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Abstract Propensity score matching is widely used in vari-
ous fields of research, including psychology, medicine, edu-
cation, and sociology. It is usually applied to find a matched
control group for a treatment group. In the present article, we
suggest that propensity score matching might also be used to
construct item sets matched for different parameters. We con-
structed stimuli to illustrate the use of propensity score
matching in item construction for the exemplary cases of nu-
merical cognition research and reading research. In particular,
we provide a step-by-step approach, using the statistics soft-
ware R, for how to apply propensity score matching for con-
structing matched stimuli. This approach involves deciding on
a population of stimuli, determining and calculating the co-
variates, and finally applying the propensity-matching method
to find a set of items matched to another predefined set.
Thereby, we were able to construct well-matched item sets
for both examples. Hence, we conclude that the propensity-
score-matching method is useful for constructing matched
stimuli. Further cases of application are discussed.
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In experimental research, the effects of manipulating indepen-
dent variables on one or more dependent variables are usually
evaluated while controlling for several covariates. Controlling
covariates across independent variables is of special impor-
tance to be able to conclude that a potential effect can be
linked to the variable under manipulation. For instance, in
numerical cognition an important research topic is the pro-
cessing of the magnitude of symbolic numbers. The most
common task to study the magnitude processing of symbolic
number is the magnitude comparison task, in which the larger
of two numbers has to be identified. An important predictor of
the performance in magnitude comparison is the numerical dis-
tance between the numbers (Moyer & Landauer, 1967).
Generally, participants’ responses get longer and more error-
prone as the distance between the numbers decreases (e.g., 1
vs. 9, distance = 8, as compared to 4 vs. 5, distance = 1). This
effect has to be controlled forwhen, for instance, studyingwheth-
er two-digit numbers are processed holistically (i.e., as an inte-
grated entity) or componentially (i.e., separated into units, tens,
hundreds, etc.; e.g., Nuerk, Weger, & Willmes, 2001).

To study the processing of two-digit numbers, Nuerk et al.
(2001) contrasted two different kinds of two-digit number pairs:
unit–decade compatible pairs, for which the separate compari-
sons of tens and units yielded the same decision biases (e.g., 42
vs. 57, in which both 4 < 5 and 2 < 7), and incompatible number
pairs, for which separate comparisons of the tens and units
yielded opposing decision biases (e.g., 47 vs. 62, in which 4 <
6 but 7 < 2). To guarantee the validity of the hypothesized unit–
decade compatibility effect, it was important to match the incom-
patible and compatible number pairs for several covariates. In
sum, the authors controlled for 11 covariates (among them, over-
all distance), to ensure that the response time differences between
compatible and incompatible number pairs could not be attribut-
ed to the covariates under control, but rather to the specific ma-
nipulation of unit–decade compatibility.
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The necessity of such control for covariates is not restricted
to the study of two-digit numbers, but generalizes to other
tasks in numerical cognition research (e.g., mental arithmetic
or the comparison of nonsymbolic quantities) and beyond the
number domain (e.g., word frequency in reading research).
However, often controlling the covariates across independent
variables can be challenging, time-consuming, and daunting.
In the present article, we show how to use propensity score
matching (see, e.g., Stuart, 2010) for matching covariates, as
an alternative to matching them by hand.

Propensity score matching is most commonly applied to
match treatment groups and control groups according to sev-
eral covariates in quasi-experimental settings (e.g., Guo &
Fraser, 2010). For instance, treatments had been implemented
before conducting the study. A particular problem when using
quasi-experimental settings, however, is that the treatment ef-
fect might not be unbiased. Hence, treatment and control
groups might differ according to several covariates. One solu-
tion to this problem is to balance nonequivalent groups using
propensity scores, as was suggested by Rosenbaum and Rubin
(1983). Propensity scores are most commonly obtained by
running logistic regression. When using logistic regression,
the dependent variable is the treatment-versus-control group
dichotomous variable, and the independent variables are the
covariates according to which the groups should be balanced.
By running the logistic regression analysis, the predicted
probability of each participant falling in either of the groups
can be calculated. These probabilities are the propensity
scores. Hence, the propensity score is the conditional proba-
bility of a participant receiving the treatment given the covar-
iates. Propensity scores can be used as a measure of the dis-
tance between two individuals. These distance measures are
needed to determine whether an individual is a goodmatch for
another.

The four primary distance measures are the exact distance,
Mahalanobis distance, propensity score, and linear propensity
score (Stuart, 2010). The exact distance is 0 if the vectors of
covariates of two individuals are equal; otherwise, it is infinite.
The Mahalanobis distance is similar to the Euclidean distance
between two vectors (i.e., the sum of the squared differences
in the covariates), but also considers the correlation structure
via the inverse variance–covariance matrix. The difference
between the propensity score and linear propensity score is
that, in the first method, the raw probability is used to calculate
the distance, whereas for the linear propensity score, the prob-
ability is logit-transformed before calculating the distance.

Various matching methods use any of these distance mea-
sures, or a combination of them (Guo & Fraser, 2010; Stuart,
2010). Among them are exact matching (Rosenbaum &
Rubin, 1983), the nearest neighbor (e.g., Rubin, 1973), opti-
mal matching (e.g., Gu & Rosenbaum, 1993), and subclassi-
fication (e.g., Cochran, 1968). The exact matching method
matches each participant with another that has exactly the

same values on each covariate. In the simplest form of the
nearest-neighbor matching method, 1:1 nearest-neighbor
matching, for each treated participant another participant from
the control group is identified, so that the distance between the
participant becomes minimal. The optimal matching method
tries to minimize the mean absolute distances across all
matched pairs. The subclassification method creates sub-
groups that are similar with respect to a criterion—for in-
stance, according to the quintiles of the propensity score
distribution.

Propensity score analysis has been applied to various
fields, including psychology (e.g., Jones, D’Agostino,
Gondolf, & Heckert, 2004), medicine (e.g., Gum,
Thamilarasan, Watanabe, Blackstone, & Lauer, 2001), educa-
tion (e.g., Adelson, 2013), and sociology (e.g., Smith, 1997).
However, to date we are not aware of any such study in nu-
merical cognition, suggesting that such propensity-score-
matching methods might be feasible for constructing matched
sets of stimuli. Therefore, in the present study we provide an
example of how to apply propensity score matching to con-
struct matched stimuli for fraction magnitude comparison
tasks. Importantly, however, propensity score matching is
not restricted to numerical cognition research. Instead, it
may be applied whenever stimulus sets have to be matched
on the parameter values of several covariates. To substantiate
that this approach is also applicable to other domains of re-
search, we provide another example, from reading research, of
how to create matched sets of words considering several co-
variates (e.g., word length and rated familiarity).

In the course of these two examples, we will use the R
statistics software (R Development Core Team, 2015) and
the R package MatchIt (Ho, Imai, King, & Stuart, 2011),
which implements various methods for matching (for a step-
by-step guide to MatchIt, see Randolph, Falbe, Manuel, &
Balloun, 2014). In both examples, we will use the linear pro-
pensity score as the distancemeasure and the nearest-neighbor
method for finding matched pairs. Moreover, we will use the
following procedure to construct the stimuli: (1) deciding on a
population of stimuli and determining covariates, and (2) ap-
plying the propensity-matching method to find one or two
matched sets for a base set.

Constructing matched fraction pairs

Research on the mental representation of fractions has gained
increasing interest recently (Siegler, Fazio, Bailey, & Zhou,
2013). The representation of fractions is mostly studied using
magnitude comparison tasks, in which participants are pre-
sented two fractions and have to decide which of them is the
numerically larger one (e.g., Bonato, Fabbri, Umiltà, & Zorzi,
2007; Dewolf, Grounds, Bassok, & Holyoak, 2014;
Faulkenberry & Pierce, 2011; Ganor-Stern, Karasik-Rivkin,
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& Tzelgov, 2011; Meert, Grégoire, & Noël, 2009, 2010).
Studies employing this task have revealed that participants
use component-based comparison strategies, focusing on ei-
ther the numerators or the denominators, when they can easily
be applied—for instance, when two fractions share common
components (e.g., 3/7 vs. 4/7; see, e.g., Huber, Moeller, &
Nuerk, 2014; Ischebeck, Weilharter, & Körner, 2016; Meert
et al., 2009). In contrast, participants seem to rely on the over-
all magnitude of the whole fractions when decision-relevant
components cannot be identified easily (Meert et al., 2010;
Schneider & Siegler, 2010; Sprute & Temple, 2011).

However, even when the overall magnitude of the whole
fractions is the most important predictor of response times and
error rates, the components nevertheless exert an influence on
the comparison process (e.g., DeWolf & Vosniadou, 2015;
Meert et al., 2010; Obersteiner, Van Dooren, Van Hoof, &
Verschaffel, 2013). For instance, Meert et al. found that the
distance between numerators was also a significant predictor
of response times, in addition to the overall distance of the
whole fractions. Moreover, Obersteiner et al. showed that re-
sponse times and error rates differed depending on whether
separate comparisons of the components were congruent or
incongruent with the comparison of the overall magnitude of
the whole fractions. In this context, fraction pairs without
common components can be subdivided into three groups:
(1) separate comparisons of the components are congruent
with the comparison of the fractions (e.g., 3/8 < 7/9, with 3 <
7 and 8 < 9; a congruent, congruent pair: CC), (2) the com-
parison of the numerators is congruent, but the comparison of
the denominators is incongruent with the comparison of the
fractions (e.g., 3/8 < 4/5, with 3 < 4 and 8 > 5; a congruent,
incongruent pair: CI), and (3) the separate comparisons of
both components are incongruent with the comparison of the
fractions (e.g., 4/7 < 3/5, with 4 > 3 and 7 > 5; an incongruent,
incongruent pair: II).1 To be able to evaluate whether the
comparison of components indeed influences the comparison
of the overall fraction magnitudes, as indicated by different
response times and error rates for the fraction pair types (CC,
CI, and II), it is necessary to ensure that in the item sets
employed, these fraction pairs do not differ with regard to their
overall distance between the whole fractions. In the following
sections, we will outline how an item set for these different
fraction pair types (CC, CI, and II) with matched overall mean

distances between the whole fractions can be created by rely-
ing on the propensity-score-matching method.

Item population

The first step in creating an item set for fraction comparison is
to decide on the population of fractions that should be used in
the study. At large, fractions can be divided into proper and
improper fractions. A fraction is called proper when the nu-
merator is smaller than the denominator (e.g., 3/7 with 3 < 7),
and improper otherwise. Ischebeck, Schocke, and Delazer
(2009) found differences in response times and error rates
between proper and improper fractions even when distances
were matched. Hence, when creating an item set for investi-
gating fraction processing, researchers should decide whether
to include both proper and improper fractions and matching
fraction pair types according to this property, or whether to
focus on either proper or improper fractions. We chose to
include only proper fractions in this example. Moreover, usu-
ally only irreducible fractions are used such that participants
are not able to apply the strategy of simplifying fractions be-
fore comparing them.

Another relevant property is the number of digits in the
numerators and denominators. Studies have employed either
only single-digit fractions (Bonato et al., 2007; Huber et al.,
2014; Meert et al., 2009, 2010) or a combination of single-
digit and multidigit fractions (DeWolf & Vosniadou, 2015;
Obersteiner et al., 2013; Schneider & Siegler, 2010).
Ischebeck et al. (2016) investigated explicitly whether
single-digit and two-digit fractions are processed differently
in a magnitude comparison task, and they found evidence that
the results were similar for single-digit and two-digit fractions.
Thus, it seems safe to include both single-digit and two-digit
fractions in the same item set.

Taken together, we used irreducible and proper single-digit
and two-digit fractions to construct an item set discriminating
the three fraction pair types: CC, CI, and II. In this process, we
controlled for the overall distance between the whole frac-
tions, the numerator distance, as well as denominator distance
(for an implementation of the procedure using R, please see
Appendix A). However, apart from relying on fraction, nu-
merator, or denominator distance, participants may employ
other strategies when comparing two fractions. Accordingly,
it would be desirable to also match the applicability of these
other strategies across fraction pair types (see Faulkenberry &
Pierce, 2011). For instance, fraction magnitudes can be com-
pared on the basis of the cross-product (i.e., multiplying the
numerator/denominator of one fraction with the denominator/
numerator of the other fraction and comparing the results), or
of the numerical difference between the numerators and de-
nominators of the respective fractions, or participants might
employ a benchmarking strategy (i.e., comparing fractions on
the basis of whether one of the fractions is smaller than one

1 Note that fraction pairs with incongruent numerators and congruent
denominators do not exist. This can be easily shown. Without loss of
generality, we set the relationship of two fractions a/b and c/d to a/b <
c/d, with a, b, c, and d being natural numbers. Accordingly, incongruent
numerators would mean that a > c, and congruent denominators that b < d
ord > b. This would imply that a × d > c × d, which is a contradiction to a/
b < c/d, because a/b < c/d is equivalent to a × d < c × d. Therefore, it is not
possible to construct fraction pairs with incongruent numerators and con-
gruent denominators.
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half, while the other is larger than one half). Although it would
be favorable to match fraction pair types according to all of
these criteria, it would not have been possible to find suffi-
ciently matched item sets for the three fraction pair types in the
present study considering all of these covariates. Hence, we
limited the number of covariates to the aforementioned ones,
to describe the application of the propensity score approach
exemplarily.

In the first step, we generated all possible irreducible and
proper single-digit and two-digit fractions by combining each
single- and two-digit number with all other possible single-
and two-digit numbers, with the restrictions that the first num-
ber (i.e., the numerator) was smaller than the second number
(i.e., the denominator) and that the largest common divisor of
both numbers was 1. This revealed that 3,003 irreducible and
proper single-digit and two-digit fractions meeting these
criteria exist. Hence, there are (3,003 × 3,002)/2 = 4,507,503
possible combinations of fractions (excluding fraction pairs
that can be created by simply reversing the order of fractions).
In the next step, we removed all fraction pairs with the same
numerators and denominators, leaving 4,370,958 fraction
pairs. Then we categorized the remaining fraction pairs ac-
cording to the congruity of the separate comparisons of the
magnitudes of the numerators and denominators with the
comparison of the overall magnitude of the whole fraction.
The set contained 2,219,805 CC fraction pairs, 1,435,302 CI
fraction pairs, and 715,851 II fraction pairs.

These were too many fraction pairs to allow us to run the
matching procedure. Hence, in the next step we reduced the
fraction pairs by preselecting specific fraction pairs. To do so,
we first computed the covariates (i.e., the overall fraction dis-
tance, numerator distance, and denominator distance). Then
we divided all fraction pairs into 443,634 groups based on the
three covariates, by rounding the fraction distances to hun-
dredths and the numerator and denominator distances to ones
and assigning each fraction pair into a particular group on the
basis of the specific combination of values for the three covar-
iates. In the next step, we removed all groups from the item
sets that did not contain at least one fraction pair from all three
fraction pair types. This reduced the number of fraction pairs
to 128,423, which we then used in the matching procedure
(21,661 CC fraction pairs, 63,281 CI fraction pairs, and
43,481 II fraction pairs).

Matching

Finally, we created item sets comprising 30 items of each
fraction pair type and matched them regarding fraction dis-
tance, numerator distance, and denominator distance. To do
so, we drew 30 fraction pairs randomly from the set of II pairs
and tried to find 30 fraction pairs from the other two pair types
until the following constraints to our item set were met: The
overall fraction distance should not differ by more than 0.01

between the fraction pair types, and the maximum difference
allowed for both the numerator and denominator distances
was set to 0.5. To find matched fraction pairs, we called the
matchit function from the R package MatchIt twice. In the
matchit function, we specified the covariates, overall fraction
distance, numerator distance, and denominator distance.
Moreover, for matchingwe used the nearest-neighbormethod,
and propensity scores as a distance measure (i.e., the default
distance measure). Using this procedure, we found reasonable
well-matched fraction pairs (see Table 1). Thus, we showed
that propensity score matching can be applied to construct
matched items sets for numerical stimuli. However, the ap-
proach is not restricted to numerical stimuli, but can also be
applied for matching sets of target words according to several
covariates, as is necessary in reading research. This will be
exemplified in the next section.

Constructing matched word sets

Regarding content domains, propensity score matching is of
course not restricted to numerical cognition research. Instead,
it may be applied whenever stimulus sets have to be matched
on the parameter values of several covariates—as is often
necessary in reading research. For instance, Paizi, Zoccolotti,
and Burani (2010) investigated the interaction between word
frequency and stress dominance. The word frequency effect
indicates that the reading times for words decrease as their
frequencies in a given language increase (e.g., Babout^ is more
frequent than Babove^ and thus is read faster; see, e.g.,
Brysbaert et al., 2011).Word stress denotes the emphasis that
is given to the syllables of a word. It is typically indicated by
increased loudness and vowel length. In Italian, the position of
stress varies for three- or more-than-three-syllable words. The
stress can be either dominant, in the case of words that are
stressed on the penultimate syllable, or nondominant, in the
case of words that are stressed on the antepenultimate syllable.
Like for the word frequency effect, stress dominance influ-
ences the reading of words: Words with dominant stress are

Table 1 Mean fraction distances, numerator distances, denominator
distances, and numbers of digits in the numerators and denominators of
the final item set

Fraction Pair Type

Covariate CC CI II

Overall fraction distance 0.10 0.09 0.10

Numerator distance 5.27 5.20 5.33

Denominator distance 16.30 16.47 16.73

CC= congruent numerator and denominator, CI = congruent numerator
and incongruent denominator, II = incongruent numerator and
denominator
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read faster and more accurately than words with nondominant
stress (Colombo, 1992). However, several other covariates
influence the reading of words.

Therefore, Paizi, Zoccolotti, and Burani (2010) created
four matched item sets for the four conditions of their study
(high frequency–dominant stress, high frequency–nondomi-
nant stress, low frequency–dominant stress, and low frequen-
cy–nondominant stress), considering the following covariates:
subjective age of acquisition (the age at which raters indicate
they first learned a word in either spoken or written form;
Juhasz, 2005), rated familiarity (the rated frequency of a
word in daily life; Barca, Burani, & Arduino, 2002),
imageability (the ease and rapidity with which a word evokes
a mental image), orthographic neighborhood size (i.e., the
number of words that differ by one letter from the target
word), length (in letters and syllables), bigram frequency
(the frequency of two letters occurring in sequence), ortho-
graphic complexity (the complexity of translating written
words into the correct sequence of phonems; see Burani,
Barca, & Ellis, 2006), and initial phoneme. Most of these
variables (except orthographic complexity) are available via
the LEXVAR database (available online at www.istc.cnr.
it/material/database/; Barca et al., 2002). The database
provides parameters for both children and adults. As in
Paizi, Zoccolotti, and Burani’s study, we used the values for
children (Marconi, Ott, Pesenti, Ratti, & Tavella, 1993). In the
following section, we outline how four matched item sets
based on the above-mentioned covariates can be created by
relying on the propensity-score-matching method.

Matching

In contrast to generating items for fraction magnitude compar-
ison, we did not have to generate the population of items and
calculate the covariates, because they could be downloaded in
an Excel file from the LEXVAR database. Hence, in the first
step, we divided the set of words available in the database into
four categories, according to word frequency and stress dom-
inance. Thus, we subdivided the words into low-frequency
and high-frequency words on the basis of a median split,
and also categorized them into stress-dominant and stress-
nondominant words. We determined the numbers of words
falling in the crossed categories. There were 274 high-fre-
quency, stress-dominant words; 30 high-frequency, stress-
nondominant words; 256 low-frequency, stress-dominant
words; and 66 low-frequency, stress-nondominant words.
Thus, the number of words was smallest for the high-frequen-
cy, stress-nondominant word category, and hence we used the
parameter values of this category as the basis for selecting
words for the other categories.

As with the fraction comparison task, we drew a random
subset of words from the category of high-frequency, stress-
nondominant words containing 20 words (for an

implementation of the procedure using R, please see
Appendix B). We did not use the maximal number of words
(i.e., 30) because using a smaller subset increased the likeli-
hood of finding well-matched word categories. Then we ran
the matchit function from the R package MatchIt three times.
In the matchit function, the high-frequency, stress-
nondominant word category always served as the treatment
group, whereas one of the other categories served as the con-
trol group. Moreover, we included the following covariates:
subjective age of acquisition, rated familiarity, imageability,
orthographic neighborhood size, bigram frequency, and length
according to numbers of letters and syllables. We did not
include initial phoneme as a covariate because the LEXVAR
database has different classification schemes for initial pho-
nemes, and wewere not sure which of themwas used by Paizi,
Zoccolotti, and Burani (2010). Furthermore, in contrast to the
fraction magnitude comparison task, we did not try to opti-
mize the matching by rerunning the matchit functions until the
difference between the covariate means fell below a specific
threshold, because the word categories were matched well
according to the covariates after running the matchit function
for each item category once (see Table 2). Accordingly, we
observed that propensity score matching can also be used to
construct matched item sets for word stimuli.

Conclusion

In the present article, we showed how to apply the propensity-
score-matching method to construct matched item sets for
numerical cognition and reading research. Using such proce-
dures, we were able to successfully create matched stimulus
sets for a symbolic fraction magnitude comparison task as
well as a study on word reading. Therein, we adhered to the
following steps. When constructing matched stimulus sets for
a symbolic fraction magnitude comparison task, we decided
on the population of stimuli under investigation and deter-
mined the possible covariates. Afterward, we divided the stim-
uli into two sets (comparable to a treatment and a control
group). The one set (i.e., the treatment group) served as the
basis for which we tried to find a matched other set of items
(i.e., the control group) considering the relevant covariates.
Finally, we used the matchit function. Following this ap-
proach, we were able to generate matched item groups for
fraction pairs and different categories of target words.
However, it is important to note that the approach is not re-
stricted to these two applications, but can be generalized easily
in different ways regarding both the matching method used
and the content domain under study.

As regards the matching method, a further application
might be to construct matched stimuli for another task used
in numerical cognition research, such as addition. For this
task, it would be important to select problems with matched
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item parameters for addition with and without a carryover.
Similar to the examples described in the present article, the
first step would be to decide on the population of addition
problems under study. Then the relevant covariates would
have to be determined and computed (e.g., the problem size,
which reflects the numerical magnitude of the involved
numbers, for which it is known that difficulty increases with
increases in problem size; see, e.g., Zbrodoff & Logan, 2005,
for a review). The next step would be to select a random
subsample of addition problems with carryover that would
serve as the treatment group, before finding a matched set of
addition problems without carryover in the last step. However,
instead of using the nearest-neighbor method (as in the exam-
ple of fractions), which resulted in reasonably well-matched
covariates on average, another matching method might be
more desirable—that is, exact matching. Exact matching
might be preferred to match addition problems with and with-
out carryover because it would allow for identifying matched
addition problems with the exact same parameter values of the
covariate(s). For instance, the problems 23 + 14 and 18 + 19
both result in a sum (i.e., problem size) of 37. However, only
the latter requires the execution of a carry procedure.

Moreover, regarding the content domain, propensity score
matching is of course not restricted to numerical cognition
research or reading research, as described in our examples.
Instead, it may be applied whenever stimulus sets have to be
matched on the parameter values of several covariates. A fur-
ther case of application might be research on visual perception
or emotional pictures. For instance, Murphy, Hill, Ramponi,
Calder, and Barnard (2010) investigated the influence of the
impact of emotion on attention to negative emotional images.
To do so, they matched high-impact, low-impact, and neutral
images according to several covariates, including valence,
arousal, distinctiveness, visual complexity, and tendency to
approach or avoid. The approach using propensity scores sug-
gested in the present study might also be applied for finding
matched item sets in this context.

Finally, we will point out that (1) it may not always be
possible to match item sets according to all possible covari-
ates. Generally, it can be said that the more covariates are
included in the matching procedure, the more likely it is that
the item sets will not be sufficiently well-matched according
to one or more of the covariates. Additionally, (2) it may even
be the case that covariates cannot be matched across item sets
by definition. For example, fraction comparison items can be
either congruent or incongruent with respect to their respec-
tive numerical differences between the numerators and de-
nominators; this means that the overall larger fraction might
have the larger but also the smaller numerator–denominator
difference [e.g., congruent: 13/42 > 3/31, and 29 (i.e., 42 –
13) > 28 (i.e., 31 – 3); incongruent: 13/28 > 5/22, but 15 <
17]. Importantly, however, items of types CI and II are by
definition incongruent regarding this covariate, and thus it is
impossible to find matched sets according to this covariate.2

Taken together, we conclude that the propensity-score-
matching method can be used as a general approach for con-
structing matched stimuli in different domains of cognitive ex-
perimental research. This approach comes with several bene-
fits, as compared to matching covariates by hand. Most impor-
tantly, it is less labor-intensive, and thus less time-consuming,
as well as less expensive. Additionally, it avoids human errors.
Therefore, propensity score matching might be a valuable tool
to corroborate the validity of psychological research, because it
can help ensure that the effect of interest is indeed driven by the
variable being manipulated rather than by potential covariates.

Author note S.H. was supported by the Leibniz-Competition Fund,
providing funding to Elise Klein (Grant No. SAW-2014-IWM-4). J.F.D.
was supported by the German Research Foundation (DFG), providing
funding to K.M. and Elise Klein (Grant No. MO 2525/2-1).

Table 2 Mean subjective ages of acquisition, rated familiarities, imageabilities, orthographic neighborhood sizes, bigram frequencies, and lengths
according to number of letters and syllables of the four word categories

Word Category

High-Frequency Low-Frequency

Covariate Dominant Nondominant Dominant Nondominant

Age of acquisition 3.33 3.35 3.35 3.59

Rated familiarity 6.37 6.46 6.39 6.28

Imageability 5.06 5.12 5.36 5.24

Orthographic neighborhood size 0.25 0.35 0.15 0.30

Bigram frequency 10.87 10.91 10.82 10.81

Length letters 7.20 7.30 6.90 7.10

Length syllables 3.20 3.25 3.15 3.15

2 We thank an anonymous reviewer for suggesting this comment.
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Appendix A

To create the item set for the fractionmagnitude comparison task,
we first wrote a function in R that calculates the greatest common
divisor of any two integers, a and b, using Euclid’s algorithm:

Next, we generated all possible irreducible and proper
single-digit and two-digit fractions using a for loop. In this
for loop, we combined each single- and two-digit number with
all other possible single- and two-digit number with the re-
strictions that the first number (i.e., the numerator) is smaller
than the second number (i.e., the denominator) and that the
largest common divisor of them is 1. When these criteria were
met, we stored them in the data frame fractions:

gcd <- function(a, b){
if(b == 0){
return(a)

} else {
return(gcd(b, a %% b))

}
}

fractions <- data.frame(id=-1,n=-1,d=-1)
cur <- 1

for (i in 1:99){ # i = numerator
for (j in 1:99){ # j = denomintaor
if (i < j & gcd(i,j) == 1){
fractions[cur,] <- c(cur,i,j)
cur <- cur + 1

}
}

}
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In the next step, we generated all possible combinations of
fractions and excluded fraction pairs that can be created by

simply reversing the order of two fractions and fraction pairs
with same numerators and denominators:

Then we categorized the fraction pairs according to the
congruity of the separate comparisons of the magnitudes of

numerators and denominators with the comparison of the
overall magnitude of the whole fractions:

fraction.pairs$f1 <- fraction.pairs$n1/fraction.pairs$d1
fraction.pairs$f2 <- fraction.pairs$n2/fraction.pairs$d2
fraction.pairs[,"type"] <- "CC"
fraction.pairs[fraction.pairs$f1 < fraction.pairs$f2 & 

fraction.pairs$n1 < fraction.pairs$n2 & 
fraction.pairs$d1 > fraction.pairs$d2,]$type <- "CI"

fraction.pairs[fraction.pairs$f1 > fraction.pairs$f2 & 
fraction.pairs$n1 < fraction.pairs$n2 & 
fraction.pairs$d1 < fraction.pairs$d2,]$type <- "II"

fraction.pairs <- apply(fractions, 1, function(f){
cur <- cbind(rep(f[1], nrow(fractions)-1), 

rep(f[2], nrow(fractions)-1),
rep(f[3], nrow(fractions)-1))

rownames(cur) <- seq(1, nrow(cur))
curFractionPairs <- cbind(cur, 

fractions[fractions$id != as.numeric(f[1]),])
return(curFractionPairs)

})

fraction.pairs <- do.call(mapply, c(cbind, fraction.pairs))
fraction.pairs <- data.frame(fraction.pairs)
colnames(fraction.pairs) <- c("id1", "n1", "d1", "id2", "n2", "d2")
fraction.pairs <-
fraction.pairs[fraction.pairs$id1 < fraction.pairs$id2,]

fraction.pairs <-
fraction.pairs[fraction.pairs$n1 != fraction.pairs$n2,]

fraction.pairs <-
fraction.pairs[fraction.pairs$d1 != fraction.pairs$d2,]
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Next, we computed the covariates (i.e., overall fraction
distance, numerator distance and denominator distance):

fraction.pairs$distFrac <-
abs(fraction.pairs$f1 - fraction.pairs$f2)

fraction.pairs$distNum <-
abs(fraction.pairs$n1 - fraction.pairs$n2)

fraction.pairs$distDenom <-
abs(fraction.pairs$d1 - fraction.pairs$d2)

We reduced the fraction pairs by pre-selecting specific frac-
tion pairs. Then, we divided all fraction pairs in 443,634 groups
based on the three covariates, by rounding the fraction distance
to hundredths and the numerator and denominator distances to

ones, and assigning each fraction pair into a particular group
based on the specific combination of values for the three covar-
iates. In the next step, we selected only the groups that contained
at least one fraction pair from the three fraction pair types:

Finally, we created an item set comprising 30 items of each
fraction pair type and matched them regarding fraction dis-
tance, numerator distance, and denominator distance.

Therefore, we first stored the respective fraction pair types in
three different data frames:

fraction.pairs$distFracGroup <- round(fraction.pairs$distFrac, 2)
fraction.pairs$distNumGroup <- round(fraction.pairs$distNum, 0)
fraction.pairs$distDenomGroup <- round(fraction.pairs$distDenom, 0)

fraction.pairs$combinedGroup <-
paste(fraction.pairs$distFracGroup,

fraction.pairs$distNumGroup,
fraction.pairs$distDenomGroup,sep="_")

fractionsGroupAllTyps <-
tapply(fraction.pairs$type, 

fraction.pairs$combinedGroup, 
function(type) {
any(type == "CC") & 
any(type == "CI") & 
any(type == "II")})

fraction.pairs <- subset(
fraction.pairs, 
combinedGroup %in%
names(fractionsGroupAllTyps[fractionsGroupAllTyps]))

fraction.pairs.CC <- fraction.pairs[fraction.pairs$type == "CC",]
fraction.pairs.CI <- fraction.pairs[fraction.pairs$type == "CI",]
fraction.pairs.II <- fraction.pairs[fraction.pairs$type == "II",]
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Then, we randomly drew 30 fraction pairs from the data
frame fraction.pairs.II and tried to find 30 fraction pairs from
the other data frames, whereby we set the following con-
straints to our item set: overall fraction distance should not
differ by more than 0.01 between the fraction pair types and

the maximum difference allowed for numerator distance and
denominator distance was set to 0.5. The initial 30 fraction
pairs from the data frame fraction.pairs.II might be biased
such that our criteria might not be met. Therefore, we ran a
while loop until our criteria were met:

require(MatchIt)
m.out1 <- matchit(type.cat ~ distFrac + distNum + distDenom , 

data = fractions.match1, method = "nearest")
distMatch <- abs(summary(m.out1)$sum.matched[2,4])
distNumMatch <- abs(summary(m.out1)$sum.matched[3,4])
distDenomMatch <- abs(summary(m.out1)$sum.matched[4,4])

if (!(distMatch > 0.01 | 
distNumMatch > 0.5 |
distDenomMatch > 0.5))

{
m.out2 <- matchit(type.cat ~ distFrac + distNum + distDenom , 

data = fractions.match2, method = "nearest")
distMatch <- abs(summary(m.out2)$sum.matched[2,4])
distNumMatch <- abs(summary(m.out2)$sum.matched[3,4])
distDenomMatch <- abs(summary(m.out2)$sum.matched[4,4])

print(paste(distMatch,distNumMatch,distDenomMatch))
}

}

distMatch <- 10
distNumMatch <- 10
distDenomMatch <- 10
nDigitsNumMatch <- 10
nDigitsDenomMatch <- 10

while (distMatch > 0.01 | 
distNumMatch > 0.5 |
distDenomMatch > 0.5)

{

fraction.items.II <-
fraction.pairs.II[sample(1:nrow(fraction.pairs.II), 

30,replace=FALSE),]
fractions.match1 <-
rbind(fraction.items.II,fraction.pairs.CI)

fractions.match1$type.cat <-
ifelse(fractions.match1$type == "CI",0,1)

fractions.match2 <-
rbind(fraction.items.II,fraction.pairs.CC)

fractions.match2$type.cat <-
ifelse(fractions.match2$type == "CC",0,1)
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In this R code, we first set our criteria variables to
10 (i.e., values that do not meet the criteria, such that
the while loop is entered). In the while loop, we first
drew a random subset of 30 items of the data frame
fraction.items.II. Then we merged this data frame with
the data frame for fraction pairs CC and fraction pairs
CI, and created a column that was 1 for fraction pairs
of type II and otherwise 0. In the next step, we called
the matchit function from the R package MatchIt twice.
In the matchit function, we specified the covariates,
overall fraction distance, numerator distance, and de-
nominator distance. Moreover, for matching we used
the nearest-neighbor method and propensity scores as a
distance measure (i.e., the default distance measure).
Afterward, we stored the maximum of the achieved
mean differences in the criteria variables. Finally, the

matched item sets could be retrieved by calling the
function match.data:

Appendix B

To create matched word categories, we first read in the infor-
mation about Italian words form the database LEXVAR.XLS
(available at www.istc.cnr.it/grouppage/lexvar). To be able to
read the Excel file, we had to rename the header line.Moreover,
we removed columns that we did not need for creating matched
word categories. Finally, we saved the modified Excel file as a
tab-separated text file and read it into the workspace of R:

Then, we categorized the variable containing the frequency
counts for children applying a median split:

In the next step, we created the four item categories: high-
frequency, stress-dominant words (Category 1), high-frequen-
cy, stress-nondominant words (Category 2), low-frequency,

stress-dominant words (Category 3), and low-frequency,
stress-nondominant words (Category 4).

df1 <- match.data(m.out1)
df2 <- match.data(m.out2)

dfWords <-
read.table("wordsMatchingItemSet.txt", header=TRUE, sep="\t")

dfWords$frequencyCat <-
ifelse(dfWords$totalFrequencyChildren <=

median(dfWords$totalFrequencyChildren), "low", "high")

getCondition <- function(frequencyCat, stress){
if(is.na(frequencyCat) | is.na(stress))
return(NA)

if(frequencyCat == "high" & stress == "p")
return("group1")

if(frequencyCat == "high" & stress == "ap")
return("group2")

if(frequencyCat == "low" & stress == "p")
return("group3")

if(frequencyCat == "low" & stress == "ap")
return("group4")

}

dfWords$group <- apply(dfWords, 1, 
function(x){getCondition(x["frequencyCat"],x["Stress"])})
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Finally, we ran the matching procedure. Therefore, we
first drew 20 words from the smallest category of high-
frequency, stress-nondominant words (i.e., Category 2).
Then, we combined these words with the other categories
into three separate data frames and added an additional
column with a binary label indicating whether a particular
word belonged to Category 2 or to one of the other cate-
gories. In the last step, we called the matchit function

from the R package MatchIt three times. In the matchit
function, we specified the covariates, subjective age of
acquisition, rated familiarity, imageability, orthographic
neighborhood size, bigram frequency, and length accord-
ing to number of letters and syllables. Moreover, for
matching we again used the nearest neighbor method
and propensity scores as a distance measure (i.e., the de-
fault distance measure):

Finally, the matched item sets can be retrieved by calling
the function match.data:

df1 <- match.data(m.out1)
df2 <- match.data(m.out2)
df3 <- match.data(m.out3)
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