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Abstract
Confidence intervals (CIs) constitute the most popular alternative to widely criticized null
hypothesis significance tests. CIs provide more information than significance tests and lend
themselves well to visual displays. Although CIs are no better than significance tests when used
solely as significance tests, researchers need not limit themselves to this use of CIs. Rather, CIs can
be used to estimate the precision of the data, and it is the precision argument that may set CIs in a
superior position to significance tests. We tested two versions of the precision argument by
performing computer simulations to test how well sample-based CIs estimate a priori CIs. One
version pertains to precision of width whereas the other version pertains to precision of location.
Using both versions, sample-based CIs poorly estimate a priori CIs at typical sample sizes and
perform better as sample sizes increase.
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The null hypothesis significance testing procedure is increasingly coming under attack
(see Hubbard, 2016; Ziliak & McCloskey, 2016 for recent reviews) and it was widely criti‐
cized at the recent American Statistical Association Symposium on Statistical Inference
(October 11-12, 2017) and in the recent (2019) special issue of The American Statistician.
A popular alternative is for researchers to use confidence intervals (CIs) (see Cumming &
Calin-Jageman, 2017 for a recent review). Aficionados of CIs point out that they contain
more information than p-values, better lend themselves to visual displays than p-values
and are less likely than p-values to be misused to draw unwarranted conclusions about
hypotheses. To illustrate support for CIs, Harlow (1997), in an introductory chapter for
the famous edited book, “What if there were no significance tests?” noted that although
there was disagreement among the various chapter authors about the merits of null
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hypothesis significance testing, there was “unanimous support” for CIs (p. 5). Subsequent
authorities have continued to support CIs (e.g., Cumming, 2014: Cumming & Finch, 2005;
Fidler & Loftus, 2009; García-Pérez, 2005; Loftus, 1993, 1996; Ranstam, 2012; Young &
Lewis, 1997). Meehl (1997) suggested a particularly interesting point of view with respect
to CIs. On the one hand, consistent with the Harlow summary, Meehl favored CIs over
significance tests. On the other hand, however, Meehl stated that the more important
scientific problems had to do with epistemology, and the lack of researchers submitting
their theories to risky predictions.

Although most statistically savvy researchers favor CIs over significance tests, CIs al‐
so can be criticized. The most popular use of CIs is as an alternative form of significance
testing; if the critical value falls outside the CI, the finding is “significant.” When used
in this way, CIs fail to improve on traditional significance tests. Alternatively, some have
promoted CIs for parameter estimation, but this can be done in a naïve or sophisticated
way. A naïve example would be when a researcher computes a sample mean, then
constructs a 95% CI around the mean, and concludes that the population mean has a
95% chance of being within the constructed CI. The unfortunate fact is that there is no
way to know this probability, and serious frequentists would argue that probabilities
are irrelevant, as the parameter either is in the CI or is not. The researcher’s lack of
knowledge about whether the parameter is in the interval fails to justify assigning a
probability.

But if CIs should not be used as an alternative form of significance testing, nor
to assign probabilities with respect to the placement of population parameters, what
is the potential contribution? The usual answer given by CI sophisticates is that CIs
provide researchers with information about the precision of the data (e.g., Cumming,
2014; Cumming & Finch, 2005; Fidler & Loftus, 2009; Loftus, 1993, 1996; Ranstam, 2012;
Young & Lewis, 1997; but see Trafimow, 2018 for an exception). Wide CIs indicate less
precision whereas narrow CIs indicate more precision.

There is empirical support for the precision argument. Cumming and Calin-Jageman
(2017) described computer simulations keeping track of how often the 95% CI computed
in one replication captured the mean in the following replication. They reported that 83%
of simulated 95% CIs captured the mean in the following replication. This 83% figure
contrasts with the 95% figure; the 95% figure refers to the percentage of 95% CIs that
capture an unknown population mean whereas the 83% figure refers to the percentage of
95% CIs that capture a simulated sample mean in the following replication. Nevertheless,
83% might be considered pretty good, even if it is not as good as 95%.

But is the precision argument misdirected? Our intention is to argue that it is. Put
briefly, we see the ability of sample-based CIs to capture sample means in following sim‐
ulations as not very relevant because the estimation goal concerns population parameters
and not sample statistics. The more relevant issue, as will become clear in the ensuing
discussion, is whether sample-based CIs accurately estimate a priori CIs.
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'A priori' Confidence Intervals
What are a priori CIs? The notion comes out of recent work by Trafimow and his collea‐
gues (Trafimow, 2017; Trafimow & MacDonald, 2017; Trafimow, Wang, & Wang, 2019;
Wang, Wang, Trafimow, & Myüz, 2019; see Trafimow, 2019 for a review). The idea is that
a researcher can ask, prior to data collection, how close she wants her sample statistics to
be to their corresponding population parameters, and what probability (confidence) she
wants to have of being that close. For example, consider the simple case where there is
one group, the descriptive statistic of interest is the sample mean, and the researcher is
concerned about its probability of being close to the population mean. Assuming random
sampling from a normal distribution, Trafimow (2017) provided an accessible derivation
of Equation 1, where n is the sample size, f  is the maximum distance of the sample
mean from the population in standard deviation units, and where zc is the z-score that
corresponds to the confidence level one can have of obtaining a sample mean that is
within f of the population mean.

n = zc
f

2 or f = zc
n  or zc = f n (1)

As a quick example, suppose n = 100, and we wish to be 95% confident of obtaining a
sample mean within f of the population mean. What is f ? The z-score that corresponds
to 95% is 1.96; thus, f = 1.96

100 = .196. In sum, when the sample size is 100, there is a 95%
probability of obtaining a sample mean within .196 standard deviations of the population
mean. Or, had we started with a desire to have a 95% probability of obtaining a sample
mean within .196 standard deviations of the population mean, Equation 1 implies that
we would need at least 100 participants. That it is possible to compute the sample size
needed to achieve prior designations for confidence and precision caused Trafimow and
MacDonald (2017) to term this the a priori procedure. Ideally, the researcher makes a
priori specifications for closeness and confidence, uses an equation such as Equation
1 to compute the necessary sample size, and collects that sample size or a larger one.
This procedure provides the capability of designing the experiment to have whatever is
deemed a satisfactory degree of trust in the sample statistic to be obtained, such as the
sample mean.

Although CIs provide the basis for the a priori procedure (see Appendices in
Trafimow, 2017; Trafimow & MacDonald, 2017 for derivations of equations), these are
not sample-based CIs.1 Rather, the CIs do not depend on the data to be obtained, par‐
ticularly the standard deviation to be obtained. This is because the standard deviation
cancels out in the derivation of Equation 1. Consequently, when using the a priori
procedure, there is no requirement for the researcher to have an intention to construct a

1) More complex a priori equations have been developed since Trafimow (2017) and Trafimow and MacDonald
(2017); such as by Trafimow, Wang, and Wang (2019), and Wang, Wang, Trafimow, and Myüz (2019).
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sample-based CI. To reiterate, the relevant CI is used prior to data collection, to help the
researcher design a study where she can trust that the sample statistic to be obtained is a
good estimate of the population parameter of interest.

For a computer simulation employing the standard normal distribution (mean equals
0 and standard deviation equals 1), Equation 1 renders possible a priori CIs with which
many sample-based CIs can be compared. How would one compute an a priori CI? As an
example, we saw earlier that n = 100 implies f = .196. Thus, the 95% a priori CI, in which
95% of sample means will fall employing the standard normal distribution, when n = 100,
is 0 ± .196.

How well will sample-based CIs approximate a priori CIs? If the approximation is
good, this would provide a strong reason for researchers to favor sample-based CIs
as an important inferential tool in estimation, consistent with the precision argument
by CI sophisticates. In contrast, if the approximation is poor, an implication would be
that sample-based CIs are not very relevant for researchers interested in estimating
population parameters.

There are at least three ways in which sample-based CIs can do well or badly at
approximating a priori CIs. First, the width of sample-based CIs might provide a good
or poor approximation of the width of corresponding a priori CIs; this would directly
address the precision issue with respect to width. Second, the lower limit of sample-based
CIs might provide a good or poor approximation of the lower limit of population-based
CIs. Third, the upper limit of sample-based CIs might provide a good or poor approxi‐
mation of the upper limit of population-based CIs. Either of the latter two might be
considered as addressing the precision issue with respect to location.

Method
The simulation was based on the manipulation of sample size. Sample sizes ranged from
10 to 1,000 increasing by 10 (i.e., 10, 20, …, 1,000). For the simulation, pseudo-random
data were obtained from the standard normal distribution with mean and variance equal
to zero and one, respectively. A random seed was set to 12 to ensure the results could be
perfectly replicated. The simulation ran 10,000 times for each sample size. Each sample
was then subjected to a one-sample t-test analysis in MatLab R2015b, which provides
sample-based confidence intervals as well as t-tests. Both the lower and upper limits of
the sample-based confidence interval were recorded for each sample size, and a width
was calculated from these two values (see Supplementary Materials).
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Results
Before comparing sample-based CIs to a priori CIs, it was necessary to calculate a
priori CIs for each sample size. This was accomplished using Equation 1, under the
standard normal distribution, using 95% CIs throughout (so zc = 1.96), as in the example.
Subsequently, we arbitrarily selected conservative (2.5%), moderate (5.0%), and liberal
(10.0%) criteria with respect to the percentage of sample-based CI widths and limits being
reasonable approximations of corresponding a priori CI widths and limits. That is, for ex‐
ample, under the conservative criterion, if the width of a sample-based CI was less than
2.5% smaller, or less than 2.5% larger, than the width of the corresponding a priori CI, it
was deemed “in range.” Figure 1 illustrates the percentages of sample-based confidence
interval widths within 2.5%, 5%, or 10% of the corresponding a priori confidence interval
widths.

Figure 1

The Percentages of Sample-Based Confidence Interval Widths Within 2.5%, 5%, or 10% of the Corresponding A
Priori 95% Confidence Interval Widths are Expressed Along the Vertical Axis, Sample Sizes are Expressed Along the
Horizontal Axis
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Figure 1 illustrates that under typical sample sizes, sample-based CI widths provide
poor approximations of a priori CI widths. The estimations improve as sample sizes im‐
prove, though using a conservative criterion of 2.5%, even when the sample size reaches
1000, the percentage of sample-based CI widths within the criterion fails to exceed 73%.
With respect to location, the data pertaining to lower limits and upper limits are very
similar, so Figure 2 just illustrates lower limits.

Figure 2

The Percentages of Lower Limits of Sample-Based Confidence Intervals Within 2.5%, 5%, or 10% of the Lower Limits
of Corresponding 95% A Priori Confidence Intervals are Expressed Along the Vertical Axis, Sample Sizes are
Expressed Along the Horizontal Axis

Also, because lower limits are single numbers, in contrast to widths being intervals,
there was no way to calculate a percentage of a lower limit in the way that we did
for widths, and we simply used absolute numbers to create ranges. For example, in
the 2.5% case, we determined the percentage of sample-based lower limits between
each a priori lower limit plus or minus .025. Figure 2 illustrates that, at typical sample
sizes, sample-based locations poorly estimate a priori ones, with improvement as sample
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sizes increase. A cautionary note is that because the process of determining “in range”
for widths and lower limits necessarily differed, Figure 2 should not be uncritically
compared with Figure 1, though their main implications are similar.
A possible reason the findings were so unflattering to sample-based CIs is because we
used 95% CIs that can be considered extreme.2 To address this issue, we performed
analyses resembling the foregoing; but using 50% CIs instead of 95% CIs. Figure 3 is
analogous to Figure 1 and concerns CI widths; whereas Figure 4 is analogous to Figure 2
and concerns CI locations. The pessimistic implications of Figures 1 and 2 remain when
considering Figures 3 and 4.

Figure 3

The Percentages of Sample-Based Confidence Interval Widths Within 2.5%, 5%, or 10% of the Corresponding A
Priori 50% Confidence Interval Widths are Expressed Along the Vertical Axis, Sample Sizes are Expressed Along the
Horizontal Axis

2) We thank an anonymous reviewer for suggesting this possibility.
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Figure 4

The Percentages of Lower Limits of Sample-Based Confidence Intervals Within 2.5%, 5%, or 10% of the Lower Limits
of Corresponding 50% A Priori Confidence Intervals are Expressed Along the Vertical Axis, Sample Sizes are
Expressed Along the Horizontal Axis

Although our main points have been made, there is one final matter. It might be useful
to gain an idea of the effect of sample sizes on empirical distributions in a more general
way than is conveyed by Figures 1, 2, 3, and 4.3 One way to accomplish this is to consider
the absolute value of the mean difference score, between each empirically generated
range and the a priori range, within each sample size. The expectation is that mean
difference scores should decrease as sample sizes increase. A second way is to consider
the standard deviations of empirically generated ranges, within each sample size, which
should decrease as sample sizes increase. Figure 5 illustrates how mean difference scores
decrease as sample sizes increase whereas Figure 6 illustrates how standard deviations
decrease as sample sizes increase.

3) We thank an anonymous reviewer for suggesting this possibility.
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Figure 5

Mean Difference Scores for Ranges are Expressed Along the Vertical Axis as a Function of Sample Sizes Along the
Horizontal Axis

Figure 6

Standard Deviations for Empirical Ranges are Expressed Along the Vertical Axis as a Function of Sample Sizes
Expressed Along the Horizontal Axis
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Illustrations analogous to those in the foregoing paragraph can be applied to lower limits
too.4 We considered the difference between empirically generated lower limits and the
lower limit of the a priori interval, at each sample size. Figure 7 illustrates how mean
difference scores decrease as sample sizes increase.

Figure 7

Mean Difference Scores for Lower Limits are Expressed Along the Vertical Axis as a Function of Sample Sizes Along
the Horizontal Axis

Figure 8 illustrates how standard deviations of empirically generated lower limits
decrease as sample sizes increase. Together, Figures 5, 6, 7, and 8 provide a more general
view of how increasing sample sizes benefits empirically generated distributions. This
general picture is quite consistent with the implications of Figures 1, 2, 3, and 4.

4) As before, lower limits and upper limits generate similar data, so we remained with lower limits.
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Figure 8

Standard Deviations for Empirical Lower Limits are Expressed Along the Vertical Axis as a Function of Sample Sizes
Expressed Along the Horizontal Axis

Finally, as a check on the programming, at all sample sizes, we calculated the percen‐
tages of CIs that enclosed the population mean using 95% sample-based CIs and 50%
sample-based CIs. Supporting that the programming was valid, at all sample sizes,
all percentages pertaining to 95% CIs and 50% CIs were very close to 95% and 50%,
respectively.5 However, we reiterate a point made earlier. Knowing the percentage of
sample-based CIs that enclose the population mean does not justify drawing a conclusion
about the probability of a population mean being within a single sample-based CI. There
is no way to know this latter probability.

Discussion
CIs are not much of an improvement over significance tests if they are merely to be used
as significance tests. Nor can CIs be used to estimate the probability that the population
parameter of interest (e.g., the population mean) is within the constructed CI. Sophistica‐
ted users of CIs know these points and argue instead that CIs are useful for estimating
the precision of the data. On the contrary, however, Figures 1 and 3 illustrate that,

5) We also investigated medians but found nothing sufficiently interesting to be reported here.
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under typical sample sizes, a distressingly small percentage of widths of sample-based
CIs are within a range of 2.5% of widths of corresponding a priori CIs. And although
we labeled 2.5% as “conservative,” remember that the criterion refers to 2.5% as either an
underestimate or an overestimate, for a spread of 5%. Thus, our “conservative” criterion
could be argued to be quite traditional, and not particularly conservative. Figures 2 and
4 illustrate a similar implication, but with respect to locations rather than widths. More
generally, Figures 1, 2, 3, and 4 cast serious doubt on the vaunted ability of sample-based
CIs to provide good precision estimates in terms of widths or locations, at typical sample
sizes. Furthermore, Figures 4, 5, 6, 7, and 8 show, more generally, how increasing sample
sizes benefits empirically generated distributions. But Figures 4, 5, 6, 7, and 8 also imply,
consistent with Figures 1, 2, 3, and 4, that sample-based confidence intervals are not very
precise at typical sample sizes.

Well, then, if sample-based CIs do not work well for precision, how do they contrib‐
ute to statistical inference? Our answer is that researchers should eschew sample-based
CIs in favor of a priori thinking. That is, researchers should decide, before collecting data,
how close they want their sample statistics to be to their corresponding population pa‐
rameters; and what probability they wish to have of being that close. In the one-sample
case, Equation 1 can be used to compute the necessary sample size, though more complex
equations are needed for more complex designs or more complex comparisons (Trafimow
& MacDonald, 2017; Trafimow, Wang, & Wang, 2019; Wang, Wang, Trafimow, & Myüz,
2019). Once the necessary minimum sample size is determined, researchers can obtain
the sample, or a larger one, and then directly take the obtained sample statistics as being
satisfactory estimates of the desired population parameters. There is no need to perform
significance tests nor sample-based CIs. More generally, although we favor researchers
thinking in terms of intervals, these should be a priori, not sample-based.

We end by admitting an important limitation of the a priori procedure. And that
limitation is that there are commonly used analyses for which no a priori equations
have yet been developed. For example, in medicine, researchers may be interested in
cure rates under different conditions; but no a priori equations have yet been invented
for proportions or for hazard ratios. In many business areas, such as management and
economics, regression analyses, path analyses, or more complex types of causal modeling
are common. But no a priori equations have been invented for these sorts of analyses.
Finally, although Trafimow et al. (2019) and Wang et al. (2019) have invented a priori
equations for skew-normal distributions, as opposed to settling for the smaller family of
normal distributions, there are many other families of distributions for which no a priori
equations have been invented. In cases such as these, where the a priori procedure is not
yet an option; sample-based CIs may be the best frequentist inferential statistical option
open, despite the present demonstrations of their inaccuracy. Alternatively, when there
are no applicable a priori equations, researchers might decide not to perform inferential
statistics. We make no attempt here to tell researchers what to do but merely stress that
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sample-based CIs are often inaccurate. Possibly, as more a priori equations are developed
in the coming years, sample-based CIs will be gradually phased out.
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MatLab syntax for the simulation is available via the PsychArchives repository (for access see
Index of Supplementary Materials below).

Index of Supplementary Materials

Trafimow, D., & Uhalt, J. (2020). Supplementary materials [code] to: The inaccuracy of sample-based
confidence intervals to estimate a priori ones. PsychOpen.
https://doi.org/10.23668/psycharchives.3006

References

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7-29.
https://doi.org/10.1177/0956797613504966

Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open Science,
and beyond. New York, NY, USA: Taylor and Francis Group.

Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of
data. The American Psychologist, 60(2), 170-180. https://doi.org/10.1037/0003-066X.60.2.170

Fidler, F., & Loftus, G. R. (2009). Why figures with error bars should replace p values: Some
conceptual arguments and empirical demonstrations. Zeitschrift für Psychologie. The Journal of
Psychology, 217(1), 27-37.

García-Pérez, M. A. (2005). On the confidence interval for the binomial parameter. Quality &
Quantity, 39, 467-481. https://doi.org/10.1007/s11135-005-0233-3

Harlow, L. L. (1997). Significance testing introduction and overview. In L. Harlow, S. A. Mulaik, & J.
H. Steiger (Eds.), What if there were no significance tests? (pp. 1-17). Mahwah, NJ, USA: Erlbaum.

Hubbard, R. (2016). Corrupt research: The case for reconceptualizing empirical management and social
science. Los Angeles, CA, USA: Sage Publications.

Loftus, G. R. (1993). A picture is worth a thousand p-values: On the irrelevance of hypothesis
testing in the computer age. Behavior Research Methods, Instruments, & Computers, 25(2),
250-256. https://doi.org/10.3758/BF03204506

Inaccuracy 124

Methodology
2020, Vol.16(2), 112–126
https://doi.org/10.5964/meth.2807

https://doi.org/10.23668/psycharchives.3006
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1007/s11135-005-0233-3
https://doi.org/10.3758/BF03204506
https://www.psychopen.eu/


Loftus, G. R. (1996). Psychology will be a much better science when we change the way we analyze
data. Current Directions in Psychological Science, 5(6), 161-171.
https://doi.org/10.1111/1467-8721.ep11512376

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests by
confidence intervals and quantify accuracy of risky numerical predictions. In L. L. Harlow, S. A.
Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 393–425) Mahwah,
NJ, USA: Erlbaum.

Ranstam, J. (2012). Why the p-value culture is bad and confidence intervals a better alternative.
Osteoarthritis and Cartilage, 20(8), 805-808. https://doi.org/10.1016/j.joca.2012.04.001

Trafimow, D. (2017). Using the coefficient of confidence to make the philosophical switch from a
posteriori to a priori inferential statistics. Educational and Psychological Measurement, 77(5),
831-854. https://doi.org/10.1177/0013164416667977

Trafimow, D. (2018). Confidence intervals, precision and confounding. New Ideas in Psychology, 50,
48-53. https://doi.org/10.1016/j.newideapsych.2018.04.005

Trafimow, D. (2019). A frequentist alternative to significance testing, p-values, and confidence
intervals. Econometrics, 7(2), Article 26. https://doi.org/10.3390/econometrics7020026

Trafimow, D., & MacDonald, J. A. (2017). Performing inferential statistics prior to data collection.
Educational and Psychological Measurement, 77(2), 204-219.
https://doi.org/10.1177/0013164416659745

Trafimow, D., Wang, T., & Wang, C. (2019). From a sampling precision perspective, skewness is a
friend and not an enemy! Educational and Psychological Measurement, 79(1), 129-150.
https://doi.org/10.1177/0013164418764801

Young, K. D., & Lewis, R. J. (1997). What is confidence? Part 1: The use and interpretation of
confidence intervals. Annals of Emergency Medicine, 30(3), 307-310.
https://doi.org/10.1016/S0196-0644(97)70166-5

Wang, C., Wang, T., Trafimow, D., & Myüz, H. A. (2019). Desired sample size for estimating the
skewness under skew normal settings. In V. Kreinovich & S. Sriboonchitta (Eds.), Structural
changes and their economic modeling (pp. 152-162). Cham, Switzerland: Springer.

Ziliak, S. T., & McCloskey, D. N. (2016). The cult of statistical significance: How the standard error
costs us jobs, justice, and lives. Ann Arbor, MI, USA: University of Michigan Press.

Trafimow & Uhalt 125

Methodology
2020, Vol.16(2), 112–126
https://doi.org/10.5964/meth.2807

https://doi.org/10.1111/1467-8721.ep11512376
https://doi.org/10.1016/j.joca.2012.04.001
https://doi.org/10.1177/0013164416667977
https://doi.org/10.1016/j.newideapsych.2018.04.005
https://doi.org/10.3390/econometrics7020026
https://doi.org/10.1177/0013164416659745
https://doi.org/10.1177/0013164418764801
https://doi.org/10.1016/S0196-0644(97)70166-5
https://www.psychopen.eu/


Methodology is the official journal of the European Association of
Methodology (EAM).

PsychOpen GOLD is a publishing service by Leibniz Institute for Psychology
Information (ZPID), Germany.

Inaccuracy 126

Methodology
2020, Vol.16(2), 112–126
https://doi.org/10.5964/meth.2807

https://www.psychopen.eu/

	Inaccuracy
	(Introduction)
	'A priori' Confidence Intervals
	Method
	Results
	Discussion
	(Additional Information)
	Funding
	Competing Interests
	Acknowledgments

	Supplementary Materials
	References


