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Abstract

Methods to assess measurement invariance in constructs have received much attention, as
invariance is critical for accurate group comparisons. Less attention has been given to the
identification and correction of the sources of non-invariance in predictive equations. This work
developed correction factors for structural intercept and slope bias in common regression
equations to address calls in the literature to revive test bias research. We demonstrated the
correction factors in regression analyses within the context of a large international dataset
containing 68 countries and regions (groups). A mathematics achievement score was predicted by a
math self-efficacy score, which exhibited a lack of invariance across groups. The proposed
correction factors significantly corrected structural intercept and slope bias across groups. The
impact of the correction factors was greatest for groups with the largest amount of bias.
Implications for both practice and methodological extensions are discussed.
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The Standards for Educational and Psychological Testing (American Educational Research
Association [AERA], American Psychological Association [APA], & National Council on
Measurement in Education [NCME], 2014) provide guidelines for all facets of testing
from the statistical properties of a test to how results are used to assist public policy or
employment decisions. The Standards directly address the ethical issues involved in fair
and unbiased testing. Many guidelines that concern the misuse of tests were developed,
in part, as a result of Title VII of the Civil Rights Act of 1964 in the United States, which
provided government regulations to ensure that employment decisions were not based
on a person’s ethnicity, race, sex, or religion.
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Measurement invariance (MI) is an essential component for constructing a validity
argument and a precursor to score use. Validity evidence related to associations with
external variables is especially important to support inferences across groups. MI effects
are documented for mean differences and group comparisons (Ferne & Rupp, 2007).
However, less attention has been given to how a lack of MI influences predictive validity
(Millsap, 2011). A lack of MI between groups can cause bias in the intercept and slope
of a common regression equation (Aguinis, Culpepper, & Pierce, 2010). This differential
prediction or test bias (Crocker & Algina, 1986) can result in over- or under-prediction
of an outcome for one group relative to another. This work focuses on these predictive
relationships in the absence of MI, set in the context of cross-cultural comparisons,
as this context represents fertile ground for understanding how bias operates across
groups. We propose and demonstrate group-level correction factors for regression (i.e.,
structural) intercept and slope bias in common regression equations, where the bias
likely resulted from a lack of factor invariance (FI), a form of MI, in an international
dataset.

Item and factor structure differences may be present as a result of cultural differen-
ces (Church et al., 2011). The presence of such construct irrelevant variance threatens
score validity, rendering cross-cultural comparisons problematic, (Hancock, 1997). At the
item level, for example, Church et al. documented differential item functioning (DIF)
across cultures in up to 50% of the items in the revised NEO (Neuroticism, Extraversion,
Openness) personality inventory that influenced facet scores (NEO; McCrae et al. 2005).
This issue may be exacerbated by the fact that many widely used personality and
intelligence measures were developed in the United States (US). The interpretation and
use of these scores from an instrument based in English and the US culture can have
negative consequences on individuals if variability resulting from translation and culture
is not controlled.

Factor invariance can be examined at the factor structure level through multigroup
confirmatory factor analysis (MGCFA; Millsap, 2011). Millsap provides a complete de-
scription of the levels of FI including configural, metric and scalar. The presence of
FI implies that the latent variables are measured in the same manner for subgroups
examined, and that scores on the observed manifestation of the latent variable are the
same for members of different groups with the same level of the measured trait.

Several options exist when analyzing data that lack FI. Researchers can ignore the
problem or estimate non-equivalence models (Kuha & Moustaki, 2015) and argue for
valid group comparisons under partial invariance (Steenkamp & Baumgartner, 1998).
Ignoring a lack of FI can produce predictive models where one group is unfairly favored
and group comparisons are problematic from a theoretical and conceptual perspective. If
a researcher estimates a non-equivalence model (e.g., certain items differ across groups),
similar theoretical and conceptual problems of construct equivalence are encountered.
Furthermore, with a large number of groups, partial invariance models become less
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justifiable given problems finding an invariant referent for the latent variable (French &
Finch, 2008). Neither ignoring a lack of FI, nor estimating non-equivalent models, can be
justified when making decisions about people. Kuha and Moustaki (2015) concluded that
the sensitivity of group comparisons under non-equivalent measurement can be severe,

leading to biased conclusions.

Kim et al. (2017) examined five methods for testing groups for measurement invari-
ance. Kim found that the alignment method was adequate for establishing approximate
invariance but is not recommended when “many measurement parameters are substan-
tially noninvariant” (p. 539). Lomazzi (2018) examined the alignment procedure for pol-
ytomous items and achieved an “acceptable degree of noninvariance” for 35 out of 59
country groups, a 59% success rate. This approach produced a limited model that was
not applicable in 40% of the groups in the examined dataset. Another option for predic-
tion is needed that can address noninvariance in all groups in a dataset and that can
minimize the need to make judgements about degrees and combinations of measurement
noninvariance across items.

Predictive Invariance

Assumptions about regression or structural slope and intercept bias in predictive equa-
tions has been questioned. Aguinis, Culpepper, & Pierce (2010) found that structural
intercept bias is likely over-estimated while bias from structural slope differences goes
undetected using well established procedures. Structural slope bias was especially perni-
cious due to great difficulty in detecting it. Power to detect slope-based bias was found to
be less than 10% in samples as large as 400 under conditions commonly encountered in
social science research (Aguinis et al., 2010; Pokropek et al. 2019).

Latent variables and factor scores are commonly used in predictive equations. Un-
fortunately, the predictive invariance of such equations can be compromised by the use
of assessments that lack invariance across groups (Millsap, 2011). For example, if predic-
tor measurement intercepts in a factor model are consistently greater for one group
compared to another, then the resulting predictive bias may lead to one group being sys-
tematically favored in the outcome. Furthermore, group mean differences can confound
the effects of measurement noninvariance on predictive equations. A lack of invariance
in the predictor measurement intercepts can be cancelled out by group mean differences,
producing what appears to be an invariant predictive equation. In such a situation, one
group will be systematically favored over the other even though the predictive equation
exhibits invariant structural slopes and intercepts. In addition, factors such as reliability,
group sample size proportions, correlation between criterion and group, differences in
predictor variances by group, invariance of the criterion variable can all work together to
produce predictive bias in structural slopes and intercepts (Aguinis et al., 2010).

Detection of invariance in a model has received much attention (Rutkowski &
Svetina, 2014). Threshold criteria (Chen, 2007; Cheung & Rensvold, 2002) have been
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cited extensively, yet are dependent on limited research in how various conditions, such
as sample size and uniformity of noninvariance, impact the validity of these thresholds.

This uncertainty leads to the problematic factor of subjective judgments about whether

a study’s characteristics are similar enough to models examined in simulation on which
threshold criteria were established. Furthermore, these criteria only offer a dichotomous
decision about whether invariance is supported and little information on the magnitude
and impact of such differences.

Numerous combinations of noninvariance can occur among measurement intercepts
and slopes for both criterion and predictor variables. These combinations, along with
differences in group population means, can mask predictive bias (Millsap, 2011). We
follow Millsap’s recommendation to continue the study of this issue. We focus attention
on FI in the predictor variable and connecting a lack of FI to predictive equations. Our
aim is to give researchers tools to meet their responsibility for accurate comparisons.

Purpose of the Study

We developed two correction factors (CF), one for intercept and one for slope in a
common regression equation, to adjust bias between groups that originated from a lack
of FI at the item level. These CFs were designed to (a) adjust bias at the group level and
not shift bias from one group to another, (b) be used within a latent variable context,
and (c) be easy to implement with many identifiable groups. We demonstrated how use
of the CFs can increase the accuracy of latent variable predictors. We note this is not a
permanent fix but a method to allow data to be used for fair analyses. The underlying
cause of bias must be addressed for future data collection. However, it may serve to
improve accuracy with existing data analysis.

The primary benefits of this method are (a) a more objective approach to adjusting
predictive bias that precludes the need for subjective decisions, (b) not relying on the
use of fit statistics and thresholds (i.e. Chen’s, 2007 fit criteria) for models and data that
likely do not meet the narrow simulated characteristics of the models from which the
fit criteria were obtained, (c) a quantification of predictive bias in terms of the specific
values of the slope and intercept CFs for each group, (d) the use of a single predictive
model (with CFs as additional inputs), and (e) the testing of statistically significant
differences between the CFs of different groups.

We hypothesized that the CFs would allow for greater predictive accuracy compared
to prediction without the corrections. We also hypothesized that predictive bias would be
controlled for to a greater extent with groups, where FI was not present in the predictor
variable compared to their counterparts were FI was present.
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Method

Our overall procedure was to first examine the FI of a construct at the configural,
metric, and scalar levels. Second, we constructed our CFs. Third, we tested the CFs in
a regression equation. We used Mplus (Version 7.4) for all analysis (Muthén & Muthén,
2012).

Sample

We used the 2012 Programme for International Student Assessment (PISA) student
dataset (N = 485,490; The Organisation for Economic Co-operation and Development
[OECD], 2014) that is completely anonymous and publicly available. The dataset contains
responses to a questionnaire and mathematics test from 15-year-old students in 68
countries and regions.

Measures

We selected a set of variables to construct a latent variable regression model to illus-
trate the CF method. The PISA math achievement score (PVMATH, o = 0.91) was the
dependent variable and mathematics self-efficacy, an 8-item scale (a = 0.84), was the
independent variable. The PISA math achievement score was selected as the criterion to
minimize any possible confounding effects that might result from the use of a psycholog-
ical construct that also suffered from a lack of FI. Furthermore, regardless of whether a
single factor or two factors underlie the criterion and predictor, there is no difference in
the relationship between predictive slope invariance and predictor FI (Millsap, 1997).

Reference Group Selection

Given the negative effect of different reference and target group sample size proportions
on predictive intercept bias (Aguinis et al., 2010; Chen, 2007), as well as the individual
vagaries of any single country in the dataset, we did not select one country as the
reference group. Instead, we randomly selected a set of 4,530 records from across the
dataset to form a random reference group that approximated the average sample size

of the 68 countries and regions and would thus minimize bias due to different group
proportions. We modeled this process after the use of calibration samples by the OECD
where cases were randomly selected across all countries for obtaining international item
parameters (OECD, 2014).

Multigroup Confirmatory Factor Analysis

We examined the mathematics self-efficacy items for metric and scalar invariance be-
tween each country and a 1-factor baseline model established by the reference group.
Every country was compared with the reference group using progressively constrained
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models (Bollen, 1989). Chen’s (2007) fit index criteria were used to determine a lack of
invariance which make use of concurrent changes in CFI (comparative fit index), RMSEA
(root mean square error of approximation), and SRMR (standardized root mean square
residual).

Structural Intercept Correction Factor

The structural intercept correction factor was created by first calculating an estimate

of the predictive intercept bias for each group in our dataset using an equation from
Aguinis et al. (2010, p. 653). We refer the reader to the Appendix of the Aguinis et al.
article for a proof of the formula. Aguinis’ equation is an absolute measure of bias which
lacks information about whether the common regression intercept over- or under-esti-
mates the group intercept. Therefore, we added a directional component taken from

the sign of the correlation of the criterion and group. Equation 1 shows the resulting
structural intercept correction factor that produces a unique value for each group in the
dataset.

(ryG ~ TG\ Pl - PrG)APrG)Z

1= p(1 = ) (Bpg)’

AdjAL; = SNr g Bo (1)
where AdjAI; denotes the correction factor for group G, SNr, is the sign of the corre-
lation of the criterion and group G, ryG is the correlation between the criterion and
group G, ry, is the correlation between the predictor and criterion in group G, p,¢ is
the proportion of the group G sample size to that of the reference group, Ay, is the
difference in predictor means between group G and the reference group and f is the
common regression line intercept.

The correction factor can then be used in a predictive equation such as a common
regression line for all groups in the dataset. Hence, the new common regression line
appears as in Equation 2, where Y ,4; designates the adjusted criterion.

Y4 = AdjAIB, + By + B X + ¢ (2)

The structural slope correction factor was calculated as a function of the ratio of the
target and reference group predictor factor variances (Millsap, 1997, p 254). The ratio
of the predictive slopes of two groups is equivalent to the ratio of their communalities.
We refer the reader to Millsap (1997) for a complete exposition of this formula. We first
calculated the variance of the factor for the reference group alone, and then calculated
the factor variance for each of the 68 groups using the factor scores for the predictor
calculated using the entire dataset. The slope adjustment factor was then calculated

as the ratio of the difference in target and reference group variances in terms of the
reference group as in Equation 3. As with the intercept adjustment component, the sign
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of the correlation of the criterion and group provided a needed directional component to
the equation.

. 0?; - Gfefeyence
AdjAS; = SNryG[TW] (3)
where SN, is the sign of the correlation of the criterion and group G, o is the variance
for group G, and c,zefmm is the variance for the reference group.

Equation 2 is further modified by adding the slope correction factor (Equation 3) to
produce Equation 4, the adjusted regression line, allowing for simultaneous correction of
slope and intercept bias.

Yo = AdjAIBy + Bo + (B — AdjASG )X + & 4)

Assessing the Correction Factors

Following recommendations by Aguinis et al. (2010) and standards from AERA, APA,
and NCME (2014), we assessed the correction factors by comparing their predictions,
using Equation 4, with results from regression lines calculated independently for each
individual country. We first constructed a common latent variable regression model by
regressing math achievement on the math self-efficacy construct. We then estimated the
same regression model individually for each country. Predicted values from the common
and individual models could then be compared and bias assessed. Predictive bias could
then be calculated as the absolute difference between the two sets of predicted values on
a country by country basis.

The common regression model was then modified using the correction factors (Equa-
tion 4) which adjusted the predicted values on a group-by-group basis. The predicted
values from the adjusted regression model could then be compared with the values from
the individual regression models and bias re-assessed. In theory, the predicted values
from the adjusted common regression model should match, or closely approximate, the
values obtained from the individual regression models. A close approximation would
indicate an elimination or reduction in predictive bias for all groups without simply
transferring it from one group to another in line with our goal to eliminate bias at the
group level.

Results

MGCFA Results

Metric FI held for the mathematics self-efficacy items across all countries, providing
no guidance for where predictive slope bias would eventually be found between our
common regression and the individual country regressions. A lack of scalar FI appeared
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in 32 countries. We would expect, therefore, that countries exhibiting a lack of scalar
invariance would also exhibit greater predictive intercept bias than the countries where
scalar FI held. MGCFA model results are presented in Supplementary Materials, Excel 1.

Correction Factor Results

Table S1 in the Supplementary Materials displays the slope and intercept bias present
in the common regression line (Columns 2 and 3) along with the average bias obtained
by estimating a set of predicted values in the common regression line (Column 4) and
the adjusted regression line (Column 5). Column 1 of the table lists the countries and
regions. Column 2, Slope Bias, is calculated as the difference between the individual
regression and common regression slopes (unstandardized) as a percentage of the indi-
vidual regression slope. For example, the slope of the common regression line (b =
-108.252) is 20.79% smaller in magnitude than the slope of the individual regression
line for Australia (b = -136.657). Column 3 in Table S1 (see Supplementary Materials)
indicates the intercept bias present in the common regression line for each country.
Intercept bias is calculated as the difference between the common regression predicted
value, estimated using the math self-efficacy mean for each country, and the individual
country regression intercept, as a percentage of the individual regression intercept. For
example, the common regression line underestimates the country mean for Australia by
4.79%. Column 4 presents the average predicted value bias in the unadjusted common
regression line while the last column in Table S1 (see Supplementary Materials) shows
the average predicted value bias of the adjusted common regression line with the inter-
cept and slope correction factors. The average predicted value bias for Columns 4 and 5
are calculated as the absolute differences in predicted values averaged across five points
along the math self-efficacy scale. These five points are the M, -25D, -1SD, +1SD, and
+2SD. This selected range of predicted values provides a way to compare predicted values
between the common and adjusted regression lines. Again, using Australia, there was an
average bias in predicted values produced by the unadjusted common regression line of
4.89% (Column 4) compared with the individual regression line for Australia. The 4.89%
bias was reduced by 46% to 2.65% (Column 5) using the correction factors in the adjusted
common regression line.

The average magnitude of the predictive (structural) slope bias (Table S1, Column 2
in Supplementary Materials) was 68%, with a range in magnitude from as little as 0.28%
(Korea) to 2325.0% (Albania). Furthermore, in the 57 regions where bias was reduced,
the intercept and slope correction factors reduced bias in the predicted values from the
unadjusted common regression line by 57.4%, on average, with a range of 7.4% to as
high as 97.5%. Interestingly, larger reductions in bias were obtained where bias was large
between the individual and common regression lines. Bias was reduced by 66.6%, for
example, in all countries where the original unadjusted bias was greater than 7%. In the
11 regions where the correction factors did not reduce bias, average bias was only 3.27%.
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The average magnitude of unadjusted predictive bias (average of Table S1, Column 4
in Supplementary Materials) across all countries was 7.8%, but 9% across the countries
lacking scalar invariance according to Chen’s (2007) criteria. After applying the struc-
tural slope and intercept correction factors, the average magnitude of predictive bias
(average of Table S1, Column 5 in Supplementary Materials) was reduced to 3.2%.

All calculations for the results in Table S1 are provided in Supplementary Materials,
Excel 2.

Structural Intercept Correction

Disaggregating results by each correction factor, the intercept correction factor reduced
structural intercept bias from 1% to nearly 100%. Figure S1 in Supplementary Materials
illustrates the relationship between the amount of structural intercept bias present in

the common regression line for the 68 countries (solid line corresponding to Intercept
Bias column in Table S1 in Supplementary Materials) and the impact of the structural
intercept correction factor to reduce that bias (dashed line). The larger the original

bias, the larger the effect of the structural intercept correction factor. Figure S1 (see
Supplementary Materials) illustrates that Indonesia, for example, showed structural inter-
cept bias of 25.02%, one of the highest, while the structural intercept correction factor
reduced that bias by 96.5%. In countries with small structural intercept bias, such as
Slovenia (3.08%), the reduction tended to be much smaller. For example, Slovenia’s bias
was only reduced by 7%. A regression analysis of the relationship between the percent
reduction and the original amount of common intercept bias was significant (p < .05, R? =
78%). For every percent increase in structural intercept bias, the correction factor reduced
bias by 4.4%. The countries where the structural intercept correction performed poorly
(e.g. Liechtenstein) displayed individual regression line slopes that deviated from the
common regression line slope much more than countries where the intercept correction
factor did perform well.

Structural Slope Correction

Focusing on the contribution of the structural slope correction factor, the structural slope
correction reduced predictive bias in 70% of the countries beyond the reduction obtained
with the structural intercept correction alone. Figure S2 in Supplementary Materials
compares the original unadjusted predictive bias (solid line) with the predictive bias after
incorporating the structural intercept adjustment factor (dashed line) and the bias after
adding the structural slope adjustment factor with the structural intercept adjustment
(dotted line). The figure illustrates how the slope adjustment factor, in conjunction with
the intercept correction, consistently reduced bias across countries and was effective
when the original unadjusted bias was large (right hand side of the figure). There were,
however, situations where the slope adjustment factor did not reduce predictive bias.
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As with our examination of the intercept correction factor, we examined the slope
correction with cases where the original predictive bias was greater than 7%. These
countries exhibited large structural slope bias, 135% on average, as opposed to 18% slope
bias for the countries with less than 7% predictive bias. Table 1 displays the sample
break down in bias reduction by structural intercept and slope correction factors for
the countries where the original predictive bias was Greater Than 7%, Less Than 7%,
and the whole sample. Overall, the structural slope and intercept bias correction factors
reduced average predictive bias from 7.79% to 3.22%. For the Less Than 7% group, average
predictive bias was only 4.31% and the intercept correction factor reduced most of that
predictive bias (from 4.31% down to 3.61%) with the addition of the slope correction
factor only reducing predictive bias down to 3.06%. For the Greater Than 7% group,
however, the intercept correction factor reduced predictive bias by more than half (12.3%
to 4.97%) with the addition of the slope correction factor further reducing predictive bias
to 3.44%.

Table 1

Breakdown of Predictive Bias Reduction by Average Amount of Original Predictive Bias

Original Predictive bias after Predictive bias after

unadjusted intercept intercept and slope
Breakdown of averages predictive bias (%) adjustment (%) adjustment (%)
Average predictive bias across all 68 7.79 4.19 3.22
countries
Average across countries with original 431 3.61 3.06
bias LESS THAN 7%
Average across countries with original 12.48 4.97 3.44

bias GREATER THAN 7%

We note that the countries and regions where a lack of FI was identified using Chen’s
(2007) criteria (starred in Table S1, see Supplementary Materials) had a higher percent of
predictive bias on average (i.e., 9.8%) in comparison to their counterparts where FI was
present (i.e., 6.0%). In addition, the intercept and slope correction factors for the countries
and regions that lacked FI reduced bias to an average of 3.24%, which is comparable

to the remaining bias in the groups where FI was present (i.e., 3.2%). Moreover, the
average reduction in predictive bias was larger than for the lack of FI groups (66.9%) than
for the FI groups (46.8%). This supports that the structural intercept correction factor

can adjust for issues in the measurement of the predictor but perhaps not all sources

of bias. A regression model of the relationship between the percent reduction and the
original amount of predictive bias, using both the slope and intercept correction factors,

Methodology
2020, Vol.16(3), 241-257

GOLD
https://doi.org/10.5964/meth.4001 B PsychOpen


https://www.psychopen.eu/

Austin & French 251

was significant (p < .05, R? = 50%). For every percent increase in predictive bias, the
correction factors reduced bias by 36%.

Country Examples

The results for Brazil, Macao, and Liechtenstein are outlined below to illustrate examples
of how the correction factors work at the group level. First, the common regression
equation calculated across all countries is shown in Equation 5.

Y = 469.652 + (—108.252)X (5)

The intercept and slope adjustment values for Brazil are -0.1426 and 0.4569, respectively.
Equation 6 illustrates the inclusion of Brazil's adjustment values in Equation 4. Thus,
predicted values for all members of group Brazil will be calculated using Equation 6
where b, and b, are the coefficients of the common regression line calculated across all
groups. All calculations are performed using the unrounded values (see Supplementary
Materials, Excel 2).

Y4 = —0.1426by + by + (by — (0.4569)b))X gy (6)
Inclusion of the coefficients from the common regression line into Equation 6 produces
Equation 7 for group members of Brazil.

Y, = 402.675 — 58.79X gy @

Similar calculations for group members of Macao and Liechtenstein produce Equation 8
and Equation 9, respectively.

Y, = 507.391 + (=150.146)X p 000 (8)

Y, = 474.158 + (=159.507)X Lettensicin 9)

The panels shown in Figure 1 illustrate the reduction in predictive bias for Brazil, Macao,
and Liechtenstein using both the slope and intercept correction factors in the common
regression line. The correction factors produced predicted values as if the common regres-
sion line was effectively moved to overlap the individual country regression lines on a
country-by-country basis. Please note that the adjusted regression line for one country is
not the same as the adjusted regression line for another because the slope and intercept
correction factors are unique for each country as illustrated in the country examples
above. The figures simply illustrate the effective change in the common regression line
via the correction factors.

Methodology
2020, Vol.16(3), 241-257

GOLD
https://doi.org/10.5964/meth.4001 B Psychopel’l


https://www.psychopen.eu/

Adjusting Intercept and Slope Bias 252

Figure 1

Comparison of Common, Individual, and Adjusted Regression Lines Using Both the Intercept Adjustment Factor
and the Slope Adjustment Factor

Brazil (A) Macao (B) Liechtenstein (C)

750.00

650.00
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Math Achievement
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= —Common ——Individual - # Adjusted

Note. The adjusted line represents how predicted values are produced from the common regression
line as if it was effectively adjusted to match the individual country regression line for each group.

Figure 1, Panels A and B reflect corrections to the common regression line in terms of
predicted values when using both correction factors. Individual country predicted values
are effectively produced as if the common regression line (dashed line) was adjusted (dot-
ted diamond line) to almost perfectly overlap the individual regression line (solid line).
Panel C also illustrates a reduction in predictive bias where the intercept adjustment
alone failed to improve predicted values. While not as good a correction as seen in Panels
A and B, the slope of the adjusted regression line for Panel C more accurately represents
the true relationship between the predictor and criterion in Liechtenstein.

Discussion

This study established and demonstrated two correction factors for predictive bias found
in common regression lines estimated using group data from a large-scale international
dataset with a lack of FI in the predictor variable. The aim was to provide researchers
with a third option to account for bias beyond ignoring it or using partial invariance
models and that minimizes the need to make judgements about the presence and degree
of measurement noninvariance. The method we propose, while applicable in its current
form, is not necessarily intended to be a definitive answer to this complex problem,
but a new approach, open to further development, that synthesizes a wide variety of
information (e.g. Aguinis et al., 2010; Millsap, 1997) not previously utilized in such a
manner.

The correction factors produced large and consistent adjustments to predicted values
on a group-by-group basis, obtained using a common regression line, estimated across
all countries in the dataset. The corrections approached 100% of the estimated bias in
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predicted values, especially in cases where bias was large (i.e. 7% to 22%, in 31 of 68
regions). This is a considerable benefit, especially when common predictive equations
are used to make decisions about people and resources in contexts such as education

or employment. Moreover, the reduction in predictive bias was similar for countries
identified with a lack of FI according to Chen’s (2007) criteria (32 regions) compared with
those where FI was present (36 regions). In countries with a lack of F, bias was reduced
from an average of 9.7% to 3.2%. For countries with FI present, bias was reduced from
6.0% down to 3.2%. This supports that the correction can account for, in part, issues in the
measurement of the predictor variables. Given that some bias remained, other sources
(e.g., unreliability, restriction of range) still need to be studied and accounted for in such
correction factors.

The performance of the correction factors also suggests that over-correction for bias
is fairly minimal and limited to cases where predictive bias is less than 5% (Figure
S2 in Supplementary Materials). The results show that the effect of the correction fac-
tors seems to diminish as predictive bias gets smaller. Future research should address
over-correction by the slope correction factor in the small number of cases where it
occurs. Cases where over-correction occurred will provide useful information for future
research such as helping to establish parameters to guide simulation work and address
the main limitation of this study: a case study of a single construct from one dataset.
Such evidence is useful given that slope bias is likely present, yet difficult to detect due to
low power, even with large sample sizes (Aguinis et al., 2010).

The use of the correction factors addresses standards (e.g., AERA, APA, & NCME,
2014), for ensuring fairness and equity in decisions about individuals from different
groups. Whether such groups consist of different races/ethnicities or different nationali-
ties and cultures, the correction factors can be applied where groups are identified, bias is
shown to exist, and revision of assessments is not possible.

Both correction factors are easy to create and do not require advanced statistical
knowledge to implement. Calculation of factor scores from latent variables, reliability,
sample proportions, and factor variances are all elements that are easily obtained from
software packages capable of latent variable estimation. The correction factors should be
helpful in large cross-cultural or international datasets where the number of groups is
large enough that the use of group indicator variables, or partial invariance techniques,
is impractical. We further recommend that researchers use MGCFA and established
threshold-based invariance measures (e.g. Chen, 2007) to document sources of predictive
bias while being mindful that structural slope bias is difficult to detect (Aguinis et al.,
2010). Individual group regression lines should be estimated to assess the performance
of the correction factors and assure standards of fairness are met. Basic steps to follow
include (a) identify groups with the potential for predictive bias (e.g. countries), (b) use
the groups to perform an MGCFA, (c) estimate common and individual regression lines,
(d) assess levels of predictive bias, (e) create intercept and/or slope correction factors, (f)
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apply the correction factors to the common regression line, and (g) assess results using
predicted values from the regression outcome.

Limitations and Future Directions

The implications of the statistical bias (approximately 4%) in Aguinis’ et al. (2010) bias
formula, used for our intercept correction factor, is not clear. Given that the bias in the
formula is driven mainly by unreliability of test scores, perhaps that can be integrated
into the correction factors.

Given our data source, we had to assume that the criterion was free from measure-
ment problems. While a reasonable assumption given the variable, we could not verify it.
The effects of a lack of FI on both the predicator and the criterion while using correction
factors deserves attention.

To address such limitations, a series of simulation studies is recommended. First, a
diverse set of conditions should manipulate elements that are used in our correction
factors in addition to other influences (e.g., restriction of range) to understand how
the correction factors function under a range of conditions where bias is known and
varied, especially intercept and slope bias. Second, such work can help understand if the
adjustments over- or under-correct for bias and if reference and focal groups are being
misrepresented through such corrections. Third, exploration of different reference group
selection criteria, such as comparing our random selection method with the use of an
established group (e.g. country or language group) as the reference is needed. Fourth and
finally, comparisons of this method with other methods such as the Alignment Method,
and recent work using regularized nonlinear multigroup factor analysis for invariance
(e.g., Bauer et al., 2020) would highlight strengths and weaknesses of such adjustments
for different situations.

Thus, given the legal and practical implications of adjusting data and the unknown
aspects of the adjustments, we cannot recommended it for use without further evalua-
tion. However, we do encourage continued research in this area to build a stronger
analytical and empirical connection between measurement issues and predictive bias.

Conclusion

A lack of measurement invariance, specifically FI, in predictor variables can have a
cascading effect on predictive equations resulting in differential prediction or test bias.
This can have meaningful implications for individuals and groups, with some being
unfairly favored over others. Our proposed correction factors have the potential to exten-
ded well-beyond educationally-related variables in cross-cultural settings. These methods
may be useful for any group comparisons for a variety of inferences that need support.
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