e.g., Ashlock, 2001; Brown & 

Quinn, 2006). Although these studies have contributed to our understanding of the 

structure of student struggles with fractions, they have largely viewed student errors in 

isolation, without consideration of the instructional context. Work examining student  

fraction errors using assessments embedded in authentic educational contexts might 

provide information more immediately applicable to the classroom. Additionally, 

previous research has used student errors to enhance instruction (e.g., Ashlock, 2001), 

but often focuses on individual errors and what they mean. However, it is likely that 

students who make one type of error also make another type of error. By classifying 

error profiles, teachers may be able to more efficiently address a combination of errors. 

Finally, examining profiles of errors both before and after an instructional event may 

reveal both typical patterns of change and those errors and patterns that may be 

resistant to instruction. This can lead to refinement in instruction aimed at common 

profile groups and the identification of smaller groups of students for more targeted 

intervention. Similar research has been conducted to see what algebraic errors are 
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persistent throughout instruction, but this has not yet been extended to fractions (Booth, 

Barbieri, Eyer, & Paré-Blagoev, 2014). 

1.4. Current Study 

 Using data from within the digital mathematics software ST Math, we identify 

common fraction errors, examine co-occurrence of errors to define student error 

profiles, and investigate the changes in profiles from before to after instruction. 

Specifically, we ask: 

1. What errors are made when students solve fraction problems within ST Math? 

2. How can students be grouped into classes by the errors they tend to make 

together? How do student characteristics differ between these classes? 

3. How do these classes change from pre-quiz to post-quiz? 

We expect that certain errors will be more prevalent in the pre-quiz due to a naïve 

understanding of fractions, such as the ratio error or whole number ordering (Ashlock, 

2001; Malone & Fuchs, 2016). We also expect errors related to fraction magnitude to be 

persistent into the post-quiz due to the construct’s complexity (Booth et al., 2013; Rinne 

et al., 2017; Siegler, et al., 2011). 

2 Method 

2.1. Context: ST Math 

ST Math, created by MIND Research Institute (MIND), is an interactive 

instructional software for computers and tablets that is based on theory that suggests 

that the ability to visualize mathematics concepts leads to better conceptual knowledge 

and performance (see Geary, 1995; National Research Council, 2005; Shaw & 

Peterson, 2000). ST Math has previously been shown to result in small improvements in 
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math achievement, especially on topics involving number sense (Rutherford et al., 

2014; Schenke, Rutherford, & Farkas, 2014). ST Math is currently used in 45 states with 

over one million students and is designed to align with both Common Core and relevant 

state standards, including those in Florida, the site of this study.  

Within ST Math, students progress through a number of objectives focused on 

specific math concepts. The ST Math content follows a hierarchical pattern: objective, 

sub-objective, game, level, puzzle. Within the objective/sub-objective, there are a 

variety of games that use the same imagery and design throughout their levels. Each of 

these games contains between one and 10 levels that increase in difficulty. Within each 

level, students complete interactive puzzles, which are the delivery method for the 

mathematics content. For each level, the student has between one and three lives—if 

they answer more puzzles incorrectly than they have lives, they are removed from the 

level and can chose to replay it or replay a previously-passed level. Before students 

begin the objective, they must complete a five-question multiple choice pre-quiz on that 

objective’s content. After demonstrating mastery of the content within an objective by 

successfully completing all levels within, the student then completes a five-question 

multiple choice post-quiz that mirrors the pre-quiz, question-for-question in topic, but 

uses different specific examples and numbers. The pre- and post-quizzes have either 

three or four answer choices for each question (see Table 5 on page 15 and Figure 1 on 

page 25 for examples).  

The third-grade curriculum for the 2015-2016 Florida version of ST Math had 23 

required objectives and eight optional objectives. These objectives covered content 

such as place values, addition and subtraction, multiplication and division, and fractions. 
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The three objectives covering fraction content were part of the required curriculum and 

began approximately 65% of the way through the curriculum. 

Table 3 
Demographics 

Variable Percent of Sample 
(N=1,431) 

Percent of Total 
(N=4,290) 

Male 54% 52% 

Student with Disability 10% 17%* 

Free/Reduced Lunch 46% 58%* 

English Language Learner 11% 13%* 
Gifted 19% 13%* 
Race   

Asian 6% 4%* 

Black 13% 21%* 

Hispanic 16% 18%*  
White 60% 53%* 

Other 5% 4% 
Note. Differences between total and analysis samples were determined using chi-squared tests. 
There were 75 schools in the sample and total.  
*Statistically significantly different at p < .05.  

 
2.2. Participants  

Participants were third graders from a school district in central Florida 

participating in an NSF-funded project relating gameplay within ST Math to student 

achievement and motivation. Students within the district played ST Math as part of their 

normal instruction during the 2015-2016 school year. The sample (N = 4,290) was 

limited to third graders with pre- and post-quiz data from the three fraction objectives (N 

= 2,187), and who also had district-provided demographic and achievement data (N = 

1,431). The 1,431 students attended 75 different schools, 54% were male, 60% were 

white, 16% were Hispanic, 13% were black, 5% were Asian, and 46% qualified for free 

or reduced lunch (see Table 3). The analysis sample differed at statistically significant 

levels (ps < .04) on most demographics from the larger sample of third graders. There 

were fewer students with disabilities, who qualified for free/reduced lunch, were English 
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Language Learners, and who were black. Conversely, there were more gifted students, 

Asian students, and white students. Because the sample was limited to students that 

had completed all three fraction objectives, the reduced sample may have a lower 

percentage of students using ST Math for remedial reasons.  

Table 4  
ST Math Fraction Objective for Third Graders 

Quiz Question Types Example 
Question 

Fraction Concepts 
(64% completion rate) 

1. match a fraction figure to a written 
fraction 

2. match whole numbers to their 
equivalent fractions (e.g., 3 = 3/1) 

First type 
Fractions on the  
Number Line (60% 
completion rate) 

1. match a point on a number line to a 
fraction 

2. match three fractions to points on the 
number line 

3. match a fraction to a point on the 
number line (possible points labeled 
with letters) 

 
Second type 

Comparing Fractions 
(54% completion rate) 

1. match a fraction figure to a written 
fraction 

2. match three fractions to points on the 
number line 

3. identify the correct statement of 
magnitude comparisons 
a. identify the correct fraction 

sentence 
b. select the appropriate fraction to 

complete the number sentence 
 

Third (b) type 
 
2.3. Measures of Fraction Errors 

As implemented in Florida during the 2015-2016 school year, the ST Math 

curriculum aligned with the Florida Standards, which introduced fractions in the third 

grade (Mathematics Florida Standards, 2014; MIND Research, 2016). The three fraction 

objectives within the ST Math third grade curriculum during this year were Fraction 
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Concepts, Fractions on the Number Line, and Comparing Fractions. The pre- and post-

quizzes for these objectives tested fraction concepts and algorithms. Table 4 describes 

the types of questions within each objective’s quizzes. 

2.4. Procedure 

2.4.1. Error coding. Data were the answer choices on the pre- and post-quizzes 

on fraction objectives. Only incorrect answer choices were included in the analysis of 

errors. Overall, there were 86 possible incorrect answer choices for the six quizzes (pre- 

and post-quizzes for three objectives). Error coding was completed in three key steps. 

First, answer choices were qualitatively coded using a priori and a posteriori codes. The 

a priori codes were taken from previous research on fraction errors (e.g., Ashlock, 2001; 

Bottge et al., 2014; Brown & Quinn, 2006; Malone & Fuchs, 2016). When errors did not 

align with a priori codes, they were given an a posteriori code based on the presumed 

logic used to select that answer. After the first round of coding was finished, the authors 

collaborated with personnel at MIND to confirm or refine the researchers’ a posteriori 

codes. In designing the quiz questions, MIND often crafted incorrect answer options to 

represent common errors they had observed students make in prior versions of ST 

Math; thus, these common errors from MIND’s observations were reflected in the final 

codes. Lastly, error code names were refined to follow consistent naming conventions. 

Even after the three rounds of coding, there were still some answer choices that did not 

fit with a known or postulated error pattern. These answer choices were deemed filler 

(or random) choices. For example, in a question asking what fraction represented a 

circle with five parts that has one part shaded (e.g., 1/5) the answer option 2/5 did not 

follow any identifiable error logic. Thus, this answer choice was coded as “filler.” From 
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the 86 incorrect answer choices, there emerged eight different error types and the filler 

choice, for a total of nine error categories.   

2.4.2. Data cleaning. To make the error codes usable data, several steps were 

followed in the statistics analysis software Stata (version 14; StataCorp, 2015). 

Variables were created that represented the proportion of times the student made that 

specific error to the total errors the student made. In this manner, if a student made the 

complement error twice and the filler error three times, they would have a total of five 

errors. The proportion for the complement error would be 0.4 (2/5) and the proportion 

for the filler error would be 0.6 (3/5). All other errors would have proportions of zero 

because they did not make those errors. The last step was creating an ordinal scale that 

would be compatible with latent class and transition analyses (Goodman, 2002): 

0. the student did not make the error; 

1. the student made the error between 0% and 25% of the time (0 < x ≤ 0.25); 

2. the student made the error between 25% and 50% of the time (0.25 < x ≤ 0.50); 

3. the student made the error between 50% and 75% of the time (0.50 < x ≤ 0.75); 

4. the student made the error between 75% and 100% of the time (0.75 < x ≤ 1). 

Error proportions were used in analyses instead of number of errors made to control for 

the number of errors students made overall. Using number of errors would bias results 

by heavily weighting on student performance and we would lose the relative frequency 

of each error. 

2.4.3. Latent class analysis. Latent class analysis (LCA) is a mixture modeling 

method used with categorical variables. It attributes the relationship between variables 

to an unobserved, latent variable (Collins & Lanza, 2010; Goodman, 2002; Nylund, 
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Asparouhov, & Muthen, 2007). The goal of LCA is to group people into classes based 

on their observed variables. These classes represent the underlying categorical latent 

variable. This procedure is similar to factor analysis; however, it provides a person-

centered approach instead of a variable-centered approach. Thus, the classes are 

created to group similar participants together, rather than similar variables (Collins & 

Lanza, 2010; Goodman, 2002). The person-centered approach allows for 

generalizations of the patterns of behavior. In this study, LCA was used to determine 

fraction error patterns. Models with k versus k + 1 classes were tested iteratively to 

determine best fit. To determine best fit, sample size adjusted Bayesian Information 

Criterion (adjusted BIC), Bayes Factor, Entropy, and the bootstrap likelihood ratio test 

(BLRT) were used (Nylund et al., 2007).  After conducting the LCA, class membership 

was regressed on demographics and game-play variables to further understand the 

composition of each class and external variables that predicted class membership. For 

this step, logistic regressions were used and were clustered at the teacher level to 

account for nesting within classrooms. 

 2.4.4. Latent transition analysis. To determine if class membership changed 

between time points, such as between a pre- and post-quiz, latent transition analysis 

(LTA) was used (Rindskopf, 2010). Rindskopf (2010) defines LTA 

as a statistical model in which (i) latent categorical constructs are defined at two 

or more time points, (ii) parameters are included that assess initial status and 

transition probabilities from time i to i + 1..., and (iii) observed variables are 

imperfect indicators of the hypothesized latent variables. (p. 199) 
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LTA regresses the class variable at the second time point onto the first time point to 

determine the likelihood of the classes remaining the same. LTA was used to determine 

if classes remained the same between pre- and post-quiz. The Mplus software (version 

7; Múthen & Múthen, 2016) was used to run both the LCA and LTA.  

 Logistic regressions were used to determine how students differed between the 

classes, as was done with pre-quiz classes. Additionally, logistic regressions were used 

to predict the movement from pre- to post-quiz class. All logistic regressions were 

clustered at the teacher level to account for classroom similarities. 

3 Results 

3.1. Fraction Errors 

Three of the 10 error codes were developed a priori—illogical sizing/spacing 

(Ashlock, 2001), ratio (Ashlock, 2001), and whole number ordering (Malone & Fuchs, 

2016)—and the other six were a posteriori—complement, filler, incomplete information, 

reciprocal, reducing fractions to whole numbers, and same numerator/denominator 

ordering. Table 5 summarizes the types of questions and the errors possible within each 

question type. Overall, students made an average of seven errors on pre-quizzes and 

four errors on post-quizzes (out of 15 questions each for both pre- and post-quizzes, 

see Table 6). Table 7 details the proportions of times each error was made and how 

many students made it. See Figure 1 for example of errors. 

3.1.1 Complement. The complement error occurred when the student chose the  

complementary fraction to the correct answer choice. For example, if the question 

asked what fraction represents the shaded part of a shape and the answer was 2/3, the 

complement would be 1/3. On average, students made this error 11% of the time in pre-
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quizzes and 9% of the time in post-quizzes. About 29% of students made the 

complement error in pre-quizzes and 23% in the post-quizzes. 

3.1.2. Filler. The filler error encompassed answer choices that did not appear to  

follow a known error logic. Consider the example in Figure 1. The correct answer was 

0/1 and 1/1 was coded as representative of reducing fractions to whole number error. 

However, 1-0 and 0-1 were coded as filler because they did not fit with any other error 

and they addressed whole number subtraction more so than fractions. For the pre-quiz, 

there were six questions that contained at least one filler error, with eight answer 

choices coded as filler. For the post-quiz, there were four questions that contained at 

least one filler error, with six answer choices coded as filler. The filler error was made 

about 11% of the time on pre-quizzes and 7% of the time on post-quizzes. 

Approximately 49% of students made this error at least once on pre-quizzes and 55% 

on post-quizzes.  

3.1.3. Illogical sizing/spacing. This error represented misunderstanding that 

fraction parts must have equal sizes and consistent spacing (Ashlock, 2001). There 

were two ways this error was reflected. The first was when students were presented 

with figures divided into unequal parts and were asked to match this figure to a fraction. 

Some students’ answers included the number of (unequal) parts in the denominator, 

indicating a failure to recognize that parts of a fraction must be the same size. The 

second was when students were presented with number lines upon which fractions 

were placed with incorrect space. Students made this error, on average, 9% of the time 

on pre-quizzes and 10% of the time on post-quizzes. Twenty-nine percent of students 

made the illogical sizing/spacing error at least once on pre-quizzes and 35% of students 
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made it at least once on post-quizzes. 

Table 5 
Summary of Question Types and Their Errors 

Question Type Number of 
Questions Errors Possible 

Matching written fractions to 
visual models 8 

complement 
illogical sizing/spacing 
incomplete information 
ratio 
reciprocal 
reducing fractions to whole numbers 

Making equivalent fractions 4 

complement 
incomplete information 
reciprocal  
reducing fractions to whole numbers 

Placing fraction(s) on a 
number line 12 

complement 
illogical sizing/spacing 
incomplete information 
reciprocal 
whole number ordering 

Comparing fractions 6 same numerator/denominator ordering 
whole number ordering 

Note. Question types are from the three fraction objectives. 
 
3.1.4. Incomplete information. This error had two different characterizations. 

The first was when the answer was partially correct but missing a critical part that would 

make it correct (e.g., if there was a mark placed at one third of a number line but the 

number line was zero to two, the student might have answered 1/3 when in reality the 

answer was 2/3). The second was when the answer matched only part of the question. 

For example, if the student was asked to identify the mixed number 1 3/4, a student 

making this error would answer only 3/4 or only 1, missing the totality of the original 

prompt. Students made this error, on average, 19% of the time on pre-quizzes and 8% 

of the time on post-quizzes. Sixty-seven percent of students made the incomplete 

information error at least once on pre-quizzes and 35% of students made it at least 

once on post-quizzes. 
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3.1.5. Ratio. Ratio errors were made when the student selected the fraction as 

the shaded parts over the unshaded parts instead of the shaded parts over all of the 

parts (Ashlock, 2001). Thus, if a circle was split into four equal parts with one of the 

parts shaded, a student making this error would select 1/3 instead of 1/4. On average, 

students made this error 7% of the time in pre-quizzes and 2% on post-quizzes. About 

7% of students made the ratio error in pre-quizzes and 6% of students made this error 

in the post-quizzes.  

3.1.6. Reciprocal. The reciprocal error occurred when the student flipped the 

numerator and denominator. For example, if the question asked what fraction 

represents the shaded part of a shape and the answer was 2/3, a student making the 

reciprocal error would select 3/2. Students made this error 15% of the time on pre-

quizzes and 10% of the time on post-quizzes. Roughly half of the students made this 

error at least once on pre-quizzes (49%) and post-quizzes (45%). 

3.1.7. Reducing fractions to whole numbers. Unlike whole numbers, fractions 

can be equivalent to both other fractions and to whole numbers (Bottge et al., 2014). 

This error occurred when a student did not correctly identify fractions that were 

equivalent to whole numbers. For matching written fractions to visual models, a student 

may answer that a circle with one section of five shaded is equivalent to the fraction 5/5. 

As for matching fractions, a student making this error might incorrectly state that three is 

equal to 3/3.  Answer choices that corresponded to these errors all had fractions that 

could be reduced to a whole number. The fractions in these answer choices followed 

one of three forms: (1) a/a, where the fraction could be reduced to one; (2) 0/a, where 

the fraction could be reduced to zero; or (3) a/1, where the fraction could be reduced to 



FRACTION ERRORS—LCA & LTA  21 

                                                       

a. Students made the reducing fraction error 17% of the time on pre-quizzes and 10% of 

the time on post-quizzes. Approximately 66% of students made this error on the pre-

quizzes and 44% made it on the post-quizzes. 

 
 
Table 6  
Total Errors Made in Quizzes 

 Mean Standard Deviation Minimum Maximum 
Pre-Quiz 6.621 2.757 0 13 
Post-Quiz 4.135 2542 0 14 
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Table 7  
Summary of Error Types 

Error Description 

Proportion of 
Times Error is 

Made 

Max 
Times 
Error 
Was 
Made 

Number of 
Students 

Who Made 
This Error Mean Min  Max  

Complement Complement of 
correct fraction 
(e.g., correct: 2/3, 
incorrect 1/3) 

0.11 0.00 1.00 3 421 

0.09 0.00 0.67 2 327 

Filler Incorrect answer 
but no obvious error 

0.11 0.00 0.71 4 706 

0.07 0.00 0.50 3 843 
Illogical 
size/spacing 

Unequal parts of a 
shape or illogical 
spacing on the 
number line† 

0.09 0.00 0.75 3 422 

0.10 0.00 0.75 3 503 

Incomplete 
information 

E.g., leaving out the 
whole number in a 
mixed fraction 

0.19 0.00 1.00 4 855 

0.08 0.00 0.67 2 338 
Ratio The fraction is the 

shaded part over 
the unshaded parts† 

0.07 0.00 1.00 1 99 

0.02 0.00 0.67 2 82 
Reciprocal Reciprocal of 

correct fraction 
(e.g., correct: 2/3, 
incorrect 3/2) 

0.15 0.00 0.75 3 705 

0.10 0.00 0.60 3 639 

Reduction to 
whole number 

Misconception of 
what fractions are 
equivalent to whole 
numbers  

0.17 0.00 0.80 4 938 

0.10 0.00 0.60 3 635 

Same 
numerator/ 
denominator 
ordering error 

Ordering incorrectly 
when the fractions 
had the same 
numerator or 
denominator 

0.12 0.00 0.33 1 498 

0.08 0.00 0.50 2 399 

Whole number 
ordering 

Ordering only the 
numerator or 
denominators † 

0.26 0.00 0.60 6 1,282 

0.12 0.00 0.57 4 822 
Note. Statistics for pre-quiz errors are on top and statistics for post-quiz errors are below. 
N=1,431. 
 † a priori code.  
 
Appendix A includes a table displaying correlations between error types. 
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3.1.8. Same numerator/denominator ordering error. This ordering error was 

possible only when students were asked to compare fractions with the same numerator 

or denominator in the comparing fraction questions. Within these questions, the student 

would only have to compare the numerator or denominator, but still made an error. For 

example, a student may say 1/3 > 2/3 (same denominator). There was one question in 

the pre-quiz and two questions in the post-quiz for which this error was possible. 

Students made the same numerator/denominator ordering error 12% of the time on pre-

quizzes and 8% of the time on post-quizzes. Approximately 35% of students made this 

error on the pre-quizzes and 28% made it on the post-quizzes.  

3.1.9. Whole number ordering. The whole number ordering error was made 

when the student ordered the fractions based on their numerator or the denominator, 

without apparent consideration of the relationship between the two (Malone & Fuchs, 

2016). For example, a student might order 1/2, 1/3, and 1/4 in that order, because two is 

less than three and three is less than four. In this case, they are only ordering based on 

the denominators and not considering the fraction as one number defined by the 

numerator/denominator relationship. Students made the whole number ordering error, 

on average, 26% of the time on pre-quizzes and 12% of the time on post-quizzes. 

Almost all students made this error at least once on pre-quizzes (90%) and over half of 

students made it at least once on post-quizzes (57%). Students made the whole 

number ordering error the most in the pre-quiz and post-quiz.  

3.2. Pre-Quiz Latent Class Analysis 

 As noted above, nine types of errors could be made in the third-grade quizzes—

complement, filler, illogical size/spacing, incomplete information, ratio, reciprocal, 
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reducing to whole numbers, same numerator/denominator ordering, and whole number 

ordering. Analyses were run in Mplus using the proportion of times each of the nine 

errors were made to identify categorical latent variables. 

3.2.1. Fit criteria. A comparison of models with one to five classes is found in 

Table 8. There was no model that displayed the best fit across every fit statistic. 

Although the two-class model had the highest Bayes Factor, the two-class model did 

not contain obvious patterns. Conversely, the four-class model had the lowest BIC but 

did not have enough distinction between the classes. However, the three-class model 

had the second lowest adjusted BIC value of the models (above 10; Kass & Raftery, 

1995) and was the most interpretable; therefore, the three-class model was determined 

to be the best-fitting. 

Table 8 
Table of Third Grade Pre-Quiz LCA Values 
Class Sample Size Adjusted 

BIC 
BLRT p-value Bayes Factor 

1 21746.513   
2 21493.295 <0.001 >10 
3 21430.938 <0.001 <1 
4 21422.483 <0.001 <1 
5 21454.988 <0.001 <1 

Note. Entropy for three-class model is 0.543. The three-class model was chosen due to low 
sample size adjusted BIC and interpretability of the model. 
 

3.2.2. Pre-quiz error classes. Figure 2 shows the structures of fraction errors in 

each class. The classes were examined holistically and named based on the prominent 

pattern of errors. The naming pattern followed one of two options. The first is that the 

class name is the same as the errors the students in that class made the most often. 

The second naming pattern was used when there was no error was made significantly 

more often than the other errors. In this case, the name represented the distribution of 

all errors. The classes for the pre-quiz errors were the Distributed Errors Class, Whole 
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Number Ordering (WNO) Class, and Few Errors Class. Students were approximately 

evenly distributed within the pre-quiz classes (30%, 35%, and 35%, respectively). 

 

3.2.2.1. Distributed Errors Class. The first class had the widest distribution of 

errors, meaning that they made the most error types of all of the classes. The majority 

of the errors were made at least once, with six of the nine errors being made at least 
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25% of the time. About 30% of the students (n = 432) were placed in the Distributed 

Errors Class. 

3.2.2.2. Whole Number Ordering Error Class. The students in the WNO Class 

primarily made the whole number ordering error. Although these students also made 

other errors, the majority of students made the WNO error at least 25% of the time but 

rarely made other errors this often. Approximately 40% of the students (n = 572) were 

placed in the WNO Class. 

3.2.2.3. Few Errors Class. Students in this class primarily did not make errors, 

except for the whole number ordering error. However, this class is distinct from the 

WNO Class because errors were made so infrequently—over 70% of the students in 

this class did not make six of the nine errors. Of the sample, 30% (n = 427) were placed 

in the Few Errors Class. 

3.2.3. Predicting class membership. To determine who was in each class, 

separate logistic regressions were conducted for each class (0/1 whether the student 

was a member of that class). When running logistic regressions, an odds-ratio of 

greater than one indicates an increase in likelihood of membership. Conversely, an 

odds-ratio of less than one indicates a decrease in likelihood of membership. If an odds 

ratio is less than one, taking the difference of the odds ratio and one can be interpreted 

as the decrease in odds. Student pre-quiz emerged as a statistically significant predictor 

of membership for each class. For each point increase in overall average pre-quiz 

score, students had a 1.12-fold increase in the odds of being classified into the Few 

Errors Class. However, for each point increase in average pre-quiz score, student odds 

of being classified in the Distributed Errors Class decreased by 0.06-fold. Similarly, for 
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each point increase in average pre-quiz score, student odds of being classified in the 

WNO Class decreased by 0.02-fold. Therefore, students who had higher pre-quiz 

averages tended to be in the Few Errors class, whereas students who had lower pre-

quiz averages tended to be in the Distributed Errors or WNO Class. No other predictors 

and demographics were statistically significantly related to class membership for either 

the Few Error or the Distributed Errors Classes. However, if a student was classified as 

gifted, the odds of them being in the WNO Class decreased by 0.51-fold.  

Table 9 
Logistic Regressions for Pre-Quiz Class Membership 
 Distributed Errors WNO Error Few Errors 
 Odds-

Ratio 
Z-

score 
Odds-
Ratio 

Z-
score 

Odds-
Ratio 

Z-
score 

Male 1.24 1.65 0.80 -2.00 0.90 -0.70 
Content 
Progress 1.00 -0.09 1.00 0.05 1.00 0.09 
Average pre-quiz 0.94 -15.38 0.98 -7.42 1.12 17.60 
Disability 0.87 -0.60 1.13 0.62 0.90 -0.41 
Free Lunch 0.98 -0.13 1.24 1.53 0.68 -2.31 
ELL 1.10 0.44 1.25 1.14 0.60 -1.57 
Gifted 1.35 1.60 0.49 -4.02 1.37 1.40 
Race       

Asian 1.33 1.08 0.82 0.75 0.84 -0.54 
Black 1.13 0.59 1.26 1.39 0.70 -1.53 
Hispanic 0.93 -0.35 1.02 0.13 1.09 0.38 
Other 1.22 0.70 1.24 0.76 0.63 -1.37 

Constant 11.60  1.95  0.00  
Note.  Odds-ratios and Z-scores are provided. Reference groups: White, non-English Learner, 
not eligible for free/reduced lunch. Clustered by teacher. N=1,431.  
Bold values are significant at p < .001. 
 
3.3. Latent Transition Analysis 

 For the latent transition analysis, a post-quiz model was constrained to three 

classes for two reasons. First, the three-class model had the lowest sample size 

adjusted BIC value (see Appendix B). Second, it allowed the number of classes to 

remain constant across the pre- and post-quiz models. The three-class post-quiz model 
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was estimated by regressing the post-quiz model onto the pre-quiz model. This 

regression determined the thresholds for the post-quiz classes.  The thresholds 

determine how often each error is made in each class, i.e., what the prominent pattern 

of errors is for each class. Additionally, the regression determines the transition 

probabilities based on the models, i.e., how likely a student is to remain in a given class 

for pre-quiz and post-quiz. 

3.3.1. Post-quiz model. Figure 3 shows the structures of fraction errors in each 

class for the post-quiz errors. As with the pre-quiz classes, colors indicate the percent of 

times, on average, students in that class made the particular error out of their total 

errors made and the y-axis represents how many students in that class made the 

particular error the specified proportion of time. In the same manner as was done for the 

pre-quiz Latent Class Analysis, the post-quiz classes were examined holistically and 

named based on the prominent pattern of errors. The post-quiz error classes were the 

Reciprocal Error Class, Distributed Errors Class, and Few Errors Class. 

3.3.1.1. Reciprocal Error Class. Students in this class made errors that were 

largely distributed across the types, as is illustrated by the relatively high amount of blue 

in the bars (the error was made between 0% and 25% of the time). However, over 80% 

of the students made the reciprocal error at least once, in stark contrast to the 

percentage of students who made this error in the other two post-quiz classes. 

Approximately 30% of students (n = 437) were in the Reciprocal Error Class. 

3.3.1.2. Distributed Errors Class. Similar to the Distributed Errors Class in the 

pre-quiz, the post-quiz Distributed Errors Class comprised students who made a variety 

of errors, but the reducing fraction to whole numbers and whole number ordering errors 
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were made most often. However, students also made other errors more often than in 

the other classes. Of the sample, 29% (n = 415) were in this class. 

 

3.3.1.3. Few Errors Class. Like the pre-quiz Few Errors Class, students in the 

post-quiz Few Errors Class made the least errors. This class does differ from its pre-

quiz counterpart by having most errors made less often, especially in regards to the 
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relatively small number of whole number ordering errors. Approximately 40% of 

students (n = 579) were in this post-quiz Few Errors Class. 

 3.3.3. Differences in the classes. As with the pre-quiz, logistic regressions were 

run to determine which demographic and game-play variables predicted class 

membership. A student had higher odds (1.09-fold increase) of being placed in the Few 

Errors Class if they had a higher pre-quiz average. Conversely, higher-performing 

students were less likely (0.05-fold decrease) to be placed in the Distributed Errors 

Class and the Reciprocal Error Class (0.03-fold decrease). Students were more likely to 

be placed in the Few Errors Class if they were identified as gifted (2.14-fold increase) 

but less likely to be placed in the Reciprocal Error Class (0.52-fold decrease). See 

Table 10 for logistic regression statistics. Additionally, see Appendix C for average 

proportion of times errors were made by each class. 

Table 10 
Logistic Regressions for Post-Quiz Class Membership 

 Reciprocal Error Distributed Errors Few Errors 

 Odds-
Ratio 

Z-
Score 

Odds-
Ratio 

Z-
Score 

Odds-
Ratio 

Z-
Score 

Male 0.99 -0.05 0.90 -0.77 1.00 0.04 
Content 
Progress 1.00 0.70 1.00 -1.37 1.00 0.90 
Average pre-
quiz 0.97 -8.63 0.95 -12.16 1.09 15.87 
Disability 1.04 0.20 0.87 -0.65 1.06 0.24 
Free Lunch 1.04 0.30 1.18 1.13 0.75 -1.78 
ELL 1.56 2.14 1.02 0.08 0.53 -2.33 
Gifted 0.48 -3.74 0.79 -1.20 2.14 3.43 
Race       

Asian 0.92 -0.28 0.91 -0.33 1.15 0.48 
Black 1.47 2.13 1.09 0.46 0.59 -2.49 
Hispanic 0.93 -0.39 1.02 0.12 1.07 0.35 
Other 0.91 -0.31 1.92 2.23 0.54 -1.90 

Constant 1.60  10.47  0.00  
Note.  Odds-ratios and Z-scores are provided. Reference groups: White, non-English Learner, 
not eligible for free/reduced lunch. Clustered by teacher. N=1,431.  
Bold values are significant at p < .001. 
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3.3.4. Transition probabilities. Students who were in the Few Errors pre-quiz 

class, the class that was highest-performing at pre-quiz, moved only to the Reciprocal 

Error and Few Errors post-quiz classes, among which they were almost entirely placed 

into the post-quiz Few Errors Class (99.8%; only one of the 506 transitioned to the 

Reciprocal Error Class). Students who were in the pre-quiz Distributed Errors Class, the 

class that was lowest-performing at pre-quiz, moved to each of the three post-quiz 

classes. Primarily, these students were placed in the post-quiz Distributed Errors Class 

(56%), followed by the post-quiz Reciprocal Error Class (27%), with only 16% placed in 

the post-quiz Few Errors Class. Lastly, the students in the pre-quiz Whole Number 

Ordering Class, followed a similar transition pattern to those in the pre-quiz Distributed 

Errors Class. Of the WNO Class, 64% moved to the post-quiz Reciprocal Error Class, 

35% moved to the Distributed Errors Class and 6% moved to the Few Errors Class. See 

Table 11 for a summary of the latent transition probabilities. 

Table 11  
Latent transition probabilities  

  Post-Quiz Classes 
  Reciprocal Error Distributed Errors Few Errors 

Pre-Quiz 
Classes 

Distributed Errors 0.274 0.561 0.163 
WNO Error 0.642 0.352 0.006 
Few Errors 0.002 0.000 0.998 

Note. Cells represent the probability that a student would be in the post-quiz class given that 
they were in the designated pre-quiz class. For example, if a student started in the Few Errors 
Class, there was a 0% chance they would be in the post-quiz Distributed Errors Class. 
 
 Logistic regressions were run to better understand which students transitioned 

between classes. Because all but one student who started in the pre-quiz Few Errors 

Class remained in the post-quiz Few Errors Class, logistic regressions were only run on 

students who started in either the Distributed Errors or WNO Class. Among these six 

transition possibilities, statistically significant predictors were only identified for 
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movement into the post-quiz Few Errors Class. If a student started in the pre-quiz 

Distributed Errors Class, the odds of them moving into the post-quiz Few Errors Class 

increased if they had a higher pre-quiz average or were classified as gifted (1.04-fold 

and 3.58-fold increase, respectively). Being classified as gifted also increased the odds 

of being placed in the post-quiz Few Errors Class if students started in the WNO Class 

(44.86-fold increase). However, being an English Language Learner also increased the 

odds of students transitioning from the WNO Class to the Few Errors Class (11.30-fold 

increase). See Appendix D for full logistical regression models. 

4 Discussion 

 This study had three main questions—(1) What errors are made when students 

solve fraction problems? (2) How can students be classed by the errors they tend to 

make together? and (3) How do these classes change from pre-quiz to post-quiz? 

4.1. Research Question 1: Fraction Errors in St Math 

Within this study, we expand upon previous fraction error analysis in both the 

context and content of our questions and in the identification of our errors. First, 

breaking from the tradition of using open-response researcher-administered questions 

(e.g., Ashlock, 2001; Bottge et al., 2014; Brown & Quinn, 2006; Malone & Fuchs, 2016), 

we used a multiple-choice test provided in the course of students’ actual instruction. 

Although the multiple-choice nature of our instrument limited the scope of errors 

students could make, it allowed us to examine errors in-situ within an authentic 

educational context. Additionally, if designed carefully and with common errors in mind, 

the use of such tests may make error identification more efficient—if researchers can 

make multiple choice answers with specific errors in mind, they can assume the error by 
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the answer choice instead of coding each written answer. However, because students 

were required to pick an answer choice, selecting a random wrong (or right) answer was 

more likely to occur. It is therefore possible that students may have picked an answer 

choice that matched an error code without actually following the logic to get that error, 

resulting in more noise. This may be especially true of students new to fraction 

problems, who, on open-ended questions, might not provide any answer. By forcing an 

answer choice, students who are new to fractions may make multiple errors. In fact, it 

appeared that this may have borne out in the propensity of lower-performing students 

within our pre-quiz Distributed Errors Class. 

As our second contribution to the nature of error identification, we described new 

categories of errors. Of the nine errors coded, six of them were a posteriori in that they 

were not previously described in research on fraction errors—complement, filler, 

incomplete information, reciprocal, reducing fractions to whole numbers, and same 

numerator/denominator ordering error. These a posteriori errors were made just as 

often, if not more, than those assigned a priori codes from prior research. It remains to 

be seen if these errors would be found outside of the context of ST Math or in non-

multiple-choice examinations. 

As the multiple-choice nature of the ST Math quiz questions may have influenced 

the errors that arose, so too may have the visual nature of the questions. The focus 

within ST Math on visual-spatial instruction is reflected in a number of quiz questions 

that used visual representations, such as shaded figures or number lines. These 

questions may elicit different errors than those seen in prior studies, which, other than 

writing factions based on visual models, relied primarily on questions that were symbolic 
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(e.g., 1/2 + 3/4 = ____; Ashlock, 2001; Bottge et al., 2014; Brown & Quinn, 2006; 

Malone & Fuchs, 2016).  

4.2. Research Question 2: Models of Struggling Students  

 Three classes of errors were identified using LCA at pre-quiz—Few Errors, 

Distributed Errors, and Whole Number Ordering Error. Students in the Few Errors Class 

tended to have the highest pre-quiz averages. The students in this class made few 

errors, and when they did make errors, tended to make the same error the majority of 

the time. Although the LCA identified this group as a class, many of the students had 

little in common regarding the type of errors they made—instead, they were joined 

together merely by their propensity to make few errors. It is intuitive that high performers 

would make few errors overall and that these errors may not be consistent among the 

high performers. There are two possibilities we offer for why these students did not 

make similar types of errors. First, it may be that even high-performing students 

experience moments of carelessness, and therefore the distribution of errors these 

students make is the result of a mostly random process. Alternately, it may be that there 

are sub-groups within this class that cluster on their tendency to make certain types of 

errors, but our instrument was not sensitive or extensive enough to capture these 

differences. 

 The Whole Number Ordering Error Class contained less than five percent of 

students who did not make the whole number ordering error and almost 60% who made 

it at least half of the time. The high rate of this error—ordering only numerators or 

denominators without considering the relationship between the two—is likely due to a 

naïve understanding of fractions and an improper reliance on knowledge of whole 
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numbers and their ordering schema (Malone & Fuchs, 2016). Although other errors 

were made by students in this class, none were as concentrated as the whole number 

ordering error. Students in the WNO Class tended to score lower on the pre-quizzes 

and were less likely to be labeled as gifted.  

 Lastly, the largest group of students were placed in the pre-quiz Distributed 

Errors Class. This class made a wide range of errors but did not make most errors more 

than 25% of the time. The seemingly random nature of their errors may indicate that 

most of their errors are due to a general lack of fraction knowledge and unfamiliarity 

with fraction problems. This conclusion is further supported by students in this class 

having the lowest pre-quiz averages, indicating a lower level of fraction knowledge. This 

may indicate that students with little fraction knowledge do not make errors that indicate 

one type or a few types of conceptual or procedural misunderstandings, but instead, 

exhibit a pattern that may be more indicative of guessing. It may be that these students 

would be those that would leave open-ended questions blank, and therefore would not 

be attributed to a specific error or classified into an error profile on the types of exams 

frequently used in prior fraction error research. 

4.3. Research Question 3: Class Membership Changes Pre to Post 

Both class membership and class structure differed between pre- and post-

quizzes. This was expected, because the number of total errors being made decreased 

as the students learned from ST Math. Two of the three pre-quiz classes remained in 

the post-quiz—the Distributed Errors Class and the Few Errors Class. Interestingly, the 

percent of students in the Few Errors Class increased by 10% from pre- to post-quiz. 

The class also changed slightly in its composition of errors, as depicted in Figure 4, 
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wherein the pre-quiz error distribution is shown in the left columns and the post-quiz in 

the right.  

 

The most notable change from pre to post is that the proportion of errors  

increased for the filler and illogical size/spacing categories in both classes and the 

complement error in the Distributed Errors Class. For the illogical size/spacing error, 

students who make this error have some aspect of the question correct—they 

understand that 1/5 is one of five parts (for example) but do not recognize that the parts 

must be equal, or they correctly order fractions but do not properly space them on the 
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number line. Thus, the students who make this error may have a partially developed 

understanding of fractions. Alternately, students who selected answer options in line 

with this error may have been confused at encountering what may be viewed as a tricky 

option. Questions that elicit this error are necessarily complex–changing the spacing of 

fractions on the number line may have taxed student working memory. The filler error 

may have been more prevalent in the post-quiz classes because students were not 

experiencing a specific misconception, rather they likely made careless errors. Thus, 

although they have applied certain misconceptions in the past, those misconceptions 

are suppressed and thus the student relies on a different strategy, in this case, choosing 

an answer choice that does not fit under a specific misconception (see Booth et al., 

2014, describing the arithmetic error for an example of an error not representing a 

misconception). This theory is supported by the Overlapping Waves theory that states 

that children’s strategies fluctuate as they learn (Siegler, 1996). 

 Only movement into the Few Errors class could be predicted by student 

characteristics. Students who had higher pre-quiz averages and were labeled as gifted 

were more likely to move from the Distributed Errors Class in the pre-quiz to the Few 

Errors Class in the post-quiz. Gifted students, in addition to English Language Learners, 

were also more likely to move from the Whole Number Ordering Class to the Few Errors 

Class. Movement between the classes from pre- to post-quiz followed a pattern similar 

to the one found with Resnick et al.’s (2016) fraction magnitude growth trajectories. 

They found three growth classes—consistently accurate, inaccurate with growth, and 

inaccurate with minimal growth. Although our project did not specifically look at growth, 

we did find that students who made few errors in the pre-quiz continued to make few 
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errors in the post-quiz (similar to the consistently accurate class), students moved from 

one of the lower performing classes—Distributed Error and WNO—to the post-quiz Few 

Errors class (similar to the inaccurate with growth class), and some students were never 

in either of the Few Errors class (similar to the inaccurate with minimal growth class). 

4.4. Limitations 

 As noted, although the multiple-choice nature of the questions allowed us to 

collect authentic educational data from a large number of students, it also provided a 

limitation in that it constrained the possible number of errors to those already provided 

within the software. It also allowed for the number of times an error could be made to 

vary. For example, the same numerator/denominator ordering error could only be made 

on one specific type of question—comparing fractions. Similarly, the number of times an 

error could be made varied between the pre- and post-quiz, preventing a true measure 

of difference, although this difference was small (differences ranging from zero to two 

possible errors). Additionally, although we grounded our coding decisions in both prior 

research of fraction errors and understanding of mathematics and mathematics 

education, we lacked insight into each student’s thought process as they solved the 

problems. Future studies may rectify this shortcoming by providing for methods such as 

cognitive interviewing to complement error coding. 

4.5. Implications and Future Directions 

 Our results are immediately applicable to the digital platform from within which 

the data came, ST Math. First, we can work with the platform developers to reduce the 

number of filler items in ST Math quizzes and provide for a variety of error options with 

which to identify student misconceptions. These same guiding principles can be used by 
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other test and platform developers to allow for more fine-grained data collection and 

identification of opportunities to assist student learning. Even after instruction, students 

demonstrated difficulty with the proper placement of numerator and denominator 

(reciprocal error). It may be that these are difficult concepts for all students, which would 

explain the persistence of these errors at post-quiz. Alternately, it could mean that ST 

Math is not presenting content in a way that teaches this idea as well as it does other 

fraction concepts. Examination of the curriculum and the puzzles that cover material 

related to these concepts can help to answer this question. Experimental studies 

altering this material and examining resulting error patterns can inform future iterations 

of both ST Math and other elementary fraction curricula.  

Our work can also be applied to the realm of personalized or individualized 

instruction (e.g., learner profiles; Pane, Steiner, Baird, & Hamilton, 2015). As typically 

conceptualized, personalized learning aims to tailor each student’s instructional needs 

to meet that student “where they are.” This may be optimally accomplished by a 

computer program, such as ST Math, that can require mastery of a skill before a student 

moves on to more advanced skills. However, technology cannot work in isolation—

knowledgeable teachers are necessary to support student learning (Anderson, Corbett, 

Koedinger, & Pelletier, 1995; Hew & Brush, 2007). By identifying typical patterns of 

student errors and grouping students based on the classes that define these patterns, 

teachers may be able to efficiently offer a type of personalized learning outside of the 

digital environment. At pre-test, a number of students displayed naïve schemas about 

fractions as demonstrated by the clustering of their errors around whole number 

ordering. The needs of these students in the classroom may be different than those who 
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have demonstrate what we view as a more general unfamiliarity with fraction problems 

as seen in the Distributed Errors Class at pre- and post-quiz.  

4.6. Conclusion 

 We set out to better understand third grade students’ errors with fractions in a 

digital learning environment using multiple choice tests of fraction concepts and 

algorithms. We identified new types of errors, such as incomplete information and 

reciprocal errors. We then examined the co-occurrence of these errors using Latent 

Class Analysis, identifying three patterns of student errors at pre-quiz: one that 

demonstrated a naïve fraction schema, one that contained high performers without 

consistent errors, and one that included the majority of the students and likely reflected 

student unfamiliarity with fraction problems. We found that, although some patterns 

remained the same, such as distributed or few errors, some patterns changed after 

instruction. Our work contributes to the growing field of research on fractions, adding to 

the understanding of the complexity of fraction knowledge and offering insights into the 

particulars of student struggles, insights that can contribute to the design of assessment 

and instruction, and ultimately, to improved fraction and mathematics achievement.   
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Appendix 
Appendix A 

  Pre-quiz Post-quiz 
  1. 2. 3. 4. 5. 6. 7. 8. 9 10. 11. 12. 13. 14. 15. 16. 17. 

Pre-quiz 1. Complement 1                 
2. Filler .06a 1                
3. Illogical Size/Spacing .05 .15c 1               
4. Incomplete Information -.06 -.05a -.06a 1              
5. Reciprocal .10b .10b .05a -.03 1             
6. Reduce to Whole Number -.16c .18c .12c .10b -.12c 1            
7. Ratio .08b .21c .09b .13c >-.01 .07b 1           
8. Same Num/Denom Ordering .06a .18c .13c .11c .10b .11c .11c 1          
9. Whole Number Ordering .03 .06a -.08b .01 .12c .16c .02 .15c 1         

Post-quiz 10. Complement .08b .12c .08b <.01 .08b .08b .06a .15c .14c 1        
11. Filler .04 .17c .12c .08b .11c .15c .06a .16c .27c .08b 1       
12. Illogical Size/Spacing .05a .10b .09b -.01 .04 .08b .04 .08b .16c .08b .14c 1      
13. Incomplete Information .09b .17c .08b .08b .09b .09b .05a .10b .14c .08b .13c .01 1     
14. Reciprocal .06b .11c .03 .04 .22c .02 .07b .12c .13c .09b .08b .03 .06a 1    
15. Reduce to Whole Number >-.01 .08b .07b .03 -.01 .21c .01 .07a .09b .01 .08b .07a .03 -.23c 1   
16. Ratio .03 .07b .03 .01 .02 .02 .07b .03 -.01 .03 .08b .03 .07 .06 .05 1  
17. Same Num/Denom Ordering .07b .19c .11c .03 .13c .09b .13c .22c .14c .15c .19c .06a .16c .18c .07b .05 1 
18. Whole Number Ordering .10b .13c .12c .03 .13c .12c .10b .21c .27c .21c .27c -.11c .14c .13c .11c .06a .33c 
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Appendix B 

Table of Third Grade Post-Quiz LCA Values 
Class Sample Size Adjusted 

BIC 
BLRT p-value Bayes Factor 

1 20187.229   
2 19757.500 <0.001 >10 
3 19693.396 <0.001 <1 
4 19714.993 <0.001 <1 
5 19741.642 <0.001 <1 

Note. Entropy for three-class model is 0.664. The three class model was chosen due to low 
sample size adjusted BIC and interpretability of the model. 
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Appendix C 

Table of Average Proportion of Times Errors Were Made by Each Class 
Pre-Quiz 

 Distributed 
Errors 

Whole Number 
Ordering Error Few Errors 

Complement 0.05 0.19 0.08 
Filler 0.17 0.12 0.04 
Illogical size/spacing 0.15 0.07 0.05 
Incomplete information 0.22 0.18 0.17 
Reciprocal 0.10 0.23 0.10 
Reduction to whole number 0.32 0.11 0.10 
Ratio 0.13 0.07 0.01 
Same numerator/ denominator 
ordering error 0.19 0.14 0.04 

Whole number ordering 0.29 0.31 0.18 
Post-Quiz 

 Reciprocal 
Error 

Distributed 
Errors Few Errors 

Complement 0.13 0.12 0.03 
Filler 0.19 0.21 0.07 
Illogical size/spacing 0.11 0.13 0.08 
Incomplete information 0.13 0.12 0.02 
Reciprocal 0.20 0.07 0.05 
Reduction to whole number 0.00 0.22 0.09 
Ratio 0.03 0.03 0.01 
Same numerator/ denominator 
ordering error 0.13 0.14 0.01 

Whole number ordering 0.17 0.22 0.04 
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Appendix D 

Logistic Regressions for Movement out of Few Error Class 

 Distributed Errors → 
Reciprocal Error 

Distributed Errors → 
Distributed Errors 

Distributed Errors → 
Few Errors 

 Odds-Ratio Z-Score Odds-Ratio Z-Score Odds-Ratio Z-Score 
Male 0.94 -0.27 0.95 -0.23 1.23 0.70 
Content 
Progress 1.00 0.60 1.00 -1.86 1.00 1.55 
Average 
pre-quiz 0.99 -1.12 0.99 -1.35 1.04 3.10 
Disability 0.86 -0.37 0.81 -0.61 1.86 1.38 
Free Lunch 0.56 -2.24 1.46 1.76 1.12 0.39 
ELL 2.04 1.66 0.94 -0.18 0.29 -2.28 
Gifted 0.47 -2.16 0.74 -1.05 3.58 3.58 
Race       

Asian 0.44 -1.46 1.14 0.32 2.19 1.52 
Black 1.27 0.68 1.32 0.85 0.33 -2.36 
Hispanic 0.92 -0.23 1.01 0.03 1.08 0.19 
Other 1.02 0.04 1.58 0.83 0.35 -1.25 

Constant 0.52  6.13  0.00  
 
Logistic Regressions for Movement out of Distributed Error Class 
 WNO Error → 

Reciprocal Error 
WNO Error → Distributed 

Errors 
WNO Error → Few 

Errors 
 Odds-Ratio Z-Score Odds-Ratio Z-Score Odds-Ratio Z-Score 
Male 1.36 1.50 0.75 -1.40 0.33 -0.65 
Content 
Progress 1.00 0.21 1.00 -0.19 1.00 -0.73 
Average 
pre-quiz 1.01 1.42 0.99 -1.46 1.01 0.23 
Disability 1.10 0.30 0.91 -0.29 1.00 omitted 
Free Lunch 1.15 0.61 0.88 -0.57 0.41 -1.23 
ELL 1.17 0.47 0.81 -0.65 11.30 3.49 
Gifted 0.80 -0.71 1.06 0.17 44.86 5.79 
Race       

Asian 1.01 1.30 0.52 -1.22 1.00 omitted 
Black 1.35 1.08 0.74 -1.07 1.00 omitted 
Hispanic 0.85 -0.55 1.15 0.49 2.94 1.37 
Other 0.58 -1.18 1.81 1.29 1.00 omitted 

Constant 0.63  1.56  0.00  
Note.  Odds-ratios and Z-scores are provided. Reference groups: White, non-English Learner, 
not eligible for free/reduced lunch. Clustered by teacher. N=1,431. Omitted variables predicted 
failure (i.e., students were not in the post class).  
Bold values are significant at p < .001. 
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