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Meta-analysis

X To systematically synthesize all the empirical studies that are published

X  MASEM (Becker, 1992, 1995; Viswesvaran & Ones, 1995)

X Testing a complete hypothesized model

X Provides parameter estimates & overall model fit
X Stage 1: Pooling correlation coefficients in a matrix
X

Stage 2: Fitting SEM on this pooled correlation matrix

X Effect size: strength and direction of the association
X In primary studies expressed in different ways depending on
X The nature of the variables

X The way the variables are measured or analyzed




Artificial dichotomization

X Meta-analyses

Dichotomous Continuous
Variable Variable

X Dichotomous variable

X Natural or artificial

X Often argued against artificial dichotomization (e.g., Cohen, 1983; MacCallum et al., 2002)

X Meta-analysists frequently have to deal with artificially dichotomized variables in primary studies



To estimate a pooled correlation matrix

X Primary studies may report different kinds of effect sizes
X One needs to express the bivariate effect sizes as correlation coefficients

X Based on information provided in primary studies

X The point-biserial and biserial correlation can be calculated




The (point-)biserial correlation

X Point-biserial correlation (Lev, 1949; Tate, 1954)
X Association between natural dichotomous and continuous variable
X Relationship between artificially dichotomized and continuous variable =

Typically leading to an underestimation (e.g., Cohen, 1983; MacCallum et al., 2002)

X Biserial correlation (Pearson, 1909)

X Assumes a continuous, normally distributed variable underlying the dichotomous variable
X Relationship between artificially dichotomized and continuous variable =

Should generally provide an unbiased estimate (Soper, 1914; Tate, 1955)

X  Affect meta-analytic results in the same direction (Jacobs & Viechtbauer, 2017)



Aim

X Investigate the effects of using (1) the point-biserial correlation and (2) the biserial
correlation for the relationship between an artificially dichotomized variable

and a continuous variable on MASEM-parameters and model fit.




Simulation study

X Choices mainly based on typical situations in educational research
X Population model with fixed parameter values
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X Systematically varied:
X Size of BMX (16, .23, 33) (de Jonge & Jak, 2018)
X Percentage of dichotomization (25%, 75%, 100%)
X Cut-off point of dichotomization (.5, .1)

X Number of primary studies: 44 (de Jonge & Jak, 2018)

X Within primary study sample sizes: randomly sampled from a positively skewed distribution
(Hafdahl, 2007) with a mean of 421.75 (de Jonge & Jak, 2018)

X 39% missing correlations (Sheng, Kong, Cortina, & Hou, 2016)

X Random-effects two stage structural equation modeling (cheung, 2014)



Estimation bias
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X Relative percentage bias in [
X Point-biserial correlation: —41.70% to —5.05%
X Bux seems systematically underestimated
X Biserial correlation: —0.36% to 0.35%
X No substantial bias in Byx

X Relative percentage bias in 3y
X Point-biseral & Biserial: < 5% in all conditions (Hoogland & Boomsma, 1998)
X No substantial bias in Byy

X Relative percentage bias in standard errors of
X Point-biserial & Biserial: both path coefficients < 10% in all conditions (Hoogland & Boomsma, 1998)
X Biserial 2 x and By seems systematically negative
X Point-biserial 2> (3,;y seems systematically negative



Some possible causes

X Biserial correlation = negative bias in SE of B,
X Used formulas for estimating the sampling (co)variances

X Generally leads to an underestimation of the true

sampling variance (Jacobs & Viechtbauer, 2017)

X Sampling (co)variances from the primary studies are treated as known in MASEM

X Underestimation in standard errors in univariate random-effects meta-analysis

(Sanchez-Meca & Marin-Martinez, 2008; Viechtbauer, 2005)

X Note = bias was within the limit of 10%

X Future research is needed



Conclusion

X We advise researchers who want to apply MASEM and want to investigate mediation to
convert the effect size between any artificially dichotomized predictor and continuous

variable to a:

X Biserial correlation




Thank you!

Any questions?

>J H.deJonge@uva.nl
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