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Abstract 
 

For children, adolescents and educated adults, comparing fractions with common numerators 

(e.g., 4/5 vs. 4/9) is more challenging than comparing fractions with common denominators 

(e.g., 3/4 vs. 6/4) or fractions with no common components (e.g., 5/7 vs. 6/2). Errors are related 

to the tendency to rely on the “greater the whole number, the greater the fraction” strategy, 

according to which 4/9 seems larger than 4/5 because 9 is larger than 5. We aimed to 

determine whether the ability of adolescents and educated adults to compare fractions with 

common numerators was rooted in part in their ability to inhibit the use of this misleading 

strategy by adapting the negative priming paradigm. We found that participants were slower 

to compare the magnitude of two fractions with common denominators after they compared 

the magnitude of two fractions with common numerators than after they decided which of two 

fractions possessed a denominator larger than the numerator. The negative priming effects 

reported suggest that inhibitory control is needed at all ages to avoid errors when comparing 

fractions with common numerators.  
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According to dual-process theories of human thinking (Evans, 2008; Kahneman, 2011; Evans 

& Stanovich, 2013), systematic reasoning errors (or reasoning biases) in different domains are 

rooted, in part, in our spontaneous tendency to rely on heuristics (i.e., rapid, parallel, automatic, 

and effortless strategies). Studies have provided convergent evidence that inhibitory control is 

necessary at any age to avoid using a misleading heuristic in a context in which it interferes 

with the strategy (or the strategies) leading to the correct answer (see for reviews Bjorklund & 

Harnishfeger, 1995; Borst, Aite, & Houdé, 2015; Diamond, 2013; Houdé & Borst, 2015). For 

example, studies have demonstrated that the ability to overcome systematic errors in classical 

developmental tasks such as in Piaget’s A-B (Diamond, 1998 but see Munakata, 1998 for a 

working memory account of the A-not-B error), class-inclusion (Borst, Poirel, Pineau Cassotti, 

& Houdé, 2013 ; Perret, Paour, & Blaye, 2003) and number-conservation (Houdé & Guichart, 

2001; Houdé et al., 2011) tasks is not exclusively rooted in the acquisition of knowledge of 

increasing complexity (as Piaget assumed, Piaget, 1983) but is also dependent on the 

progressive ability to inhibit misleading heuristics. 

 

Importantly, the failure to inhibit a misleading strategy explains not only systematic errors in 

logical Piagetian problems but also systematic difficulties faced by children in the literacy 

classroom (Ahr, Houdé, & Borst, 2016; Borst, Ahr, Roell, & Houdé, 2015; Lanoë, Vidal, Lubin, 

Houdé, & Borst, 2016), in mathematics (Lubin et al., 2016; Lubin, Vidal, Lanoë, Houdé, & Borst, 

2013) and in science (Potvin, Masson, Lafortune, & Cyr, 2015). For instance, children have 

difficulty solving arithmetic word problems such as Bill has 20 marbles. He has 5 more marbles 

than John. How many marbles does John have? Here, the relational term (i.e., more than) is 

inconsistent with the required arithmetic operation (i.e., subtraction) to perform. Most errors in 

these types of problems are reversal errors characterized by adding the numbers instead of 

subtracting them or vice versa (e.g., Stern, 1993). Two studies provided convergent evidence 

that the ability to solve this type of arithmetic word problem is rooted, in part, in the ability to 

inhibit the “add if more, subtract if less” misleading heuristics in children, adolescents, adults 

(Lubin et al., 2013) and even mathematics experts (Lubin et al., 2016). Similar to the resolution 
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of an arithmetic word problem, the inhibition of a misleading heuristic is also needed to 

overcome systematic errors in reading, particularly for mirror errors, i.e., confusion between 

letters that are mirror images of each other (i.e., such as b and d). These mirror errors are 

likely the result of the mirror generalization process that allows one to identify a visual stimulus 

regardless of its presentation side, a process that is advantageous for objects but not for letter 

recognition (Lachmann & van Leeuwen, 2007). Two studies converged in showing that novice 

and expert readers need to inhibit the mirror generalization process to discriminate letters that 

are mirror images of each other (Ahr et al., 2016; Borst et al., 2015). 

 

Most of these studies used a negative priming paradigm to determine whether the inhibition of 

a misleading heuristic is needed to solve classical Piagetian tasks (e.g., Borst, et al., 2013; 

Houdé & Guichart, 2001; Perret et al., 2003) and school learning tasks (e.g., Ahr et al., 2016; 

Borst et al., 2015; Lanoë et al., 2016; Lubin et al., 2013; Potvin et al., 2015). The negative 

priming paradigm was originally designed by Tipper (1985). The negative priming paradigm 

rests on the logic that if a distractor (or a strategy) is inhibited on a given item (i.e., the prime), 

then its activation on the following item (i.e., the probe) should be disrupted (i.e., longer 

response times and higher error rates) in comparison to a control condition in which the prime 

does not require inhibition of that strategy (e.g., Borst, Moutier, & Houdé, 2013; Tipper, 2001 

but see Neill, Valdes, & Terry, 1995, for a non-inhibitory episodic retrieval account of negative 

priming). Although neuroimaging studies that investigated the neural underpinning of negative 

priming used different procedures and different negative priming tasks, there is tentative 

evidence that the negative priming effect relies on a similar brain area regardless of the nature 

of the task (see for a review Frings, Schneider, & Fox, 2015). Importantly, negative priming 

elicits activation in the right dorsolateral prefrontal cortex (Egner & Hirsch, 2005; Krueger, 

Fischer, Heinecke, & Hagendorf, 2007; Ungar, Nestor, Niznikiewicz, Wible, & Kubicki, 2010) 

and spatially adjacent regions such as the medial and inferior prefrontal cortex (Wright et al., 

2005). These prefrontal areas are closely related to inhibitory control processes (see, e.g., 

Aron, Robbins, & Poldrack, 2014). Lesions studies provided convergent evidence for the role 
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of the frontal lobe in the negative priming effect, with no negative priming effect observed in 

patients with frontal lobe lesions (Metzler & Parkin, 2000; Stuss et al., 1999). 

 

Negative priming effects were originally reported in attentional tasks to reveal the inhibition of 

distractors (e.g., Tipper, Weaver, Cameron, Brehaut, & Bastedo, 1991) but now have been 

reported in numerous tasks in various domains to reveal the inhibition of overlearned 

misleading heuristics (see for a review Houdé & Borst, 2015). Note that the negative priming 

paradigm adapted to misleading strategies reveals that a misleading heuristic must be inhibited 

in order to solve a given task but provides no information on the strategy that is activated once 

the misleading heuristic has been inhibited (Borst et al., 2013). In the present study, we used 

a similar negative priming approach to determine whether the selection of the appropriate 

strategy to compare fractions with common numerators relies, in part, on the inhibition of a 

misleading heuristic as previously evidenced in other school learning studies (e.g., Ahr et al., 

2016; Borst et al., 2015; Lanoë et al., 2016; Lubin et al., 2013; Lubin et al., 2016; Potvin et al., 

2015). 

 

Learning rational numbers, particularly the concept of fractions, is challenging for students 

(Lortie-Forgues, Tian, & Siegler, 2015). The acquisition of fraction knowledge in education is 

important because it constitutes part of the core knowledge for algebraic, probabilistic, and 

proportional reasoning (Siegler & Lortie-Forgues, 2014). Indeed, fraction knowledge is 

predictive of mathematic achievement (Jordan, et al., 2013; Siegler, Thompson, & Schneider, 

2011; Torbeyns, Schneider, Xin, & Siegler, 2015). Notably, fractions not only are difficult for 

children to master but also remain challenging for adults (for a review, see Vamvakoussi, 

2015). Difficulties in learning fractions are due to different factors, such as applying whole-

number properties to rational numbers or applying procedures used in fraction addition (or 

subtraction) to fraction multiplication (or division; Siegler, Fazio, Bailey, & Zhou, 2013; 

Torbeyns et al., 2015). An illustration is given in fraction comparison problems in which 

participants consider a fraction as two separate natural numbers rather than one rational 
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number (Stafilydou & Vosniadou, 2004) in a certain context. For instance, when deciding 

whether 1/7 is larger than 1/3, one could erroneously answer that 1/7 is larger than 1/3 because 

7 is larger than 3 when considering the fractions as two separate natural numbers.  

 

This common error observed in fraction comparison is referred to as the natural number bias 

(Vamvakoussi, Van Dooren, & Verschaffel, 2012), defined as a robust human tendency to rely 

on natural number knowledge when working with rational numbers (Ni & Zhou, 2005). 

According to some conceptual change theories (Chi, 1992, 2005; diSessa, 2008; diSessa & 

Sherin, 1998; Posner, Strike, Hewson, & Gertzog, 1982; Vosniadou, Vamvakoussi & Skopeliti, 

2008; Vosniadou, 2013; Vosniadou & Skopeliti, 2013), the concept of a natural number can 

coexist with the concept of a rational number. Because the two concepts coexist, the concept 

of a natural number might interfere with the concept of a rational number in certain contexts, 

resulting in a natural number bias. It can interfere with mathematical reasoning in some specific 

contexts, such as fraction comparison problems, in part because natural number properties 

are often erroneously generalized to rational numbers. This bias persists from childhood to 

adulthood in fraction comparison problems likely because (as with other cognitive biases) it is 

highly efficient in certain contexts, such as when the two fractions to compare have the same 

denominator (e.g., 4/6 vs. 7/6). In this context, applying natural number knowledge (i.e., that 4 

is smaller than 7) and using the “greater the whole number, the greater the fraction” heuristic, 

particularly when comparing 4/6 vs. 7/6, leads to the correct answer that 7/6 (1.16) is larger 

than 4/6 (0.66). However, it is worth noting that previous studies have demonstrated that 

natural number knowledge is crucial for mathematical achievements (Siegler & Lortie-Forgues, 

2014) and for the development of conceptual and procedural knowledge of fractions in 

particular (e.g., Rinne, Ye, & Jordan, 2017). 

 

Adults and children typically use different strategies to compare the magnitudes of fractions as 

a function of the type of fraction comparison problems with which they are confronted (see, 

e.g., Fazio, DeWolf, & Siegler, 2016; Schneider & Siegler, 2010; Siegler, et al., 2011; Siegler 
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& Pyke, 2013). For example, children with a partial understanding of fractions (i.e., choosing 

fractions with smaller numbers in a fraction comparison task) at grade 4 are more likely to 

adopt the correct strategy to compare fractions at grade 6 than those displaying a larger “whole 

number bias” at grade 4 (Rinne et al., 2017). In addition, adults tend to represent fractions as 

discrete magnitudes when simpler strategies are not pertinent (Rinne et al., 2017; Fazio et al., 

2016). Taken together, these findings are in line with the overlapping wave theory proposed 

by Siegler (1996). 

 

Van Dooren, Lehtinen, & Verschaffel (2015) have argued that the systematic difficulty in 

comparing fractions with common numerators (as revealed by higher error rates or longer 

response times) at any age might be rooted in part in our spontaneous tendency to rely on a 

misleading heuristic (i.e., the “greater the whole number, the greater the fraction” strategy) in 

a context in which this strategy is not appropriate. Consistent with this assumption, studies 

have reported that children (Gabriel, Szuc & Content, 2013b; Meert, Grégoire, & Noël, 2010b), 

adolescents (Van Hoff et al., 2013), educated adults (Meert, Grégoire, & Noël, 2009, 2010b; 

Vamvakoussi, Van Dooren, & Verschaffel, 2012) and experts in mathematics (Obersteiner, 

Van Dooren, Van Hoof, & Verschaffel, 2013) require more time to compare fractions with 

common numerators (i.e., a context in which the “greater the number, the greater the fraction” 

strategy is misleading) than with common denominators (i.e., a context in which the “greater 

the number, the greater the fraction” strategy is appropriate). While educated adults tend to 

rely on “the greater the number, the greater the fraction” strategy to compare fractions with 

common components and thus continue to be affected by the natural number bias (Bonato, 

Fabbri, Umiltà, & Zorzi, 2007; Meert et al., 2009), they are less affected by it when comparing 

fractions with different components, presumably because this context might trigger to a lesser 

extent this heuristic (Faulkenberry & Pierce, 2011; Gabriel, Szuc & Content, 2013a; Schneider 

& Siegler, 2010; Sprute & Temple, 2011). This assumption is in line with findings that several 

factors can lead to the whole number bias observed in fraction comparison tasks (Alibali & 

Sydney, 2015). In particular, whole number bias would arise in certain contexts at certain ages 
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when rational number representations are not sufficiently precise or sufficiently activated to 

solve the problem. The strength of these rational number representations is dependent on the 

participant’s experience with fractions, the delay from the time they last activated this 

representation and the characteristics of the problem to solve that might trigger one sort of 

representation over the other. Cognitive development also affects fraction magnitude abilities 

as rational and whole number representations become increasingly more precise over time 

(see Siegler et al., 2011).  

 

Taken together, findings from previous studies tentatively suggest that participants might be 

more error prone when comparing two fractions with common numerators because they apply 

a well-known strategy consisting of choosing the fraction with the greater whole number when 

the fractions have common components (i.e., the “greater the whole number, the greater the 

fraction” strategy). While this strategy is efficient for comparing fractions with common 

denominators, it can lead to systematic errors when comparing fractions with common 

numerators. 

 

The present study aimed to determine whether the inhibition of the well-known “greater the 

whole number, the greater the fraction” strategy is needed to compare fractions with common 

numerators in adolescents and in educated adults. Note that some studies demonstrated that 

the inhibition of contextual or perceptual cues contributes to the ability to compare fractions. 

For example, Siegler & Pyke (2013) provided evidence that 6th and 8th graders with better 

conceptual and procedural knowledge of fractions displayed better performance in an anti-

saccade task, a typical inhibitory control task. More generally, comparing the magnitudes of 

numbers sometimes requires inhibiting contextual or perceptual cues, such as the physical 

size or the location of the number (see, e.g., Szucs & Soltesz, 2007). In addition, switching 

costs have been reported during arithmetic problem solving (i.e., multiplication of whole 

numbers), with participants displaying poorer performance when switching between two 

strategies than when using the same strategy in two consecutive trials (Lemaire and 
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Lecacheur, 2010). Switching cost has been interpreted as possibly reflecting the role of 

working memory and/or inhibitory control in strategy choice. However, no study to date has 

provided evidence that the inhibition of a misleading strategy contributes to the ability to 

compare fractions with common numerators using a negative priming approach.  

 

In the present study, we designed a variant of the negative priming paradigm originally 

designed by Tipper (1985). In our negative priming paradigm, we asked adolescents and 

adults to compare the magnitude of two fractions with common denominators (e.g., 4/8 vs. 5/8) 

on probes, a context in which the “greater the whole number, the greater the fraction” strategy 

provides the correct answer (i.e., stating that 5/8 is larger than 4/8 because 5 > 4). Importantly, 

in the test condition, probes are preceded by primes in which adolescents and adults compared 

fractions with common numerators (e.g., 1/4 vs. 1/5) on the primes before the probes—a 

context in which, according to our hypothesis, the “greater the whole number, the greater the 

fraction” strategy should be inhibited to avoid committing an error (i.e., stating that 1/5 is larger 

than 1/4 because 5 > 4). In the control condition, probes were preceded by primes in which 

the inhibition of the “greater the whole number, the greater the fraction” strategy was not 

required. Participants were simply asked to determine which of the two fractions presented a 

denominator that was larger than the numerator. Regarding the appropriateness of the 

method, we note that by construction, the negative priming paradigm requires that the 

participants succeed above the chance level of performance on the control and test primes for 

the priming effects on the probes to be observed. Thus, we tested 9th graders who are able to 

successfully compare the magnitude of fractions with common numerators (i.e., the prime in 

the test condition in our negative priming paradigm). We also tested young adults because we 

used age as a proxy of the skill to compare fractions, young adults being more skilled than 9th 

graders. 

 

We reasoned that if adolescents and educated adults must inhibit the “greater the whole 

number, the greater the fraction” strategy to compare fractions with common numerators, then 
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they should require more time (and/or commit more errors) when comparing fractions with the 

same denominator that are preceded by primes when the participants compared fractions with 

the same numerator than they did when preceded by primes in which participants decided 

which of the two fractions had a denominator larger than the numerator (revealing a typical 

negative priming effect). Notably, testing adolescents and adults allowed us to determine (a) 

whether educated adults must still inhibit the “greater the whole number, the greater the 

fraction” strategy when comparing fractions with the same numerator and (b) whether the 

efficiency of inhibiting the “greater the whole number, the greater the fraction” strategy in that 

context increases with age. If inhibitory control is required to compare fractions with the same 

numerator even in educated adults, then we should find negative priming effects in adults. 

Finally, if the efficiency in inhibiting the misleading heuristic (i.e., the “greater the whole 

number, the greater the fraction” strategy) increases with age, then the amplitude of the 

negative priming effect should be smaller in adults than in adolescents, as reported in previous 

negative priming studies on misleading strategies (e.g., Aïte et al., 2016; Borst et al., 2013; 

Lanoë et al., 2016).  

 

Method 
 

Participants 
 

Thirty-six typically developing adolescents (mean age ± sd: 14.6 ± 0.4 years, 17 girls) were 

recruited from middle schools in Caen (Calvados, France). All of the adolescents were in grade 

9 and had not repeated a year. Thirty-three university students (21 ± 1.7 years, 17 women) 

without cognitive impairment participated in the study. All students were typical university 

students who had all obtained their high school diplomas. The two groups differed significantly 

in age (t(67) = 21.4, p < .0001, Cohen’s d = 4.91) but not in sex repartition (X2
(1) = 0.38, p = .53).  
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By definition, negative priming effects can be observed only if participants accurately 

compared fractions with a common numerator (i.e., the prime). Therefore, 15 adolescents (41 

% of the sample, M = 72.3 ± 19.2 % of errors in common numerator fraction comparison items) 

and 2 adults (6 %, M = 63.4 ± 4.8 of errors in common numerator fraction comparison items) 

were excluded from the analysis because they performed at chance levels of performance 

(see Table 2). Moreover, we excluded one adolescent and one adult because their average 

RT exceeded the average RT of the group by more than 3 SD. Thus, analyses were conducted 

on 20 adolescents (mean age: 14.6 ± 0.3 years, 9 girls, M = 16.3 ± 13.5 % of errors in common 

numerator fraction comparison items) and 30 adults (mean age: 21 ± 1.8 years, 14 women, M 

= 16 ± 16.2 % of errors in common numerator fraction comparison items). The gender 

distribution did not differ between the two groups (X2
(1) = 0.01, p = .90). 

 

Written consent was obtained after a detailed discussion and explanations were given. 

Parental written consent was obtained for the adolescents, who were tested in accordance 

with national and international norms that govern the use of human research participants. All 

participants reported normal or corrected-to-normal vision and were native French speakers. 

All adolescents attended the same middle-school, and all adults attended the same university 

in Caen, France, serving a diverse population with a wide range of socioeconomic statuses 

and cultural backgrounds. 

 

Materials 
 

Each item consisted of a visual presentation of two fractions on a computer screen (in 50-point 

black Arial font on a white background). Between the two fractions, a question mark was 

displayed. We designed three types of items: fractions with common denominator items, 

fractions with common numerator items and denominator-numerator comparison items. In the 

fractions with common denominator items (e.g., 2/4 vs. 5/4) and fractions with common 

numerator items (e.g., 4/2 vs. 4/5), participants were asked to determine which of the two 
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fractions was the largest. Importantly, participants could rely on the “greater the whole number, 

the greater the fraction” strategy to determine which of the two fractions was the largest for the 

fractions with common denominator items, whereas they could not use it for the fractions with 

common numerator items. In the denominator-numerator comparison items, we asked 

participants to determine which of the two fractions possessed a denominator larger than the 

numerator. Critically, the inhibition of the “greater the whole number, the greater the fraction” 

strategy was not needed to solve the denominator-numerator comparison items. Note that the 

two fractions presented in the denominator-numerator comparison items had the same 

numerator (e.g., 4/2 vs. 4/5) as the fractions with common numerator items because the two 

types of item served as primes in the control and test trials of our negative priming paradigm, 

respectively. We designed fractions in each item using numbers between 2 and 9 for 

numerators and denominators (see Table 1). Fractions were designed so that the average 

distance based on the magnitude of the fractions did not differ between the common numerator 

problems (M = 0.65 ± 0.71) and the common denominator problems (M = 0.61 ± 0.51), t < 1 

and so that the distance did not differ between the denominators in the common numerator 

problems (M = 2.7 ± 1.9) and the numerators in the common denominator problems (M = 2.5 

± 1.4), t < 1. 

 

We presented 24 items (eight of each type) for the practice trials and 96 (32 fractions with 

common denominator items, 16 fractions with common numerator items, and 16 denominator-

numerator comparison items) for the experimental trials.  
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Table 1 

Pairs of fractions presented on the prime and the probe of the test and control trials. 

Prime  Probe 
Control  Test  Control  Test 

6/7 6/3  7/2 7/8  7/3 9/3  3/7 5/7 
5/4 5/8  2/7 2/9  7/3 5/3  8/6 2/6 
5/3 5/7  3/7 3/2  4/3 8/3  5/3 8/3 
6/2 6/9  5/7 5/6  2/9 4/9  4/6 3/6 
4/9 4/2  6/5 6/3  7/5 6/5  8/7 9/7 
7/8 7/5  9/7 9/4  4/5 3/5  9/8 6/8 
7/2 7/9  4/5 4/7  2/6 5/6  3/4 6/4 
5/6 5/2  9/7 9/8  7/4 2/4  4/8 6/8 
3/2 3/4  2/3 2/4  4/7 6/7  7/8 4/8 
6/4 6/7  4/9 4/3  3/2 7/2  8/5 9/5 
7/9 7/6  8/6 8/5  7/2 5/2  9/5 3/5 
8/3 8/9  7/4 7/3  8/2 9/2  3/2 7/2 
6/8 6/5  5/3 5/8  3/6 5/6  4/9 2/9 
4/3 4/8  6/8 6/7  5/9 4/9  2/9 6/9 
5/9 5/4  3/2 3/6  9/4 6/4  8/6 7/6 
4/5 4/3  8/7 8/9  7/4 5/4  5/7 3/7 

 

Procedure 
 

We tested participants individually in a quiet room on a laptop with a screen resolution of 1366 

x 768 pixels. Stimuli were presented using E-prime 2.0 (Psychological Software Tools, Inc., 

Pittsburgh, USA). Participants started by completing 24 practice trials (8 for each type of item) 

to familiarize themselves with the three types of items and the response pad. Feedback was 

provided regarding whether their answers were correct. To prevent familiarizing participants 

with the prime-probe sequences, the three types of items were presented in blocks, starting 

with the fractions with common denominator items and finishing with the fractions with common 

numerator items. Next, participants performed 32 experimental trials (16 test and 16 control 

trials) consisting of pairs of primes and probes during which no feedback was given on the 

correctness of the responses. In the test trials, participants performed a fraction with a common 

numerator item (as a prime) and then a fraction with a common denominator item (as a probe). 

In the control trials, participants performed a denominator-numerator comparison item (as a 

prime) followed by a fraction with a common denominator item (as a probe; see Figure 1). 
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Trials were presented in a random order, with the exception that no more than two test or 

control trials could occur successively. 

 

 

Figure 1 

Experimental design. Participant responds by pressing the left or the right button to indicate 

her or his fraction choice. Items were presented in French. 

 

This paradigm was designed in such a way that on test trials, the misleading strategy (i.e., the 

“greater the whole number, the greater the fraction” strategy) that participants were required 

to resist (i.e., inhibit) to solve the prime item became an appropriate strategy for the probe 

item. Conversely, in control trials, the strategy necessary to complete the prime item was 

unrelated to the strategy required to solve the probe item. For instance, as shown in Figure 1, 

in the test trial, participants had to determine on the prime which of the two fractions with the 
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same numerator (e.g., 7/4 vs. 7/3) was the largest. This item typically required participants to 

resist (inhibit) using the “greater the whole number, the greater the fraction” strategy (which 

would lead participants to erroneously state that 7/4 > 7/3 because 4 > 3). After the prime, 

participants had to determine on the probe which of the two fractions with the same 

denominator (e.g., 8/3 vs. 5/3) was the largest, a context in which the “greater the whole 

number, the greater the fraction” strategy was appropriate (8/3 > 5/3 because 8 > 3). In the 

control trial, participants first decided (on the prime) which of the two fractions (4/3 vs. 4/5) had 

a denominator larger than the numerator (here 4/5). Then, on the probe, as in the test trial, 

they determined which of the two fractions with the same denominator (2/6 vs. 5/6) was the 

largest, a context in which the “greater the whole number, the greater the fraction” strategy 

was appropriate (2/6 < 5/6 because 2 < 5). 

 

Each trial started with the presentation of a fixation point (500 ms) followed by a 3000 ms 

presentation of the type of comparison (fraction magnitude comparison vs. denominator-

numerator comparison) participants needed to perform on the next item. “Fraction magnitude 

comparison” or “denominator-numerator comparison” was displayed at the top of the screen 

in blue and red 24-pt Arial font for half the participants and red and blue font for the other 

participants, respectively. Then, two fractions were displayed with a question mark in between 

the two until participants provided an answer. Participants pressed the left (or right) button of 

the mouse to indicate that the fraction on the left (or the right) of the question mark was the 

larger one (or had a denominator larger than the numerator). Response times (RTs) were 

recorded from the onset of the fractions to the button press. Immediately after participants 

pressed one of the two response buttons, a fixation cross appeared for 500 ms, followed by a 

3000 ms presentation of the type of comparison to perform on the next trial. Finally, two 

fractions and a question mark were displayed until a response was provided. In between each 

trial, a 450 x 450 pixel blurred jpeg image was displayed for 3000 ms in the center of the screen 

to limit the transfer of processes from one trial to the next. No judgment was required on these 

images. Given that we were interested in potential priming effects, we standardized the 
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sequence of responses between the primes and the probes in both the test and control trials. 

The four possible pairs of response sequences occurred two times in both the test and control 

trials (i.e., ‘left’ on the prime problem then ‘left’ on the probe problem, ‘left’ then ‘right’, ‘right’ 

then ‘left’, and ‘right’ then ‘right’). Note that participants needed to switch from one strategy to 

another between the prime and probe items in both types of trials; thus, any difference in 

probes’ RTs between the control and test trials does not simply reflect switching costs as the 

ones reported in Lemaire and Lecacheur (2010)’s study. 

 

Results 
 

All analyses of RTs included only data from trials in which participants responded correctly on 

the prime and the probe. Outliers were defined as RTs greater than 2 SDs from the mean for 

such participants on the probe items (or the prime items) in the test (or the control) trials. 

Outliers occurred on 6.7 % of trials in adolescents and 6.8 % of trials in adults. After removing 

outliers, participants’ errors and RTs were averaged separately for the prime and probe items 

on the test and control trials (see Table 2). When computing the error rates (ERs) on the probe, 

we included only data from trials in which participants responded correctly on the prime. We 

conducted separate 2 (type of trials: test or control) x 2 (age: adolescents or adults) analyses 

of variance (ANOVAs) of the ERs and the RTs for the prime and probe items. For each of the 

analyses, we report the effect size either in the ANOVA (partial eta squared) or in terms of the 

difference of the means (Cohen’s d). When testing the absence of an interaction effect (which 

were the effects of interest in our study), Bayesian statistics were used to provide an estimate 

of the evidence in favor of the null hypothesis with Bayes Factor (BF01) higher than 3 providing 

substantial evidence for the null hypothesis (Jeffreys, 1961). 
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Table 2 

Means and standard deviations (in parentheses) of ERs (%) and RTs (ms) in adolescents and 

adults.  

   Adolescents Adults 

   Included  

(n = 20) 

Excluded 

(n = 14) 

Included  

(n = 30) 

Excluded 

(n = 2) 

   M (SD) M (SD) M (SD) M (SD) 

       

 

 

ERs 

Prime Test 16.3 (13.5) 72.3 (19.2) 16 (16.2) 63.4 (4.8) 

Control  12.5 (10.1) 15.6 (22.9) 6.4 (9.9) 3 (4.2) 

      

Probe  Test 9.7 (8.2) 27.7 (22.1) 7.9 (11.5) 12.5 (17.7) 

Control  12.2 (12.9) 28.1 (23.7) 8.7 (11.8) 31.3 (8.8) 

       

 

 

 

 

RTs 

Prime Test 3080 (960)  2612 (1082)  

Control  1751 (693)  1288 (487)  

      

Probe  Test 2729 (863)  2420 (1010)  

Control  2538 (859)  2287 (960)  

      

Negative priming  192 (392)  134 (426)  

       

 

Primes analyses 
 

The two-way mixed design ANOVA on the ERs revealed a main effect of the type of trial, F(1, 

48) = 7.76, p = .007, η2
p = .14 but not of age, F(1, 48) = 1.48, p = .23 or a two-way interaction 

between the type of trial and age, F(1, 48) = 1.48, p = .23, BF01 = 0.63. Adults and adolescents 
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committed more errors when comparing fractions with common numerators (test trials: 16.2 ± 

2.1 %) than when comparing which fraction had a denominator larger than the numerator 

(control trials: 9.5 ± 1.2 %).  

 

A two-way mixed design ANOVA of the RTs revealed a main effect of the type of trial—with 

participants requiring more time to perform fractions with common numerator items (M = 2846 

± 150 ms) than denominator-numerator items (M = 1519 ± 83 ms), F(1, 48) = 112.35, p < 

.0001, η2
p = .70—and a main effect of age, F(1, 48) = 5.05, p = .02, η2

p = .09—with adults (M 

= 1950 ± 131 ms) faster than adolescents (M = 2415 ± 161 ms) but no two-way interactions, F 

< 1, BF01 = 28.93. 

 

To determine the type of strategy used by adults and adolescents in common numerator 

problems, we computed the correlation between the RTs and either the distances between the 

magnitudes of the fractions or by the distance between the two denominators of the two 

fractions in the pairs. In adults, we found a significant correlation between the RTs and the 

distance between the magnitudes of the fractions, r(4) = -.92, p = .005, but not between the 

RTs and the distance between the denominators of the fractions, r(4) = -.67, p =.15. In 

adolescents, neither of the two correlations reached significance, r(4) = -.66, p = .15 between 

RTs and the distance between the magnitudes of the fraction and r(4) = -.33, p = .52 between 

RTs and the distance between the denominators of the fractions. 

 

Six pairs of fractions on the prime of the test trials contained one proper and one improper 

fraction. Given that comparing such pairs could be performed without accessing the magnitude 

of the fractions but by choosing the fraction in which the numerator was higher than the 

denominator, participants might rely on different types of strategies when performing these 

pairs than pairs of fractions in which both of the fractions were improper or both were not 

improper. To determine whether participants required more time to compare two fractions in 

which one of the two was an improper fraction in common numerator problems and whether 
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age modulated this effect, we performed two additional ANOVAs on the prime RTs and ERs 

of the test trials. A two-way ANOVA of the RTs revealed that participants required less time to 

solve common numerator problems in which one of the two fractions was an improper fraction 

(M = 2942 ± 1151 ms) than to solve common numerator problems in which both fractions were 

improper or both fractions were not improper (M = 2673 ± 916 ms), F (1, 48) = 8.62, p = .005, 

n²p = 0.15, but no effect of age, F < 1, and no interaction between age and the type of fraction, 

F < 1, BF01 = 3.72, were observed. A similar ANOVA of the ERs revealed no effect of the type 

of fraction, of age and of interaction between age and the type of fraction, all Fs < 1, BF01 = 

2.08 for the interaction. 

 

Probes analyses 
 

The two-way mixed design ANOVA on the ERs revealed no main effect of the two types of 

trials, F(1, 48) = 1.48, p = .23, of age, F< 1, and no two-way interaction, F < 1, BF01 = 3.11 

suggesting substantial evidence in favor of the null hypothesis. Thus, any negative priming 

effect reported on RTs is unlikely to be due to speed/accuracy trade-offs. A similar ANOVA on 

the RTs revealed a main effect of the type of trial, F (1, 48) = 7.46, p < .008, η2
p = .13, but no 

effect of age, F(1, 48) = 1.12, p = .29, and no two-way interaction, F < 1, BF01 = 3.20. 

Importantly, we found that adolescents and adults required more time to perform fractions with 

common denominator items preceded by fractions with common numerator items (test trials: 

M = 2730 ± 863 ms for adolescents and 2421 ± 1010 ms for adults) than those preceded by a 

denominator-numerator comparison item (2538 ± 859 ms for adolescents and M = 2287 ± 960 

ms for adults): t(19) = 2.08, p < .025, Cohen’s d = 1.07 for adolescents and t(29) = 1.77, p < 

.05, Cohen’s d = 0.73 for adults. 

 

Given that participants required less time to perform common numerator problems in which 

one of the two fractions was improper (on the prime), suggesting that participants might solve 

these problems without accessing the magnitude of the fractions but by choosing the fraction 
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in which the numerator was higher than the denominator, one could argue that the negative 

priming effect could be driven by this type of common numerator problem. To determine 

whether the negative priming effects reported in adolescents and adolescents on the common 

denominator problems are driven by the common numerator problems in which one of the two 

fraction are improper, we ran additional analyses in which we excluded test trials with common 

numerator problems in which one of the two fractions was improper. A two-way ANOVA of the 

probe RTs revealed a main effect of the type of fraction, F (1, 48) = 12.7, p < .001, n²p = 0.21, 

but no effect of age, F < 1, and no two-way interaction, F < 1, BF01 = 3.09. Importantly, 

adolescents and adults required more time to perform the common denominator problems in 

the test (M = 2814 ± 854 ms for adolescents and M = 2640 ± 1177 ms for adults) than in the 

control (M = 2548 ± 864 ms for adolescents and M = 2388 ± 1066 ms for adults) trials, t(19) = 

2.68, p < .025, d = 0.31 for adolescents and t(29) = 2.56, p < .025, d = 0.22 for adults. A similar 

ANOVA of the probe ERs revealed no effect of the type of trials, F (1, 48) = 3.05, p = .08, of 

age, F < 1, and no two-way interaction, F < 1, BF01 = 2.21. 

 

Primes vs. probes analyses 
 

Finally, to verify whether adults and adolescents had more difficulty comparing fractions with 

common numerators than fractions with common denominators, we conducted a 2 (type of 

fraction: common numerators vs. common denominators) x 2 (age: adolescents vs. adults) 

mixed-design ANOVA on ERs and RTs. To conduct this analysis, we included ERs and RTs 

for primes in the test trials (i.e., fractions with common numerators) and for probes in the control 

trials (i.e., fractions with common denominators). Note that we did not include ERs or RTs for 

probes in the test trials because performance was potentially affected by the prime. 

Participants required more time and were less accurate in determining which of the two 

fractions was largest when the two fractions had the same numerator (i.e., primes in the test 

trials) than when the two fractions had the same denominator (i.e., probes in the control trials), 

F(1, 48) = 5.30, p = .026, ηp² = .10 for ERs and F(1, 48) = 31.11, p < .0001, ηp² = .39 for RTs. 
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We found no main effect of age, F < 1 for ERs and F(1, 48) = 1.74, p = .19 for RTs, and no 

significant interaction between the type of fraction and age, F < 1, BF01 = 3.02, for ERs and 

F(1, 48) = 1.96, p = .17, BF01 = 1.88, for RTs. 

 

Excluded vs. included adolescent analyses 
 

To provide information regarding the specific difficulties faced by adolescents that were 

excluded from our sample, we performed a 2 (type of trial: test or control) x 2 (group: excluded 

or included adolescents) analysis of variance (ANOVA) of the prime ERs that revealed a 

significant effect of the type of trial, F(1, 34) = 56.9, p < .001, ηp2 = .62, a significant effect of 

group, F(1, 34) = 57.6, p < .001, ηp2 = .63 and a significant two-way interaction between the 

type of trial and group, F(1, 34) = 43.6, p < .001, ηp2 = .56. Excluded adolescents were less 

accurate than included adolescents on the common numerator problems (27.7 % ± 4 % vs. 

83.7 % ± 3.6 %; t (34) = 10.25, p < .001, d = 14.7) but not on the control primes (84.4 % ± 4.2 

% vs. 87.5 % ± 3.8 %; t < 1). A similar ANOVA of the probe ERs revealed a main effect of 

group, F (1, 34) = 10.17, p < .005, ηp2 = .23, with excluded adolescents being less accurate 

than included adolescents on the probe trials (72 % ± 3.9 % vs. 89 % ± 3.5 %). In addition, we 

found no main effect of the type of trials on ERs, F < 1, and no two-way interaction between 

these factors, F < 1, BF01 = 3.97. Taken together, these results suggest that excluded 

adolescents were impaired in their ability to perform common numerator and denominator 

problems in the context of a negative priming paradigm. 

 

Discussion 
 

In the present study, we investigated (a) whether inhibitory control is required to compare 

fractions with common numerators in adolescents and educated adults and (b) whether the 

efficiency to inhibit the misleading heuristic (i.e., the “greater the whole number, the greater 

the fraction” strategy) that leads participants to be biased when comparing fractions with 
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common numerators (i.e., the whole number bias) increases between adolescents and adults. 

In line with previous studies on adolescents (Van Hoff, Lijnen, Verschaffel, & Van Dooren, 

2013) and educated adults (Meert et al. 2009; Vamvakoussi et al., 2012), we found that 

adolescents and adults required more time and were less accurate in comparing fractions with 

common numerators than fractions with common denominators, with adults being generally 

more efficient than adolescents. We suspect that formal instruction and familiarity with rational 

numbers might be the cause of the difference observed between adolescents and adults in the 

present study. One could argue that adults and adolescents might be slower at performing 

common denominator than common numerator problems because they are more familiar with 

the former than the latter. Although this might be a possibility when rational numbers are first 

introduced in the mathematical curricula in 4th grade, by grade 9 and later, students are most 

likely equally familiar with both types of problems. Thus, we suspect that the difficulty to 

compare fraction with common numerators in adolescents and adults might be related in part 

to their tendency to rely on the “greater the whole number, the greater the fraction” strategy 

whenever fractions possess common numerators, even in a context in which this strategy is 

misleading such as with fractions with common numerators.  

 

The present study offers an opportunity to go a step further in explaining which process might 

allow an individual to overcome errors when comparing fractions with common numerators. 

Indeed, we found that adolescents and adults required more time to compare fractions with 

common denominators after they had just succeeded in determining which of the two fractions 

with common numerators was larger than after they succeeded in determining which of the 

two fractions had a denominator larger than the numerator. Taken together, our results suggest 

that adolescents and educated adults must inhibit the “greater the whole number, the greater 

the fraction” strategy when comparing fractions with common numerators. Although the ability 

to inhibit the “greater the whole number, the greater the fraction” heuristic might contribute to 

the ability to compare fractions with common numerators, inhibiting contextual or perceptual 
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cues, such as the physical size or the location of the number (see, e.g., Szucs & Soltesz, 

2007), might also be important to compare such fractions.  

 

Importantly, we found that adults required less time to perform common numerator problems 

as the distance between the magnitudes of the two fractions increased but not as the distance 

between the denominators of the two fractions increased. This pattern of correlations suggests 

that adults most likely computed the magnitudes of the two fractions to compare them, which 

is in line with previous studies (e.g., Bonato et al., 2007 but see Schneider & Siegler, 2010, for 

evidence that multiple strategies can be used by adults to compare fractions). For adolescents, 

response times were not related to the distance between the magnitudes of the two fractions 

or the distances between the numerators of the two fractions. Thus, it is not entirely clear what 

strategies were used by the adolescents to perform the common numerator fractions. 

 

A verbal report could have provided such information. Indeed, a number of studies have 

assessed the type of strategies participants rely on to compare fractions (or perform arithmetic 

operations with fractions) by asking participants how they solve each problem (see, e.g., 

Schneider & Siegler, 2010; Siegler & Pyke, 2013; Siegler et al., 2011). These studies have 

demonstrated the validity of such verbal reports for studying the strategies used by children, 

adolescents and adults to compare the magnitude of fractions (Schneider & Siegler, 2010) and 

the development of fraction understanding (Siegler & Pyke, 2013). For example, Schneider & 

Siegler (2010) used verbal reports to provide evidence that participants could rely on 

componential strategy to compare fractions with common numerators. The negative priming 

paradigm, by definition, precludes any verbal reports on a problem by problem basis because 

the negative priming effect can be observed only within a short period of time (up to 6 seconds, 

e.g., Tipper, Weaver, Cameron, Brehaut, & Bastedo, 1991). The lack of verbal reports on the 

type of strategy used by the participants to solve the common numerator and common 

denominator problems is a clear limitation of the present study because the negative priming 
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effect provides information on the strategy that was inhibited but not on the strategy that was 

activated afterward. 

 

One could wonder why we did not include a classical inhibitory control task in the present study 

to show that inhibitory control was involved to solve common numerator problems, as in 

previous studies (see, e.g., Siegler & Pyke, 2013). A limitation of such a correlational approach 

is that none of the classical inhibitory control tasks assess individual differences in the ability 

to inhibit a misleading strategy. Thus, the lack of correlation between performance in a 

classical inhibitory control task and a fraction comparison task does not necessarily reflect that 

inhibition plays no role in the choice of strategy used to solve the fraction comparison task. On 

the other hand, the negative priming paradigm has been widely used to demonstrate that 

inhibitory control is required within a given task to overcome misleading heuristics, and a 

growing number of studies have successfully applied this paradigm to demonstrate the role of 

inhibitory control over misleading heuristics in various domains including various school 

learnings (see, e.g., Aïte et al., 2016; Borst et al., 2012, Lubin et al., 2013; Lubin et al., 2016; 

Borst et al., 2015; Ahr et al., 2016). 

 

By comparing the performance of adolescents and adults on a negative priming paradigm 

adapted to fraction comparison, our findings shed light on the development of fraction 

comparison skills by showing that these skills improve with instruction and age. Moreover, in 

the context where the two fractions have the same numerators, the development of fraction 

comparison skills could be related in part to the progressive ability to inhibit a misleading 

strategy. Previous studies have argued that the amplitude of negative priming effects might 

reflect the ability to inhibit a specific heuristic in a given context (Houdé & Borst, 2014, 2015). 

Indeed, studies have reported that the amplitude of negative priming effects decreases with 

age between childhood and adulthood, such as in a verb-inflection task (Lanoë et al., 2016), 

in a revised version of Piaget’s class-inclusion task (Borst et al., 2013) or in a spatial 

perspective-taking task (Aïte et al., 2016), which has been interpreted as reflecting the 
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increasing ability to inhibit a specific misleading heuristic in each of these domains. This 

assumption is consistent with the fact that inhibitory control efficiency continues to improve 

from childhood to late adolescence, in part due to the slow maturation of the prefrontal cortex 

until early adulthood (Casey et al., 1997; Casey, Tottenham, Liston, & Durston, 2005; 

Dagenbach & Carr, 1994; Diamond, 2002; Houdé et al., 2011). 

 

In contrast with these findings, the amplitude of the negative priming effects in our study did 

not differ between adolescents and adults, which might suggest that the inhibition of a 

componential processing strategy might be already largely efficient in ninth graders. This 

finding is consistent with the fact that we did not find that adolescents were less efficient than 

adults at comparing fractions with common numerators. Note that other studies have also 

reported no difference in the amplitude of negative priming effects with age (Lubin et al., 2013; 

Pritchard & Neumann, 2009). A possible explanation as to why some studies but not others 

reported a difference in the amplitude of the negative priming effects with age might be due to 

the type of inhibitory control needed in different contexts. Indeed, some authors argue that we 

should draw a distinction between intentional inhibitory control and automatic inhibitory control 

(Lechuga, Moreno, Pelegrina, Gómez-Ariza, & Bajo, 2006). According to this view, whereas 

intentional inhibitory control is an executive function mediated by the prefrontal cortex (Aron, 

2007), automatic inhibitory control relies on automatic processes sustained by brain structures 

that mature earlier (Lechuga et al., 2006), which would explain the lack of a difference in the 

negative priming amplitude with age in some contexts. This automatic inhibitory control could 

potentially appear following intense training (Jasinska, 2013). Indeed, much as one can 

automatize the activation of a strategy after an intense training, one can potentially automatize 

the inhibition of a strategy. We argue that the inhibition process (to resist the “greater the whole 

number, the greater the fraction” strategy) involved in the comparison of fractions with common 

numerators might be automatized as early as ninth grade, presumably due to intense schooling 

on fractions. 
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We note that using the “greater the whole number, the greater the fraction” strategy to compare 

fractions with common elements might be a byproduct of the mathematics curricula used in 

primary school. Indeed, in primary school, simple fractions are first introduced as tools for 

solving problems that cannot be solved by relying on whole numbers, such as when children 

need to understand that the “whole” can be divided into n equal parts (e.g., a pizza can be 

divided in 6 equal parts, each of them representing 1/6 of the pizza). Thus, children start by 

manipulating and comparing fractions with common denominators before fractions with 

common numerators or with no common components. Starting the curricula with the 

manipulation of fractions with common denominators, a context in which the “greater the whole 

number, the greater the fraction” strategy is an efficient strategy, might promote the implicit 

transfer of the properties of whole numbers to fractions. This might explain why inhibition of 

the “greater the whole number, the greater the fraction” strategy is necessary at all ages to 

compare fractions with common numerators. Our finding complements other findings reported 

in literacy (Ahr et al., 2016; Borst et al., 2015; Lanoë et al., 2016), mathematics (Lubin et al., 

2016; Lubin et al., 2013) and science (Potvin et al., 2015) and provides additional evidence 

that inhibition might be a core mechanism of learning at school (for reviews see Houdé, & 

Borst, 2015). That said, one could argue that using decimal numbers rather than fractions 

might prevent the implicit transfer of the whole number properties to rational numbers. 

However, the comparison of decimal numbers seems also to be affected by the whole number 

bias, particularly in a context in which the smallest number has the greatest number of digits 

after the decimal point (1.345 vs. 1.4) (e.g., Roche, 2005; Sackur-Grisvard & Léonard, 1985; 

Van Dooren et al., 2015). In this context, children erroneously think that 1.345 is larger than 

1.4 because 345 is larger than 4. A recent negative priming study actually provided evidence 

that 7th graders must inhibit the whole number bias to compare decimal numbers in which the 

smallest number has the greatest number of digits after the decimal point (1.345 vs. 1.4) (Roell, 

Viarouge, Houdé & Borst, 2017). 
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The lack of difference in the amplitude of the negative priming effects should be taken with 

caution given that it can be generalized only to adolescents who succeeded in inhibiting the 

“greater the whole number, the greater the fraction” strategy when comparing fractions with 

common numerators. The comparison of adolescents included and excluded from the final 

sample revealed that excluded adolescents had greater difficulty than included ones solving 

common numerator and common denominator problems. Thus, excluded adolescents might 

have a lower understanding of fractions in general. That said, we note that they displayed 

above-chance levels of performance only when performing the common numerator problems, 

which suggested that they might be more prone to use the “greater the whole number, the 

greater the fraction” misleading strategy in this specific context. 

 

Our findings suggest that difficulty in inhibiting the “greater the whole number, the greater the 

fraction” heuristic might contribute to the difficulty comparing fractions with common 

numerators, but other factors also contribute to such difficulty. Indeed, a number of studies 

have provided evidence that a lack of conceptual and procedural knowledge on fractions 

contributes to the specific difficulties in comparing common numerator fractions (e.g., Fazio et 

al., 2016; Schneider & Siegler, 2010; Siegler et al., 2011; Siegler & Pyke, 2013). Children’s 

difficulties with fractions have motivated interventions to improve fraction knowledge (Fujimura, 

2001; Moss & Case, 1999; Gabriel et al, 2012). The challenge for fraction instruction is to help 

children understand that magnitudes are a property of not only whole numbers but all real 

numbers (Siegler et al., 2011). In line with previous studies showing that pedagogical 

interventions based on inhibitory control learning are more efficient at overcoming systematic 

errors in logical reasoning (Houdé et al., 2001; Rossi et al., 2015) or in mathematical reasoning 

(Rossi, Lubin, Lanoë & Pineau, 2012; Lubin, Lanoë, Pineau, & Rossi, 2012) than more 

traditional pedagogical interventions, we suspect that students’ understanding of fraction can 

be improved by using pedagogical interventions based in part on learning to inhibit the “greater 
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the whole number, the greater the fraction” heuristic when comparing fractions with common 

numerators. 

 

Our finding complements other findings that show that inhibitory control is critical to avoid being 

systematically biased in contexts in which a heuristic interferes with more adapted strategies 

in different cognitive and educational domains—such as categorization (Borst et al., 2013; 

Perret et al., 2003), numbers (e.g., Houdé & Guichart, 2001; Houdé et al., 2011), and logical 

reasoning (Houdé et al., 2000; Rossi et al., 2015)—and in school learning, such as literacy 

(Ahr et al., 2016; Borst et al., 2015; Lanoë et al., 2016), mathematics (Lubin et al., 2013) and 

science (Potvin et al., 2015). Taken together, these findings suggest that conceptual change 

in various domains does not rely exclusively on the growing ability to coordinate multiple 

systems of operations (Piaget, 1983) but also on the growing ability to inhibit misleading 

strategies (Diamond, 1991; Houdé, 2000; Houdé & Borst, 2014, 2015; for a review see Borst, 

Aïte, and Houdé, 2015). 

 

One of the critical questions that remains to be investigated is the degree of generality or 

specificity of the inhibitory control processes involved in all of these cognitive domains. 

Previous studies have provided evidence that some tasks rely on similar inhibitory control 

processes in 10-year-old children as shown by conflict adaptation (a) between a numerical 

(i.e., Piaget’s number-conservation task) and a categorization (i.e., Piaget’s class-inclusion 

task) tasks (Borst, Poirel, Pineau, Cassotti, & Houdé, 2012) and (b) between a semantic (i.e., 

Color-Word Stroop task) and a numerical (i.e., Piaget’s number-conservation task) task 

(Linzarini, Houdé, & Borst, 2015). Further studies are needed to determine (a) whether 

inhibitory control processes are similar regardless of the inhibitory heuristic and the cognitive 

domain considered and (b) whether the generality and specificity of inhibitory control of 

misleading heuristics change with age and/or expertise (see Aite, Cassotti, Linzarini, Osmont, 

Houdé, & Borst, in press for preliminary evidence of a growing specificity of inhibitory control 

processes with age). 
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A potential limitation of the present study is that participants were asked to perform a different 

task on the prime items in the control trial (i.e., determine which of the two fractions has a 

denominator larger than its numerator) than for all other items (i.e., determine which of the two 

fractions is the largest). We asked participants to perform a task of a different nature on the 

prime in the control trial to prevent the strategy being used in the prime items priming the 

strategy to use on the probe items. However, one could argue that the switching costs between 

the prime and the probe might differ between the test and the control trials. If so, the negative 

priming effect could be a consequence of the difference between the switching costs induced 

by switching between two strategies while performing the same tasks (i.e., comparing the 

magnitude of fractions) in the test trials and the ones induced by switching between two tasks 

(i.e., deciding which of the two fractions has a denominator larger than its numerator or which 

of the two fractions is the largest) in the control trials. However, previous studies reported either 

no difference in switching costs when switching within the same task or between two tasks 

(e.g., Allport, Styles, & Hsieh, 1994) or greater switching costs when switching between two 

tasks than within the same tasks (e.g., Philipp, Kalinich, Koch, & Schubotz, 2008). Thus, it is 

unlikely that the negative priming effect reported in the present study is a byproduct of the 

difference in switching costs between the control and test trials. 

 

In addition, providing feedbacks during the practice trials might prevent discussing how 

participants would behave in a more classical educational context. Indeed, providing 

feedbacks could constitute a minimal form of education to the participants and thus change 

their spontaneous choice of strategy in a given context. That said, we note that even if 

feedback was provided in the practice trials, 41 % of adolescents and 2 % of adults were 

excluded because they performed at chance in the negative priming paradigm. Thus, the 

comparison of fractions with common numerators remains challenging even after receiving 

feedbacks, which is consistent with the difficulties faced by students at school in this academic 

learning. 
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Moreover, the use of single digit numerators and denominators in the common denominator 

and common numerator items might have encouraged participants to rely more systematically 

on the “greater the whole number, the greater the fraction” heuristic. Indeed, previous studies 

demonstrated that the use of a holistic processing strategy increases when fraction 

comparison tasks include fractions with two digits components and a wider range of numbers 

(see, e.g., Schneider & Siegler, 2010). 

 

Finally, the sample size in the present study might be too small to detect a significant age effect 

on the amplitude of the negative priming effect. Note, however, that (a) the sample size was 

determined pre-hoc on the basis of previous negative priming studies that used similar sample 

sizes and reported significant effects of age on the amplitude of the negative priming effect 

(Borst et al, 2013; Lanöe et al., 2016). In addition, the Bayes statistics on the interaction effects 

on the probe responses times and error rates provided substantial evidence in favor of the null 

hypothesis suggesting that the small sample size was unlikely at the root of the lack of 

interaction effects reported on the probe. 

 

In light of these potential limitations, future studies should investigate whether similar negative 

priming effects can be observed (a) when different prime items are designed in the control 

trials, (b) when no feedbacks are provided in the practice trials, and (c) when a wider range of 

numbers including two digits number is used to generate the fractions and whether these 

negative priming effects would vary with age on a larger sample size. 

 

Finally, the degree to which our findings can be generalized to the general population must be 

considered, given that the participants performed no standardized math test. We note that our 

sample of adolescents and adults might be representative of their respective parent 

populations because adolescents were all in grade 9 in a middle school serving a diverse 

population (with none of them repeating a year), and adults were undergraduates in a public 
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university serving a diverse population who all obtained a high-school diploma before attending 

the university. 

 

In conclusion, our study provides the first evidence that inhibitory control is needed in 

adolescents and educated adults in order to compare fractions with common numerators, as 

revealed by a negative priming paradigm consistent with studies showing that fraction 

knowledge is associated with executive functions (Jordan et al., 2013; Namkung, & Fuchs, 

2016; Siegler et al., 2012). In addition, our findings provide converging evidence that inhibitory 

control might be one of the core mechanisms of cognitive development and school learning 

(for a review, see Houdé & Borst, 2015). 
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