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Section 1: Algorithms 

Algorithm 1: CSSCA 

Input: the concatenated data matrix X (N×J), the number of clusters K, and the number of starts Q, the number of 
sparseness-induced zeros Z (in the loading matrix), and the position vector Wdis that indicates the positions of the 
distinctiveness-induced zeros.  
Initialize the converge rate ε, the maximal number of iterations allowed Itermax and the minimal total loss Lossglobal 
(initially Lossglobal  is set to an arbitrary large number) 
Scale the data matrix X, such that the mean and the variance of each variable equals 0 and 1, respectively 
FOR each start q (q = 1,2,…,Q), DO 

Initialize the semi-random starting partition Hq, with the ith element Hq[i] reprsenting the cluster index of 
observation i (see Section 2 for details)  
Initialize the total loss of the current start Lossq to an arbitrary large number, the total loss calculated at a specific 
iteration Losscurrent to 0, and the number of iterations that have been executed Iterq = 0 
WHILE ((Lossq – Losscurrent) > ε and (Iterq < Itermax)), DO 

               Update Iterq = Iterq + 1 
IF the first iteration, DO 

FOR each cluster k, DO 
Estimate the Sparse DISCO-SCA solution (see Algorithm 2) with multiple random starts and 
obtain the cluster-specific loss Lossq_k, the cluster-specific score matrix Tq_k and loading matrix 
Pq_k. 

END FOR 
Calculate the total loss value Losscurrent = ∑  𝑘 Lossq_k  

END IF 
Update Lossq = Losscurrent 
FOR each observation i in the concatenated data matrix X, DO 

Obtain the current cluster assignment of i: c = Hq[i] 
FOR each cluster k, DO 

IF k equals c, DO 
Estimate the Sparse DISCO-SCA solution for projected cluster s that removes the 
observation i. A single user-specified start Pq_k is used (see Algorithm 2). Obtain Lossq_s, Tq_s, 
and Pq_s. 
When the observation i stays at cluster k, the total loss will not change Losscurrent_k = Losscurrent 

END IF 
IF k does not equal c, DO 

Estimate the Sparse DISCO-SCA solution for projected cluster b that adds in the observation 
i. A single user-specified start Pq_k is used. Obtain Lossq_b, Tq_b, and Pq_b. 
Compute the total loss Losscurrent_k if the observation i is moved from cluster c to cluster k in 
the iteration: Losscurrent_k = Losscurrent - Lossq_k - Lossq_c + Lossq_s + Lossq_b 

END IF 
END FOR 
Assign the i Cluster b that minimizes Losscurrent_k: Hq[i] = b where Losscurrent_b = min

𝑘
𝐿𝑜𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑘 

Update the total loss Losscurrent = Losscurrent_b，and the score and loading matrices of the newly 
formulated clusters (i.e. s and b) 

END FOR 
END WHILE 
If Losscurrent < Lossglobal, DO 

Update Lossglobal = Losscurrent, and update the corresponding cluster partitions, score and loading matrices 
END IF 

END FOR 



Algorithm 2: Sparse DISCO-SCA 

Input: the concatenated data matrix of a specific cluster X (Nk × J), the number of starts Q, the number of sparseness-
induced zeros Z (in the loading matrix), and the position vector Wdis. When the loading matrix is expected to be 
specified by the user, the starting loading matrix Prational is also required 
Initialize converge rate ε, the maximal number of iterations allowed Itermax and the minimal loss Lossglobal (initially 
Lossglobal  is set to an arbitrary large number) 
Column-wise mean-center the data matrix X 

IF loading matrix is expected to be specified by the user, DO 
Q = 1, Pq = Prational 

END IF 
FOR each start q (q = 1,2,…,Q), DO  

Initialize the loss of the current start Lossq to an arbitrary large number, the loss calculated at a specific iteration 
Losscurrent to 0, and the number of iterations that have been executed Iterq = 0  
IF loading matrix is expected to be randomly generated, DO 

Initialize loading matrix Pq: each entry pkr is generated from a uniform distribution U [-1, 1] 
END IF 
WHILE ((Lossq – Losscurrent) > ε and (Iterq < Itermax)), DO 

Update Iterq = Iterq + 1 
       IF not the first iteration, DO 

Update Lossq = Losscurrent 
END IF 
Perform singular value decomposition 𝐏𝒒

𝑻𝐗𝑻 =  𝐔𝚺𝐕𝑻  
Update the score matrix Tq  𝐓𝒒 = 𝐕𝐔𝑻 
Update the loading matrix Pq  𝐏𝒒 = 𝐗𝑻𝐓𝒒 
Impose the distinctiveness-induced zeros on Pq based on Wdis 
Impose the sparseness-induced zeros on Pq: the smallest Z loadings of Pq (except for the distinctive-induced 
zero loadings) are imposed to be zero. 
Calculate and Update the loss Losscurrent = ||𝐗 − 𝐓𝒒𝐏𝒒

𝑇||2
2 

END WHILE 
IF Losscurrent < Lossglobal, DO 

Update Lossglobal = Losscurrent, and update the corresponding score and loading matrices 
END IF 

END FOR 
 

 

 

 



Section 2: Technical Minutiae of Algorithm 1 

1. The starting partitions of the algorithm. As explained in the main text, to reduce the probability of 

ending in a local minimum (instead of a global one), we utilize a multi-start procedure in the 

algorithm. The multiple starting partitions are created on the basis of the partitioning results of the 

two other clustering methods: Clusterwise PCA and iCluster.  

Clusterwise PCA is in principle a simplified version of CSSCA that is applied on the concatenated 

dataset. The major difference between Clusterwise PCA and CSSCA is that the former estimates 

non-sparse loading matrices and does not distinguish between common components and distinctive 

components. We have noticed that similar approaches have been proposed in statistics (for example 

McWilliams, & Montana, 2014), despite notable differences in estimation procedures. Because of its 

model configuration, we expect the resulting cluster recoveries of Clusterwise PCA to be fairly 

similar to the true clusters when the component structure accounts for a large proportion of the total 

variance (e.g., b = 10%). The algorithm of Clusterwise PCA is also implemented in the package 

ClusterSSCA. 

On the other hand, as argued in the main text, iCluster partitions the observations mainly based on 

the mean structure. Therefore, we expect the resulting cluster recoveries of iCluster to be similar to 

the true clusters when the proportion of mean-level differences is large (e.g., b = 90%). The 

algorithm of iCluster is provided in the R package iCluster (Shen et al., 2008, 2012).  

To ensure that CSSCA performs well at different levels of b, we generate the starting partitions of 

CSSCA based on the results of both Clusterwise PCA and iCluster. More specifically, two of the 

starts (which are called “user-specified starts”) are cluster partitions produced by Clusterwise PCA 

(which is labelled Hc; we further name its resulting partition Hcr) and iCluster (which is labelled Hi; 

we further name its resulting partition Hir). The other starts (which are called “semi random starts”) 

are generated by randomly changing the cluster memberships of a certain amount of observations in 

Hc or Hi. When the similarity between Hc and Hcr is larger than the similarity between Hi and Hir, the 

component structure is probably more important, therefore, Hc is used to generate the semi random 

starts; otherwise, Hc is used to generate the semi random starts. 



2. Restrictions on the model parameters. Some restrictions concerning model parameters apply to 

CSSCA. First, during the iterations, the number of observations of every cluster should always be 

larger than the number of components.  If this condition is not met, the CSSCA analysis with the 

package ClusterSSCA will automatically cease estimation following the current starting partition, 

and the total loss associated with the current starting partition will be set at an invalid value of 1e9. 

We should also note that the failure to meet the restriction indicates that the number of clusters is 

potentially over-estimated.  



Section 3: Data Generation Procedure 

A partition matrix H with size N × K was first generated (note that this is different from the partition indictor 

vector H as described in the algorithm, though H and H are easily transferable), to represent the true cluster 

partitions. This was a binary matrix with the “1”s indicating cluster memberships.  For example, if subject n 

belonged to cluster k, then the entry in row n and column k was equal to one while the other entries in that 

row n equaled zero, since CSSCA restricts each subject to only belong to a cluster. As a result, each row of 

H contained one and only one non-zero entry. 

Equation (4) in the main text expresses the observed data matrix Xcon as the addition of three parts: the 

component structure part Xcomp, the mean structure part Xmean, and the noise part E. In the simulation, the 

average variance of the variables was equal to 1, among which e was attributable to E and a total of 1−e to 

Xcomp and Xmean. Subsequently, a fraction b of the remaining variance was further attributed to the mean 

structure and 1−b to the component structure (note that as the average variance of all variables was equal to 

one, the average variance attributable to the component structure was (1−e)(1−b)). In what follows, the data 

generation procedures for the three parts are detailed. 

To construct the component structure part, for each cluster k, the component score matrix (with dimension 

Nk × R) was generated as follows: (1) each entry was initially sampled from the univariate standard normal 

distribution, (2) the resulting matrix was column-wise mean-centered and (3) to ensure that the component 

scores were orthonormal, the Gram-Schmidt orthonormalization was applied to each score matrix. To set the 

variance – rather than the sum-of-squares – of each component equal to 1, we then multiplied each entry of 

the score matrices by the square root of the corresponding cluster size.  

We then constructed the component loading matrices (with dimension J × R), where we first generated a 

component loading matrix for each cluster, and then imposed distinctiveness-induced zeros and sparseness-

induced zeros, as follows. 

1. A different procedure is used to create the non-sparse version of the loading matrices in the high-

congruence and low-congruence conditions. 

 For the low-congruence condition, each element in the cluster-specific loading matrices was 



obtained initially by uniformly sampling from the range of −1 to 1. Subsequently, the resulting 

matrix was rescaled such that the sum-of-squares of each row equaled 1.  

 For the high-congruence condition, in addition to the cluster-specific matrices, generated as 

described above, a common base matrix was also generated. The entries of the common base 

matrices were also uniformly sampled from the range of −1 to 1. Afterward, these matrices were 

re-scaled such that the sum-of-squares of each row equaled 0.7 for the common base matrix and 

0.3 for the cluster-specific matrices. The final cluster-specific loading matrices were then 

obtained by adding the common base matrix to the cluster-specific matrices. 

2. The distinctiveness-induced zero loadings were introduced to the cluster-specific loading matrices, 

in order to structure the distinctive components, as shown in Figure 2. More specifically, for the lth (l 

= 1, 2) distinctive component, the loadings of the variables that did not belong to the lth data block 

were set to zero. 

3. Then, the sparseness-induced zero loadings were also imposed on the cluster-specific loading 

matrices. The number of the sparseness-induced zero loadings Z is jointly determined by the level of 

sparsity S, the block-specific number of variables and components. In the current simulation, Z 

equaled 3 × J × S. We selected Z of the remaining non-zero entries in each cluster-specific loading 

matrices – after imposing the distinctive-induced zero loadings in the previous step – and imposed 

these entries to zero. For the low-congruence condition, the Z positions in each cluster-specific 

loading matrix were selected randomly. For the high congruence condition,  about 70% × Z (or 

more concretely, the largest positive integer that is smaller than 70% × Z) zero positions were 

random selected and were identical across all clusters while the remaining zero positions were 

selected randomly for each cluster.  

4. Finally, we re-scaled the cluster-specific loading matrices such that the average sum-of-squares of 

each row equaled (1 – b)  (1 – e). 

For each cluster, the component structure part of the data was constructed by multiplying its score matrix 

and the transpose of its loading matrix.  Xcomp was then created by stacking together vertically the cluster-

specific component-structure part according to the cluster assignment of each observation. 



To quantify the degrees of similarities between the resulting cluster-specific loading matrices, we computed 

Tucker’s congruence coefficient φ for each pair of the corresponding components and averaged them across 

all components and clusters. Formally, φ between two vectors x and y is defined as their normalized inner 

product: φ = 𝑥′𝑦

√𝑥′𝑥√𝑦′𝑦
 (Tucker, 1951). In the simulated datasets, the average congruence coefficients equaled 

0.18 (SD = 0.07) in the low congruence conditions and 0.53 (SD = 0.01) in the high congruence conditions.  

As the first step in the creation of Xmean, the K × J cluster centroids matrix M was created where each row k 

(k = 1, 2, …, K) represented the centroids of cluster k. Each entry in M was randomly sampled from the 

univariate uniform distribution U (-1, 1). We then created a preliminary version of the mean structure 

Xmean_pre by multiplying H and M. Subsequently, we re-scaled each column of Xmean_pre such that the 

variance equaled b * (1 - e) in the resulting mean-structure part Xmean.  

Last, the each entry of the error matrix E was randomly sampled from a univariate normal distribution N (0, 

√𝑒)  

The final concatenated data was constructed by summing Xcomp, Xmean and E. 

 

 



 

Section 4: Supplementary Report on the Clustering Accuracy of CSSCA  

In addition to the results reported in the section Simulation Studies of the original article, we report hereafter 

the average clustering accuracy of CSSCA as a function of the other six factors. We found that, on average, 

CSSCA resulted in better clustering accuracy when (1) the total number of variables J was larger (ARI = 1 

when J = 65 and ARI = 0.99 when J = 30), (2) the number of clusters K was larger (ARI = 0.997 when K = 

4 compared to ARI = 0.991 when K = 2), (3) the cluster size Nk was larger (ARI = 0.996 when the largest 

cluster includes 100 observations, and ARI = 0.992 when the largest cluster includes 50 observations), (4) 

the cluster sizes were identical across all clusters (ARI = 0.995 when all clusters have the equal number of 

observations compared to ARI = 0.993 when all clusters have unequal number of observations), (5) the 

congruence between the cluster-specific loading matrices φ was lower (ARI = 0.997 when φ = about 0.2 , 

and ARI = .992 when φ = about 0.55), and (6) the level of sparsity S was larger (ARI = 0.995 when S = 0.5 

or 0.7, and ARI = 0.985 when S = 0.3), 

 

 


