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Abstract
A shortcoming of least-squares unrestricted factor analysis (UFA) procedures, which are widely 
used in psychometric applications is that a test statistic for assessing model-data fit cannot be 
easily derived from the minimum fit function value. This paper proposes a chi-square type 
goodness-of-fit test statistic intended for the principal-axis, MINRES, and minimum-rank UFA 
procedures. The statistic is empirically obtained via intensive simulation based on a two-stage 
approach. First, a distribution of minimum fit function values is obtained from a scenario in which 
the null hypothesis of perfect model-data fit holds. Second, the obtained statistic is non-linearly 
transformed so that it has its first four moments equal to those of the theoretical reference chi-
square distribution with the appropriate degrees of freedom. Extensions of the basic statistic are 
next proposed that include comparative and relative indexes based on it. Tests of close-fit and 
power assessment derived from the basic statistic are also proposed.

Keywords
chi square test of fit statistic, goodness-of-fit indices, principal axis factoring, MINRES, ULS, minimum rank 
factor analysis, unrestricted factor analysis, power analysis

Exploratory or unrestricted factor-analytic (UFA) solutions are those that impose the 
minimum constraints for identifiability and leave the common factor space unrestricted, 
which means that the initial solution can be (and usually is) further rotated. Even 
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though it is more indeterminate than a restricted solution, the unrestricted solution is 
much more flexible and does not require zero-loading constraints to be imposed for 
identifying the pattern, which means that the variables in a UFA solution are allowed to 
be factorially complex. This specification-related flexibility makes UFA a very valuable 
(possibly the best) tool in many psychometric applications, particularly, at the early 
stages of test development, when the aim is to assess the dimensionality of an item pool 
without imposing any particular relational structure to the data (Ferrando, 2021). And, 
at the latter stages, UFA continues to be a flexible and versatile tool for assessing the 
structure of an instrument when some of its items are complex.

The position taken in this paper is that in the scenario summarized above, not only is 
generally UFA the most appropriate model but also that, under rather common
conditions, an UFA solution is expected to work better when fitted with simple
procedures. To be more specific, the common conditions are: (a) a large number of items, 
(b) not too large samples, and (c) complex structures (e.g., Muñiz & Fonseca-Pedrero, 
2019). And, with regards to the simple estimation procedures, we shall consider here the 
family of UFA procedures based on the unweighted least squares (ULS) criterion (see 
below). These methods have been considered (somewhat disparagingly) as approximate 
or second rate with respect to more statistically rigorous methods such as Maximum 
Likelihood (ML) or Generalized Least Squares (GLS). A literature review, however, (and 
also our experience) suggests that, when compared to ML or GLS solutions in the 
scenario considered here, ULS solutions are faster, computationally simpler, robust, stable 
(particularly for categorical variables), less prone to arrive at improper solutions, and 
less likely to be affected by minor irrelevant factors (Ferrando & Lorenzo-Seva, 2017). 
Possibly for these reasons, the ULS-based methods based on both continuous and discrete 
variables are commonly used in the type of applications considered here (Revelle, 2022).

Meaningful assessment of the appropriateness of an UFA solution in the scenario
described above requires a complex and multifaceted approach to be undertaken. Good­
ness of model-data fit (GOF), as based on the chi-squared test statistic, is, in principle, a 
basic property that has to be assessed, and here lies the focus of the present proposal.

As for the intended use of the proposal, we do not consider the chi-squared test 
statistic as the final measure of fit, but as, (a) a useful measure when accompanied 
by power information and, (b) a necessary basis for obtaining GOF indices that might 
function well in psychometric applications of the UFA model. Also we do not regard 
these new indices as substitutes for those that currently exist and that do work, but 
rather as useful complements to them. Finally, the inherent difficulties of theoretically 
deriving a chi-squared statistic because of both the properties of the ULS estimator and 
the characteristics of the item scores (see below), suggest that intensive simulation is an 
appropriate approach for arriving at this type of statistic.
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Aims of the Proposal
The present article proposes an empirical test statistic in chi-square metric for
assessing goodness of model-data fit in UFA solutions based on the ULS criterion,
specifically: Principal-Axis-Factoring (PAF), ULS-MINRES, and Minimum Rank Factor 
Analysis (MRFA). The UFA-ULS solutions, in turn can be based on the standard linear 
FA model in which the variables are treated as continuous or on the non-linear UVA-FA 
model in which they are treated as ordered-categorical.

Our proposal is fully empirical, and avoids theoretical developments at the cost of 
intensive simulation which, given the capabilities of modern computers, is perfectly 
affordable. The basic idea is to combine: (a) the rationale of previous empirical proposals 
based on the idea of sampling from a simulated scenario in which the model holds 
exactly with, (b) non-linear transformations that bring the distribution of the resulting 
fit statistic close to the expected chi-square distribution. We shall label the approach as 
LOSEFER, as an acronym of Lorenzo-Seva and Ferrando’s approach.

Description of the Procedure
Consider a set of m observed variables related to p common factors, the population 
standardized variance-covariance (i.e., correlation) matrix Σ (m × m) among the set of 
observed variables, and the corresponding estimate R (m × m) obtained in a sample of 
N observations. When R is obtained from a large and representative sample from the 
population, R is expected to be a good estimate of Σ.

The direct UFA model decomposes Σ as,

Σ = ΓΓ′ +Ψ, (1)

where Γ is the loading matrix (m × p), and Ψ is the diagonal matrix (m × m) with the 
unique variances in the main diagonal. When an UFA solution is fitted to sample data, 
the aim is to estimate matrices Γ and Ψ from the observed matrix R. In terms of the 
sample estimate, matrix R is decomposed as,

R = AA′ + U + E, (2)

where A (m × k) and U (m × m) are the corresponding estimates of Γ and Ψ in Expression 
(1), and E (m × m) represents the amount of observed covariance in R that cannot be 
accounted for by the sample factor model. When k (the number of factors in the sample 
model) is chosen to equal p (the number of factors in the population model), the observed 
values in E will tend to be zero, and the estimated factor model is expected to attain an 
appropriate goodness-of-fit. However, the typical situation when fitting a UFA solution 
(especially when used with exploratory purposes) is that the value of p is not known, so 
that k is assigned a tentative value that aims to achieve an appropriate goodness-of-fit 
level for the sample factor model.
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Goodness-of-Fit Assessment
In order to define a scalar goodness-of fit test statistic for a prescribed UFA solution 
obtained from the PAF, MINRES or MRFA approaches, the matrix E is derived from 
Expression (2) as,

E = R − AA′ − U, (3)

and the discrepancy function we shall consider here is:

∑
i = 1

m − 1
∑
j ≠ i

m
eij2, (4)

where the eij2 terms are the non-diagonal elements of E. So, the discrepancy function (4) 
is the sum of non-duplicated squared residuals between the observed and reproduced 
correlation matrix. The test statistic we consider based on this discrepancy function is 
now:

c = N − 1 ∑
i = 1

m − 1
∑
j ≠ i

m
eij2. (5)

The discrepancy function in (4) is the ordinary or unweighted least squares (ULS)
function, which is the simplest in covariance structure analysis. As mentioned above, all 
the methods considered here: PAF, ULS-MINRES and MRFA are essentially ULS methods, 
and so are based on the minimization of (4).

If the ULS estimates were asymptotically efficient, the distributional assumptions 
mentioned above were met, and the null hypothesis of exact fit in (1) would hold, then 
(5) would be asymptotically distributed as a chi-square variable with degrees of freedom,

df = 1
2 m − k m − k + 1 − m, (6)

(see e.g., Lawley, 1940).
Because the ULS estimates are never asymptotically efficient, neither for continuous 

nor for ordered-categorical solutions, and the fulfillment of the distributional assump­
tions cannot be taken for granted, a naïve theoretical chi-square reference distribution 
cannot be claimed for (5). To address this problem, the proposal here is to non-linearly 
transform the test statistic (5) so that, when the fitted solution holds in the population, 
the transformed statistic closely approaches a central chi-square distribution with de­
grees of freedom (6). Next, the sample test statistic undergoes the same transformation, 
so that, when null hypothesis (H0) holds, it is interpretable as a value sampled from a 
chi-square distribution. Overall, then, our proposal can be regarded as a correction of a 
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chi-square type test statistics that brings its distribution closer to that expected theoreti­
cally when the null hypothesis holds. The main basis difference with existing corrections 
of this type (i.e., robust statistics) is that the correction is not based on asymptotic 
theory but is empirical. Finally, as for requirements and assumptions for undertaking 
the transformation, the basic requirement is that both, the observed and reproduced 
covariance matrices are positive definite (see Lorenzo-Seva & Ferrando, 2021). And, as 
for the basic assumptions, being (4) a sum of squares that adopts only positive values, 
it is assumed that the distribution of (5) will be positively skewed, and will approach 
normality as the model becomes larger.

Empirically Obtaining the Scaled Test Statistic in Chi-Square 
Metric
Once an UFA solution has been fitted to an observed correlation matrix R, the repro­
duced variance-covariance matrix is defined as,

R* = AA′ + U. (7)

Let’s take this R*, as if it was a true population matrix, and decompose it using Choles­
ky’s method,

L = chol R* . (8)

If Z (N × m) is a random matrix with columns normally distributed N(0, 1), the product,

X = ZL, (9)

produces a population matrix X (N × m). From this population matrix X, random samples 
Xi (Ni × m) of observed scores are sampled for which the corresponding correlation 
matrix Ri is an estimate of the true population matrix R*. Matrix Ri is then factor 
analyzed in order to obtain estimates Ai, Ui, and

Ei = Ri − AiAi′ − Ui. (10)

Finally, the test statistic ci is obtained using expression (5) applied to matrix Ei.
The process is repeated for an arbitrary number of times K (i = 1…K), in order to 

obtain a vector of c that contains the K values ci. The distribution of the elements of this 
vector is then the distribution of the uncorrected test statistic when the null hypothesis 
holds. In the studies presented in this document, we used K = 1,000 and N = 100,000, 
and Ni equal to the size of the sample used to obtain observed matrix R, and arrived 
at acceptable results. In addition, it must be pointed out that, if X is a set of ordinal 
variables, each Xi must be discretized using the empirical thresholds estimated from X, 
and the computed correlation matrices must be based on polychoric correlations.
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So far, our proposal is similar to previous existing developments, and particularly 
to Bollen and Stine’s (1992) bootstrapped approach (see also Corrêa Ferraz et al., 2022). 
The basic idea, in effect, is to sample (or resample in the bootstrapping approach) from 
a population in which the null hypothesis exactly holds. Furthermore, this condition is 
obtained by using the parent sample matrix as a basis (i.e., R* is taken as if it was a Σ in 
Equation 1). More specifically, the original data is transformed (according to (8) and (9) in 
our proposal) so that is forced to satisfy the null hypothesis.

From here on, however, our proposal differs from the previous related developments. 
Bollen and Stine (1992) considered only the ML-based scenario for continuous outcomes, 
in which the test statistic was expected to truly follow a central chi-square distribution 
under the null hypothesis. Second, Bollen and Stine’s (1992) proposal was not intended to 
make the empirical bootstrap distribution closer to the theoretical chi square distribution, 
but rather, to obtain reference p values to which the untransformed sample test statistic 
could be compared.

Continuing with our proposal, once c is available, what we propose is nonlinearly 
transform it using a third degree polynomial,

y = a + b1c + b2c2 + b3c3, (11)

so that the first moment, and the second, third, and fourth central moment estimates 
of the transformed c coincide with those of the reference chi-square distribution with 
degrees of freedom (df) in (6). In more detail, the coefficients of the polynomial (11) are 
obtained by solving the following system,

E(y) = y = df
Var(y) = 2df
E(y − y)3 = 8df
E(y − y)4 = 48df + 12df 2

. (12)

Where E() is used for expectation. Technical details on how to determine the polynomial 
coefficients in (11) from the system (12) can be obtained from the authors. As a summary, 
of the different solving procedures we tried, the most effective was two step. First, the 
original c values were: (a) cube-root transformed, and (b) transformed to have the first 
four moments of a standard normal variable (i.e., the first four moments in the system 
being 0, 1, 0 and 3). Second, the normal-transformed variable was transformed again 
using Fleishman’s (1978) procedure to obtain a chi-square distribution from a standard 
normal distribution, so that the final transformed variable have the first four moments as 
close as possible to those in (12).

Once the coefficients a, b1, b2, and b3 have been obtained, we can now factor analyze 
the sample correlation matrix R and compute the sample-observed c statistic by using 
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expressions (4) and (5). Next, c is transformed to y using the fitted polynomial (11) 
and this transformed value is interpreted with relation to a chi-square distribution with 
degrees of freedom (6).

A crucial point in interpreting the transformed sample c value as a proper chi-square 
type test statistic is, indeed, that not only the first four moments, but its distribution 
in general would adhere to the theoretical distribution under the null hypothesis of 
model-data fit. Strictly speaking, this adherence cannot be guaranteed, so we assessed 
this point using intensive simulation. Full results are provided below. However, it can be 
advanced that our proposal shows a considerable viability in this respect.

Beyond the Scaled Test Statistic: GOF Indices Test of Close Fit and 
Power Analysis
Provided that y approaches closely enough the corresponding reference distribution, it 
can be further used as a basis for computing meaningful point estimates of selected 
GOF statistics, so that the proposed solution can be more thoroughly assessed. We shall 
propose to derive CFI and RMSEA point estimates directly from the transformed y 
statistic. However, it should be clear that this is only an initial proposal that is expected 
to be updated as more information about the performance of GOF indices in UFA will 
become available.

Let λ1 = y1 - df1 the noncentrality parameter estimate for the solution under study, 
and λo = yo - dfo the corresponding estimate for the solution with zero common factors 
(i.e., the null or baseline model). In terms of y, the comparative fit index point estimate 
can then be obtained as:

CFI = 1 − max(λ1, , 0)
max(λ0, , λ1, , 0)

(13)

And the RMSEA point estimate as:

RMSEA = max( λ1,
(N − 1)df1 , 0) (14)

Our view, however, is that meaningful information of a GOF statistic requires not only 
the point estimate to be reported, but also the corresponding confidence interval. In the 
implementation approach in which the indices proposed here are programed (see below), 
90% confidence intervals are reported based on bootstrap resampling.

The choice of the RMSEA as an index directly derived from the test statistic allows 
two further pieces of important information to be obtained: the test of close fit and pow­
er analysis (Lee et al., 2012). In our view, this information is highly relevant for avoiding 
two common pitfalls when fitting UFA solutions. The first is to use too small samples 
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in order to achieve a better fit (at the cost of a gross loss of power). The second is to 
over-factor with the same aim, a practice that ends up in considering as relevant trivial, 
uninterpretable minor factors which are devoid of any substantive interest (Ferrando & 
Lorenzo-Seva, 2018).

The implementation is straightforward. In our proposal we have set the null (close fit) 
and alternative hypothesis as,

H :0 RMSEA ≤ 0.05
H :1 RMSEA > 0.05. (15)

With regards to power assessment, we have chosen the approach by Lee et al. (2012) 
in which the noncentrality parameter that expresses the lack of fit in the population is 
obtained by setting RMSEA values under H0 and H1. In particular, in our implementation, 
power is computed as the capacity for distinguishing between a close fit solution (H0: 
RMSEA = 0.05) and a moderately misspecified solution (H1: RMSEA = 0.08).

Simulation Studies
Two simulation studies have been carried out. The first aims to assess if statistic y in 
(11) actually: (a) has the expected chi square distribution when the true factor model is 
actually fitted in the sample data, and (b) leads to rejection rates close to those expected 
under the chi square distribution. The second study aims to assess the rejection rates 
when the sample factor model is misspecified.

First Simulation Study
A Monte Carlo simulation study was carried out using samples drawn from a true 
population model. Based on Expression (1), a population loading matrix was defined in 
which each observed variable had a salient loadings had a values of .70, and unicity equal 
to 1 minus communality of the variable. The number of factors and the number of salient 
variables per factor were manipulated in order to produce models with different degrees 
of freedom:

• 5 degrees of freedom: The population matrix was defined by a single factor and five 
variables.

• 64 degrees of freedom: The population matrix was defined by two factors and seven 
salient variables per factor.

• 207 degrees of freedom: The population matrix was defined by three factors and eight 
salient variables per factor.

• 492 degrees of freedom: The population matrix was defined by four factors and nine 
salient variables per factor.
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The sample sizes were also manipulated: 200, 500, and 800. From each true population 
matrix, 500 samples were obtained, and a total of 6,000 were factor analyzed.

For each sample, the true number of factors was extracted using two extraction 
methods: ULS/Minres, and Principal Axes (PA); and the y statistic computed after each 
extraction. The statistic y was computed using population samples of 100,000 and the 
number of random samples extracted from the population were K = 1,000.

The four firsts moments of the empirical distribution of y were computed and com­
pared to the expected ones for the theoretical distribution of chi square statistic with 
degrees of freedom df. Table 1 shows the outcomes related to ULS/MINRES extraction. 
Kurtosis values are printed as zero centered (i.e., kurtosis minus 3). Mean and variances 
were slightly overestimated, especially in small samples. The estimates of skewness and 
kurtosis in general do not differ from the values expected in the population, and only 
in small models (5 degrees of freedom) and large samples (N = 800) the estimates are 
overestimating the expected values.

Rejection rates after ULS/MINRES factor extraction are shown in Table 2. The worse 
rejection rates were observed when the sample size was small (N = 200). In addition, the 
worse rejections rates estimates were the ones expected to be .001. It means that is at 
the farthest tail of the distribution of statistic y is where less adherence to the chi-square 
distribution is observed. From a practical point of view, the rejection levels observed are 
reasonable.

Table 1

Distributional Statistics of Chi Square Estimates After ULS/MINRES Factor Extraction

df N Mean Variance Skewness Kurtosis

5 200 5.225 (5.157, 5.293) 12.828 (12.482, 13.174) 1.309 (1.292, 1.325) 2.330 (2.243, 2.417)
500 5.142 (5.099, 5.185) 12.564 (12.328, 12.799) 1.316 (1.301, 1.332) 2.320 (2.239, 2.401)
800 5.113 (5.074, 5.151) 13.087 (11.864, 14.309) 1.325 (1.427, 1.486) 4.514 (4.348, 4.680)

Expected 5 10 1.265 2.400

64 200 64.437 (63.971, 64.904) 129.108 (127.232, 130.984) 0.349 (0.339, 0.359) 0.188 (0.160, 0.203)
500 64.663 (64.359, 64.967) 131.821 (130.427, 133.216) 0.364 (0.353, 0.374) 0.195 (0.171, 0.218)
800 64.398 (64.160, 64.635) 131.169 (129.860, 132.479) 0.351 (0.341, 0.362) 0.160 (0.154, 0.196)

Expected 64 128 0.354 0.188

207 200 210.899 (209.823, 211.974) 421.635 (417.337, 425.933) 0.186 (0.176, 0.197) 0.055 (0.039, 0.072)
500 209.250 (208.517, 209.982) 422.762 (418.992, 426.532) 0.196 (0.185, 0.206) 0.065 (0.046, 0.084)
800 207.627 (207.011, 208.243) 420.336 (416.793, 423.879) 0.197 (0.187, 0.208) 0.058 (0.041, 0.076)

Expected 207 414 0.197 0.058

492 200 504.421 (502.596, 506.245) 1016.597 (1007.436, 1025.758) 0.133 (0.124, 0.143) 0.027 (0.012, 0.042)
500 497.292 (495.889, 498.696) 1006.444 (998.051, 1014.837) 0.124 (0.116, 0.136) 0.037 (0.022, 0.052)
800 495.881 (494.735, 497.026) 1002.491 (994.828, 1010.154) 0.143 (0.113, 0.132) 0.026 (0.011, 0.041)

Expected 492 984 0.128 0.024

Note. 95th confidence intervals are shown in parenthesis.
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Table 2

Rejection Rates After ULS/MINRES Factor Extraction

Rejection rates

df N .100 .050 .001

5 200 .131 (.126, .136) .075 (.071, .078) .021 (.019, .022)

500 .125 (.122, .128) .070 (.068, .073) .018 (.017, .019)

800 .105 (.103, .108) .060 (.058, .062) .019 (.018, .020)

64 200 .127 (.118, .135) .046 (.043, .048) .012 (.011, .013)

500 .121 (.116, .127) .066 (.062, .069) .016 (.015, .017)

800 .113 (.109, .118) .060 (.057, .063) .014 (.013, .015)

207 200 .171 (.159, .183) .103 (.094, .112) .032 (.028, .036)

500 .138 (.130, .146) .078 (.072, .083) .021 (.019, .023)

800 .183 (.112, .125) .068 (.060, .068) .016 (.014, .017)

492 200 .225 (.210, .240) .145 (.133, .156) .052 (.046, .058)

500 .159 (.149, .169) .093 (.086, .100) .027 (.024, .030)

800 .143 (.135, .151) .080 (.075, .085) .021 (.019, .023)

Note. 95th confidence intervals are shown in parenthesis.

Table 3

Distributional Statistics of Chi Square Estimates After PA Factor Extraction

df N Mean Variance Skewness Kurtosis

5 200 4.617 (4.529, 4.705) 10.555 (10.358, 10.753) 0.988 (0.952, 1.025) 2.823 (2.710, 2.936)
500 4.218 (4.141, 4.294) 10.938 (10.831, 11.044) 0.835 (0.802, 0.867) 2.139 (2.064, 2.213)
800 3.951 (3.870, 4.031) 11.648 (11.543, 11.753) 1.025 (0.673, 0.741) 1.881 (1.830, 1.932)

Expected 5 10 1.265 2.400

64 200 63.047 (62.577, 63.517) 124.755 (123.029, 126.482) 0.358 (0.348, 0.368) 0.188 (0.168, 0.212)
500 62.474 (62.151, 62.798) 124.491 (123.153, 125.830) 0.369 (0.358, 0.380) 0.196 (0.172, 0.220)
800 61.850 (61.586, 62.113) 123.081 (121.884, 124.277) 0.360 (0.350, 0.369) 0.168 (0.155, 0.196)

Expected 64 128 0.354 0.188

207 200 210.253 (209.179, 211.326) 420.916 (416.594, 425.238) 0.186 (0.176, 0.196) 0.052 (0.037, 0.068)
500 205.273 (204.534, 206.013) 410.350 (406.743, 413.958) 0.195 (0.185, 0.205) 0.060 (0.043, 0.077)
800 202.637 (202.005, 203.269) 403.110 (399.714, 406.506) 0.199 (0.190, 0.209) 0.057 (0.040, 0.074)

Expected 207 414 0.197 0.058

492 200 509.195 (507.36, 511.029) 1024.019 (1014.824, 1033.214) 0.132 (0.122, 0.142) 0.029 (0.014, 0.045)
500 493.335 (491.908, 494.762) 1004.453 (995.697, 1013.209) 0.122 (0.127, 0.148) 0.044 (0.029, 0.059)
800 488.925 (487.757, 490.093) 980.619 (973.332, 987.906) 0.142 (0.116, 0.135) 0.025 (0.010, 0.039)

Expected 492 984 0.128 0.024

Note. 95th confidence intervals are shown in parenthesis.
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Table 3 shows the outcomes related to PA extraction. Mean and variances were slight­
ly underestimated, especially in large samples. Again, the estimates of skewness and 
kurtosis in general do not differ from the values expected in the population, and only 
in small models (5 degrees of freedom) and large samples (N = 800) the estimates are 
underestimating the expected values.

Rejection rates after PA factor extraction are shown in Table 4. The outcomes are 
quite similar to those obtained after ULS/MINRES extraction pattern. However, PA ex­
traction obtained slightly better rejection rates than ULS/MINRES. Again, rejection rates 
improve when sample sizes are large.

Table 4

Rejection Rates After PA Factor Extraction

Rejection rates

df N .100 .050 .001

5 200 .085 (.081, .090) .046 (.043, .048) .012 (.011, .013)

500 .076 (.073, .079) .040 (.038, .042) .009 (.009, .010)

800 .073 (.070, .076) .039 (.037, .041) .009 (.008, .009)

64 200 .106 (.098, .114) .058 (.053, .063) .015 (.013, .017)

500 .089 (.084, .093) .046 (.043, .049) .010 (.009, .011)

800 .078 (.074, .081) .039 (.036, .041) .008 (.007, .009)

207 200 .164 (.152, .176) .099 (.090, .107) .030 (.027, .034)

500 .103 (.096, .109) .055 (.051, .059) .013 (.012, .015)

800 .176 (.074, .084) .040 (.037, .043) .009 (.008, .010)

492 200 .265 (.249, .281) .175 (.162, .188) .066 (.059, .073)

500 .135 (.126, .144) .077 (.071, .083) .022 (.019, .024)

800 .102 (.096, .109) .055 (.050, .059) .013 (.012, .014)

Note. 95th confidence intervals are shown in parenthesis.

Finally, RMSEA, CFI and NNFI goodness-of-fit indices were computed. As the model 
that was fitted to the sample data systematically corresponded to the true population 
model, the values of these indices should indicate in all cases that an acceptable model fit 
had been attained. Table 5 shows the mean of goodness-of-fit indices after ULS/MINRES 
factor extraction. As can be observed, a good model fit was always reported. In addition, 
as the sample size became larger, the goodness-of-fit values improved for all the indices.
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Table 5

Mean of Goodness-of-Fit Indices After ULS/MINRES Factor Extraction When the Model Proposed in the Sample is 
Correct in the Population

df N RMSEA CFI NNFI

5 200 .0227 (.0222, .0233) .9960 (.9959, .9961) .9926 (.9924, .9929)

400 .0140 (.0137, .0142) .9981 (.9981, .9981) .9969 (.9969, .9970)

800 .0140 (.0103, .0106) .9960 (.9986, .9986) .9979 (.9979, .9980)

64 200 .0128 (.0123, .0134) .9967 (.9966, .9968) .9955 (.9953, .9957)

400 .0081 (.0079, .0083) .9984 (.9983, .9984) .9980 (.9979, .9980)

800 .0062 (.0061, .0064) .9987 (.9987, .9988) .9985 (.9985, .9985)

207 200 .0114 (.0109, .0119) .9965 (.9963, .9966) .9955 (.9952, .9957)

400 .0065 (.0063, .0068) .9984 (.9984, .9984) .9981 (.9981, .9981)

800 .0047 (.0046, .0049) .9988 (.9988, .9988) .9986 (.9986, .9987)

492 200 .0109 (.0105, .0114) .9962 (.9960, .9964) .9953 (.9950, .9955)

400 .0057 (.0054, .0059) .9984 (.9984, .9985) .9982 (.9981, .9982)

800 .0042 (.0041, .0044) .9988 (.9988, .9988) .9987 (.9987, .9987)

Note. 95th confidence intervals are shown in parenthesis.

Table 6

Mean of Goodness-of-Fit Indices After PA Factor Extraction When the Model Proposed in the Sample is Correct in 
the Population

df N RMSEA CFI NNFI

5 200 .0180 (.0174, .0186) .9969 (.9968, .9969) .9944 (.9942, .9946)

400 .0101 (.0098, .0104) .9984 (.9984, .9985) .9976 (.9976, .9977)

800 .0101 (.0073, .0077) .9969 (.9987, .9988) .9983 (.9983, .9983)

64 200 .0114 (.0108, .0119) .9970 (.9969, .9971) .9960 (.9958, .9962)

400 .0066 (.0064, .0068) .9985 (.9985, .9985) .9982 (.9982, .9982)

800 .0049 (.0047, .005) .9988 (.9988, .9988) .9987 (.9986, .9987)

207 200 .0111 (.0106, .0116) .9965 (.9964, .9967) .9956 (.9954, .9958)

400 .0054 (.0052, .0056) .9986 (.9985, .9986) .9983 (.9983, .9983)

800 .0037 (.0035, .0038) .9989 (.9989, .9989) .9988 (.9987, .9988)

492 200 .0121 (.0117, .0126) .9958 (.9956, .996) .9947 (.9945, .9949)

400 .0051 (.0049, .0053) .9985 (.9985, .9986) .9983 (.9983, .9983)

800 .0034 (.0033, .0036) .9989 (.9989, .9989) .9988 (.9988, .9988)

Note. 95th confidence intervals are shown in parenthesis.
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Table 6 shows the mean of goodness-of-fit indices after PA factor extraction. Once again, 
a good model fit was always reported. It must be pointed out that the values obtained 
here suggested a better fit than those obtained after ULS/MINRES extraction. In addition, 
the estimates did not seem so much influenced by the sample size, as it happened after 
ULS/MINRES extraction.

The conclusion of the first simulation study is that, when the correct model is fitted 
to the sample data, the distribution of the y statistic shows a reasonable adherence to 
the expected chi-square distribution, and the related goodness-of-fit indices can be safely 
interpreted.

Second Simulation Study
The second study is mainly concerned with assessing the power and sensitivity of 
our proposed statistic. To assess so, we replicated the first simulation study with two 
variations. First, the number of factors retained in the sample data was one less than the 
true number in the population. Second, only three population models were considered: 
the models with 64, 207 and 492 degrees-of-freedom in the population.

ULS/MINRES and PA extraction methods were used to extract the incorrect number 
of factors. As the sample model was not the one that existed in the population, goodness-
of-fit indices derived from y should suggest an improper model adjustment. In addition, 
the values should worsen when the discrepancy between the sample and the population 
models increases. Thus, if the population model had four factors, and the sample model is 
adjusted for three factors, the misspecification is not so strong as if the population model 
had two factors, and the sample model is adjusted for one single factor. The values of the 
goodness-of-fit indices should be sensitive to the different degrees of misspecification.

RMSEA, CFI and NNFI goodness-of-fit indices were again computed. Table 7 shows 
the mean of the goodness-of-fit indices after ULS/MINRES factor extraction. As can be 
observed, an unacceptable model fit was always reported for all the indices, and the 
worse goodness-of-fit values were related to the solutions with the lowest degrees of 
freedom. It must be noted that, when the sample size was large, the indices reported 
better goodness-of-fit values, but these values were still farther away from the usual 
threshold values used in applied research for judging the fit as acceptable.

Table 8 shows the mean of goodness-of-fit indices after PA factor extraction. As can 
be observed, the values of the goodness-of-fit are quite similar to the ones obtained after 
ULS/MINRES extraction.

The conclusion of the second simulation study is that, when the sample model is 
incorrectly specified, the goodness of fit indices derived from the proposed y statistic 
are expected to detect that the proposed model is wrong under most of the conditions 
expected to occur in practice.
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Table 7

Mean of Goodness-of-Fit Indices After ULS/MINRES Factor Extraction When the Model Proposed in the Sample is 
Incorrect in the Population

df N RMSEA CFI NNFI

64 200 .4324 (.4214, .4435) .7877 (.7706, .8048) .7780 (.7593, .7966)

400 .2458 (.2355, .2561) .4279 (.4017, .4541) .3257 (.2949, .3566)

800 .1855 (.1768, .1942) .5984 (.5780, .6188) .5984 (.5780, .6188)

207 200 .3251 (.3157, .3346) .6384 (.6258, .6511) .6302 (.6167, .6437)

400 .1760 (.1674, .1846) .5348 (.5105, .5591) .4393 (.4101, .4686)

800 .1305 (.1232, .1379) .7252 (.7093, .7412) .6689 (.6497, .6881)

492 200 .2559 (.2474, .2644) .5028 (.4854, .5201) .4947 (.4772, .5122)

400 .1376 (.1303, .1450) .6025 (.5804, .6247) .5231 (.4965, .5496)

800 .1028 (.0966, .1089) .7644 (.7501, .7787) .7173 (.7001, .7345)

Note. 95th confidence intervals are shown in parenthesis.

Table 8

Mean of Goodness-of-Fit Indices After PA Factor Extraction When the Model Proposed in the Sample is Incorrect in 
the Population

df N RMSEA CFI NNFI

64 200 .4131 (.4005, .4257) .7665 (.7467, .7863) .7568 (.7358, .7779)

400 .2402 (.2295, .2509) .4404 (.4132, .4675) .3404 (.3085, .3724)

800 .1723 (.6824, .6247) .1817 (.7008, .6464) .1817 (.7008, .6464)

207 200 .3199 (.3102, .3295) .6259 (.6116, .6401) .6160 (.6009, .6311)

400 .1761 (.1674, .1848) .5323 (.508, .5566) .4364 (.4071, .4657)

800 .1328 (.1256, .1400) .7213 (.7056, .737) .6641 (.6452, .6830)

492 200 .2570 (.2488, .2653) .5005 (.4835, .5175) .4916 (.4745, .5086)

400 .1368 (.1295, .1442) .6044 (.5822, .6267) .5254 (.4987, .5520)

800 .1064 (.1004, .1124) .7560 (.7420, .7700) .7072 (.6904, .7240)

Note. 95th confidence intervals are shown in parenthesis.

Implementation
The code file developed is the R script “Losefer.r”. This script uses only native functions 
in R, so no packages need to be downloaded. In order to use it, researchers have to 
store participants’ responses in a text file, update the name of the input file, and execute 
the script. The script is implemented to allow different extraction procedures (Principal 
Component Analysis, Centroid, and Principal Axes). With this example script, research­
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ers can easily adapt the code to use other extraction methods. We made it available via 
the PsychArchives repository.

In addition, we implemented the full item selection proposal in our program to 
compute factor analysis, that can be downloaded free from the site psico.fcep.urv.cat/util­
itats/factor. The computing is offered as a LOSEFER chi-square adjustment method, and 
can be computed with Principal Component Analysis, ULS/MINRES, MRFA and ML. In 
this software, the response format can be linear variables and graded response variables.

Illustrative Example
A set of six items from the Statistical Anxiety Test (Vigil-Colet et al., 2008) was used for 
the illustrative example. All the items correspond to the Anxiety to Examination subscale, 
and are responded on a 5-point graded format. A sample of 459 undergraduate students 
from the first course of a degree on psychology answered the test.

A Robust Unweighted Least Squares (RULS) solution was first computed, and the 
chi-square statistic derived from this method was scaled using the mean and variance 
adjustment. In addition, the statistic was also corrected using the method proposed in 
this document. Finally, ULS/MINRES, PAF, and Minimum Rank Factor Analysis (MRFA) 
solutions were computed, and the corresponding y statistics were obtained as proposed 
in this article.

Initial information was obtained by assessing the existing fit statistics that are not 
derived from the chi-square test. The output of Parallel Analysis suggested that the 
unidimensional solution was the most appropriate. The percentage of explained common 
variance (ECV) was 0.77, below the 0.80 cut-off most commonly used. Finally, the RMSR 
and GFI estimates were 0.06 and 0.99 respectively. Overall, these results suggest that a 
single dominant factor underlies the responses to these 6 items, but that this factor is not 
yet able to fully account for the inter-item correlations.

The chi-squared derived GOF statistics here were RMSEA, and CFI. In addition, 
the Non-Normed Fit Index (NNFI) was also obtained. In the ULS/MINRES, PAF, and 
MRFA cases, these indices were computed based on the g values obtained after Losefer 
adjustment. Table 9 shows a summary of the goodness of fit results.
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Table 9

Goodness-of-Fit Statistics for SAS Illustrative Example

Extraction method

Corrected statistic with mean and 
variance adjustment

Empirically obtained statistic 
(Losefer approach)

Goodness-of-fit statistic RULS ULS/MINRES PAF MRFA

Chi square value 59.129 62.501 58.091 51.531

RMSEA .110 .114 .109 .102

CFI .983 .981 .982 .985

NNFI .971 .968 .970 .974

Note. df = 9.

The four methods compared in the study (RULS, ULS/MINRES, PAF, and MRFA) arrived 
at similar estimates of both the chi square statistic, and goodness-of-fit indices. This 
outcome could be expected, because they were assessing exactly the same factor solution. 
However, MRFA reported a lower chi square index, and the goodness-of-fit indices also 
suggest that the factor solution fitted better than that fitted by the other three extraction 
methods. As a single factor was extracted in all cases, the only source that can explain 
this difference is that the loading values estimated by MRFA gave rise to a reproduced 
correlation matrix that was closer to the observed correlation matrix.

Finally, the close-fit and power results based on the PA-Losefer solution (which seems 
to be the most widely agreed) are reported in Table 10.

Table 10

Test of Close Fit, and Power Assessment Illustrative Example

Test/Analysis

Test of Close Fit
RMSEA Estimate = 0.109

p < 0.001 (df = 9) for RMSEA < 0.05

Power Analysis Results
H0: RMSEA = 0.05

H1: RMSEA = 0.08

Beta = .54 (df = 9)

The chi-square based outcomes agrees with the initial measures of fit above but, as 
expected, seem to be more sensitive to detect model misspecification, especially the test 
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statistic itself and the RMSEA. Clearly, it cannot be accepted now from the first outcome 
in Table 10 that a single factor closely fits the scale data in this example. Perhaps still 
more important, however, the power results suggest that, in such a small model (only 
9 degrees of freedom), the power for distinguishing a moderate misspecification from a 
close fit is still unacceptably low, and a much larger sample should have been collected 
for this purpose.

Discussion
Adjudging the appropriateness of an UFA solution is a multi-faceted process that goes 
far beyond goodness of model-data fit (e.g., Ferrando & Lorenzo-Seva, 2018). At the same 
time, however, we believe that the basis test of fit statistic must necessarily be part of this 
process. It (a) provides relevant information on its own, especially when accompanied 
by power information, and (b) is the basis for computing goodness of fit indices that 
can provide additional information regarding the approximate or the relative fit of the 
proposed solution.

So far, the chi-squared test of fit statistic is available for certain statistical (in Lawley, 
1940’s, terms) UFA estimation procedures that either are fully efficient or for which 
theoretical corrections that compensate for its lack of efficiency are available. The test 
statistic, however, is not available for more humble UFA procedures that are often refer­
red to, slightly derogatorily, as “approximate”. In certain applied scenarios, however, it 
happens that these approximate procedures show advantages that more than compensate 
for their lack of statistical efficiency. So, to derive a basis chi-squared test of fit that can 
be used with these procedures is an issue of clear interest (e.g., Harman & Jones, 1966).

In this article we have proposed and implemented a test statistic of this type that can 
be used with ordinary least squares UFA solutions, solutions which, in turn, can be based 
on both the linear and the non-linear FA model. Overall, we consider that the proposed 
statistic works quite well under most of the conditions considered in the simulation. As 
a summary, it (a) closely adheres to the expected distribution under the null hypothesis, 
(b) demonstrates power and sensitivity for detecting a wrongly specified solution (if 
enough sample is available), and (c) allows for meaningful goodness of fit indices, tests 
of close fit, and power estimates to be derived. We acknowledge indeed that we (partly) 
make use of existing methodology for variable transformation, and also that, at its initial 
stages, our proposal is based on previous developments, particularly the bootstrapped 
approach by Bollen and Stine (1992). From here on, however, we consider our proposal to 
be mostly a new contribution.

As any initial proposal, this has its share of limitations and points that deserve fur­
ther study. Regarding limitations, we have avoided complex theoretical developments at 
the cost of intensive simulation. So, the procedure places strong computational demands 
and can be time consuming. However, the computing power of informatic equipment 
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that is nowadays available for researchers should help to make the proposal rather 
feasible.

As for points that require further study, to start with further intensive simulation 
about its functioning in a variety of conditions beyond those considered here are clearly 
warranted. On the other hand, it is still not clear at present which are, (a) the chi-square-
based fit indices, (b) the appropriate thresholds for these indices, and (c) the close-fit-test 
or power specifications that work best with UFA solutions. So, most of what is proposed 
here must be considered as tentative and is expected to be updated as more information 
will be available.

In spite of the shortcomings noted above, we believe that this proposal has great 
interest, wide applicability, and will be very useful for the FA practitioner, and more 
so taking into account that is implemented as a resource in a free, widely known and 
user-friendly UFA program, as well as in two of the best known statistical programs at 
present.
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