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ABSTRACT

Although smartphones are widely used in everyday life, studies of
viewing behavior mainly employ desktop computers. This study
examines whether closely spaced target locations on a smartphone
can be decoded from gaze. Subjects wore a head-mounted eye
tracker and fixated a target that successively appeared at 30 posi-
tions spaced by 10.0 x 9.0 mm. A "hand-held” (phone in subject’s
hand) and a "mounted” (phone on surface) condition were con-
ducted. Linear-mixed-models were fitted to examine whether gaze
differed between targets. T-tests on root-mean-squared errors were
calculated to evaluate the deviation between gaze and targets. To
decode target positions from gaze data we trained a classifier and
assessed its performance for every subject/condition. While gaze
positions differed between targets (main effect “target”), gaze devi-
ated from the real positions. The classifier’s performance for the 30
locations ranged considerably between subjects ("mounted”: 30 to
93 % accuracy; “hand-held”: 8 to 100 % accuracy).
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1 INTRODUCTION

Smartphones have widely replaced desktop computers, e.g. for
browsing the internet, which is mirrored in the emergence of mo-
bile optimized websites or apps. At the same time, mobile eye
trackers have evolved to lightweight, versatile devices that allow
the recording of gaze behavior under natural, real-life-like condi-
tions as opposed to constrained lab settings. Yet, only few studies
exist combining these technologies to investigate human gaze in
a naturalistic, every-day mobile device setting. Some studies have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ETRA ’19, June 25-28, 2019, Denver , CO, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6709-7/19/06....$15.00
https://doi.org/10.1145/3314111.3319847

so far investigated gaze as input medium to control mobile devices
(e.g. [Paletta et al. 2014], [Liu et al. 2015]). Studies, recording gaze
to examine the observer’s behavior, are however scarce. The only
two studies that the author is aware of ([Tupikovskaja-Omovie et al.
2015], [Tupikovskaja-Omovie and Tyler 2018]), investigated user
experience of commercial apps by analyzing gaze data in terms of
dwell durations, heatmaps, and scan paths. An account on the ac-
curacy and thus, validity, of more fine-grained positional gaze data
is however lacking. The present study was conducted to close this
gap by investigating gaze positions relative to given closely spaced
target locations. More specifically, participants were asked to fixate
target locations and it was analyzed 1) whether their measured gaze
positions differed between target locations, 2) whether gaze data
reflected the actual target locations, and 3) whether target locations
can be identified based on gaze positions. Overall, this serves to
estimate potential errors/deviations between gaze and actual target
position and can be used to correct for them.

Tracking gaze in human-smartphone-interactions poses a va-
riety of challenges. Besides the smaller screen, the downwards
viewing angle causes the eyelid to close, potentially covering parts
of the pupil. Moreover, both the smartphone and the head are more
prone to movement than in a traditional lab setting in which a chin
rest and a fixed monitor are used, thus potentially affecting the
mapping between pupil position and world which is established
during calibration.

To account for these facts, two conditions were employed. In the
“mounted” condition, the smartphone was clamped in front of the
laptop used for calibrating the eye tracker. Thus, the smartphone
was fixed during the experiment and remained in the plane of cali-
bration. In the “hand-held” condition, participants held the mobile
device in their left hand which allowed adopting a natural hand
position and free movement of head and hand.

2 METHODS
2.1 Participants

Five volunteers (1 female) participated in the experiment, aged 27 -
39 years (mean, M = 32 yr; standard deviation, SD = 4.85 yr). Written
informed consent was provided before participation. One subject
had to be excluded from the final sample because tracking was
severely disrupted by the eye lashes covering the pupil when the
subject gazed downwards. The final sample (1 female) consisted of
four participants aged between 28 and 39 years (M = 33.25 yr, SD =
4.57 yr).

2.2 Materials and Apparatus

Participants were seated at a table. Their gaze data was recorded
with an eye tracker by pupil labs ([Kassner et al. 2014]) consisting
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of a headset equipped with three cameras: Two eye cameras record-
ing gaze data at a sampling rate of 120 Hz, and a world camera
recording a video from the observer’s point of view (field of view
= 100 deg). The calibration of the eye tracker was performed on
a laptop with the Pupil Capture App (v1.9-7) using the 5-points
screen marker calibration (3D eye model). The laptop’s screen (14
inch) was tilted at an angle of 225 deg relative to the table surface
and was located at a distance of 26.5 cm relative to the edge of
the table, rendering an eye-to-screen distance of approximately
43 cm. The screen orientation was intended to be similar to the
viewing plane of a smartphone screen. The calibration was run
before each condition and repeated until results were satisfying (<
2.0 deg accuracy; 1.5 - 2.5 deg is denoted as normal range in the
documentation of the software).

The experiment was performed on a smartphone (Motorola Moto
z3 play; display diagonal = 6 inch, display size = 136 x 68 mm, dis-
play resolution = 2160 x 1080 pixel, 402 PPI, Android 8.1.0). A frame
of white cardboard surrounded the display of the smartphone. On
the four edges of the frame, fiducial markers were placed, thus
defining a surface (148 x 148 mm) for later analyses. Figure 1 il-
lustrates the layout of surface, smartphone, and target locations.
The experimental procedure was programmed with the software
Expyriment ([Krause and Lindemann 2014]) utilizing the Expyri-
ment Android Runtime application (v0.1.0). After recording, gaze
data was analyzed offline with the Pupil Player App (v1.9-7) and ex-
ported for further analyses that were conducted with the software
R ([R Core Team 2018], packages used: [Wickham 2018], [Williams
et al. 2018], [Dimitriadou et al. 2008], [Bates et al. 2014]).

2.3 Procedure

Participants received an oral instruction and watched a couple of
practice trials on the mobile phone until they felt familiar with
the task. The task was to fixate the center of the target as long
as the target was visible. After practice, participants put on the
eye tracker. The experimenter adjusted the cameras until the pupil
was detected reliably for different eye positions. Calibration was
performed and repeated until an accuracy of at least 1.9 deg was
achieved. In the mounted” condition, the experimenter placed the
smartphone in the foamed plastics frame and mounted it on the
screen of the laptop. The screen of the laptop was fully covered. In
the “hand-held” condition, the laptop was moved to the side and
turned away from the participant. The mobile phone was given to
the participants who were asked to hold it in their left hand without
any further instructions about its positioning.

The experimenter started the recording of the eye tracker and
the experiment. In every trial, the target was shown for 2000 ms
followed by 200 ms of a blank screen, before the next trial began. Ev-
ery twelve trials, a break of 5000 ms was included as signaled by the
screen changing to a black background and showing a countdown
from five to one seconds. In total, 180 trials were performed resem-
bling three blocks, each consisting of 30 trials, in two conditions.
Blocks differed by the order in which target positions were shown.
In block 1 and 2, the presentation of target locations followed a
pattern: The first trial showed the target at the upper left corner
and then it jumped to the adjacent position in the next trial, either
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Figure 1: Target configuration (black circles) relative to the
smartphone (inner rectangle) and to the defined surface
(outer rectangle). Gaze locations of participant S2 in the
three blocks (different symbols) of the “hand-held” condi-
tion are superimposed. The point of origin was in the lower
left corner of the surface defined by the fiducial markers
(outer rectangle).

in a horizontal or vertical direction (counterbalanced across partici-
pants). After the row/column was completed, the target jumped to
the closest position of the next row/column. In block 3, the order of
target locations was randomized. Both conditions were performed
successively on the same day. Overall, the experiment took about
35 minutes to complete; 4 min per condition and approximately 25
min for setting up the eye tracker.

2.4 Analysis

Gaze data exported within the defined surface was analyzed in
R. The lower left corner of the surface constituted as the point of
origin (0,0) for gaze and target locations in mm. The trial timing
controlled by the smartphone and the gaze data recorded by the
laptop were synchronized offline based on the video of the world
camera. Specifically, the first time frame in the video that showed
the smartphone with a white screen (screen changed from black
to white when the experiment started) defined the onset of the
experiment (time = 0) for the gaze data. The mean gaze position
of every trial was computed by averaging across gaze positions
occurring in a time window of 500 to 2000 ms relative to trial onset.
Positions exceeding the trial mean by +/- 2 standard deviations
were excluded and the trial mean was recalculated.

In order to test whether mean gaze positions varied as a func-
tion of condition and target location, linear mixed effect models
were fitted to horizontal and vertical gaze positions. Condition
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Table 1: Key statistics as summarized by confusion matrices.

Accuracy Score

95 % Confidence Interval

No information rate (NIR) P-Value (Acc > NIR)

mounted”  S1 0.30 0.15, 0.49
S2 0.87 0.69, 0.96
S3 0.43 0.25, 0.63
S4 0.93 0.78, 0.99
“hand-held” S1 0.23 0.10, 0.42
S2 0.63 0.44, 0.80
S3 0.08 0.01, 0.26
S4 1.00 0.88, 1.00

0.17 .051
0.07 <.001
0.10 <.001
0.07 <.001
0.13 .095
0.10 <.001
0.28 .997
0.03 <.001

(mounted/hand-held) and target locations (5 horizontal; 6 vertical)
composed the fixed effects (including an interaction term), whereas
participants were treated as random effects. P-values were obtained
by likelihood ratio tests of the full model against the model without
the fixed effect in question. Significant main effects were followed
up by post-hoc t-tests.

To examine the spatial congruence between target locations and
gaze positions, horizontal and vertical root-mean-squared errors
(RMSEs) were calculated between the given target location and
the observed gaze position in every trial for every participant and
condition. First, linear mixed models (fixed effects: condition, target
location; random effect: participant) were fitted to the horizon-
tal/vertical RMSEs averaged across blocks to determine whether
RMSE:s varied as a function of target location or condition. Second,
t-tests were performed to test whether RMSEs were greater than
zero, thus indicating a significant difference between target and
gaze position.

To investigate whether the target location that was fixated by
the participant in a trial can be correctly identified based on the
(two-dimensional) gaze data in that trial, a k-nearest neighbors algo-
rithm (k = 3) was trained on the data of block 1 and 2 and tested on
the data of block 3 for every participant and condition. The classi-
fier’s performance was evaluated by calculating confusion matrices
summarizing the key statistics, e.g. accuracy scores. Resulting ac-
curacy scores were further compared between the “hand-held” and
“mounted” condition as well as against chance level by calculating
paired t-tests across participants.

3 RESULTS

3.1 Horizontal and vertical gaze positions
varied with target location

The linear mixed effects analyses of the horizontal and vertical gaze
positions revealed a significant effect of target location (horizontal:
x%(1) = 35.53, p < .001; vertical: x%(1) = 78.79, p < .001), thus indicat-
ing that fixating target positions spaced by 10.0 and 9.0 mm also
resulted in distinguishable gaze positions. The main effect “target
location” was further explored by post-hoc paired t-tests compar-
ing gaze locations to adjacent targets. Results showed significant
differences for all horizontal (t’s > 6.68, p’s < .003) and vertical (t’s
< -4.93, p’s < .008) locations. The mean difference of gaze positions
to adjacent targets equaled 10.2 mm in the horizontal, and 8.8 mm
in the vertical direction.

Condition had an effect only on vertical gaze positions (x%(1) =
35.85, p < .001) as indicated by gaze positions that were on aver-
age 15.1 mm higher (standard error, SE = 2.03) in the "hand-held”
rather than the "mounted” condition. No interaction effects were
found. Figure 2 shows the horizontal and vertical gaze positions as
a function of target location for individual participants in the two
conditions.
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Figure 2: Gaze locations as a function of target locations av-
eraged across blocks. Tick marks on the x-axis correspond
to the target locations. Individual lines denote participants;
solid lines: ”"mounted” condition; dashed lines: ”hand-held”
condition.

3.2 Gaze locations deviated from target
locations

Horizontal and vertical RMSEs did not significantly vary across
conditions and targets, nor was there an interaction effect (horizon-
tal: Xz’s < 1.05,p’s > .593; vertical:xz’s < .354, p’s > .552). Thus, to
determine whether there was a significant offset between gaze and
target, RMSEs were averaged across targets and conditions. The
t-test against zero yielded a significant difference (horizontal: t(3)
= 21.82, p <.001; vertical: t(3) = 15.39, p<.001) as gaze and target
deviated on average by 8.3 mm in the horizontal and 11.2 mm in
the vertical dimension. This deviation closely resembles the inter-
target distance (10.0 and 9.0 mm), thus, on average, gaze position
coincided with the adjacent rather than the actual target (note that
only one target was visible at a time).
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3.3 Decoding accuracies for target locations

Accuracy scores varied considerably between participants, rang-
ing from 30 to 93 % in the “mounted” and from 8 to 100 % in the
“hand-held” condition. Table 1 shows a summary of the results of
the classification analysis. Accuracy scores did not differ between
conditions (t(3) = 1.59, p = .210). Overall, the accuracy scores aver-
aged across conditions exceeded chance performance (1/30 = 0.03)
as indicated by a t-test (t(3) = 2.96, p = .030).

4 DISCUSSION AND CONCLUSION

The present proof-of-concept study investigated the accuracy/validity
of gaze positions when participants fixated targets on a mobile
phone. Results showed that gaze deviated from the target positions
(RMSEs > 0), thus revealing a bias that prevents, or at least urges
caution, to superimpose measured gaze uncorrected on the pre-
sented stimuli. Differences between gaze positions still reflected
the pattern of target locations (main effect target location and t-
tests) and individual targets could be classified above chance level
implying that a correction by a simple (linear) transformation may
be possible.

The mounted and the hand-held condition did not differ in terms
of RMSEs and classification accuracies. Anecdotal observations
showed that participants mostly kept their head and hand in the
same position, even in the "hand-held” condition, although they
were not explicitly told so. In addition, the screen of the laptop
on which the phone was clamped in the “mounted” condition was
adjusted to resemble the orientation and distance of a hand-held
smartphone, thus rendering both conditions similar by design.

Fiducial markers were used to define a surface around the smart-
phone to facilitate offline analyses. Although the frame on which
the markers were placed did not obstruct grasping the mobile phone,
the setup can be improved. An alternative solution has recently
been proposed by MacInnes et al. ((MacInnes et al. 2018]). They
suggest a feature matching algorithm that is based on the character-
istics of a natural surface (rather than defining a surface explicitly
by markers) and which is applied automatically on every frame
recorded by the world camera during offline analyses.

For future studies, we plan to present a similar task and target
pattern before and/or after conducting the actual experiment to
estimate and then account for the bias between gaze and target
locations. Data and analyses presented in this manuscript as well
as additional data acquired after submission, are available at http:
//dx.doi.org/10.23668/psycharchives.2384 and http://dx.doi.org/10.
23668/psycharchives.2383, respectively.
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