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1s it the Song and Not the S inger? 
H it Song Pred iction Using Structural Features 
of Melod ies 

Klaus Frieler, Kelly Jakubowski & Daniel MÜllensiefen 

Zusammenfassung 

Diese Untersuchung versucht, kommerziell erfolgreiche Popsongs von kommer­
ziell weniger erfolgreichen Popsongs mit Hilfe struktureller Features ihrer 
Hauptgesangsmelodien zu unterscheiden. Zu diesem Zweck wurden 266 Pop­
songs anhand ihres Erfolgs in der britischen Hitparade durch k-means Clustering 
als „Hits" oder „Nicht-Hits" eingestuft. Darüber hinaus wurde mit Hilfe der 
Software MeloSpySuite ein umfassender Satz von 152 intrinsischen Features 
für die Hauptmelodien berechnet, die einen weiten Bereich struktureller Dimen­
sionen (Tonhöhe, Intervalle, Rhythmus, Metrum etc.) abdecken. Diese Features 
wurden als unabhängige Variable für eine Random-Forest-Klassifikation benutzt; 
zudem wurde für jede Variable ein Wilcoxon-Test berechnet, um die Klassifika­
tionsergebnisse weiter zu stützen und zu beleuchten. Der Klassifikationserfolg 
war mit 52,6 % relativ gering und lag nur knapp über der Ratewahrscheinlichkeit. 
Die Ergebnisse der Wilcoxon-Tests entsprachen im Wesentlichen den Resultaten 
der Random-Forest-Prozedur. Interessanterweise beziehen sich die Variablen 
mit der höchsten Diskriminanzleistung alle auf den Intervallgehalt der Melodi­
en. Ein zusätzlicher Klassifikationsbaum mit den wichtigsten Variablen der 
Random-Forest-Prozedur erreichte eine Klassifikationsgenauigkeit von 61 % mit 
einer einzelnen Variablen, die die Gleichverteiltheit von aufeinanderfolgen Paa­
ren von Intervallrichtungen misst, und die für Hits größer war als für Nicht-Hits. 
Wir diskutieren mögliche Interpretationen unserer Ergebnisse und schlagen sich 
anschließende Forschungsvorhaben vor. 

Abstract 

This study aims at the classification of highly commercially successful versus 
less commercially successful pop songs using structural features of the song 
melodies. To this end, a set of 266 pop songs were classified into hits and non­
hits according to success in the UK charts using k-means clustering. Subse­
quently, a comprehensive set of 152 intrinsic summary features spanning a wide 
range of structural dimensions (pitch, interval, rhythm, metre, etc.) were ex­
tracted using the software MeloSpySuite and subjected to a random forest clas-
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sification procedure. Additionally, a battery of Wilcoxon tests was executed to 
supplement the findings from the classification procedure. Classification success 
was rather low; at 52.6 % this success rate just slightly exceeded chance level. 
Furthermore, the results from the Wilcoxon tests were in line with the results 
from the random forest classification. Interestingly, the most important variables 
in both analysis procedures were all related to interval content. An additional 
classification tree algorithm fed with the most important variables from the 
random forest analysis reached a classification accuracy of 61 % with only one 
decision variable-Parson's Code bigram entropy. This variable measures the 
uniformity of interval direction pairs and was higher for hits than for non-hits. 
A range of possible interpretations for these results are discussed, and further 
lines of research are proposed. 

1 lntroduction 

Is there a proven formula for creating a No. 1 hit sang? This is a question that 
musicians and music producers have been pondering for many years. There are 
a wide array of how-to books written on this subject for aspiring songwriters, 
mainly based on anecdotal evidence from other musicians' successes and fail­
ures (e.g., Blume, 2004; Leikin, 2008; Oliver, 2013). Despite the large number 
of popular publications in this area, it seems at the present time that the ultimate 
hit sang formula still remains to be discovered. Scientific research has only re­
cently begun to investigate this question in a more systematic way. This research 
is sometimes referred to as "Hit Song Science". 

One common approach researchers have applied in their endeavors to analyze 
the commercial success of pop songs is to examine the acoustic features of 
previous hits versus non-hits and attempt to derive underlying commonalities 
that set hit songs apart. Dhanaraj and Logan (2005) employed support vector 
machines and boosting classifiers in an attempt to classify hit songs versus non­
hit songs based on both acoustic and lyrical features of the music. The best 
classification rate achieved based on acoustic features of the songs was .66; this 
rate was slightly better for just lyrical features (.68). However, no improvements 
in classification rate were seen when the acoustic and lyrical features were com­
bined. Ni et al. (20 1 1) conducted a similar study that attempted to distinguish 
songs that reached the top 5 chart positions from songs in chart positions 30 to 
4. The highest prediction accuracy achieved by the classifiers they employed
was around .57. The authors also compared the acoustic features of music across
a period of 50 years and concluded that current commercially successful music
is louder (i.e., dynamically more compressed), harmonically simpler, and faster
than in the past. Similarly, Serra et al. (2012) analyzed the evolution of hit songs
over a period of 55 years and concluded that music is getting louder, more tim­
brally homogeneous, and more restricted in terms of pitch patterns. Finally,
Nunes and Ordanini (2014) explored the influence of sang instrumentation on
commercial success. The researchers hand-coded the instrumentation data for a
set of 2,399 pop songs. They were able to deduce a number of patterns from this
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data, including the findings that more popular songs regularly included backing 
vocals and that songs containing an atypically low or high number of instruments 
tended to become hits. This study did not include any measure of hit prediction 
accuracy. 

Despite some interesting initial findings, the approach of predicting songs 
based solely on acoustic features has been unable to achieve high rates of correct 
hit predictions or classifications. As such, this approach has also received some 
serious criticism. For instance, Pachet and Roy (2008) conducted a large-scale 
analysis of a database of 32,000 songs and reported that classifiers built using 
state-of-the-art machine leaming techniques were not able to significantly predict 
the commercial success of pop songs based on the songs' acoustic features. The 
researchers thus concluded that "Hit Song Science" is not yet a science, but that 
there is scope to uncover new features that more accurately relate to human 
aesthetic judgments, which may be more useful for uncovering commonalities 
in commercially successful songs. 

A few alternative approaches to the acoustic feature prediction approach have 
been investigated. For instance, some researchers have explored social-know­
ledge driven hit song predictions based on data obtained from music social 
networks (Bischoff et al. , 2009) and conversations on Twitter (Kirn, Suh, & Lee, 
2014). Salganik, Dodds, and Watts (2006) investigated early market responses 
to new songs by creating an artificial "music market" in which participants were 
able to download previously unknown songs. The researchers found strong influ­
ences of social factors, such that in a condition where participants were pro­
vided information about how many other participants had downloaded particu­
lar songs they observed a "cumulative advantage" whereby early success of a 
song led to a significant overall success in the long term. Salganik and Watts 
(2008) conducted an online "music market" study along the same lines in order 
to investigate whether perceived success of a song could become a "self-fulfill­
ing prophecy". They inverted the true early popularity of songs that were previ­
ously unknown to participants, and found that for several songs this perceived 
(but false) initial popularity strongly influenced how popular they became over 
time. However, for originally top-rated songs, these songs did tend to regain their 
popularity over time. This finding suggests that musical features of the songs 
themselves were able to combat the false social cues provided at the start of the 
study. 

Another alternative approach is to investigate features of the compositional 
structure of hit songs, such as the use of harmonic progressions (Kramarz, 2006) 
or the sequential structure of song sections (Riedemann, 2012). Kramarz sum­
marizes these approaches in a recent overview (Kramarz, 2014) and suggests an 
array of preferential formulae especially for harmonic but also for melodic 
structures, as well as for the overall construction of hit songs. In addition, me­
lodic features of hit songs have been the focus of other studies investigating 
whether certain compositional aspects of a melody itself contribute to its relative 
success in the charts. Kopiez and Müllensiefen (201 1) conducted a first explora­
tion into this area by attempting to predict the commercial success of cover 
versions of songs from the Beatles' album Revolver. They were able to accu-
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rately predict 100 % of cases using a logistic regression model with just two 
melodic features-pitch range and pitch entropy. However, one should note the 
limitations of this project, as the sample of songs used ( 14 songs all composed 
by the same band) is very specific and such a simple classifier would unlikely 
be able to cope with the wide diversity of styles and artists represented in all of 
the pop music charts. 

Following the methods employed by Kopiez and Müllensiefen (201 1), the 
present study aimed to examine a larger selection of pop songs in terms of a 
wider variety of melodic summary features and to predict song popularity (meas­
ured by highest chart position attained and number of weeks in the charts) using 
state-of-the-art classification techniques. Thus, the aim of this study is to estab­
lish the existence of any links between simple mathematical and statistical fea­
tures of melodic structure and the commercial success of pop tunes as a real­
world outcome. A link between melodic features and commercial success would 
suggest a human preference toward certain melodic structures that can be cap­
tured by numeric features. Any features revealed as predictive of commercial 
success would then be prime candidates for follow-up studies under controlled 
lab conditions to investigate the effects of these features on related aspects of 
cognition, e.g., the memorability or pleasantness of tunes. 

2 Method 

The dataset comprised 266 pop songs taken from a related project on features 
of earworm tunes (Williamson & Müllensiefen, 2012; regarding the broader 
perspective on earworm research see Hemrning, 2009). Half of these 266 songs 
were reported by participants as songs that they tended to have stuck in their 
heads as earworms on the "Earwormery" database (https://earwormery.word­
press.com), hosted by the Music, Mind, and Brain group at Goldsmiths Univer­
sity of London. All songs from this database used in the present project were 
reported as frequent earworms by at least three separate participants. The other 
half of the songs were songs selected specifically to be from sirnilar artists and 
UK chart positions but that were never named as earworms on the "Earworme­
ry" database. For each song, the song title, artist, UK chart data (weeks in the 
charts and highest entry in the charts), and genre was recorded. This informati­
on was obtained from the UK chart database at polyhex.com and the Geerdes 
rnidimusic database (http://www.geerdes.com). MIDI files for each of the 266 
songs were also obtained from the Geerdes midimusic database. The melody 
line from the section of the song reported as most catchy by the Earwormery 
participants was manually extracted from the füll MIDI file. In the case of the 
matched songs or for songs from the Earwormery for which no particular section 
was reported as being the catchiest part, the chorus of the song was extracted. 
The editing of all MIDI excerpts was done manually and all excerpts were 
checked aurally for correctness and integrity. 
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3 Analysis 

The 266 songs were separated into a binary classification of "hits" and "non-hits" 
using k-means clustering, with the highest chart position and the number of 
weeks a song remained in the charts as clustering variables (see Table 1, for some 
examples). 

The next step was to attempt to classify songs as hits or non-hits based on 
their melodic features. The predictor variables used in this step were 152 me­
lodic summary features calculated using the software MeloSpySuite (Frieler, 
Abeßer, Zaddach & Pfleiderer, 2013). Examples and descriptions of these fea­
tures are provided in section 3 . 1 . 

Due to the large number of predictor variables, the statistical procedure cho­
sen to model the present data was a random forest classification (Breiman, 2001). 
This method has several advantages over traditional regression models: ( 1) it 
handles both categorical and numerical data, (2) it can cope with non-linear 
relationships, and (3) it can be used with a large number of predictor variables. 
Moreover, in a recent comparative study by Fernandez-Delgado et al. (2014), 
random forests proved to be the most successful algorithm among an exhaustive 
set of classification methods when applied to a large and diverse collection of 
real-world datasets. For a brief summary of the random forest technique and 
tree-based classification and regression methods in general and their applications 
in music and psychology research see Pawley and Müllensiefen (2012) and 
Strobl, Mally, and Tutz (2009). 

Tab. 1 :  
Examples of hits and non-hits from k-means clustering classification

Highest Weeks in Classifi-Artist Title Genre Chart Charts cation Entry 
I 'm Going

Queen Slightly Rock 22 5 Non-hit 
Mad 

Queen Bohemian Rock 1 1 7  Hit Rhapsody 
Britney Circus Pop 13 1 8  Non-hit Spears 
Britney Toxic Pop 1 1 4  Hit Spears 

Lionel Running 
Richie with the Pop 9 1 2  Non-hit 

Night 
Lionel Hello Pop Rock 1 1 5  Hit Richie
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3. 1 Features

The features used in this study are calculated using simplified and abstract rep­
resentations of melodies, which include onsets, durations, pitches (using MIDI 
numbers), as well as metrical annotations. All features used in this study can be 
classified as intrinsic or summary features that do not take any external informa­
tion into account but are purely derived from the onset, duration, pitch and 
metrical information contained within the melodies. All intrinsic features can be 
calculated in a unique way directly from the abstract representations, e.g. , as 
statistical descriptors of value distributions (see Müllensiefen & Halpern, 2014, 
for a general description of intrinsic features for melodic analysis and how they 
differ from extrinsic or corpus-based features that take cultural context into ac­
count). Most of the intrinsic features are not directly or only weakly based on 
genuine music-specific models or theories. Notable exceptions are metrical in­
formation, which is a specific musical property, and tonal pitch classes, which 
depend on the notion of tonality and the concept of octave equivalence. 

3.2 Classification of Features 

The 152 intrinsic features used in this study can be classified into 7 main groups, 
which will be explained briefly in the following section. All features used here 
are summary features in the sense that they describe a melody using a single 
number, e.g., the frequency of a certain pitch class or the entropy of its interval 
bigram distribution. Particularly of interest to the present study are entropy va­
lues and Zipf coefficients, as these features have been previously associated with 
melodic complexity (e.g., Eerola, Himberg, Toiviainen & Louhivuori, 2006). 
Information entropy (Shannon, 1948) is a well-known measure of information 
content in a probability distribution which estimates the amount of uniformity; 
the more uniform a distribution, the harder it will be to predict the next element 
in a sequence. A greater degree of uniformity in turn can be interpreted as being 
more complex to process but also as more "entertaining", since the melody is 
less predictable to the listener (Huron, 2006). The Zipf coefficient (Zanette, 2006; 
Zipf, 1949) is a rather sirnilar measure that is often correlated with information 
entropy. lt measures the dominance of certain few elements in a probability 
distribution. For example, a pitch sequence has a high Zipf coefficient if a sub­
set of certain pitches is used much more often than the rest of the pitches. Besi­
des these and other properties of distributions of single elements, short subse­
quences (N-Grams) are of special interest, since melodies are essentially 
successions of elements unfolding in time. For example, bigrams are sub­
sequences of two elements, which capture more detailed sequential aspects of a 
melody ("which follows what"). The bigrams of a sequence form a distribution 
of nominal values, which enable the calculation of entropy and Zipf coefficients, 
but not metrical statistical descriptors. A sequence with a uniform distribution 
of single elements ("unigrams") does not necessarily also have a uniform bigram 
distribution and vice versa, e.g., consider the sequence "abcabcabc", where the 
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bigrams "ac", "ba", and "cb" are not found, but each single element occurs 
identically often. 

Contour Jeatures. These features aim to capture the up and down motion of 
a melody in pitch space. There are many different ways to do so, e.g. , by count­
ing the pitch maxima and minima, or using a compact code such as the Huron 
Contour (Huron, 1996; for an overview of contourization options see Müllen­
siefen & Frieler, 2004). In the present study, only the ratio of the number of pitch 
turning points to the total number of notes was used as a feature. 

Interval features. Semitone intervals are a common and important aspect of 
pitch movement. In this study, distributions of semitone intervals and certain 
reductions of them were used. The two reductions employed are Parson's code 
(aka contour) and fuzzy interval (aka refined contour). In the latter, each interval 
is classified into one of five distinct classes (unisons, steps, leaps, jumps, and 
big jumps) along with its direction (up or down), giving eleven fuzzy interval 
classes. Parson's code classifies intervals with respect to their basic direction: 
up, repetition or down. From the interval distributions, statistical descriptors 
such as the range, mean, median, standard deviation, entropy, Zipf coefficient, 
etc., as well as single densities, were calculated and used as features. 

Pitch features. For raw pitch distributions, a similar set of statistical descrip­
tors was used (pitch range, mean, median, standard deviations, entropy, Zipf 
coefficients, etc.). Additionally, absolute pitch classes were calculated by reduc­
ing a pitch to one of the twelve (enharmonic) pitch classes C, C#, . . .  , B, while 
disregarding octave position. Since this calculation yields circular distributions, 
several circular statistical descriptors (Mardia & Jupp, 2000) were computed 
along with relative frequencies of single pitch classes. 

Rhythm features. Rhythm was operationalized using note durations and inter­
onset intervals (IOI) that were both subjected to the same classification process. 
This process maps durations/IOis onto one of five classes ("very short", "short", 
"medium", "long", "very long") using graded intervals of duration with respect 
either to an absolute reference time of .5 s or the beat duration of the melody. 
This results in four different classifications in total, for which statistical descrip­
tors and class densities of the according distributions were used as features. 
Finally, the pairwise variability index (Patel & Daniele, 2003) and the coefficient 
of variation (the ratio of the standard deviation of tone duration to the mean tone 
duration) were added to the set of rhythm features. 

Metrical features. Meter is a very specific and important dimension of music. 
The metrical features used here are circular statistics and single relative frequen­
cies of 48 classes derived from a Metrical Circle Map (Frieler, 2007) applied to 
the melodies. The Metrical Circle Map divides each measure into N (here: N =48, 
abbreviated MCM48) identical segments, and each melodic event is mapped to 
its corresponding segment. 

Sequence Jeatures. Since melodies are time series, it is straightforward and 
meaningful to design features that capture aspects of their sequential nature. We 
used two different types: Mean run-lengths (for five IOI and three Parson's Code 
classes) and entropies of bigram distributions. The latter were calculated based 
on several underlying basic representations: semitone intervals, fuzzy interval, 
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Parson's code, 101 classes, raw pitch and pitch class. Run-lengths are the lengths 
of sub-sequences with identical items, i.e. , "runs". 

Finally, basic global features such as the number of notes were also included 
in the feature set. 

4 Results 

The feature values for all melodies were subjected to a random forest procedu­
re (from the "party" package in R; Hothorn, Hornik, & Zeileis, 2006), using an 
unbiased version to avoid over-fitting, which could easily occur with data whe­
re the number of cases is similar to the number of predictor variables. We con­
ducted an analysis using the binary hit index ("hit" or "non-hit", based on the 
k-means clustering solution). From the random forest procedure we calculated
confusion matrices (across five different runs due to the random nature of the
algorithm) and used the normalized sum of diagonals as a measure of mean
classification accuracy (cf. Table 2). Furthermore, we computed mean variable
importances across five random forest calculations of the classification task, and
used the four most important variables (cf. Table 3) as input for a binary classi­
fication tree (cf. Figure 1 ;  see Strobl et al., 2009).

parsons_bigram_entropy 
p = 0.033 

:-:; 2 . 44 > 2 .44"" 
Node 2 (n = 72) 

+-' ,--------'------'----� 
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Fig. 1 :  
Classification tree for  hit songs using the 3 most important variable.
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0 

Comments: Only one variable survived (parsons_bigram_entropy, which measures the uniformity of 
interval direction pairs) . Classification accuracy is 6 1 .7 %. 
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Tab. 2 :  
Confusion matrix of predicted versus real hit songs over five Random Forest runs 

Confusion rnatrix Non-hit Hit 
Non-hit (predicted) 513 (38.6%) 424 (31.9%) 
Hit (predicted) 207 (15.6%) 186 (14.0%) 

Comment: Mean classification accuracy is 52.6 %. 

Tab. 3 :  
Mean variable importance and standard error for hit song classification averaged over 

five Random Forest runs with 1000 trees each 

Variable Mean Irnportance Standard Error 
(xl 000) (xl 000) 

parsons_bigram_entropy 1.87 .017 
parsons_bigram_entropy _norm 1.71 .027 
int_zipf 1.40 .019 
parsons_entropy 1.21 .015 

Comment: Only importances with absolute values greater than .00 1 are shown. For an explanation of 
the variables please refer to the main text. 

Tab. 4:  
Significant differences between hits and non-hits from Wilcoxon rank tests. 

Variable p Cohen's d 
number _notes .008 -.22 
total_duration .017 -.21 
parsons_bigram_entropy .022 -.31 
parsons_bigram_entropy _norm .025 -.31 
fuzzyint_hist_step _down .032 -.26 
mcm_zipf .033 -.26 
abs_int_zipf .037 -.26 
int_zipf .049 -.22 

Comment: Only variables with p < .05 are shown. For an explanation of the variables please refer to 
the main text. 
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4. 1 Predicting Hit songs 

As can be seen in Table 2, the mean classification accuracy of 52.6 % is only 
slightly above chance level, i .e. , intrinsic melodic features do not seem well 
suited to predicting hit songs. Using the four most important variables as input 
to a classification tree, however, gives a slightly better classification accuracy of 
61 %, but it is not expected that this result will generalize well to other song 
samples. The single surviving variable for the hit song classification tree is the 
entropy of the Parson's Code bigram distribution (parsons_bigram_entropy) . 
This can be interpreted to mean that hit songs tend to use all nine possible com­
binations of the three contour values (down, repetition, up) of two subsequent 
pitch intervals in equal proportion. The only other variables that attain a mean 
importance value of greater than .001 are int_zipf, parsons_entropy and par­
sons_bigram_entropy_norm (a normalized version of parsons_bigram_entropy, 
providing no additional information). The variable int_zipf measures the slope 
of the log-log distribution of rank-ordered semitone intervals and is an indicator 
as to whether a distribution is dominated by a few values. A higher Zipf coef­
ficient indicates greater predominance of a smaller number of intervals, as is the 
case for the hit songs in our sample. Parson's Code entropy (parsons_entropy) 
is a measure of the uniformity of the interval directions. Though the overall 
classification accuracy is very low, it is still noteworthy that all variables with 
high importance values measure the complexity of interval content. 

Additionally, we conducted a set of Wilcoxon rank tests using each feature 
as a dependent variable and the hit vs. non-hit classification as a binary predic­
tor ( cf. Table 4 ). Expectedly, the largest differences were found for those 
features that came out as most important in the random forest model. Addition­
ally, number _notes (note count) and total_duration_bar (length of melody 
measured in bars) showed large differences with considerable effect sizes, 
despite the fact that these features did not play an important role in the random 
forest classification model. Interestingly, the relevant parts of hit songs (main­
ly the chorus, as implemented in this study) are significantly shorter than the 
relevant parts of non-hit songs. Three more variables are present on the list of 
important variables as indicated by the results of the Wilcoxon tests: fuzzy­
int_hist_step _down, mcm_zipf, and abs_int_zipf The latter is closely related 
to int_zipf (Spearman's rho = .76, p <  .000) . The second (mcm_zipf) is the Zipf 
coefficient of the MCM48 distribution, which is lower for hit songs, indicating 
higher metrical variability. The first (fuzzyint_hist_step_down) is the density 
of downward steps (semi- and whole tones), which occur less often in hits . 
This finding is interesting since generally downward steps are the most fre­
quent interval in many relevant corpora (pop songs, e.g. , Müllensiefen, Wig­
gins, & Lewis, 2008; European folk songs, e.g. , Huron, 2006; and jazz solos, 
Frieler et al . ,  2013) .  

The p-values in the Wilcoxon rank tests were not corrected for multiple test­
ing. At a significance level of .05 and 152 variables, one would expect to see 7.6 
tests coming up significant by chance alone, which is closely fulfilled here. 
Hence, no general conclusion should be drawn from the results of the Wilcoxon 
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tests alone, but it is reassuring that these results align at least partially with the 
variable importance scores from the random model, thus strengthening those 
results. 

5 Discussion and Outlook 

The classification accuracy of the random forest using all 152 melodic features 
is surprisingly low and only marginally exceeds the chance level of 50 %. Ran­
dom forests are generally considered to be a very powerful statistical classifica­
tion and prediction method (cf. Fernandez-Delgado et al., 2014), thus the weak 
results obtained here are surprising. Additionally, the battery of Wilcoxon tests 
revealed only a rather small set of significant differences, which could have 
occurred by chance alone and supports the weak classification results from the 
random forest model. 

For hit song classification, one could argue that there are very many factors 
involved in producing a hit, most of them probably extra-musical. If we trust the 
statistical and classification methods, the most obvious explanation would be 
that the types of intrinsic features we employed are not well suited to capturing 
psychologically important characteristics of melodies (e.g., memorizability, 
simplicity/complexity, etc.), at least not for those songs involved in this study. 
In line with Pachet and Roy's (2008) findings, we would not expect that an even 
larger set of features, constructed in similar ways as done here, would raise the 
classification success rate significantly. Hence, two possible explanations come 
to rnind. First, the basic and very abstract representation of melodies as se­
quences of note onsets, durations and pitches is too sparse, since all moments 
of expressivity and timbre are excluded. Maybe, it is really the singer and the 
performance of a song that drives its popularity and commercial success, rather 
than the structural features of the song's melody. This would be in line with the 
findings by Pawley and Müllensiefen (2012), who reported that the features of 
the musical performance ( and not the features of musical structure) proved to 
be the most important ones for inciting people to sing along to pop music in 
leisure contexts. A counter-argument to this explanation would be that very suc­
cessful songs normally occur in a large variety of expressive renditions ( cover 
songs, ordinary people singing the song on the street, different instrumentations), 
making them partially independent of their concrete realization, which is cor­
roborated by the fact that they are easily recognizable even from dead-pan MIDI 
versions. Thus following this line of argument, expressivity and timbre might 
not be entirely crucial. The second potential explanation concerns the fact that 
all features used here are intrinsic features. Hence, they do not make use of in­
formation of the cultural context in which the melodies occur, which is assumed 
to form the basis for the processing of melodic information in listeners. We 
conjecture, thus, that extrinsic corpus-based features, such as the ones described 
in Müllensiefen & Halpern (2014), might significantly boost classification per­
formance. This is a readily testable hypothesis that we plan to address in the near 
future. 
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