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Abstract

Number sense requires, at least, an ability to assess magnitude information represented by number symbols. Most educated adults are
able to assess magnitude information of rational numbers fairly quickly, including whole numbers and fractions. It is to date unclear whether
educated adults without training are able to assess magnitudes of irrational numbers, such as the cube root of 41. In a computerized
experiment, we asked mathematically skilled adults to repeatedly choose the larger of two irrational numbers as quickly as possible.
Participants were highly accurate on problems in which reasoning about the exact or approximate value of the irrational numbers’ whole
number components (e.g., 3 and 41 in the cube root of 41) yielded the correct response. However, they performed at random chance level
when these strategies were invalid and the problem required reasoning about the irrational number magnitudes as a whole. Response
times suggested that participants hardly even tried to assess magnitudes of the irrational numbers as a whole, and if they did, were largely
unsuccessful. We conclude that even mathematically skilled adults struggle with quickly assessing magnitudes of irrational numbers in their
symbolic notation. Without practice, number sense seems to be restricted to rational numbers.
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Number sense refers to the adaptive and flexible use of numbers. A precondition of number sense is the ability
to quickly assess magnitude information represented by number symbols (e.g., 12, -5, or 3/4). Curricula and
educational standards for school mathematics (e.g., CCSSI, 2010) include an understanding of number
magnitudes as an important goal of school mathematical learning. Furthermore, theories from cognitive
psychology consider understanding of number magnitudes as a fundamental step of numerical development
(Siegler, Thompson, & Schneider, 2011; see Siegler, Fazio, Bailey, & Zhou, 2013). The reason why
understanding number magnitudes is considered so important is that possessing magnitudes is a shared
property of all types of numbers which students learn about at school, whether natural, whole, rational, or real
numbers.' Thus, magnitudes are a key feature of all real numbers.

In spite of the widely accepted importance of number magnitude understanding, research into magnitude
understanding has almost exclusively focused on natural numbers (i.e., the counting numbers) (e.g., De Smedt,
Verschaffel, & Ghesquiére, 2009), integers (including negative numbers, e.g., Varma & Schwartz, 2011; Young
& Booth, 2015), and rational numbers in decimal notation (e.g., 0.2) (Desmet, Grégoire, & Mussolin, 2010) or
fraction notation (e.g., 1/5) (Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). Studies have amply shown
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that most people are able to assess magnitudes of these numbers, albeit with more difficulty and less
automatically for larger and less common numbers (e.g., fractions with two-digit components such as 31/73)
than for smaller numbers and numbers that are used frequently in daily life (e.g., 1/4) (Bonato, Fabbri, Umilta, &
Zorzi, 2007; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013).

To the best of our knowledge, no study has investigated whether people are also able to assess magnitudes of
irrational numbers in their symbolic notation format, such as %/H, the cube root of 41. Addressing this question
is relevant to cognitive psychology, because it contributes to the more general question of whether our cognitive
system allows assessing magnitudes of all types of numbers (including non-rational numbers). Addressing this
question has also the potential to inform mathematics education, because although the ability to quickly assess
the magnitudes of number symbols is a central goal of instruction, the boundaries of this goal are not obvious.
For example, while teachers might expect students to be able to provide a quick estimate for the magnitudes of
the square root of 2 or the number T, it is not clear whether they should expect them to be able to provide an
estimate for the square root of 3, or of the fifth root of 82.

Accordingly, this study aims to clarify whether without specific practice, people are able to assess the
magnitudes of irrational numbers presented in symbolic format. In the following sections, we first elaborate on
the importance of understanding number magnitudes. Then, we explain the peculiarities of irrational numbers
and their symbolic notation. After that, we introduce the number comparison task as a measure of magnitude
understanding and summarize important findings from studies of whole numbers and fractions that were
guiding for the present study. Finally, we raise open questions that we address here.

The Importance of Understanding Number Magnitudes

Possessing “number sense” refers to the ability to use numbers flexibly and adaptively (e.g., Dehaene, 1997;
Mclintosh, Reys, & Reys, 1992). Different authors have used the term “numbers sense” in various ways (see
Berch, 2005, for an overview). In its narrow conceptualization, number sense refers to the ability to understand
the meaning of numbers in their nonsymbolic representations (e.g., dot patterns) and symbolic representations.
In its broader conceptualization, number sense includes the use of sophisticated strategies in complex
arithmetic. Irrespective of the specific conceptualization, at the core of symbolic number sense is the ability to
quickly assess the magnitudes represented by number symbols. This ability is a precondition for the flexible
and adaptive use of numbers for at least three reasons. First, quickly activating number magnitudes can help in
choosing the most efficient strategy for solving an arithmetic problem. For example, to find the result of the
subtraction problem 701 — 698, some reasoning about the magnitudes of the two numbers (both close to 700)
is required to decide that adding up from 698 to 701 (resulting in 3) is more efficient than actually subtracting
698 from 701. Second, quick assessment of number magnitudes allows us to reject unreasonable results of a
calculation. For instance, when students apply an invalid addition strategy to fractions, such as componential
addition (e.g., 1/2 + 1/2 = 2/4), quick reasoning about the fraction magnitudes can cause them to doubt their
result (because the result, 2/4, has the same magnitude as each addend, 1/2). Third, assessing number
magnitudes is important for estimation and approximation. To quickly come up with an estimate for the addition
problem 7/8 + 12/13 (which is approximately 2), it is necessary to recognize that the magnitudes of both
fractions are close to 1.

There is broad empirical evidence that the ability to assess magnitudes of whole numbers and fractions is
correlated with and even predictive of further mathematical achievement (De Smedt et al., 2009; Linsen,
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Verschaffel, Reynvoet, & De Smedt, 2014, 2015; Sasanguie, De Smedt, Defever, & Reynvoet, 2012; Siegler et
al., 2012). Torbeyns, Schneider, Xin, and Siegler (2015) found that assessing magnitudes of fractions is
significantly correlated to mathematics achievement in 6"- and 8-grade students from the U.S., China, and
Belgium, even after controlling for several other related variables. In a recent meta-analysis, Schneider et al.
(2016) concluded that symbolic magnitude understanding correlates to mathematical competence more
strongly than nonsymbolic magnitude understanding.

To summarize, the ability to assess magnitudes of number symbols is fundamental for numerical development
from both a theoretical and an empirical point of view. While previous empirical studies have focused
exclusively on magnitudes of rational numbers (including natural numbers, integers, and fractions), some
researchers have emphasized the importance of understanding the magnitudes of any real numbers (which
include irrational numbers) (Siegler et al., 2011; Torbeyns et al., 2015). For example, the integrated theory of
numerical development by Siegler et al. (2011, p. 289) puts emphasis “on acquisition of knowledge about
numerical magnitudes as a basic process uniting the development of understanding of all real numbers”.
Referring to the same theory, Torbeyns et al. (2015, p. 12) conclude that “a key step in understanding real
numbers is the realization that not only whole numbers or rational numbers but in fact all real numbers have
magnitudes that can be represented along a number line”. While these authors refer to understanding of real
number magnitudes, there is—to the best of our knowledge—no empirical evidence that people are actually
able to quickly assess magnitudes of these numbers when they are presented in their symbolic format. As
irrational numbers differ in important ways from rational numbers, assessing their magnitudes might be
impossible, or at least much more challenging than is the case for rational numbers.

Magnitudes of Irrational Numbers

Irrational numbers are real numbers that cannot be represented as the quotient of two integers. These numbers
differ from rational numbers in several respects, two of which are relevant in the context of the present study.
First, while for rational numbers the magnitude information can be decoded from their symbolic notation in a
more or less straightforward way, this is not the case for irrational numbers. Assessing the magnitudes of
integers requires an understanding of the magnitude information of numerals, an ability to take into account the
base-ten system, and, if applicable, an understanding of the minus sign. Assessing the magnitudes of fractions
requires an understanding of the magnitude information of the whole number components (the numerator and
the denominator) and some reasoning about the relation between these magnitudes. In contrast, the algorithm
to determine the magnitude of an irrational number (e.g., %/H) is complex. In fact, such an algorithm consists of
an infinite number of steps. The reason is related to the second aspect in which irrational numbers differ from
most types of rational numbers: it is not possible to notate the exact value of irrational numbers in decimal
notation because they have an infinite number of non-recurrent digits after the decimal point.’ For example, the
square root of 2 is approximately 1.4142135.... Because of these differences, and because people arguably
rarely encounter irrational numbers in their daily lives, it should be much more difficult to assess the
magnitudes of irrational numbers than those of integers or fractions. For that reason, we studied people with
good mathematical skills, to find out whether it is at all possible to assess magnitudes of irrational numbers.

Number Comparison Task as a Measure of Magnitude Understanding

To investigate whether people are able to assess magnitudes of number symbols, many studies have used a
number comparison task. In this task, participants have to decide which of two numbers is numerically larger.
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Next to participants’ accuracy when solving number comparison problems, the occurrence of a numerical
distance effect across a set of problems is of particular interest. The distance effect means that people tend to
be more accurate and faster in comparing the numerical values of two numbers when the numerical difference
between the two numbers is large compared to when it is small. Moyer and Landauer (1967) initially
documented this effect, and many researchers replicated this effect with whole numbers in a variety of studies
involving participants of different ages (De Smedt et al., 2009; Sekuler & Mierkiewicz, 1977; Szlics & Goswami,
2007). The occurrence of a distance effect provides evidence that people actually assess the magnitudes of the
number symbols to solve number comparison problems.

In fraction comparison problems, the central question is whether accuracy and response times depend on the
numerical distance between the fraction magnitudes, or between the fraction components (the numerators and
the denominators). While the former is evidence that people assess the fraction magnitudes, the latter is
evidence that people assess the magnitudes of the components. Recent research has converged in the finding
that whether people assess the magnitudes of fractions in a comparison problem depends on the type of
fraction pair. When the two fractions have common components (e.g., 3/7 versus 5/7, or 5/9 versus 5/6), people
are more likely to rely on the non-equal fraction components rather than on the magnitudes of the whole
fractions. When fractions do not have common components (e.g., 5/9 versus 6/11), people are more likely to
assess fractions according to their magnitudes rather than their components alone (Huber, Moeller, & Nuerk,
2014; Meert, Grégoire, & Noél, 2009, 2010a; Obersteiner et al., 2013; Schneider & Siegler, 2010).

There is only a limited amount of research on people’s understanding of irrational numbers (Fischbein, Jehiam,
& Cohen, 1995; Merenluoto & Lehtinen, 2002; Peled & Hershkovitz, 1999; Sirotic & Zazkis, 2007; Zazkis,
2005). A central finding from these studies is that many people, even preservice teachers and teachers of
mathematics, struggle with understanding certain concepts of real numbers including irrational numbers.
However, these studies focused on understanding of the concept of irrational numbers in a broader sense, but
none of these studies has particularly focused on the ability to assess magnitudes of irrational numbers.

Natural Number Bias in Number Comparison

Notwithstanding most people’s fundamental ability to assess fraction magnitudes in comparison problems,
assessing magnitudes of fractions seems to be much more demanding and less automatic than assessing
magnitudes of whole numbers. For example, comparing fractions that have common components (so that
assessing the magnitudes of the components is sufficient) is much easier than comparing fraction pairs without
common components (where assessing the magnitudes of the components is not sufficient) (Obersteiner et al.,
2013). Furthermore, there is evidence that in fraction comparison, the magnitudes of the fractions’ whole
number components can actually interfere with assessing the fraction magnitudes. Research shows that school
students (Meert, Grégoire, & Noél, 2010b; Van Hoof et al., 2013) but also adults (DeWolf & Vosniadou, 2011;
Obersteiner et al., 2013; Vamvakoussi, Van Dooren, & Verschaffel, 2012) make more mistakes and require
more time for fraction comparison when the magnitudes of the fractions are incongruent with whole number
comparison as compared to when they are congruent with whole number comparison. Comparison problems
are incongruent when the larger fraction is composed of the smaller components, as in “19/24 vs. 25/36”.
Comparison problems are congruent when the larger fraction is composed of the larger components, as in
“20/27 vs. 11/19”. Researchers have referred to the performance differences between congruent and
incongruent comparison problems as the “whole number bias” or “natural number bias” (Alibali & Sidney, 2015;
DeWolf & Vosniadou, 2015; Ni & Zhou, 2005; Obersteiner et al., 2013). The existence of bias corroborates
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earlier findings suggesting that people activate natural number magnitudes automatically and unintentionally
even if doing so is not necessary for solving the problem at hand (Hubbard, Piazza, Pinel, & Dehaene, 2005).

Research on fractions provides an important basis for studying the ability to assess magnitudes of irrational
numbers that are represented as roots (e.g., %/H) because—just like fractions—these representations include
two whole number components (e.g., 3 and 41). Accordingly, when comparing the magnitudes of two irrational
numbers in that notation format, we can analyze the same behavioral patterns as we can with fractions.
Specifically, we can analyze whether accuracy and speed depend on the irrational numbers’ whole number
components or on the magnitudes of the irrational numbers as a whole. Moreover, like with fractions, one of the
whole number components (the radicand) of an irrational number is positively related to the overall magnitude
(i.e., increasing the radicand makes the number greater), while the other whole number component (the index)
is negatively related to the overall magnitude (i.e., increasing the index makes the number smaller). This way,
irrational number comparison problems, just like fraction comparison problems, can be classified as being
congruent (larger number is composed of larger components) or incongruent (larger number is composed of
smaller components) with natural number comparisons. Accordingly, we can assess whether people show a
natural number bias when comparing the magnitudes of irrational numbers. As in the case of fractions, an
empirical indication of a natural number bias in irrational number comparison would be greater accuracies and
lower response times on congruent compared to incongruent comparison problems.

The Present Study

We addressed the question of whether mathematically highly skilled adults can assess numerical magnitudes
of irrational numbers, presented in their (exact) symbolic format', to solve number comparison problems. We
also aimed to characterize their reasoning process in such problems. We presented numbers in “root notation”
(i.e., Ya), where the radicand a and the index n were natural numbers (i.e., we focused on algebraic numbers).
Paralleling previous research on fraction comparison, we included comparison problems in which the irrational
numbers either had common indices (e.g., i/ﬁ Vvs. 5/3—7), common radicands (e.g., f/@ Vvs. %/E), or no common
whole number components (e.g., Z/ﬁ VS. §/2_1). Within both the common component (CC) and the no common
component (No-CC) category, problems could be congruent (CO) or incongruent (IC) in terms of whole number
comparison. In congruent problems, the larger number is composed of the larger component(s), while in
incongruent problems, the larger number is composed of the smaller component(s). Problems without common
components, in which the larger number is composed of the larger radicand and the smaller index, are in this
sense neutral (N) because comparing the indices and comparing the radicands lead to contradictory results.
Table 1 provides an overview of the types of comparison problems we used in our study.

One can solve comparison problems with common components easily by comparing the components while not
assessing the number magnitudes. This is also true for the neutral problems with no common components,
because the number with the larger radicand and the smaller index is always the larger number. In contrast,
congruent and incongruent problems without common components require assessing the magnitudes of the
irrational numbers, because componential comparison does not allow for a valid conclusion.V
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Table 1

Overview of the Different Problem Types

Common Components

No Common Components

Congruent CC-CO No-CC-CO
Index1 = Index 2 Index 1 > Index 2
Radicand 1 > Radicand 2 Radicand 1 > Radicand 2
Number 1 > Number 2 Number 1 > Number 2
Example: 3/21 vs. 3/T4 Example: 5/84 vs. Y12
Incongruent CC-IC No-CC-IC

Radicand 1 = Radicand 2
Index 1 > Index 2
Number 1 < Number 2

Example: Z/E vs. 5\/4_8

Index 1 > Index 2
Radicand 1 > Radicand 2
Number 1 < Number 2

Example: 2/7—4 vs. %

Neutral - No-CC-N
Index 1 < Index 2
Radicand 1 > Radicand 2
Number 1 > Number 2

Example: /78 vs. ¥/52

Note. CC = common components, No-CC = no common components, CO = congruent, IC = incongruent, N = neutral.

Previous studies have shown that educated adults were fairly accurate about comparison problems with whole
numbers and comparison problems with fractions. For example, the academic mathematicians in the study by
Obersteiner et al. (2013) solved 97% of the fraction comparison problems correctly. As irrational number
magnitudes are presumably much more difficult to determine, we expected that participants would have to rely
on component comparison strategies whenever possible. As component strategies are less cognitively
demanding, we expected accuracy to be very high when component strategies were applicable (i.e., for
problems of types CC-CO, CC-IC, and No-CC-N), but substantially and significantly lower when component
strategies were not applicable (i.e., for problems of types No-CC-CO and No-CC-IC). For the same reason, we
expected response times to be shorter for CC-CO, CC-IC, and No-CC-N problems as compared to No-CC-Co
and No-CC-IC problems (Hypothesis 1).

Furthermore, we expected to find a natural number bias, because participants would heavily rely on component
strategies. That is, we expected to find significantly higher accuracy rates and lower response times for
congruent as compared to incongruent problems with common components (Hypothesis 2a). We also expected
to find higher accuracy rates and lower response times for congruent rather than incongruent problems without
common components (Hypothesis 2b).

As in previous studies on fractions, we analyzed the distance effect as an indicator of comparison strategies.
We distinguished between a distance effect for the magnitudes of the irrational numbers (hereafter: holistic
distance effect) and a distance effect for the whole number components (i.e., the indices and the radicands;
hereafter: component distance effect). We expected to find a holistic distance effect for problems of types No-
CC-CO and No-CC-IC because component strategies are not successful in these cases (Hypothesis 3a).
However, we did not expect to find a holistic distance effect for problems of the other types (Hypothesis 3b)
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because one can easily compare their magnitudes using component strategies. Theoretically, we would expect
to find a component distance effect for problems of types CC-CO, CC-IC, and No-CC-N because we expected
participants to rely on component comparison strategies rather than holistic strategies in these cases. However,
since the distance effect for whole numbers is known to decrease with age and level of expertise (Sekuler &
Mierkiewicz, 1977), it might be too small to be detectable in our sample of mathematically skilled adults. In fact,
Obersteiner et al. (2013) did not detect a component distance effect in academic mathematicians for fraction
comparison problems of which accuracy rates and response times strongly suggested that the participants
were actually relying on the fraction components rather than on the fraction magnitudes. It was therefore an
open question as to whether or not we would find a component distance effect for any type of comparison
problem.

Methods

Participants

The participants in this study were 45 mathematically skilled adults (mean age: 34.6 years; 17 female, 28
male). They were recruited at the Mathematical Department of a university in Germany. Twenty of the
participants had a Bachelor’s degree in mathematics (15) or physics (5) and were graduate students majoring
in mathematics or physics, respectively. Another 20 participants had a Master’s degree in mathematics and
were research assistants at the Mathematical Department of the university. Another five participants were
professors of mathematics. Although the participants in our study certainly do not engage in assessing
magnitudes of irrational numbers on a regular basis, we were confident that they had a sound concept of
irrational numbers and were perfectly able to understand the meaning of the symbolic notation of irrational
numbers.

Stimuli

We constructed 70 number comparison problems with irrational numbers that were represented as the nth root
of a (\/a), the index n and the radicand a being one-digit or two-digit natural numbers. As in previous research
on fraction processing, we created problems of each of the five different types detailed above (see Table 1; for
a list of all problems we used in this study, see Appendix). There were 14 problems of each type. In the first two
types of problems, the number pairs had common components, so that they were congruent (CC-CO) or
incongruent (CC-IC) with respect to whole number comparison. For all other problems, the number pairs did not
have common components. These problems without common components were either congruent (No-CC-CO),
incongruent (No-CC-IC), or neutral (No-CC-N) with respect to whole number comparison. The mean numerical
difference between the numbers of each pair was equal for all categories. This difference was always 0.20,
which is the same as in the fraction comparison study by Obersteiner et al. (2013). Furthermore, we
constructed the problems such that there were no correlations between the numerical distances among the two
components and between each component and the holistic magnitudes (indices-radicands distances: r(68) =
-.01, p = .908; indices-holistic distances: r(68) = .00, p = .992; radicands-holistic distances: r(68) = .09, p = .
449).
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Procedure

The participants worked on the problems individually in a quiet room at the university. The problems were
presented on a Laptop, using E-Prime software (Schneider, Eschman, & Zuccolotto, 2002). The participants
were instructed that they would see two numbers at a time, and that they should choose the greater one as
quickly and accurately as possible by pressing the corresponding left (‘f') or right (j') key on the computer
keyboard. There were two practice problems before the experiment started. The participants did not receive
any feedback, neither for practice nor test problems. The problems were presented in random order, and the
correct answer appeared equally often on the left and on the right side of the screen. Altogether, the
participants took about 15 minutes to finish the experiment.

Results

We used SPSS 23 to analyze the data. In line with data analysis procedures in previous studies on number
comparison, we excluded incorrectly solved problems (13.8%, see below) and problems for which the response
time deviated more than two standard deviations from the sample mean of the respective problem type
(another 3.7% of all problems) for analyzing response times. To compare mean response times between
problem types, we used paired samples f-tests. As accuracy data were not normally distributed, we used
nonparametric tests to compare accuracies between problem types. To analyze distance effects, we ran logistic
regression analyses to predict accuracy on the level of individual problems. We used multiple linear regression
analyses to predict response times on individual problems as well as sample mean accuracies and sample
mean response times.

Differences Depending on the Applicability of Component Strategies

Table 2 provides an overview of accuracies and response times for the problems of the five different types.

Overall, accuracy rate was 86%, which is fairly high but somewhat lower than the academic mathematicians’
accuracy rate on fraction comparison problems (97%) reported by Obersteiner et al. (2013). However, there
were substantial differences between problem types. In line with Hypothesis 1, participants were significantly
more accurate regarding problems for which assessing the magnitudes of the components was sufficient (CC-
CO, CC-IC, No-CC-N), compared to those problems for which this was not the case (No-CC-CO, No-CC-IC)
(97% versus 71%), z = 5.84, p < .001, r = 0.62. There was also a significant response time difference between
the problems of these two types, t(44) = 8.56, p < .001, d = 1.28, with lower response times for the former
compared to the latter type of problems (3604 ms vs. 5540 ms).
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Table 2

Means and Standard Deviations of Accuracy Rates and Response Times (on Correctly Solved Items), Depending on Problem Type

Accuracy (%) Response Time (ms)
Type M SD M SD
cc 97.22 3.87 3218 747
Cc-Cco 96.19 6.91 2986 788
CcC-IC 98.25 3.78 3451 870
No-CC 78.94 8.07 5620 2085
No-CC-CO? 51.59 28.73 7502 3749
No-CC-IC 89.84 9.81 5012 1758
No-CC-N 95.40 747 4568 1584
All 86.25 5.40 4659 1485

Note. M = Mean, SD = standard deviation, CC = common components, No-CC = no common components, CO = congruent, IC =
incongruent, N = neutral.

aDue to our exclusion criteria (described in the first paragraph of the Results section), the sample size is reduced to 43 for No-CC-CO
problems (i.e. for two persons all No-CC-CO were excluded).

Natural Number Bias

Among those problems that had common components, there was no significant difference between congruent
and incongruent problems in terms of the accuracy rates, z = 1.68, p = .094, suggesting that there was no
natural number bias for these problem types in terms of accuracy. However, there was a significant and
substantial difference between congruent and incongruent problems in terms of response times, t(44) = 4.32,
p < .001, d = 0.64, with longer response times for incongruent rather than for congruent problems. Together,
these results partly support Hypothesis 2a in the sense that there were “traces” of a natural number bias in
terms of response times but not accuracy.

Among those problems that had no common components, the difference between the accuracies of congruent
and incongruent problems was large and highly significant, z = 5.01, p < .001, r = 0.53. However, the direction
of this difference was counter to our expectation (Hypothesis 2b): while accuracy was very high with respect to
incongruent problems (90%), it was only 52% with respect to congruent problems. For the congruent problems,
accuracy did not significantly differ from random chance level (50%), z = 0.38, p = .707. The response times for
congruent and incongruent problems revealed the same unexpected difference, namely, significantly longer
response times for congruent than for incongruent problems, {(42) = 4.96, p < .001, d = 0.76.

These results suggest that participants not only struggled more with congruent than with incongruent
comparison problems, but were actually unable to find successful strategies to solve the congruent comparison
problems while being well able to solve the incongruent comparison problems. The analyses of the distance
effects will reveal whether the participants relied on assessing the magnitudes of the irrational numbers, or on
component strategies alone (which, however, should have resulted in better performance on congruent than
incongruent problems).
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Distance Effects

To analyze whether the participants engaged in processing the magnitudes of the irrational numbers or of their
components, we ran multiple regression analyses, including the distance between the indices, the distance
between the radicands, and the distance between the irrational numbers as predictors. For No-CC-CO and No-
CC-IC problems, we ran these analyses with both accuracy and—in a separate analysis—response times as
the dependent variables. However, for problems of types CC-CO, CC-IC, and No-CC-N, we ran only these
analyses which had response times as the dependent variable. The reason was that for the latter problem
types, accuracies were extremely high (> 94%), so that linear regression analyses would not yield reliable
results.

For modeling accuracy data of No-CC-CO and No-CC-IC problems, we ran the regression analyses twice.
First, we ran a linear regression analysis on the sample level, using the sample mean accuracy as the data
point for each numerical distance value. Table 3 displays the results of this analysis.

Table 3

Results of the Multiple Linear Regression Analyses With Numerical Distances as Predictors and Sample Mean Accuracy as the Depending
Variable, for Each Type of Problems

Type Predictor B SE B B P R?

No-CC-CO .67
Dist_Indices -0.05 0.02 -.65 .024
Dist_Radicands 0.00 0.00 .26 .352
Dist_Numbers 0.44 0.19 .51 .037

No-CC-IC .54
Dist_Indices 0.01 0.01 .24 .309
Dist_Radicands -0.00 0.00 -.67 .018
Dist_Numbers -0.03 0.10 -.08 737

Note. Dist_Indices = distance between indices, Dist_Radicands = distance between radicands, Dist_ Numbers = distance between the
irrational numbers, No-CC = no common components, CO = congruent, IC = incongruent.

In a second analysis, we ran a binary logistic regression, using 45 data points (one per participant) for each
numerical distance value. Table 4 displays the results of this second analysis.

Although the first regression analysis explained much more variance in the accuracy data than the second one,
both types of analyses yielded the same overall pattern of results: for the No-CC-CO problems, the distance
between the irrational numbers as well as the distance between the indices were significant predictors of
accuracies. This result suggests that for these problems, the participants at least tried to assess the irrational
number magnitudes to some extent. However, considering their low accuracies, they were not very successful
in doing so. On the contrary, they may have made systematic mistakes on the most difficult problems featuring
small numerical distances (accuracies far below 50%). Interestingly, while the distance between the irrational
numbers was positively related to accuracies, the distance between indices was negatively related to
accuracies. We will discuss an interpretation of this finding in the discussion section below.
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Table 4

Results of the Multiple Binary Logistic Regression Analysis With Numerical Distances as Predictors and Accuracy as the Depending
Variable, for Each Type of Problems

Type Predictor B SE B p Nagelkerkes R?
No-CC-CO .10
Dist_Indices -0.22 0.06 .000
Dist_Radicands 0.01 0.01 121
Dist_Numbers 1.91 0.53 .000
No-CC-IC 10
Dist_Indices 0.10 0.07 .138
Dist_Radicands -0.04 0.01 .001
Dist_Numbers -0.20 0.92 .833

Note. Nagelkerkes R? is an estimate of the variance explained by the logistic regression model. Dist_Indices = distance between indices,
Dist_Radicands = distance between radicands, Dist Numbers = distance between the numbers, No-CC = no common components, CO =
congruent, IC = incongruent.

Table 5

Results of the Multiple Linear Regression Analysis With Numerical Distances as Predictors and Sample Mean Response Times on
Correctly Solved Items as the Depending Variable, for Each Type of Problems

Type Predictor B SE B B P R?

CC-CO 11
Dist_Radicands 3.85 3.70 .36 .321
Dist_Numbers -88.33 446.72 -.07 .847

CC-IC .20
Dist_Indices 48.38 36.33 .36 .210
Dist_Numbers 249.33 311.15 22 440

No-CC-CO .02
Dist_Indices -89.59 199.54 -.19 .663
Dist_Radicands 4.20 19.04 10 .830
Dist_Numbers -163.47 1966.97 -.03 .935

No-CC-IC .57
Dist_Indices 44.08 53.68 .18 431
Dist_Radicands 34.14 12.31 .64 .020
Dist_Numbers -950.43 959.64 -.23 .345

No-CC-N .70
Dist_Indices -39.74 48.07 -.15 428
Dist_Radicands 20.85 5.65 .68 .004
Dist_Numbers -847.14 528.02 -.29 140

Note. Dist_Indices = distance between indices, Dist_radicands = distance between radicands, Dist_ Numbers = distance between the
numbers, CC = common components, No-CC = no common components, CO = congruent, IC = incongruent, N = neutral.

For the No-CC-IC problems, the distance between the radicands, but no other distance, was a significant
predictor of accuracies. This result suggests that the participants relied on comparing the radicands rather than
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the magnitudes of the irrational numbers. However, we should interpret this result with caution because
accuracies were relatively high for the No-CC-IC problems (90%), which, as mentioned earlier, limits the
reliability of the linear regression analyses.

For the response times as the dependent variable, we ran the regression analyses separately for all types of
comparison problems. Again, we ran each analysis twice. First, we used the sample mean response times for
each numerical distance value. Table 5 displays the results of this analysis.

In a second analysis, we used all 45 response times (one per participant) for each numerical distance value.
Table 6 displays the results of this second analysis.

Table 6

Results of the Multiple Linear Regression Analysis With Numerical Distances as Predictors and Response Times on Correctly Solved ltems
as the Depending Variable, for Each Type of Problems

Type Predictor B SE B B P R?

CC-COo .00
Dist_Radicands 3.77 3.92 .05 .337
Dist_Numbers -79.85 471.24 -.01 .866

CC-IC .01
Dist_Indices 48.78 33.82 .06 .150
Dist_Numbers 244.85 294.04 .03 405

No-CC-CO .00
Dist_Indices 38.60 175.69 .02 .826
Dist_Radicands 3.20 14.50 .02 .825
Dist_Numbers -154.78 1396.57 -.01 912

No-CC-IC .03
Dist_Indices 44.49 45.54 .04 .329
Dist_Radicands 32.70 11.18 14 .004
Dist_Numbers -960.80 829.14 -.06 247

No-CC-N .02
Dist_Indices -40.51 71.86 -.02 573
Dist_Radicands 21.08 8.44 1 .013
Dist_Numbers -863.63 775.87 -.05 .266

Note. Dist_Indices = distance between indices, Dist_Radicands = distance between radicands, Dist_ Numbers = distance between the
numbers, CC = common components, No-CC = no common components, CO = congruent, IC = incongruent, N = neutral.

While the first type of analysis could explain a substantial portion of the variance in response times, the second
type of analysis had poor explanatory power. As with the accuracy data, however, both types of analyses
yielded the same pattern of results. The distance between the irrational numbers was not a significant predictor
of response time for the problems of any type. This result suggests that the participants did not rely on the
irrational number magnitudes to solve the comparison problems of any of the problem types.
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For incongruent and neutral problems without common components, the distance between the radicands was a
significant predictor of response times, suggesting that the participants relied predominantly on comparing the
radicands to solve the comparison problems of these types.

In sum, the analyses of distance effects are largely not in line with Hypothesis 3a, which predicted holistic
distance effects for comparison problems without common components. The only holistic distance effect we
could detect regarded accuracies on congruent problems without common components. Unexpectedly, we
found a small distance effect for the components (indices in case of congruent problems, radicands in case of
incongruent and neutral problems) for problems without common components. In line with Hypothesis 3b, we
did not find holistic distance effects for those problems for which component strategies are valid. However, we
did not find component distance effects for these problems either. We will discuss these results in the next
section.

Discussion

We investigated whether mathematically skilled adults are at all able to readily assess magnitudes of irrational
numbers presented in symbolic notation. Our study extends previous research that has amply shown that
educated adults are able to assess magnitudes of number symbols for integers and fractions.

Participants in our study were able to correctly solve almost all problems for which component strategies were
applicable (i.e., problems of type CC-CO, CC-IC, and No-CC-N). This finding suggests that mathematically
skilled adults are able to choose very efficient component strategies—and avoid holistic strategies—to solve
problems for which these component strategies are valid. In line with that interpretation, the participants were
less accurate for comparison problems for which component strategies were not valid (i.e., problems of type
No-CC-CO and No-CC-IC). Although we would theoretically expect to find a component distance effect if
participants relied on component strategies, we found this effect neither for the radicands nor for the indices for
any of the comparison problems with common components. As mentioned earlier, it is likely that although
participants actually used component strategies, the component distance effects were too small to be
detectable in our sample of mathematically skilled adults. We should also note that due to the restrictions we
set for constructing the items, there was not much variation among the indices between comparison problems
within each problem type, which makes it less likely to detect a distance effect for these indices.

Surprisingly, while accuracy rates were rather high for incongruent problems without common components,
they were at random chance level for congruent problems without common components. The low accuracies
for congruent problems suggest that the participants were not able to assess the magnitudes of the irrational
numbers. The question is how the participants were able to solve most of the incongruent problems correctly,
since there is no straightforward alternative strategy (such as a component strategy) for these problems either.
To find an answer to that question, we looked for systematic differences between the congruent and
incongruent problems other than congruency. The differences in the numerical distances between the
components might explain the results: while the mean numerical distance between indices was similar between
congruent (3.00) and incongruent (4.07) problems, the mean numerical distance between radicands was much
higher for congruent (61.57) than for incongruent (16.29) problems. This is necessarily the case, given the
constraint that the number ranges of the irrational number components as well as the irrational number
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magnitudes were comparable between problem types. For an irrational number with a larger index to be the
larger number (a defining feature of congruent problems), it is necessary to greatly increase the radicand. The
participants in our study might have used an approximation strategy: if the distance between the radicands is
relatively small, one can assume the radicands are equal and choose the number with the smaller index as the
larger number. As even small differences in the indices strongly affect the size of the irrational numbers,
comparing the indices yields reliable information in these cases. In fact, choosing the number with the smaller
index was (by definition) a successful strategy for all the incongruent problems. The “reverse” distance effects
for the radicands of the No-CC-IC problems support our interpretation: The distance between radicands was
positively related to response times and slightly negatively related to accuracies (see Tables 3 and 4 for
accuracy data, and Tables 5 and 6 for response time data). This means that our participants struggled more
with comparison problems when the distance between the radicands was larger than when it was smaller,
presumably because it was more difficult for them to use the approximation strategy in the former case than in
the latter.

Following this interpretation, we would also expect a distance effect for the indices of the No-CC-IC problems,
because after assuming that the radicands are equal, one has to compare the values of the indices. We did not
find such a distance effect for the indices, which might, however, be due to the reasons discussed in the
Introduction and earlier in this section.

In contrast to the incongruent problems without common components, the supposed approximation strategy
(assuming the radicands are equal and choosing the number with the smaller index) was not applicable for the
congruent problems without common components, because the distances between the radicands were too
great. In fact, in these types of problems, the distances between the radicands were always so great that the
number with the smaller index always had the smaller numerical value. The participants in our study might have
overestimated the effect of the index on the magnitude of the irrational number, which would explain the
difference in accuracies between congruent and incongruent problems without common components. Together,
the data suggest that the participants in our study did not find valid strategies other than component strategies
(including approximation regarding these components) for comparing the magnitudes of irrational numbers.

The analyses of distance effects support our conclusion that the participants did not engage in processing the
magnitudes of the irrational numbers as a whole. We found no holistic distance effects for any type of
comparison problems, except for accuracy in the congruent problems without common components. This
means that only for this type of problems did the participants engage in assessing the magnitudes of the
irrational numbers as a whole to some extent, but often failed to do so successfully. In fact, mean accuracies for
many of the congruent problems without common components were far below chance level, suggesting that the
participants made systematic errors on some problems. The finding that the distance between indices was
negatively related to accuracies in problems of type No-CC-CO might support our interpretation that the
participants overestimated the influence of the index on the numerical value of the irrational numbers. While for
the No-CC-IC problems, a larger index always meant a smaller number, the reverse was true for the No-CC-CO
problems.

The methodology of this study does not allow final conclusions concerning our participants’ strategies, because
accuracies and response times are an only indirect measure of strategy use. Furthermore, we analyzed data on
the level of the whole sample but not on an individual level. Further studies could analyze individual solution
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strategies to provide more insights into individual participants’ reasoning processes. Individual interviews with
retrospective verbal reports or think aloud protocols (as described, e.g., in Ericsson & Simon, 1980) could be a
suitable method for that purpose. The challenge of assessing individual strategies with these methods is,
however, that assessing number magnitudes is a partly automated process, at least regarding the natural
number components. Therefore, educated adults might struggle with explaining their solution strategies in
every detail. An alternative method that could be used in combination with response times measures and verbal
reports is eye tracking. Recently, this method has been used successfully in fraction processing studies (Huber
et al., 2014; Ischebeck, Weilharter, & Korner, 2016; Obersteiner & Tumpek, 2016).

We found a natural number bias for problems with common components in terms of response times but not
accuracies. This finding is in line with previous research that has detected a natural number bias in comparison
problems with fractions (Van Hoof et al.,, 2013). It is particularly in line with research on academic
mathematicians who solved almost all fraction comparison problems correctly but showed a natural number
bias in terms of response times in problems with common components (Obersteiner et al., 2013). It seems that
the natural number bias is particularly likely to occur in problems in which participants focus strongly on the
natural number components (Alibali & Sidney, 2015; Obersteiner, Van Hoof, Verschaffel, & Van Dooren, 2016).

We did not find a natural number bias for problems without common components. On the contrary, the
participants were particularly inaccurate and slow in solving congruent problems without common components,
but highly accurate and much faster in solving incongruent problems. As discussed above, these differences
might be due to other task features, so that we cannot conclude that participants were actually not biased.

This study suggests that even mathematically skilled adults struggle with assessing the magnitudes of irrational
numbers. The study thus challenges the idea that quickly assessing numerical magnitudes is an essential part
of numerical abilities beyond rational numbers. If quick assessment of magnitudes was essential for being
competent with real numbers in general, then people with high mathematical skills should be able to assess
magnitudes also of irrational numbers, even if doing so might be more demanding and time-consuming than for
rational numbers. Although the participants spent most time on the congruent problems without common
components, they performed only at random chance level. It seems that assessing magnitudes for irrational
numbers is extremely demanding and cannot be achieved with straightforward strategies.

In view of evidence showing that activating magnitudes of natural numbers is much easier than activating
magnitudes of fractions, some researchers have argued that the human cognitive architecture is privileged for
processing natural numbers (Feigenson, Dehaene, & Spelke, 2004). Other researchers have contested this
view (Huttenlocher, Duffy, & Levine, 2002; Matthews & Chesney, 2015), arguing that adults can process ratios
via perceptual routes, and that even young children have a basic understanding of ratios. Processing non-
natural numbers might be more challenging just because people have less experience with non-natural
numbers, rather than because of a general cognitive disposition. Our study seems to suggest that human
cognitive architecture is limited in the sense that it cannot readily assess the magnitudes of irrational number
symbols. However, our participants’ low performance on the most challenging problems (types No-CC-CO)
might be due to the fact that they have encountered irrational numbers too infrequently to be able to quickly
assess their magnitudes. It would be interesting to see whether people could improve their ability to assess
magnitudes of irrational numbers after specific practice.
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In view of its implication for education, this study suggests that assessing magnitudes can be extremely difficult
even for mathematically skilled adults. While quickly assessing the magnitudes of number symbols is a feasible
goal for specific cases of irrational numbers (e.g., 42 or ), it might be impossible to reach such a goal for
irrational numbers in general. In fact, assessing magnitudes of irrational numbers in general is not an explicit
goal of current mathematics curricula. The boundaries of quick magnitude assessment for irrational numbers,
however, do not limit the important goal of students acquiring an understanding of the concept of irrational
numbers as such, as well as an understanding of the meaning of their symbolic notation. This goal might also
include the ability to compare irrational numbers in special cases, where comparison can be based on the
irrational number components. Further research could investigate to which extent these goals are reached
through current teaching methods.

Notes

i) Note that in academic mathematics, other numbers exist (such as complex numbers), which do not have magnitudes in
this sense. That is, there is no order relation for these numbers, so it is not possible to decide which of two numbers is
“larger”.

ii) Note that there are also rational numbers that have an infinite number of digits after the decimal point (those with
recurrent decimals such as 1/3 = 0.333...). However, for these numbers it is possible to notate all recurrent digits (because
their number is finite), whereas this is not the case for irrational numbers. This means that irrational numbers cannot be
represented in decimal notation.

ii) Note that in the reminder of this article, we use the term “irrational numbers in their symbolic notation” or simply
“symbolic notation” to refer to the exact value of irrational numbers presented with the root sign. We do not refer to the
decimal notation of numbers, which would only allow approximate representations of irrational number values.

iv) Of course, if one is informed about the category of the comparison problem (congruent or incongruent), one can make
valid decisions without assessing the number magnitudes. However, participants are typically not informed about the
problem category. This was also not the case in our study.
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Appendix: List of Number Comparison Problems of Each Type

Common Components

Common Components

No Common

No Common

No Common

Congruent Incongruent Components Congruent Components Components Neutral
(CC-CO) (cc-Ic) (No-CC-CO) Incongruent (No-CC-N)
(No-CC-IC)

%/ﬁ 3 3 6 7 8 7 4 4 5

vs. 321 V13 vs. V13 V13 vs. 321 V21 vs. Y13 V13 vs. /12
‘\L/ﬁ vs. W % vs. 126 ‘\Lﬁ vs. ?/ﬁ 2/% vs. /84 23 vs. |22
303 vs. 337 Y3 vs. 343 1556 vs. 198 867 vs. Y74 1213 vs. 't
Y15 vs. Y60 B¥15vs. B15 %3 vs. 834 15 vs. 210 115 vs. Y10
123 vs. |[T8 853 vs. 52 1254 vs. 138 52 vs. 59 853 vs. /78
802 vs. /88 1261 vs. "Y1 1326 vs. 1953 193 vs. 355 Y02 vs. 38T
%/ﬁvs.?/@ Z/éﬁvs.m %/ﬂvs.%/ﬁ ?/Bvs. 13/@ ](\)/5_5 vs.2/7_0
53 vs. 193 V34 vs. 1332 91T vs. 12186 934 vs. 168 1776 vs. 78
Wsavs. izt 278 vs. 1178 A vs. /90 23 vs. 1929 956 vs. 152
12187 vs. 1223 1255 vs. 1325 18 vs. 42 Y63 vs. /85 383 vs. 1372
B3A1 vs. Y76 Yaavs. Y7 217 vs. Y72 36 vs. 1953 s vs. 1275
7R85 vs. 65 1326 vs. 1926 W7 vs. 195 1357 vs. 1973 Y37 vs. a3
1355 vs. 1332 6a vs. Y64 1805 vs. 1315 Yz vs. a0 ?/ﬁ vs. W
Y16 vs. Va4 B33 vs. 1233 Y89 vs. 33 Weavs. 827 W3avs. Y13
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