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Abstract
Learning fractions is notoriously difficult, yet critically important to mathematical and general academic achievement. Eye-tracking studies
are beginning to characterize the strategies that adults use when comparing fractions, but we know relatively little about the strategies used
by children. We used eye-tracking to analyze how novice children and mathematically-proficient adults approached a well-studied fraction
comparison paradigm. Specifically, eye-tracking can provide insights into the nature of differences: whether they are quantitative—reflecting
differences in efficiency—or qualitative—reflecting a fundamentally different approach. We found that children who had acquired the basic
fraction rules made more eye movements than did either adults or less proficient children, suggesting a thorough but inefficient problem
solving approach. Additionally, correct responses were associated with normative gaze patterns, regardless of age or proficiency levels.
However, children paid more attention to irrelevant numerical relationships on conditions that were conceptually difficult. An exploratory
analysis points to the possibility that children on the verge of making a conceptual leap attend to the relevant relationships even when they
respond incorrectly. These findings indicate the potential of eye-tracking methodology to better characterize the behavior associated with
different levels of fraction proficiency, as well as to provide insights for educators regarding how to best support novices at different levels of
conceptual development.
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The ability to understand and interpret fractions is an important foundational skill for the development of
mathematic ability. Just as algebra competency has been shown to be the gateway into careers in math
and science (National Mathematics Advisory Panel, 2008), fraction competency seems to be the gateway
into understanding algebra (Booth & Newton, 2012). However, algebra teachers in the United States rate
their students as having extremely poor knowledge of rational numbers, nearly the weakest topic of 15 core
mathematical areas (Hoffer, Venkataraman, Hedberg, & Shagle, 2007). With deficits in fraction competency
seeming endemic, identifying possible pedagogical improvements is an imperative.

There are many conceptual challenges associated with the learning of fractions. One of the biggest hurdles is
that the magnitude of a fraction is not defined by the values of the component numbers, but instead by the
relationship between the numerator and denominator. Consequently, fractions must be mentally represented
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either as single integrated magnitudes, called holistic representation, or as their component numbers, referred
to as componential representation. Each representation is valuable in certain contexts, and prior research has
found evidence supporting both mental representations (e.g., Bonato, Fabbri, Umilta, & Zorzi, 2007; Ischebeck,
Schocke, & Delazer, 2009; Meert, Grégoire, & Noël, 2009; Obersteiner et al., 2014).

Studies using the fraction comparison paradigm, in which participants are asked to select the fraction with
the larger magnitude, have found that adults adaptively use both componential and holistic representations,
depending on the task context (Huber, Moeller, & Nuerk, 2014; Meert et al., 2009). For example, if the fractions
presented share the same denominator (e.g., 3/5 and 4/5), a simple heuristic of selecting the larger numerator
will yield the correct answer, and behavioral evidence aligns to the theory of componential representation
(Ischebeck et al., 2009; Meert et al., 2009). However, when the pair shares no common components (e.g., 3/5
and 4/6), it may be necessary to calculate the integrated magnitude or use an alternate strategy in order to
select the larger fraction. Accordingly, in this context, evidence aligns with a holistic magnitude representation
of fractions (Meert, Grégoire, & Noël, 2010a; Obersteiner et al., 2014; Sprute & Temple, 2011). When the
task interleaves both shared-components and mixed pair trials, adults select an appropriate strategy after a
brief scan of the problem space, and focus on the relevant components of the comparison (Ischebeck et al.,
2016). There is even evidence for the influence of both component and magnitude representations within the
same trial, with components being accessed automatically and magnitudes after processing (Faulkenberry,
Montgomery, & Tennes, 2015). Furthermore, better performance on the fraction comparison task is associated
with use of a wider range of strategies (Fazio, DeWolf, & Siegler, 2016).

Fraction Comparison by Young Learners

The above-mentioned findings centered on adults who demonstrated a certain degree of proficiency. Fraction
comparison studies with child participants are much fewer, and have shown, as with adults, that the more
successful participants use a wider range of strategies, and select strategies that align to the particular task
challenges (Clarke & Roche, 2009; Smith III, 1995). Yet even these studies focused on children who had
completed at least several years of fraction education. In the current study we selected participants who had
some familiarity with unit fractions (i.e., 1/n) but had not yet had much formal education, as we sought to
investigate how novices approach these complex mathematical problems.

The ability to solve complex problems, in any context, by identifying patterns across multiple sets of mental
representations is called relational reasoning (Dumas, Alexander, & Grossnickle, 2013). Examples of relational
reasoning include the ability to solve propositional analogies (e.g., puppy is to dog as kitten is to cat), as well
as matrix reasoning and transitive inference. A wide-ranging body of research has shown that domain-general
executive skills, and particularly relational reasoning, support academic success. Relational reasoning has long
been cited as a predictor of future academic achievement (e.g., Gottfredson, 1997) and has more recently
been linked specifically to the acquisition of mathematical skills (Green, Bunge, Briones Chiongbian, Barrow, &
Ferrer, 2017; Primi, Ferrão, & Almeida, 2010). Although the mechanism of learning is not well characterized,
several researchers posit that relational reasoning supports mathematical thinking through attention to structur-
al similarities between familiar and novel problems (Miller Singley & Bunge, 2014; Richland & Begolli, 2016;
Richland & McDonough, 2010).

Eye Gaze Patterns and Numerical Comparisons 84

Journal of Numerical Cognition
2020, Vol. 6(1), 83–107
https://doi.org/10.5964/jnc.v6i1.119

https://www.psychopen.eu/


Attending to the structure of the fraction comparison task highlights the complexity of the relationships be-
tween the four numbers in each problem. While the prompt is always the same—Select the larger of two
fractions—different relationships are relevant in different types of problems. In the simplest case, when the two
denominators are equal, the task requires only a single comparison between the two numerators. And this
comparison is familiar to young learners: the fraction with the larger numerator is the one with the larger value.
Thus, extending the known mathematical rule that higher numbers indicate larger magnitudes is helpful in this
simplest case.

The converse case, in which the numerators are equal and the denominators differ, requires comparison
between the denominators. However, extending familiar information to this novel problem leads to the incor-
rect response. Instead of selecting the larger number, the students must learn a new rule: that the smaller
denominator indicates the larger fractional value. According to Dumas et al. (2013), antithetical, or oppositional,
reasoning is a type of relational reasoning, but it is practiced far less often in formal educational settings.
The smaller-denominator rule in particular has been posited to be a transitional step toward comprehensive
fraction understanding (Rinne, Ye, & Jordan, 2017), as there is evidence that a smaller denominator causes
a “Stroop-like” interference (Meert, Grégoire, & Noël, 2010b). These studies further illustrate how expanding
children's understanding of relational rules may improve their skill with fractions.

In the most complex case of the fraction comparison task, all four numbers are different, and, depending
on the task affordances, a variety of strategies may be useful. The relationship between the numerator and
denominator of each fraction defines its value, and so attending to the integrated magnitudes and then
comparing them will reliably produce the correct answer. However, this strategy is both conceptually and
mathematically challenging: it requires proficiency in both calculation and relational reasoning. From a relational
reasoning perspective, this strategy has the same problem structure as traditional analogies. It is a second-or-
der comparison, or the comparison of two first-order relationships, which is more cognitively taxing than simple
comparisons (Halford, Wilson, & Phillips, 1998). Children are known to spontaneously use analogical thinking
in their learning (Inagaki & Hatano, 1987; White, Alexander, & Daugherty, 1998), but analogies are rarely used
effectively in formal mathematics education (Richland, Holyoak, & Stigler, 2004).

The capacity for relational reasoning improves through middle childhood (Bazargani, Hillebrandt, Christoff,
& Dumontheil, 2014; Halford et al., 1998; Wendelken et al., 2018). Because the representation of 2nd-order
relations is challenging, many students learn specific strategies to handle the mixed-pair fraction comparisons,
such as converting to like denominators (i.e., multiplying one fraction by n/n such that the denominators
become equal and the numerator comparison becomes straightforward), or cross-multiplying (i.e., multiplying
each numerator by the opposite denominator and comparing the products, which is a simplified algorithmic
method of converting to equivalent denominators). More experienced learners may look at the holistic mag-
nitude when necessary (Obersteiner et al., 2014), or may continue to use these specific strategies when
warranted (Faulkenberry & Pierce, 2011). Thus, in the mixed pair case of this task, each pairwise relationship
between all four numbers may be useful to consider, but some are more familiar and thereby more accessible
to new learners than others.

Just as relational reasoning develops throughout childhood, so do several additional cognitive skills that
undergird performance on the fraction comparison task. In particular, the ability to flexibly apply different
mathematical rules to different cases, or cognitive flexibility, as well as processing speed, both improve through
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adolescence (e.g., Davidson, Amso, Anderson, & Diamond, 2006; Diamond, 2002; Luna, Garver, Urban, Lazar,
& Sweeney, 2004). Additionally, working memory span, or the number of pieces of information one can keep
in mind simultaneously, improves through mid-childhood (Gathercole, 1999; Perone, Simmering, & Spencer,
2011).

In summary, while adults can recognize the different cases within the fraction comparison task and modify
their strategies accordingly, the task is much more difficult for children. Not only are they new to working
with fractions, but their relational reasoning, task-switching, and working memory skills are all less efficient
than those of adults. Given their status as novice learners, we sought to investigate whether or how children
approached the fraction comparison task differently from adults.

Fraction Comparison and Eye-Tracking

The aforementioned studies have used highly precise behavioral and chronometric methods to make inferen-
ces about mature and developing mental representations of fractions, but it is difficult to gain insights about the
variety of strategies that people employ without repeatedly asking for verbal reports while they solve problems,
which incurs the risk of influencing their approach. However, eye-tracking technology can be used to track
people’s eyes as they examine a problem. Eye gaze is intimately related to attention (e.g., Deubel & Schneider,
1996; Shepherd, Findlay, & Hockey, 1986), and therefore we can infer a person's strategy by tracking their eye
fixations and eye movements, or saccades (Grant & Spivey, 2003). Pairing eye gaze metrics with quantitative
metrics that reflect efficiency of cognitive processing allows researchers to distinguish between quantitative
group differences—that reflect proficiency with cognitive functions underlying a particular task—and qualitative
differences—that reflect fundamentally different strategies or approaches to the task. This distinction was not
possible solely with behavioral methods.

Eye-tracking studies using the fraction comparison paradigm leveraged patterns of saccades between the
numbers displayed on the screen to infer a person’s strategy. Obersteiner and Tumpek (2016) and Ischebeck
et al. (2016) both found that when people compared fraction pairs with the same denominator (e.g., 3/5 and
4/5), saccades between numerators were more prevalent, whereas when comparing fraction pairs with the
same numerator, saccades between denominators were more prevalent (e.g., 4/5 and 4/6). Obersteiner and
Tumpek (2016) additionally found that saccades between the numerator and denominator within the same
fraction were more common when the fractions shared no common components. These initial eye-tracking
findings lend support to the hybrid theory of mental representation of fractions, as they show that adults use
componential strategies when they are adaptive, and holistic strategies when all digits need to be taken into
account. The fraction comparison studies involving children have used interview techniques to elaborate the
various strategies employed (e.g., Clarke & Roche, 2009; Smith III, 1995). To our knowledge, however, none
have probed strategic approaches using eye-tracking.

Eye-tracking methodology has illuminated different strategies in use for different task conditions, but also in dif-
ferent groups of people. A set of studies using the number line magnitude placement task documented the use
of less and more sophisticated strategies in children (Schneider et al., 2008), adults (Sullivan, Juhasz, Slattery,
& Barth, 2011), and atypically developing children (van’t Noordende, van Hoogmoed, Schot, & Kroesbergen,
2016). When placing a random number on a 0–100 number line, novices tended to look primarily at the
endpoints and midpoint of the line, while participants who were older and more skilled seemed to divide the line

Eye Gaze Patterns and Numerical Comparisons 86

Journal of Numerical Cognition
2020, Vol. 6(1), 83–107
https://doi.org/10.5964/jnc.v6i1.119

https://www.psychopen.eu/


into finer segments and looked preferentially at more precise benchmarks. This set of findings highlights the
possibility that the mathematical strategies used by children as they are learning new concepts are qualitatively
different than those used by experienced adults.

Beyond these mathematical tasks, eye-tracking research has also identified some general differences in stra-
tegic approach due to differing skill levels. A meta-analysis of proficiency studies (Gegenfurtner, Lehtinen,
& Säljö, 2011) reported that experts in a variety of professional arenas had shorter fixation durations, more
fixations on task-relevant areas, fewer fixations on task-redundant areas, longer saccades, and shorter times
to first fixate on relevant information. Our version of the fraction comparison task gives the opportunity to
demonstrate many of these behaviors, in that there are task-relevant and task-redundant areas of the screen,
and it requires knowledge of specific fraction rules and strategies. Thus, we expected the differences in
knowledge between children and adults to be reflected in qualitatively different eye movements.

In addition to providing insights into problem-solving approaches, eye-tracking metrics can also capture quanti-
tative differences related to efficiency of cognitive processing, thereby allowing us to discern whether group
differences are qualitative or quantitative. Eye-tracking research has shown that children generally respond
more slowly to stimuli than do adults (e.g., Bucci & Seassau, 2012). Working memory tasks elicit pupillary
responses, detectable with eye-tracking methodology, that differ between children and adults (Johnson, Miller
Singley, Peckham, Johnson, & Bunge, 2014; Luna et al., 2004). These general cognitive skills tend to improve
with maturation, so we expected to capture quantitative differences in the number of eye movements between
children and adults.

Current Study

In this study we sought to identify the qualitative and quantitative differences in problem-solving approaches
between new learners and mathematically-proficient adults. We compared the performance and gaze behavior
of adults to those of fifth graders (9–11 year olds) near the beginning of the school year, on a fraction compari-
son task that included both mixed pairs and pairs with same components. Both groups completed the identical
task while we measured their behavioral performance and tested for differences in their eye movements. We
measured both raw numbers of saccades, which reflect cognitive efficiency, and percentages of particular types
of saccades per trial, which reflect qualitative patterns of gaze behavior and indicate problem-solving strategy.

Based on the research described above showing a general improvement in cognitive skills with age, we
predicted that adults would demonstrate higher efficiency on the fraction comparison task, as evidenced by
fewer overall saccades across task conditions. Although children might take longer and exhibit more saccades
overall, we predicted that saccade patterns, that is, the relative number of different types of saccades, would be
related to mathematical proficiency. Thus, we predicted that children would exhibit qualitatively similar accuracy
and gaze patterns to adults on the simpler cases, which they may be familiar with, and poorer performance and
disorganized gaze behavior on more complex cases that they have yet to learn.
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Method

Participants

We recruited 35 5th-grade children (ages 9–11) and 38 college students (ages 18–22) for this study. The chil-
dren were recruited from a charter school in a socioeconomically depressed community in Oakland, California.
95% of students at this school are eligible for free or reduced price lunch. Academically, only 23% meet state
literacy goals (compared to 44% in the state overall), and only 25% meet state mathematics goals (compared
to 33% in the state). The child participants completed this study as part of an effort to assess the cognitive
benefits of chess training. The young adult participants consisted of undergraduate students at the University of
California at Berkeley who participated in the study for course credit in a Psychology course, as part of a larger
study on adults’ fraction strategies. All study procedures were approved by the Committee for the Protection of
Human Subjects at the University of California at Berkeley.

Three children were excluded from the study on the basis of less than 50% valid eye gaze data. Two adults and
three children were excluded for poor performance based on the clustering procedure described below. The
final sample included 29 children (MAge = 10.6, SD = 0.55; 17 girls, 12 boys) and 36 young adults (MAge = 20.4,
SD = 1.2; 24 women, nine men, three declined to state). All participants had normal or corrected-to-normal
vision.

Procedure

Children were given permission to leave class, and were brought to a Tobii eye-tracker that was set up in
a quiet room inside the school for a 20-minute eye-tracking session that included this task after completing
a working memory task and, last, a resting scan. Adults visited the lab for a 1-hour session that included a
different battery of tasks: this task was the first, followed by a more difficult version of the fraction comparison
task, a paper-and-pencil test of relational reasoning, a version of fraction comparison that contained proper and
improper fractions, and a final strategy interview.

Participants were told that they would see two fractions on the screen, and that they would need to decide
as quickly as they could which fraction represented the larger magnitude, entering their choice by pressing
the left or right arrow key on a standard computer keyboard. They were not instructed to use any particular
strategy in solving the fraction comparison problems, nor were they given any feedback during the trials. The
trials commenced immediately without any practice trials. The experiment lasted approximately 5 minutes.
Trials were self-paced, with a limit of 8 seconds, and a fixation cross was presented for one second between
successive trials.

The experiment was conducted on a Tobii T120 eye-tracker, with a sampling rate of 120 Hz (one measurement
every 8.3 milliseconds). Participants were asked to sit in front of the eye-tracker at the recommended distance
of approximately 64 cm. The session began with a 9-point calibration protocol to ensure that the eye tracker
accurately identified the participant’s eyes and location of their gaze.

During the task session, two fractions were shown side by side on the screen, each digit subtending 2.2
horizontal degrees × 3.4 vertical degrees, with a visual angle of 8.51° between fractions and 1.71° between
numerators and denominators. The digits in this version were placed with less vertical separation than in other
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studies (e.g., Ischebeck et al., 2016), but because our participants were just learning fractions we wanted to
ensure they appeared in a recognizable format. Because the fovea typically extends 2° (Holmqvist et al., 2011),
this layout may have enabled participants to encode the stimuli using peripheral vision rather than having to
foveate each one, thereby resulting in fewer saccades between stimuli.

There were 32 trials total, divided into four interleaved conditions with eight fraction pairs each, adapted from
Ischebeck et al. (2009). In these eight fraction pairs, four were unique pairs and the other four were reversed
duplicates of the first four, to counterbalance the correct responses between left and right.

Following Ischebeck et al. (2009), we used four conditions that elicit distinct behavioral signatures. In the Same
Denominator (SD) condition, fraction pairs had the same denominator but different numerators (Figure 1a).
This was the simplest condition, because when two fractions have the same denominator, then the larger
fraction has the larger numerator, in alignment with the rules of counting numbers. In the Same Numerator
(SN) condition, each of the fraction pairs had different denominators, but the same numerators (Figure 1b).
These fraction pairs are solved by knowing that, if the two numerators are the same, the one with the smaller
denominator is the larger fraction. The third condition, called the congruent condition (CO), was a direct
extension of the SN and SD conditions, meaning a decision based on either numerators or denominators would
lead to a correct response: the correct answer had both a larger numerator and a smaller denominator (Figure
1c). The most difficult condition was the incongruent condition (IC), in which one fraction had both a larger
numerator and a larger denominator, providing inconsistent cues, such that all four digits had to be considered
to select the correct response (Figure 1d). Conditions were interspersed pseudo-randomly over the course of a
single block of trials.

Figure 1. Sample items for each task condition.

The numbers depicted in the fractions were single digits between one and nine, so that the stimuli would
be highly familiar to both children and adults (see stimulus set in Appendix). We used fraction pairs with a
numerical distance of one between the non-constant components (e.g., 2/5 vs. 2/6 and 5/7 vs. 6/8), because it
has been established that the closer the numerical values are, the more difficult the judgment (Dehaene, 1992;
Moyer & Landauer, 1967).
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In the stimulus pairs we selected, the fraction with the larger numerator on IC trials was always the correct
response; therefore, if participants made a decision based solely on the numerator, their responses would
always be correct. However, there was no evidence in either the prior study (Ischebeck et al., 2009) or ours that
this was an actual confound, as the behavioral results suggest, and eye gaze data confirm, that participants
considered both numerators and denominators on IC trials.

As mentioned previously, it has been established that the closer together two magnitudes are, the more difficult
it is to select which is greater (Moyer & Landauer, 1967). This effect applies to holistic magnitudes of fractions
as well as to their components, particularly when the task promotes a holistic mental representation (e.g.,
Faulkenberry et al., 2015; Meert et al., 2010b). Due to the selection criteria for these stimulus pairs, the
average difference in magnitudes between fractions varies with task condition, making condition and magnitude
difference collinear in all regression models. In particular, IC was the most difficult condition due to the structure
of the numerical relationships, but could also have been difficult because it had smaller magnitude differences
between the pairs than did the other conditions. Although magnitude difference is statistically inseparable
from effects of condition within this stimulus set, the performance and gaze behavior exhibited by participants
is better explained by condition differences. Thus, we conducted our investigation with a focus on condition
instead of magnitude difference, and make suggestions in the Discussion regarding paradigm revisions for
future research.

Metrics

From the Tobii output file we calculated trial accuracy and response times (RTs), as well as the number of
saccades between digits per trial (saccades/trial). We defined an area of interest (AOI) for each digit on the
screen, and measured saccades through the four AOIs. Five types of saccades were possible between each of
the AOIs: numerator to numerator (NN), denominator to denominator (DD), numerator to denominator (or vice
versa) on the left side (NDL), numerator to denominator (or vice versa) on the right side (NDR), and saccades
between one numerator and the opposite denominator (NDX; Figure 2). Saccades that originated or terminated
outside of one of these AOIs were not counted.

Figure 2. Examples of AOI saccades between the four AOIs, which are shown here as rectangles around the numbers.

Data Selection

Saccades between AOIs were defined by the consecutive changes in fixation recorded by the eye tracker
between our four AOIs. Typical eye fixations last from 100–500 milliseconds (Holmqvist et al., 2011). For the
majority of samples, data from both eyes were available and were averaged to determine gaze location; howev-
er, a valid recording from one eye is sufficient for the Tobii software to determine which AOI the participant was
fixating. Any set of samples within a single AOI that lasted less than 40 milliseconds we interpreted to be a
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transit between AOIs instead of a true fixation and thus were dropped. Any contiguous samples in the same
AOI that were separated by fewer than 300 milliseconds of missing samples were concatenated, under the
assumption that the disruption was caused by a blink.

The adults had an overall average accuracy of 91%, varying across conditions as follows: SD 95% (SD = 22%),
SN 91% (SD = 29%), CO 94% (SD = 23%), and IC 80% (SD = 40%). The children had an overall average
of 66% with a similar range of accuracies across conditions: SD 67% (SD = 47%), SN 66% (SD = 47%), CO
75% (SD = 44%), and IC 49% (SD = 50%). The children’s poor performance was unsurprising, given they were
just learning fractions at the time of the experiment, but the very large standard deviations in the child group
prompted us to look more closely at the performance distribution.

Plotting average accuracy on the SN condition against the SD condition (Figure 3) revealed distinct patterns of
performance.

Figure 3. Individual participants’ average accuracy on the SN condition plotted over their accuracy on the SD condition,
colored by groups resulting from a hierarchical clustering algorithm. Children are denoted as Xs and adults as Os.

Note. The grouping of children and adults in the top right (blue) responded consistently correctly on both SN and SD
conditions. The groups of mostly children in the top left (orange) and lower right (purple) corners responded correctly on
only one of those conditions, indicating they are operating on simplistic heuristics. Participants responding at chance (gray)
or low on both conditions (red) were excluded, as well as the adult who was not clustered into the two-rule group.

Nearly all adults and a large subset of children had high accuracy scores on both SD and SN, indicating that
they knew and could appropriately apply both the larger-numerator and smaller-denominator rules. However,
two other subsets of participants had high accuracy scores on one condition and low scores on the other,
indicating that they applied only one of those rules to all trials. A participant who consistently selects the larger
number will respond correctly on all SD trials, for which the larger-numerator rule applies, and will respond
incorrectly on all the SN trials, for which the correct response is the fraction with the smaller denominator.
By contrast, a participant who consistently selects the smaller number will respond correctly on SN trials and
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incorrectly on SD trials. To illustrate this distinction, consider the sample problems in Figure 1. A participant
operating on a large-number bias would correctly select 4/7 as larger than 3/7, but would incorrectly choose 3/5
as larger than 3/4—that is, would perform well on SD trials but poorly on SN trials. A participant operating on a
small-number bias would correctly select 3/4 as larger than 3/5, but would incorrectly select 3/7 as larger than
4/7, thereby performing poorly on SD trials but well on SN trials. Both of these biases display an incomplete
understanding of the fraction rules.

A clustering algorithm including all subjects confirmed these sub-groupings. We separated the child group into
those who applied two rules and those who applied only one, regardless of which rule they applied. Three
children performed at or below chance on both SD and SN conditions and were not clustered with either the
one-rule or two-rule groups; therefore, they were excluded. One adult participant was clustered with a one-rule
group, and another fell outside the rule clusters, so they were also excluded.

Rinne et al. (2017) previously used a latent clustering algorithm that identified a group of 4th-6th grade learners
who consistently selected the fraction that contained the largest number, regardless of whether that number
was in the numerator or denominator. Rinne et al. posited that the heuristic of selecting the larger number
demonstrates no understanding of fractions, whereas a partial understanding of fractions was exhibited by a
distinct group of learners who consistently selected the smaller number. Learners often transitioned from the
large-number heuristic to the small-number heuristic, and rarely the other way, suggesting that the small-num-
ber heuristic serves as a waypoint as learners develop normative understandings. Although Rinne et al. found
that the small-number heuristic seemed somewhat more sophisticated than the naïve large-number heuristic,
our sample was not large enough to test those subgroups separately, and so we combined them into a group
that we call one-rule children. The final groups were comprised of an adult group of 36 participants, a one-rule
group of 17 children, and a two-rule group of 12 children (Table 1).

Table 1

Mean and Standard Deviation of Accuracy Measures for Each Condition, plus Demographic Data, by Sample

Condition

One-Rule Children (n = 17) Two-Rule Children (n = 12) Adults (n = 36)

M SD M SD M SD

Same Denominator (SD) 0.55 0.50 0.92 0.28 0.97 0.22
Same Numerator (SN) 0.51 0.50 0.94 0.25 0.92 0.26
Congruent (CO) 0.64 0.48 0.91 0.29 0.94 0.23
Incongruent (IC) 0.57 0.50 0.37 0.49 0.80 0.39
Age 10.60 0.52 10.63 0.67 20.36 1.17
% Female 36.00 65.00 67.00

Analyses

To accommodate the presence of the one-rule group of children, we modified our analytic plan to test for
differences in eye movement behavior on specific conditions that were accessible to all groups. First, we
validated our supposition that adults would be more efficient than children by testing for differences in RTs and
total number of saccades. Next, we tested for differences among all groups in percent of relevant saccades,
specifically on the SD and SN conditions. Saccades between numerators (NN) are relevant for the SD condi-
tion, and saccades between denominators (DD) are relevant for the SN condition. Because we combined the
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one-rule groups who were consistently correct on either SD or SN, we tested for group differences in the
percent of saccades on a given trial that were relevant for the problem (i.e., NN saccades for the SD condition,
and DD saccades for the SN condition). Finally, we tested for differences between the two-rule children and
adults on all types of saccades in the CO and IC conditions, excluding the one-rule children for whom these
conditions were too difficult. In the CO and IC conditions all types of saccades could be relevant, depending
on one’s comparison strategy, and so we investigated whether a particular pattern of saccades was more
prevalent for one group or the other.

All analyses were executed as mixed models with a random effect of subject. In each analysis, the addition
of the subject factor resulted in a highly significant likelihood-ratio test over a base model that included no
predictor variables. Thus, we additionally ran mixed models controlling for subject dependency and testing for
one or more effects of condition, group, accuracy, or saccade types.

Results

Group Differences in Task Efficiency: RTs and Total Number of Saccades

Accuracy results are reported above, as they were used to define participant groups; here, we report on RT
and eye gaze data. To confirm that adults performed more efficiently than children on this task, we conducted
two mixed regressions with mean RTs and total number of saccades per trial as the outcome variables. After
establishing significant participant-level dependence as captured by a random effect of subject, we added the
categorical variables of task condition and group to each analysis.

With respect to RTs, the adults did indeed respond more quickly than the children (1-rule: z = 2.22, p = .026;
2-rule: z = 2.56, p = .011; f2

group = 0.01), although the effect sizes for group were weak, and there was no
difference between the two groups of children on RTs (Figure 4a). Thus, adults responded slightly more quickly
than both the 1-rule and 2-rule children, who did not differ from each other.

Figure 4. (a) Response times and (b) total number of saccades of interest per trial for each condition, separated into the
final groups of one-rule children, two-rule children, and adults. Error bars represent standard errors.

Using SD as the reference condition, all groups responded more slowly on SN, CO, and IC than on SD (SN: z =
4.55, p < .001; CO: z = 4.78, p < .001; IC: z = 7.82, p < .001; f2

condition = 0.04). However, there were significant
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group by condition interactions of the one-rule group with both CO and IC (one-rule by CO: z = –2.79, p = .005;
one-rule by IC: z = –4.61, p < .001), showing that those children did not exhibit the same slowing down on
the more difficult conditions that the two-rule children and the adults did. Note that we calculated effect sizes
according to the method given in Selya, Rose, Dierker, Hedeker, and Mermelstein (2012) which does not allow
for estimation of effect sizes of both main and interaction effects, and so we report f2 only for main effects and
point out interactions where they added explanatory value to the regression model. In general, these results
indicate that adults were indeed more efficient at making numerical judgments than children, and that both
adults and two-rule children, but not one-rule children, were responsive to the increasing levels of task difficulty.

With respect to the eye-tracking data, the pattern observed for the total number of saccades of interest (i.e.,
those between AOIs) per trial was not redundant with that observed for RTs (Figure 4b). Instead, the two-rule
children made significantly more saccades on all conditions than either the one-rule children or the adults
(1-rule: z = –2.16, p = .031; adults: z = –3.16, p = .002; f2

group = 0.01), and especially on the IC condition as
compared to the one-rule group (1-rule: z = –3.45, p = .001; adults: z = –1.52, p > .05), although the effect size
was weak. Both the two-rule children and adults made more saccades on the most difficult condition, IC, than
on the easiest, SD (z = 3.93, p < .001; f2

condition = 0.025), whereas the one-rule children did not (z = –2.68,
p = .007); this result parallels the RT pattern. The adults also made more saccades on SN than SD (z = 2.83, p
= .005), while neither the one-rule or two-rule groups did. Note that this metric includes only saccades between
AOIs: it excludes all saccades originating or terminating in an area of the screen that lies outside an AOI (see
Figure 2). This saccades metric indicates that adults were more sensitive to the varying difficulty levels of
conditions than the children, and that the two-rule children made more eye movements in all conditions than
either the one-rule children or the adults.

In summary, the adults differed from children in their overall faster RTs, and in their saccade sensitivity between
SD and SN conditions. The two-rule children differed from their one-rule peers and from adults by making more
saccades on all conditions. The one-rule children were distinguished by their lack of RT sensitivity to condition
difficulty.

Group Differences in Saccades on SD and SN

Next, we tested for qualitative differences in gaze behavior that would indicate whether the problem-solving
strategies of novices differed from those of experienced adults. For this analysis, we focused on the easier
conditions: the SD and SN trials. Because we had created the one-rule group by combining the children who
consistently selected large numbers with those that consistently selected small numbers (i.e., those who used
only one rule or the other), we collapsed the SD and SN conditions and created a new metric that would
apply to both conditions. For both SD and SN, only one type of saccade is relevant (NN for SD and DD for
SN; Figures 1 and 2). Thus, we created a metric of the percentage of relevant to total number of saccades
between AOIs per trial (Figure 5) and tested for differences between all three groups. We conducted a mixed
regression on only correct trials with a random effect of subject and categorical predictor variables of group and
condition. Note that the condition variable tests for differences within subjects for the two-rule and adult groups,
as those participants generally answered correctly on both SD and SN. However, the condition variable tests
for differences between sub-groups of the one-rule group, because some participants answered correctly on
SD and others answered correctly on SN. Thus, the condition factor is difficult to interpret and was included
solely as a control variable, to clarify the interpretation of any effects of group or accuracy.

Eye Gaze Patterns and Numerical Comparisons 94

Journal of Numerical Cognition
2020, Vol. 6(1), 83–107
https://doi.org/10.5964/jnc.v6i1.119

https://www.psychopen.eu/


NN saccades were by far the most prevalent type of saccade for both SN and SD correct trials, for all three
groups; on SD trials the NN saccades comprised the “relevant” metric, while looking between numerators on
SN trials provided only redundant information. On SD trials, 48% of adults’ saccades were between the two
relevant numbers (Figure 5); similarly, 55% of two-rule children’s saccades and 56% of one-rule children’s
saccades were between the relevant numbers. On SN trials, 18% of adults’ saccades, 22% of two-rule
children’s saccades, and 29% of one-rule children’s saccades were between the relevant numbers (i.e., DD
saccades). Adults exhibited a numerically smaller percentage of relevant saccades than both groups of children
on both conditions, but only the difference between the adults and the one-rule children reached the statistical
threshold (z = –2.42, p = .016; f2

group = 0.003), with a weak effect. The difference between the two-rule children
and the other groups did not reach statistical threshold (zone-rule = 0.91, p = .36; zadults = –1.32, p = .19); this
group fell between the one-rule children and the adults. The effect size of condition was much larger than
that of group because all groups made a higher percentage of relevant saccades on correct SD trials than on
correct SN trials (z = –13.15, p < .001; f2

condition = 0.23). As noted above, however, condition and sub-group
were confounded within the group of one-rule children, because some children were correct on SD and others
correct on SN, so it is difficult to make a general interpretation for that group. Overall, the groups exhibited
a similar pattern of making a large percentage of relevant saccades on the SD condition and fewer relevant
saccades on the SN condition, with the one-rule children making the highest percentage of relevant saccades
and the adults making the lowest.

Figure 5. Mean percentage of relevant saccades per correct trial for the SD and SN conditions, separated by group.

As mentioned above, our planned analyses did not account for the unexpected difference in children’s behav-
ior, as revealed by the accuracy profiles that showed a substantial number of children operated with either
a large-number or small-number bias. The large-number bias children responded correctly to the SD trials
(e.g., indicating that 4/7 is greater than 3/7) and incorrectly to the SN trials (e.g., indicating that 3/5 is greater
than 3/4), and the small-number bias children responded correctly on SN trials (e.g., 3/4 is greater than 3/5)
and incorrectly on SD trials (e.g., 3/7 is greater than 4/7). To explore the gaze behavior of these subgroups,
we created a metric of percentage of redundant saccades per trial, comprised of saccades between identical
numbers as a percentage of total saccades per trial (i.e., the percent of saccades between numerators in the
SN condition and between denominators in the SD condition). Because some saccades in a trial were vertical
or diagonal, the percentages of relevant and redundant saccades were not complementary. For this exploration
we chose to include both correct and incorrect trials because all participants, even those in the one-rule group,

Miller Singley, Crawford, & Bunge 95

Journal of Numerical Cognition
2020, Vol. 6(1), 83–107
https://doi.org/10.5964/jnc.v6i1.119

https://www.psychopen.eu/


behaved generally consistently within conditions; therefore, their incorrect responses might show what gaze
behavior predicated their mistaken reasoning.

This exploratory analysis tested for differences between relevant and redundant saccades across and within
three groups: two-rule children who appropriately applied both large-number and small-number rules, one-rule
children who exhibited a small-number bias, and one-rule children who exhibited a large-number bias. In the
SD condition, all groups made more relevant than redundant saccades (zredundant = –14.33, p < .001; all pgroup

> .3), mirroring the main analysis described above. In the SN condition, however, the groups exhibited distinct
gaze behavior, indicated by significant group by saccade-type interactions so we report here those contrasts of
relevant to redundant saccades within groups during SN trials. The two-rule children made approximately equal
numbers of relevant and redundant saccades during SN trials (z = 0.48, p = .63). The small-number subgroup
made more relevant than redundant saccades on SN trials (z = 2.61, p = .009), examining the denominators
more than the numerators, while the large-number subgroup made more redundant than relevant saccades on
these trials (z > 4, p < .001). Although this exploratory analysis was underpowered, it suggests that there is a
meaningful difference between the children who exhibit a large-number bias compared to those who exhibit a
small-number bias, and warrants further investigation.

Group Differences in Saccades on CO and IC

The CO condition could be solved by operating on either the larger-numerator rule or the smaller-denominator
rule, and thus accuracy was generally very high for this condition (Table 1). The IC condition, however, set
those two rules in conflict, such that participants needed a different strategy in order to select the larger frac-
tion. Accordingly, accuracy among the children’s groups was very low for IC. Given that one-rule children—by
definition—had not mastered the basics of fractions, performing poorly when comparing fractions with shared
components, we reasoned that their performance on trials with no shared components would be uninterpreta-
ble. However, we posited that the two-rule children, despite performing poorly on IC trials, might demonstrate
gaze behavior that illuminates the challenges faced by novices when attempting to integrate multiple rules.
Therefore, in the following analyses we tested only the two-rule children and the adults, and included both
correct and incorrect trials because there were too few correct trials on IC to test.

In the CO and IC conditions, all saccades between numbers are relevant, depending on the selected strategy,
and many strategies are appropriate. Therefore, we tested the percentage of each type of saccade separately
(i.e., NN, DD, NDL, NDR, NDX). Because many trials contained none of the target saccades, and those zero
values were included in the calculations and in Figure 6, the overall averages are quite low (see Discussion
for our interpretation). As previously, we conducted mixed regression analyses with a random effect of subject,
and set the percentage of each type of saccade as a separate outcome measure (Table 2). The only metric
that displayed a difference between two-rule children and adults was the per-trial percentage of NDR saccades,
showing that children made more eye movements between numerators and denominators on the right side
of the screen than did adults. This difference surpassed the Bonferroni adjusted alpha level of .01 for IC (z =
–2.83, p = .005; f2

group = 0.001) but not CO (z = –1.78, p = .08; f2
group < 0.001), although Figure 6 shows that

this distinction is only a matter of degree, and both effects are very weak. For all other metrics, percentages
of NN, DD, NDL and NDX saccades per trial, the two groups were not appreciably different. Overall, although
all numerical relationships are relevant for CO and IC trials, the children focused more on the relationships
between numerator and denominator than did the adults.
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Table 2

Regression of Gaze Metrics on Group, Comparing Adults to Two-Rule Children

Percentage of Saccades per Trial

Congruent (CO) Incongruent (IC)

β SE z β SE z

Numerator-Numerator (NN) .063 0.098 0.64 .038 0.095 0.40
Denominator-Denominator (DD) .004 0.062 0.06 .018 0.066 0.27
Numerator-Denominator Left (NDL) –.017 0.034 –0.51 –.010 0.036 –0.29
Numerator-Denominator Right (NDR) –.065 0.037 –1.78 –.089** 0.032 –2.83
Numerator-Denominator Cross (NDX) .020 0.037 0.55 .046 0.039 1.20
**p = .005.

Figure 6. Average percentages of each type of saccade per trial, for two-rule children and adults on all correct and incorrect
Congruent (CO) and Incongruent (IC) trials.

Discussion

In this study we sought to identify the strategies that support mathematical reasoning, and thereby point to po-
tential instructional tools for new learners. To this end, we investigated how children who are beginning to learn
fractions solve a fraction task, as compared with adults. We used the fraction comparison task as the setting
for inquiry, because successful behavior on this task has been established in adults but not yet characterized
in children, and because the task is displayed in such a way that eye-tracking methodology can provide insight
into the form of relational reasoning that participants engage in during the task. In addition to having greater
familiarity with the mathematical rules that govern the task, adults have higher levels of supporting cognitive
skills that are likely to increase their task efficiency. To identify the strategies that are associated with successful
mathematical reasoning, we measured the raw numbers and percentages of different types of eye movements
made by children and adults as they made mathematical comparisons.

Considering the task as a whole, adults demonstrated greater efficiency than children, both responding more
quickly and making fewer eye movements around the screen. This result is not surprising, as adults have
quicker cognitive processing speed than children (Kail, Lervåg, & Hulme, 2016; Kail & Salthouse, 1994) and
are more experienced with the type of mathematical reasoning elicited by this task. Furthermore, adults have
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higher levels of working memory than do children (Gathercole, 1999) which may have allowed them to encode
the numbers with fewer eye movements than the children needed.

Of the four conditions in the task, two required only a single comparison between either numerators or denomi-
nators. We took high accuracy on both of these conditions as an indicator that participants were familiar with
both of the following rules: 1) given equal denominators, the larger fraction is the one with a larger numerator,
and 2) given equal numerators, the larger fraction is the one with the smaller denominator. Almost all of the
adults and 12 of the 29 children performed with high accuracy on both of the same-component conditions. The
remaining children consistently answered in accordance with only one of the two rules, thereby performing well
on one of the associated task conditions and poorly on the condition associated with the other, unknown or
neglected, rule. Therefore, we split the group of children into those who responded in accordance with two rules
and those who responded in accordance with one rule, and tested for qualitative and quantitative differences
between these one-rule and two-rule children.

We found that the two groups of children exhibited quantitative differences on both RT and total number of
saccades of interest made per trial: the two-rule children, who performed more accurately overall, did so by tak-
ing more time to respond and making more saccades between numbers. Interestingly, the difference between
one-rule and two-rule groups was more exaggerated in the total saccades metric than in RTs, indicating a
difference in gaze behavior that was not detected in terms of overall RTs. Specifically, the two-rule group
made far more saccades between numbers than either the one-rule group or the adults, disproportionate to
the difference in RTs. This pattern may indicate that two-rule participants focused more on the numerical
relationships and therefore made disproportionately more eye movements between numbers than their RTs
would predict. This would be interesting to investigate further with additional participants and additional metrics.

Another difference between the groups is that the children who responded in accordance with both rules
exhibited slower RTs and a greater number of saccades per trial for the most difficult condition, as did the
adults, whereas the children who operated on only one rule did not seem to be affected by the increased
task difficulty. We interpret the faster RTs of the less knowledgeable group as a lack of persistence when
faced with a challenge beyond their knowledge. The two-rule group also exhibited very low accuracy on this
most difficult condition, suggesting it was beyond their knowledge also, yet their slow RTs and high number
of saccades indicate they persisted in their attempts. Educators currently identify persistence or lack thereof
in general classroom behavior; as computerized assessments are becoming more widely used by teachers,
RT data would allow them to identify persistence on a trial level and therefore better discern which types of
challenges promote productive struggle, versus those that are beyond reach, for individual learners.

Turning to our primary question of interest, we tested for differences in gaze patterns, that is, the relative preva-
lence of different types of saccades that would indicate different problem-solving strategies. We had expected
that adults’ expertise would lead to distinct strategies—both from the children and between conditions—which
could be informative for instructors. Instead, we found that when participants responded correctly, their gaze
patterns looked very similar to each other, regardless of age or proficiency. Specifically, despite the large
quantitative differences between the one-rule and two-rule children, their percentages of different types of
saccades were the same on correct SD and SN trials. Thus, when they knew and applied the correct rule, their
eye movements aligned with the normative strategy of comparing the relevant numbers and looking relatively
less at the redundant numbers. Adults exhibited this pattern as well, although to a lesser degree, likely because
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they made far fewer saccades overall. Therefore, once a rule was learned, novices and adults applied it in the
same way.

However, when participants responded incorrectly, or when the task demands exceeded their knowledge base,
their confusion was marked by relatively more saccades toward redundant or unnecessary information. All
participants made more irrelevant saccades during SN trials than they did during SD trials—and for some
participants, redundant saccades surpassed relevant saccades during the SN trials. Our exploratory analysis
showed that the large-number bias subgroup of children made more redundant than relevant saccades during
the SN trials, and the two-rule children made approximately equal percentages of relevant and redundant
saccades on these trials. Protracted focus on the equal numerators suggests confusion on how to evaluate
them, and is not helpful as there is no information to be gleaned once the equality is encoded.

An interesting exception from the SD and SN exploratory analysis is the small-number bias children, who con-
sistently selected the fraction with the smaller number regardless of whether that number was in the numerator
or denominator position. Like the other groups, they exhibited more relevant than redundant saccades on the
SD condition, but despite their normative gaze behavior, they largely selected the incorrect response. Unlike
the other groups, however, they made more relevant than redundant saccades on the SN condition, in which
they performed very well. The fact that they are consistently looking at the most helpful information, and yet
sometimes reasoning incorrectly about it, supports the well-established idea that reconciling different rules
about fractions is conceptually challenging, yet also provides insights as to how new learners approach that
conceptual challenge.

Rinne et al. (2017) identified children with a small-number bias as having a more sophisticated understanding
of fractions than those operating on a large-number bias. Our findings extend their conclusion by revealing
the distinct problem-solving approaches of these groups. While the less-sophisticated large-number bias group
attended to the relevant information only in the cases that were accessible to them (that is, on SD but not
SN trials), the small-number bias group attended to the relevant information in both conditions, even when
they ultimately made the incorrect selection. Thus, honing one’s attention may be the precursor to building
reasoning skills that undergird conceptual growth.

The gaze patterns of the two-rule children provided a similar indicator of misdirected attention on the more
difficult conditions. Although the two-rule children knew and could apply both the larger-numerator and small-
er-denominator rules in the easier conditions, the mixed pair conditions presented an additional challenge. For
the CO pairs, they could follow either rule and arrive at the correct decision, but the IC pairs required integration
of the rules or application of a specific strategy. Integrating multiple numerical sets is both mathematically and
relationally difficult; accordingly, both adults and two-rule children performed well on the CO condition and
poorly on the IC condition.

On the IC condition, where they performed most poorly, the two-rule children made more saccades between
the numerator and denominator in the right fraction than did adults. They exhibited similar behavior on the CO
condition, but the group difference only reached statistical significance on the IC test. Because a number of
strategies would be successful in the mixed pair case, saccades between numerators and denominators are
indeed relevant, and corroborate prior studies that show people make a greater number of vertical saccades
during mixed pair trials (Obersteiner & Tumpek, 2016). It is thought that vertical saccades indicate an attempt
to integrate the two values into an estimated (or calculated) magnitude for the fraction. Thus, these data could
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be interpreted as evidence that the two-rule children attend to the information that may help them make the
conceptual leap to fractions as integrated magnitudes.

However, to accurately make a comparison it is necessary to assess the integrated magnitude of both left and
right fractions; yet, the two-rule children looked preferentially to the fraction on the right during the IC condition.
Failure to attend to relevant information may indicate that these trials were beyond their reach. An alternative
explanation is that if participants look first to the left side of the screen, the left fraction would exhibit a primacy
effect. Then, the working memory constraints of children would lead them to look more frequently at the right
fraction to help them encode it after their working memory has reached capacity. Adults’ working memory is
likely sufficient to encode all numbers on one scan and they do not need to make repeated saccades to either
fraction for the purpose of encoding. This supposition could be evaluated with a scan path analysis, which we
did not have the power to undertake here.

Alternatively, these two findings taken together—that participants looked more frequently at less-informative
areas of the screen when they were unsure of the appropriate problem-solving strategy—may reflect the
difficulty associated with integrating numerical relationships. In this study, the fraction comparison task was
novel for the children, and their eye movements made apparent the relationships that were challenging for
them: equal numerators and the numerator-denominator relationship in the case of mixed pairs. For the shared-
component trials, the larger-smaller relationship is apparent, but integrating that with an equal relationship,
particularly in the case of equal numerators, is conceptually challenging. For the mixed pair trials, participants
made more vertical saccades, perhaps attempting to integrate the numerator and denominator into a magni-
tude, which is conceptually even more difficult.

Importantly, these findings are richer for the use of eye-tracking methodology, which provided insights beyond
the traditional behavioral metrics of RT and accuracy. In particular, participants tended to pay more attention
to redundant information on trials that were well beyond their conceptual reach. However, attention to relevant
information may indicate that participants were ready to approach the next conceptual challenge, even if
they responded incorrectly on those trials, as in the cases of two-rule children on the IC condition and the
small-number bias subgroup on SD and SN trials. Additionally, the children who were able to switch between
fraction rules (i.e., they selected the fraction with the larger numerator or the smaller denominator) made a
greater overall number of eye movements than did the one-rule children or the adults, out of proportion to the
additional time they spent on the problems. These findings are novel in the literature.

One important caveat is that we found a lower number of saccades per trial than did other researchers:
our participants averaged three to five saccades of interest per trial, while the participants in Ischebeck,
Weilharter, and Körner’s study averaged 6–9 saccades per trial, and those in Obersteiner and Tumpek’s (2016)
study averaged 7–12 saccades per trial depending on the type of fraction pair. There are three plausible,
non-mutually exclusive, explanations for this discrepancy. First, participants in our study responded much more
quickly than participants in other studies. This is likely because we opted to keep the numbers small and the
trials accessible to young children, and thus the problems may have been too easy for adults. Obersteiner and
Tumpek used only two-digit numbers, which made the problems more difficult for adults, and thus they spent
more time and made more saccades per trial. However, even our child participants responded more quickly
than the adults in other studies; it may also be the case that our verbal instructions to answer quickly created
an experimental environment that differed from the other studies. A second plausible reason for the lower
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number of saccades is that we counted only those that originated or terminated within a defined space around
the numbers, whereas other researchers made less conservative analytical choices.

Finally, a third possible reason for the lower number of saccades in our study than in other studies is that we
selected a screen layout that maintained the visual familiarity of fractions, for the sake of the new learners.
Ischebeck et al. (2016), by contrast, promoted higher numbers of saccades by adding visual noise around the
numbers so as to prevent participants from encoding the numerals without fixating directly on the numbers. Our
decision to maintain the familiar fractions format may have made it possible to use peripheral vision.

If people used peripheral vision, it may explain another disparity with previously-published findings. Huber
et al. (2014) found that adults spent more time on denominators than numerators, whereas our adults did
not show that preference. Instead, in our data, participants looked preferentially between numerators on all
conditions. We interpreted the focus on numerators as a carryover practice of reading top to bottom. Indeed,
Obersteiner and Tumpek also found a greater number of fixations on numerators than denominators, except
when the fractions shared identical numerators. However, Ischebeck, Weilharter, and Körner conducted a scan
path analysis which indicated that people first “read” the left fraction and then the right, but do not necessarily
make saccades between numerators within their initial scans. Therefore, the prevalence of NN saccades in our
results may be due to peripheral vision.

Future research using this paradigm should continue to address the problem of peripheral vision. We chose
to design the screen to put the numbers in proximity of the vinculum so that they were easily recognizable
as fractions, but doing so may have weakened our analyses. Other researchers have used visual noise or
greater distance between numbers to encourage eye movements, study design choices that work well for adult
participants, but may have challenged children’s interpretation of the numbers as fractions.

Additionally, future research using this paradigm should adjust the stimulus set such that each condition
contains the same range of magnitude differences between fraction pairs. In this set, the most difficult condition
also had the smallest magnitude differences, and thus condition and magnitude difference were confounded.
Because our children were struggling to understand the concept of fractions as an integrated magnitude, we
considered it unlikely that their behavior was impacted by the overall magnitude difference between fractions,
and thus we interpreted our data in the context of conditions. Additional studies could clarify the findings by
adjusting the stimuli.

One important question regarding this task to be addressed in future research is how to best support children
who are struggling with acquiring the basic rules. In this study we grouped them as one-rule children because
of our limited sample size, but Rinne et al. (2017) found that the children who exhibited a small-number bias
were more advanced than the children who exhibited a large-number bias. The wider variation in accuracy with-
in our small-number bias group supported this: the children who exhibited a small-number bias nevertheless
responded correctly on some of the SD trials, whereas the children who exhibited a large-number bias did so
consistently—to the point of getting almost none of the SN trials correct. Our exploratory analysis comparing
these subgroups also corroborated this ranking by showing that the small-number bias children looked at
the relevant numerical relationships even when they responded incorrectly, whereas the small-number bias
children did not. A larger sample of these one-rule children may be able to detect meaningful gaze differences
between these groups and thereby provide additional insights to educators as they introduce these difficult
fractions concepts.
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A larger sample of children would also enable researchers to regard the two-rule children—that is, the ones
who had successfully acquired at least the basic concepts of fractions—as the standard for learning. We set
adults as the standard, hoping to identify gaze patterns associated with proficient problem-solving. However,
either because this task was mathematically too simplistic for adults, or because their working memory is
better, they made far fewer saccades than children. Thus, it was difficult to characterize their problem-solving
strategies. Instead of comparing novices to experienced adults, future research may glean more useful insights
by making additional comparisons between successful and struggling students.

Nevertheless, our findings are relevant for educators in that they point to the numerical relationships that are
challenging for novices. Because understanding fractions requires attention to numerical relationships, the fact
that novices are indeed attending to those relationships is heartening; yet, the children who struggled the most
seemed drawn to redundant numerical relationships. The children who had correctly acquired the basic fraction
concepts attended to the relevant information on the simpler trials and seemed poised to begin evaluating
fraction magnitudes as defined by numerator-denominator relationships. Supporting their attention to relevant
information and their relational reasoning will help children acquire normative fraction knowledge.
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Appendix: Stimulus Set

Table A1

List of Stimuli Used in Fraction Comparison Task With Fifth Graders and Adults

SD 6 5
8 8

5 6
8 8

3 4
8 8

4 3
8 8

3 4
7 7

4 3
7 7

5 6
7 7

6 5
7 7

SN 3 3
5 4

3 3
4 5

3 3
7 6

3 3
6 7

2 2
4 5

2 2
5 4

2 2
7 6

2 2
6 7

CO 2 3
7 6

3 2
6 7

6 5
7 8

5 6
8 7

4 3
7 8

3 4
8 7

2 3
5 4

3 2
4 5

IC 6 5
8 7

5 6
7 8

2 3
4 5

3 2
5 4

4 3
8 7

3 4
7 8

2 3
6 7

3 2
7 6

Note. SD = same denominator; SN = same numerator; CO = congruent condition; IC = incongruent condition.
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