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Abstract
Number line estimation tasks have been considered a good indicator of mathematical competency for many years and are traditionally
analyzed by fitting individual regression curves to individual responders. We innovate on this technique by applying growth mixture
modeling and compare it to traditional regression using a sample of 2nd graders (n = 325) who completed both 0–20 and 0–100 number
line tasks. We explore the effects of gender, special education needs, and migration background. Using growth mixture modeling, more
children were identified as logarithmic responders than were identified using regressions. Growth mixture modeling was able to identify the
significant effects of gender on class membership for both tasks, and of special education needs for the 0–20 task. Overall, growth mixture
modeling provided a more complete picture of individual response patterns than traditional regression techniques. We discuss the
implications of these findings and provide recommendations for future researchers to use growth mixture modeling with future number line
task analyses.
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Number line estimation is a well-developed task with clear correlates to the development of numerical cognition
(Fazio, Bailey, Thompson, & Siegler, 2014; Friso-van den Bos et al., 2015; Schneider, Thompson, & Rittle-
Johnson, 2018; Siegler, Thompson, & Schneider, 2011). Since its early research (e.g., Opfer & Siegler, 2007;
Siegler & Booth, 2004; Siegler & Opfer, 2003), a great deal of literature has contributed to its development
with few advances in analysis. Common analyses fit linear, logarithmic, power, segmented linear, or other
regression curves to number line responses, creating a graphical depiction of either individual or aggregate
response patterns. Opfer and Siegler (2007) used this technique to describe the progression of children from
logarithmic to linear response patterns. Rouder and Geary (2014) further developed this technique to examine
multiple possible curvilinear regression patterns. Then, curves were compared based upon absolute error with-
out accounting for the probability that the underlying representation of a child is actually linear or logarithmic.
This paper innovates on traditional number line analyses techniques by using growth mixture modeling (Ram
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& Grimm, 2009) which can estimate the probability that a child’s responses follow a linear, logarithmic, or other
underlying representation.

The Logarithmic to Linear Shift

Early work showed that younger children provide logarithmic estimates (i.e., greater discrimination for smaller
quantities) on number lines, while older children provide linear estimates (Siegler & Booth, 2004; Siegler &
Opfer, 2003). This shift was described as evidence that a child developed a more consistent understanding of
numbers over the course of development (Opfer & Siegler, 2012; Praet & Desoete, 2014; Siegler, Thompson,
& Opfer, 2009). However, later work by Opfer and Siegler (2007) showed that this representational change
can come from of a single item of feedback. Similar findings demonstrated other instances of very rapid
representational shifts (Laski & Siegler, 2014; Siegler, 2009; Siegler & Ramani, 2009).

Other work has suggested that children commonly solve number line estimation tasks using an anchoring
strategy (Friso-van den Bos et al., 2015; Peeters, Degrande, Ebersbach, Verschaffel, & Luwel, 2016; Peeters,
Verschaffel, & Luwel, 2017). Rouder and Geary (2014) examined the way benchmarks predicted responses
with novel regression functions, such as an S-shaped two-anchor model, where responses were predicted
based on distance to the both end-points of the number line, and not just the origin. They calculated Bayesian
regression models for each child and selected the model with the lowest error for each child and measurement
point.

Bayesian regression was also used in other recent articles (Friso-van den Bos et al., 2015; Kim & Opfer,
2017). It represented an important innovation in number line task analysis. It can account for many assumption
violations of regression analyses; however, the interpretation of response patterns still relied on nonprobabilistic
diagnoses, where the model with the lowest error was selected.

Covariates of Number Line Estimation

Response patterns on the number line task vary based on the magnitude of the target number (Kim & Opfer,
2017), the child’s age (Praet & Desoete, 2014; Siegler & Opfer, 2003), socioeconomic status (SES; Fuchs et
al., 2013; Ramani & Siegler, 2011; Siegler & Ramani, 2009), special education needs (SEN; Opfer & Martens,
2012; Tian & Siegler, 2017) and other factors of culture and the task (Laski & Yu, 2014; Leibovich, Al-Rubaiey
Kadhim, & Ansari, 2017). Similarly, there is substantial evidence linking multiple variables to the development
of number cognition. Boys tend to outperform girls on math tasks as early as the start of school (Cimpian,
Lubienski, Timmer, Makowski, & Miller, 2016), while children from a migration background tend to underperform
(Stahl, Schober, & Spiess, 2018). Similarly children with SEN lag in math development (Gebhardt, Zehner, &
Hessels, 2014; Hansen et al., 2015). Yet, relatively few studies have examined the specific effects of SEN and
migration background on number line tasks.

Some tasks have looked at related variables. Opfer and Martens (2012) found that adults with William’s Syn-
drome did not change from logarithmic to linear response patterns, but their accuracy did improve. However,
this is not a direct investigation of the overall impact of SEN, which more broadly refers to other needs
including behavioral, linguistic, and attention difficulties. Meanwhile, Ramani and Siegler (2011) demonstrated
that playing games that simulated a linear spatial representation facilitated linear performance on later number
estimation tasks, particularly for learners with lower SES. Finally, Laski and Yu (2014) found that Chinese
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children were more likely to provide linear responses than Chinese-American children. However, this study
investigated cross-cultural difference and not the effect of a migration background. Direct investigation of these
qualities will expand the overall picture of the development of number cognition, number line estimation, and
mathematical competence. In particular, it can be uncovered whether the relationship between number line
estimation and mathematical competence is a direct one, or if the relationship is differentially affected by related
variables.

Growth Mixture Modeling for Number Line Tasks

Commonly, studies analyze number line tasks based on children transitioning from a better logarithmic fit to
a better linear fit (Opfer & Siegler, 2007; Rouder & Geary, 2014) or the percentage of children which had a
better linear or logarithmic fit (Opfer & DeVries, 2008). A linear or a logarithmic responder was identified based
on which (frequentist or Bayesian) regression model had lower error, without regard to the difference between
linear or logarithmic fits or the location of error. In this way, the data was reduced to nominal categories.
Meanwhile, growth mixture modeling can provide probabilities of linear or logarithmic fits, where a child is given
a value between 0 and 1 reflecting the probability of being best fit by the model. This allows a gradation of
certainty in the categorization responders.

Traditionally, latent growth modeling techniques are used to assess change over time (Duncan & Duncan,
2004). They can be easily adopted to many different growth curves (e.g., linear, logarithmic, linear segments,
etc.), allow for various missing data solutions, and can model data with many different measurement time
points. Latent growth models can model number line tasks in the same way that regressions have. Instead of
calculating growth curve over time, one calculates the position of estimates over the space of the line. Similar to
a random-slope, random-intercept model, this produces slopes and intercepts for the entire sample as well as
estimates for each individual. Thus, separate regression models for each child are unnecessary. Furthermore,
the models can compensate for issues of lower error rates around end- or anchor-points and different error
distributions. Because latent growth models can be estimated within a structural equation modeling (SEM)
framework, the models can be extended into other modeling techniques, such as mixture modeling.

Mixture modeling allows for the identification of latent classes (for a review, see Collins & Lanza, 2010). This
is a good match for number line estimation studies because responses are believed to be generated from two
distinct representations (i.e., linear or logarithmic). Graduated probabilities of class membership are generated
based on both the degree and location of deviations from the expected curve. Mixture modeling applied to
latent growth models is called growth mixture modeling (Ram & Grimm, 2009). This is a major improvement
over all-or-nothing categorizing based on absolute error. Additionally, mixture models can test covariates based
on class membership probabilities. Many past studies have examined covariates (e.g., gender, cognitive ability,
age, and others; Laski & Yu, 2014; Opfer & Martens, 2012; Siegler & Ramani, 2009) based solely and
better linear or better logarithmic regression fits. These results can be improved upon within a growth mixture
modeling framework.

Furthermore, growth modeling can accurately capture a spatial relationship, while mixture modeling can poten-
tially identify a particular strategy used by children within a block of number line trials. A child may use an
anchoring strategy, which may be identified based on lower error rates at the anchors, or alternatively, the child
may use a random response strategy, which may be identified by a flat line. Because growth mixture modeling
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allows for a curve statistics for each individual child, such strategies can be identified and sorted into a class of
responder.

In Figure 1, an example of a growth mixture model applied to a number line task can be seen. Since we use
an SEM framework, the model can be read very similar to other structural equation models. In this simplified
model, the task is a 0–4 number line with three trials (Numbers 1, 2, and 3). The row at the bottom represents
these trials. These compare directly to observations made at different time points in a traditional latent growth
model. Above are I and S for the intercept and slope from the latent growth model. The intercept is fixed at 1 in
all cases, but we can see that the slope is fixed at f(x), where x is the target number for the estimation task. The
scaling of the slope depends on the intended curve shape. In the linear class,

f x = x

and in the logarithmic class,

f x = ln x

where x is the target of the individual estimation task (i.e., 1, 2 or 3 in this example). Above the intercept and
slope is C, which represents class membership. As described above, the classes differ only in slope loadings.
Class membership then depends on the outcomes of the latent growth model with the differing slope loadings.
Finally, onto class membership is regressed the background variables of interest, gender, SEN, and migration
background.

Figure 1. An example of a simplified growth mixture model for a number line task.

Note. SEN = special education needs; Mig = migration background; I = intercept; S = slope; C = class membership.
Residual variables are not shown.

The Present Study

The present study describes the application of a pre-existing analysis to a new area, number line tasks.
We apply growth mixture modeling to assess whether participant responses more closely match a linear,
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logarithmic, or two-anchor model. We also assess the effect of SEN, migration background, and gender on
model fit probability. Along these lines, we have developed a series of hypotheses.

First, we assess performance on both 0–20 and 0–100 number line tasks. We expect that the vast majority of
children will provide responses corresponding to a linear model on the 0–20 task, while fewer will do so on the
0–100 task. This corresponds to Siegler and Opfer’s (2003) findings of linear responses in the second grade on
similar scales, as well as more recent findings (Fuchs et al., 2013; Kim & Opfer, 2017; Laski & Yu, 2014; Opfer
& DeVries, 2008; Siegler, 2009).

Second, we examine performance based on gender, SEN, and migration background. We expect that boys
will respond more linearly than girls, based on other work estimating the effects of gender on mathematical
competency (Cimpian et al., 2016). Similarly, we expect children with SEN will more show logarithmic response
patterns (Gebhardt et al., 2014; Hansen et al., 2015; Opfer & Martens, 2012). Furthermore, we expect that
those with a migration background will also demonstrate more logarithmic responses, based on past work
indicating a possible lag in mathematical development (Fuchs et al., 2013; Siegler & Ramani, 2009).

Third, we examine the fits of a two-anchors model, where responses vary based on distance to both endpoints,
and not just the origin (see Rouder & Geary, 2014). We expect few children to fit within a two-anchors model
because past results indicate a logarithmic model is still more likely early in development.

Finally, we repeat our analyses following the fit-based regression techniques used by previous work. We then
compare the results of both techniques.

Method

Participants

Participants were 325 second grade students attending regular primary schools in the Northwest of Germany.
Participants were recruited through their school administrators and teachers following established protocols for
education research within Germany. Slightly under half the participants were boys (n = 144, 44.3%). Teachers
were asked to report SEN and migration background of their participants, based upon whether the child or the
child’s parents were born abroad. The proportion of learners with a migration background was relatively high,
although commiserate with the region (n = 143, 44.0%). A smaller number had SEN (n = 57, 17.5%), including
language problems (n = 26), learning (n = 11), cognitive development (n = 6) and other (n = 14). An overview of
the gender proportion and age of our participants can be found in Table 1.
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Table 1

Participant Statistics

Group Percent Female Age in Years M (SD)

Overall 55.7% 7.83 (0.42)

SEN
With Any 35.1% 8.01 (0.49)
None 60.1% 7.79 (0.40)

Migration Background
With 60.1% 7.85 (0.43)
Without 52.2% 7.81 (0.42)

Note. SEN = special education needs.

Procedure

All data were collected by the same trained research assistant. We updated previous similar procedures (e.g.,
Opfer & Siegler, 2007; Rouder & Geary, 2014; Siegler & Opfer, 2003) for use with a tablet computer. Tasks
were implemented via the web-platform Levumi (www.levumi.de). Students were told they would play a game
on a tablet computer. They were shown a number line task on a 10-inch tablet and the touch-interface was
explained to them. Next, they received their own tablet with an example problem on it. When they clicked on
the number line, a blue line indicating their choice appeared. They could then click a new position or click on
the continue button. Once they completed the sample item, they had 3 minutes to complete as many of the
number line problems as they could. The 3-minute limit ensured participants were engaged with the task and
allowed for data to be collected with minimum disruption to the regular class. In the 0–20 condition, children
received all possible numbers between 0 and 20. In the 0–100 children, children received 20 numbers, 2
from each decade of the range (e.g., 2 between 10 and 19, 2 between 20 and 29, etc.). This procedure was
replicated for both the 0–20 and 0–100 number lines.

Due to the random ordering of trials, items that were not reached were treated as missing at random and
deleted pairwise in all analyses. The average number of missing responses was 3.2 (SD = 4.0) in the 0–20
number line and 4.1 (SD = 5.9) in the 0–100 number line. Most responders had fewer than 10% missing (64.6%
in the 0–20 task and 63.1% in the 0–100 task). A multiple linear regression indicated that gender, migration
background and SEN did not have a significant effect on the number of missing responses (all ps > .10). In six
cases, no responses were given at all. These cases were removed from all analyses, leaving 319 participants.

Analysis

We applied growth mixture modeling (see Ram & Grimm, 2009 for a review) to estimate both linear and
logarithmic response models. These were calculated using the robust maximum likelihood estimator (MLR;
Yuan & Bentler, 2008). All growth mixture analyses were conducted using Mplus 7.4 (Muthén & Muthén,
1998–2017), and an example of our syntax and notes on model specification are provided in the Appendix. A
two-class (linear and logarithmic) mixture model was applied to the 0–20 and 0–100 task. A three-class model
(linear, logarithmic, and two-anchors; see Rouder & Geary, 2014) was also applied to the 0–100 number line
task. A regression of gender, SEN, and migration background onto class membership probability was included
in the mixture analysis via 1-step joint model estimation. The Appendix contains an example of our syntax and
the scaling functions used to create a separate growth model for each latent class.
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In order to compare analysis techniques, we also conducted a regression analysis. Separate linear and loga-
rithmic regressions were calculated for each child. A child was categorized as linear or logarithmic based on
which model had a better R2.

Finally, we compare the results to linear and logistic regressions using gender, SEN, and migration background
as predictors of linear R2 or class membership, as determined by individual linear and logarithmic regressions
of each child’s responses.

Results

Overall Model Performance

The models converged successfully in all cases, successfully replicating the log-likelihood values in multiple
random starts. Fits of all models are described in Table 2, and additional test statistics for the models are
described in Table 3. As seen in Table 4, good latent class separation was also achieved in all models. Based
on all three fit metrics, the Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted
BIC, the three class model performed better; however, very as seen in Table 3, very few responders (5%) fit the
two-anchors class in the three-class model. We explore the two and three class models in more detail below.

Table 2

Information Criteria Fits of the Growth Mixture Models

Task Model AIC BIC
Sample-Size Adjusted

BIC

0–20 Two Class 22,585 22,699 22,604
0–100 Two Class 41,298 41,416 41,317

Three Class 41,133 41,273 41,156
Note. AIC = Akaike information criterion; BIC = Bayesian information criterion.

Table 3

Likelihood Ratio Test Statistics for Model in Compared to Model With One Fewer Class

Task Model

Lo-Mendell
Rubin LRT
p-value

Adjusted
LRT

p-value

Parametric
Bootstrapped LRT

Approximate p-value

0–20 Two Class .071 .077 < .001
0–100 Two Class .027 .029 < .001

Three Class .013 .015 < .001
Note. LRT = likelihood ratio test.
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Table 4

Entropy and Latent Class Membership Proportion and Class Separation

Model Task Entropy Class
Class

Proportion

Average Probability of Class Membership

Lin Log Two-Anchor

Two Class 0–20 1.00 Lin .98 1.00 0.00
Log .02 0.00 1.00

0–100 0.67 Lin .57 0.92 0.08
Log .43 0.12 0.88

Three Class 0–100 0.84 Lin .46 0.92 0.08 0.00
Log .49 0.07 0.92 0.01

Two Anchor .05 0.02 0.01 0.97
Note. Lin = linear class; Log = logarithmic class; Class proportion = relative proportion of children assigned to the given class.

Two Class Model

Graphical summaries of the two-class models for the 0–20 task can be seen in the left half of Figure 2. The
linear class is well defined and shows a straightforward linear trajectory; however, the logarithmic class shows a
very high intercept with a low slope. Responses for the logarithmic class are more erratic. It is therefore unlikely
that the logarithmic class represents actual logarithmic responses on this scale, but instead indicates random
responders. This is supported by the relative small proportion of membership in this class (less than 3%).

Figure 2. Two class model (linear and logarithmic) for 0–20 and 0–100 number lines.

Note. The dashed line is the predicted aggregate linear model, and the solid line is the predicted aggregate logarithmic
model. Circles represent linear class mean responses, and triangles represent logarithmic class mean responses.

The 0–100 task also appears in Figure 2. In contrast to the 0–20 task, it demonstrates a clear logarithmic curve.
Coupled with the high proportion of membership, a logarithmic interpretation of this class is appropriate.
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Effects of Subject Variables on Class Membership

The odds ratio effects on the probability of being a linear responder is described in Table 5. On the 0–20
number line, the only significant predictor of linear or logarithmic group membership was SEN, who were
significantly less likely to respond linearly, p < .05. On the 0–100 number line, males were significantly more
likely to produce linear responses than females, p < .01.

Table 5

Odds Ratios for Linear Responders in the Two Class Model

Group

Number Line Range

0–20 0–100

Male 6.53 2.40**
Migration Background 0.97 1.27
Special Education Needs 0.19* 1.00
Note. An odds ratio describes the likelihood change of the linear class matching given the child with the described quality (e.g., male,
possessing a migration background, or having special education needs). Values that are significantly different from 1 are marked.
*p < .05. **p < .01.

Three Class Model

We examined the three-class model for only the 0–100 number line task because the responders in the 0–20
task were overwhelming linear, and interpretation of the 0–20 model’s second class was already unclear due to
the flat slope of the logarithmic class. As seen in Table 4, the class separation remained good in the three class
model for the 0–100 task. The graphical summary of the three-class model can be seen in Figure 3.

Figure 3. Three class model (linear, logarithmic, two anchors) on the 0–100 number line task.

Note. The dashed line is the predicted aggregate linear model, the solid line is the predicted aggregate logarithmic model,
and the dotted line is the predicted two-anchors model. Circles represent linear class mean responses, triangles represent
logarithmic class mean responses, and Xs represent two-anchors class mean responses.
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Here the slope is quite flat, and there is relatively little sinusoidal curvature. This model appears to fit mostly a
small group of random responders.

Table 6 shows that males were more likely to be in the linear class than the logarithmic class, p < .01. Migration
background had no effect, p > .05. Children with SEN were more likely to the linear or logarithmic class than
in the two-anchors class, ps < .05. Based on the flat curvature of the two-anchors solutions, this suggests that
children with SEN were more likely to be random responders.

Table 6

Path Values Predicting Class Membership in the Three Class Model

Reference Class Class Predictor Path Value SE

Linear Logarithmic SEN 0.06 0.39
Male −0.88** 0.28
Migration Background −0.21 0.29

Two-Anchors SEN 1.65* 0.63
Male −1.25 0.70
Migration Background 0.77 0.64

Logarithmic Two-Anchors SEN 1.59* 0.61
Male −0.37 0.70
Migration Background 0.98 0.64

Note. SEN = special education needs. Positive numbers indicate that the stated class was more likely for that group than the reference
class, negative values mean it was less likely, and zero means it was equally likely.
*p < .05. **p < .01.

Model Selection

While the information criteria fit values for the three-class model are better and the likelihood ratio test values
indicate a significantly better fit, theoretical interpretation is also a critical factor in model selection. In this
case, the interpretation of the three-class model does not follow the theoretical goals of the model. Instead of
representing a logarithmic function of the distance from either end-point, it represented relatively flat, random
responses of a very small (5%) proportion of responders. Thus, the three classes of the model were linear,
logarithmic, and random responders. We therefore prefer the simpler 2-class model.

Comparison to Individual Regressions

We compared growth mixture modeling to traditional techniques which fit individual regression curves to
each participant for the 0–100 task. We excluded the 0–20 task because of the relatively low variability in
class membership at this range. These analyses produced very different results than the mixture modeling.
Nearly 30% more responders were classified as linear (83%) than in growth mixture modeling. Additionally, we
conducted three separate regressions, summarized in Table 7. The first regression was a logistic regression
of SEN, gender, and migration background onto whether the individual linear regression fit better than the
individual logarithmic regression. Here, both gender and migration background were significant, p < .05. We
also conducted linear regression of SEN, gender, and migration background onto both linear R2 and logarithmic
R2, no significant coefficients were found in either case, p > .05.

DeVries, Kuhn, & Gebhardt 75

Journal of Numerical Cognition
2020, Vol. 6(1), 66–82
https://doi.org/10.5964/jnc.v6i1.212

https://www.psychopen.eu/


Table 7

Regression Results of Subject Variables Onto Individual Regression Model Results for the 0–100 Number Line Task

Model Predictor Unstandardized Beta SE p

Logistic Male .84 0.37 .023*
SEN .87 0.58 .135
Migration Background −.76 0.34 .027*

Linear R2 Male .66 0.34 .054
SEN −.03 0.05 .556
Migration Background −.06 0.04 .096

Logarithmic R2 Male .05 0.03 .147
SEN −.03 0.04 .495
Migration Background −.04 0.03 .257

Note. SEN = special education needs. The logistic model was coded as a better or equal linear R2 = 1, and worse linear R2 = 0. Thus,
positive coefficients indicate an increase likelihood to be better fit by the linear function.
*p < .05.

Discussion

Our paper describes a new application of growth mixture modeling for the analysis of number line tasks. This
technique identified a significant effect of gender on linear response probability in the 0–100 number line,
and of SEN for the 0–20 number line. These results differed from traditional number line analyses, which
involve fitting individual regressions for each child, where far fewer logarithmic responders were identified and
significant effects were found for gender and migration background in the 0–100 task. Our analysis represents
an important innovation in data analysis of number line tasks and allows for superior data analysis and better
treatment of missing data. Furthermore, this growth mixture modeling can deal with violations of normalcy and
homoscedacity. Importantly, it provides continuous estimates of probability of linear, or logarithmic (or other)
response patterns. This technique can also be extended to analyze other functions including power, segmental,
and other curves. The technique can be further extended to more measurement points and other response
ranges via simple changes to the syntax and scaling functions. A further extension of the models to latent
transition analysis could also model changes in response patterns over time or due to an intervention.

Our new analysis identified more children into the logarithmic class than the regression analyses did. This
difference can be explained by error distribution and model overlap. Number line errors are not consistent
throughout the entire line (see Rouder & Geary, 2014 for a detailed explanation of this issue). This is further
complicated by some individuals using an anchoring strategy (e.g., Friso-van den Bos et al., 2015; Kim &
Opfer, 2017; Rouder & Geary, 2014). Thus within expected error ranges, the linear and logarithmic representa-
tions overlap at many points. Responses at these points are less informative when identifying a linear or a
logarithmic responder, but regression techniques typically use overall error of the regression model for this
purpose. Mixture models give these responses less weight, which allows for a better, probabilistic assessment
of responders.

This helps to explain the differences between growth mixture modeling and individual regression results. In
the two class growth mixture model for the 0–100 number line task, boys were significantly more likely than
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girls to fit the linear class. Similarly, they were more likely to have a better linear R2 in the logistic regression,
although their the R2 did not differ significantly in the linear and logarithmic regressions. The logistic regression
also found that children with a migrant background were significantly less likely to be better fit by the linear
regression. However, the effect of migrant background was not significant in the growth mixture model. The
effect of migration background was biased due to the small number of logarithmic responders. Growth mixture
modeling avoided this by identifying a larger group of logarithmic responders.

While the data match the logarithmic curves well in the 0–100 condition, there are some additional issues about
model performance. In the 0–20 condition, the vast majority (over 97%) of responders fit into the linear class,
but the logarithmic class appears to be random responders and not true logarithmic responders. Therefore,
for the 0–20 range, it would be better to interpret the logarithmic class as a class of random responders.
This represents only a few outlier cases and may be an artifact of using a two-class model when almost all
responders were linear. We see a similar artifact in the three-class model of the 0–100 task. It is therefore
critical to carefully interpret each class when applying growth mixture modeling.

Higher class proportions of linear responders on the 0–20 task than the 0–100 task replicated the critical
finding of a logarithmic to linear shift with increasing magnitudes (Friso-van den Bos et al., 2015; Laski & Yu,
2014; Opfer & Siegler, 2007). Our participants were overwhelming (over 97%) linear responders in the 0–20
condition, and only slightly above 50% linear responders in the 0–100 condition.

We also explored a three-class model, with a linear, logarithmic, and two-anchor class (based on Rouder
& Geary’s 2014 M2). In the two-anchor class, curves are connected from the end-point to the midpoint,
suggesting participants’ compressed representation starts at the end points, and is fitted through the midpoint
of the number line. However, response patterns in the two-anchors class responded along a straight, flat line,
and not along a sinusoidal curve. This suggests that they instead adopted a random response pattern. Further
work fitting such models across more age groups may identify true two-anchor strategies.

While few studies have precisely examined the effects of gender on number line estimation, our finding
that boys responded more linearly than girls was well predicted by previous work relating to mathematical
competency and gender. More work precisely measuring and accounting for this effect remains necessary. We
also found that children with SEN were significantly less likely to belong to the linear class on the 0–20 task,
although not on the 0–100 task. However, this result requires further examination as it represented a very
small number of our participants. Additional work involving classrooms from multiple countries and cultures,
and students from diverse backgrounds, with and without SEN is necessary. Further work modeling the change
in class membership after feedback, over time, and throughout development is also necessary.

Conclusion

We apply growth mixture modeling for the first time to number line estimation tasks. The new method can
effectively discern both linear and logarithmic representations. This approach identified effects of SEN and
gender, while no effects of migration background were found. Our method can be readily adapted to many
different number line estimation tasks in future analyses.
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Appendix

Syntax

!Mplus 7.4 syntax excerpt for 0–100 number line with 2-classes.

VARIABLE: 
names are 
    ID MP Sex SEN Migrat Avg 
    hu22 hu59 hu98 hu53 hu45 hu9 hu86 hu84 hu15 hu13
    hu5 hu27 hu32 hu77 hu67 hu61 hu40 hu91 hu73 hu36;
Idvariable is ID;
Missing are all (-99);
usevariables are 
    hu22 hu59 hu98 hu53 hu45 hu9 hu86 hu84 hu15 
    hu13 hu5 hu27 hu32 hu77 hu67 hu61 hu40 hu91 hu73 hu36
    SEN Sex Migrat;
classes are c(2);

MODEL:
%Overall% !Linear class as the default model
i s | hu5@5 hu9@9 hu13@13 hu15@15 hu22@22 hu27@27 hu32@32 
    hu36@36 hu40@40 hu45@45 hu53@53 hu59@59 hu61@61 
    hu67@67 hu73@73 hu77@77 hu84@84 hu86@86 hu91@91 hu98@98;
[i s];
c on SEN sex migrat; !Class membership on covariates 

%C#2% !Class 2 uses the logarithmic model
i s | hu5@1.609 hu9@2.197 hu13@2.565 hu15@2.708 hu22@3.091 hu27@3.296
    hu32@3.466 hu36@3.584 hu40@3.689 hu45@3.807 hu53@3.970 hu59@4.078
    hu61@4.111 hu67@4.205 hu73@4.290 hu77@4.344 hu84@4.431 hu86@4.454
    hu91@4.511 hu98@4.585;
[i s];

ANALYSIS:
starts are 50 (20);
type is mixture;
estimator is MLR;

Details on Model Specification

This approach can be extended to additional functions by adjusting the y-intercept and scaling parameters. By editing the
syntax, many different linear or nonlinear growth curves can be fit. Below are the functions we used to calculate each
class. In addition to the three classes we describe in the full paper, we attempted to fit a four-class model, with the extra
class following Rouder and Geary’s (2014) 3-anchor model (i.e., both end points and the midpoint as anchors). This model
converged with comparable AIC, but the three-anchors class contained only one responder. So it was excluded from our
main discussion. Different classes and models can be similarly fit by fixing the time scores to different curves. This includes
segmented linear regressions, power functions, sinusoidal functions and more.

In our syntax, the time scores for each class were provided by the appropriate function to the target estimates. The results
of the function provided the time score for each response on for the given class. The linear class was given by
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f x = x

The logarithmic class was given by

f x = ln x

The two-anchors class was given by

f x = ln x
100 − x

The three-anchors class was given by

f x =  
ln x

50 − x x < 50
ln x − 50

100 − x x > 50

while we chose to not to include the three-anchors class in our paper, it is worth noting a latent growth model avoids the
problem faced by Rouder and Geary (2014) of individual estimates crossing over the midpoint of the line because all scaling
is done with the target numbers and not participants’ estimates.

A further extension via a latent transition analysis could be attempted. This would be an ideal method for comparing
group membership over the course of multiple measurement points; however, it may prove computationally complex. Future
refinements may improve modeling efficiency allowing for such a model.

Lastly, alternative methods for entering covariates may be used. For instance, the 3-step process may be implemented in
Mplus via the “auxiliary” command in the “variable” section. We explored this method for both the 2- and 3-class models for
the 0–100 number line, and there were no changes to significant results.
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